Title: METHOD AND APPARATUS FOR ENABLING CONTROL OF FUEL INJECTION FOR AN ENGINE OPERATING IN AN AUTO-IGNITION MODE

Abstract: There is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
METHOD AND APPARATUS FOR ENABLING CONTROL OF FUEL INJECTION FOR AN ENGINE OPERATING IN AN AUTO-IGNITION MODE

TECHNICAL FIELD

[0001] This invention relates to operation and control of homogeneous-charge compression-ignition (HCCI) engines.

BACKGROUND OF THE INVENTION

[0002] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

[0003] Internal combustion engines, especially automotive internal combustion engines, generally fall into one of two categories, spark ignition engines and compression ignition engines. Traditional spark ignition engines, such as gasoline engines, typically function by introducing a fuel/air mixture into the combustion cylinders, which is then compressed in the compression stroke and ignited by a spark plug. Traditional compression ignition engines, such as diesel engines, typically function by introducing or injecting pressurized fuel into a combustion cylinder near top dead center (TDC) of the compression stroke, which ignites upon injection. Combustion for both traditional gasoline engines and diesel engines involves premixed or diffusion flames that are controlled by fluid mechanics. Each type of engine has advantages and disadvantages. In general, gasoline engines produce fewer emissions but are less efficient, while, in general, diesel engines are more efficient but produce more emissions.

[0004] More recently, other types of combustion methodologies have been introduced for internal combustion engines. One of these combustion concepts is known in the art as controlled auto-ignition, or homogeneous charge compression ignition (HCCI). Controlled auto-ignition comprises a distributed, flameless, auto-ignition combustion process that is controlled by oxidation chemistry, rather than by fluid mechanics. In a typical HCCI engine, the cylinder charge is nearly homogeneous in composition, temperature, and residual level at intake valve closing time. Because auto-ignition combustion
is a distributed kinetically-controlled combustion process, an HCCI engine operates with a dilute fuel/air mixture (i.e., lean of a fuel/air stoichiometric point) and has a relatively low peak combustion temperature, thus forming extremely low NOx emissions. The fuel/air mixture for auto-ignition is relatively homogeneous, as compared to the stratified fuel/air combustion mixtures used in diesel engines, and, therefore, the rich zones that form smoke and particulate emissions in diesel engines are substantially eliminated. Because of this dilute fuel/air mixture, a HCCI engine can operate unthrottled to achieve diesel-like fuel economy.

[0005] At medium engine speed and load, a combination of valve profile and timing (e.g., exhaust recompression and exhaust re-breathing) and fueling strategy has been found to be effective in providing adequate heating to the cylinder charge so that auto-ignition during the compression stroke leads to stable combustion with low noise. One of the main issues in effectively operating an HCCI engine has been to control the combustion process properly so that robust and stable combustion resulting in low emissions, optimal heat release rate, and low noise can be achieved over a range of operating conditions. The benefits of auto-ignition combustion have been known for many years. The primary barrier to product implementation, however, has been the inability to control the auto-ignition combustion process.

[0006] To address issues related to combustion stability, HCCI engines operate at different combustion modes, depending upon specific engine operating conditions. The different combustion modes include various spark-ignition modes and auto-ignition modes.

[0007] The combustion process in an HCCI engine depends strongly on factors such as cylinder charge composition, temperature, and pressure at the intake valve closing. Hence, the control inputs to the engine, for example, fuel mass and injection timing and intake/exhaust valve profile, must be carefully coordinated to ensure robust auto-ignition combustion. Generally speaking, for best fuel economy, an HCCI engine operates unthrottled and with a lean air-fuel mixture. Further, in an HCCI engine using exhaust recompression valve strategy, the cylinder charge temperature is controlled by trapping
different amount of the hot residual gas from the previous cycle by varying the exhaust valve close timing. The opening timing of the intake valve is delayed than normal to a later time preferably symmetrical to the exhaust valve closing timing about top-dead-center (TDC) intake. Both the cylinder charge composition and temperature are strongly affected by the exhaust valve closing timing. In particular, more hot residual gas from a previous cycle is retained with earlier closing of the exhaust valve which leaves less room for incoming fresh air mass. The net effects are higher cylinder charge temperature and lower cylinder oxygen concentration.

[0008] For a single cylinder engine, it has been demonstrated that by adjusting both intake/exhaust valve profiles and engine control inputs such as injection mass and timing, spark timing, throttle and EGR valve positions combustion phasing control and robust auto-ignition combustion can be achieved using either a fully flexible valve actuation (FFVA) system or a mechanical two-step variable valve lift control scheme with a dual cam phasing system. However, in a multi-cylinder HCCI engine, combustion in each cylinder can vary significantly due to the difference in temperature caused by air, EGR and thermal mal-distributions. To compensate for such variations in cylinders and to stabilize the auto-ignited combustion, fuel quantity at each individual cylinder may be controlled.

[0009] In an HCCI engine, temperature at intake valve closing at each cylinder is critical since it determines the stability of combustion especially during transients. During transients, if the temperature at intake valve closing is too low at a particular cylinder, either misfire or partial burn, which may cause undesired drivability problems can occur at that cylinder. The combustion related parameters measured during transients are reliable indicators if the temperature at intake valve closing at a particular cylinder is too low.

[0010] A system which detects the cases wherein the temperature at intake valve closing is too low is now described.
SUMMARY OF THE INVENTION

[0011] In accordance with an embodiment of the invention, there is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.

[0012] After processing the combustion related measurements, if certain conditions are met and misfire or partial burn is detected, the proposed system enables a fast high-gain fuel injection correction algorithm to recover from the misfire/partial burn and further to prevent future misfire/partial burn. The fuel correction algorithm reacts quickly to undesired misfires/partial burns as (e.g., in a fast loop) with sufficient amount of correction fuel (high gain controller). The proposed method determines the conditions when such a fast high-gain fuel correction is needed.

[0013] These and other aspects of the invention are described hereinafter with reference to the drawings and the description of the embodiments.

DESCRIPTION OF THE DRAWINGS

[0014] The invention may take physical form in certain parts and arrangement of parts, the embodiments of which are described in detail and illustrated in the accompanying drawings which form a part hereof, and wherein:

[0015] Fig. 1 is a schematic drawing of an engine system, in accordance with the present invention; and,

[0016] Figs. 2-6 are algorithmic flow diagrams, in accordance with the present invention.
DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[0017] Referring now to the drawings, wherein the depictions are for the purpose of illustrating the invention only and not for the purpose of limiting the same, Fig. 1 depicts a schematic diagram of an internal combustion engine 10 and accompanying control module that have been constructed in accordance with an embodiment of the invention. The engine is selectively operative in a controlled auto-ignition mode and a conventional spark-ignition mode.

[0018] The exemplary engine 10 comprises a multi-cylinder direct-injection four-stroke internal combustion engine having reciprocating pistons 14 slidably movable in cylinders which define variable volume combustion chambers 16. Each of the pistons is connected to a rotating crankshaft 12 ('CS') by which their linear reciprocating motion is translated to rotational motion. There is an air intake system which provides intake air to an intake manifold which directs and distributes the air into an intake runner 29 to each combustion chamber 16. The air intake system comprises airflow ductwork and devices for monitoring and controlling the air flow. The devices preferably include a mass airflow sensor 32 for monitoring mass airflow ('MAF') and intake air temperature ('T_{in}'). There is a throttle valve 34, preferably an electronically controlled device which controls air flow to the engine in response to a control signal ('ETC') from the control module. There is a pressure sensor 36 in the manifold adapted to monitor manifold absolute pressure ('MAP') and barometric pressure ('BARO'). There is an external flow passage for recirculating exhaust gases from engine exhaust to the intake manifold, having a flow control valve, referred to as an exhaust gas recirculation ('EGR') valve 38. The control module 5 is operative to control mass flow of exhaust gas to the engine air intake by controlling opening of the EGR valve.

[0019] Air flow from the intake runner 29 into each of the combustion chambers 16 is controlled by one or more intake valves 20. Flow of combusted gases from each of the combustion chambers to an exhaust manifold via exhaust runners 39 is controlled by one or more exhaust valves 18. Openings and closings of the intake and exhaust valves are preferably
controlled with a dual camshaft (as depicted), the rotations of which are linked and indexed with rotation of the crankshaft 12. The engine is equipped with devices for controlling valve lift of the intake valves and the exhaust valves, referred to as variable lift control (VLC). The variable valve lift system comprises devices operative to control valve lift, or opening, to one of two distinct steps, e.g., a low-lift valve opening (about 4-6 mm) for load speed, low load operation, and a high-lift valve opening (about 8-10 mm) for high speed and high load operation. The engine is further equipped with devices for controlling phasing (i.e., relative timing) of opening and closing of the intake valves and the exhaust valves, referred to as variable cam phasing (VCP), to control phasing beyond that which is effected by the two-step VLC lift. There is a VCP/VLC system 22 for the engine intake and a VCP/VLC system 24 for the engine exhaust. The VCP/VLC systems 22, 24 are controlled by the control module, and provide signal feedback to the control module consisting of camshaft rotation position for the intake camshaft and the exhaust camshaft. When the engine is operating in auto-ignition mode with exhaust recompression valve strategy the low lift operation is typically used, and when the engine is operating in a spark-ignition combustion mode the high lift operation typically is used. As known to skilled practitioners, VCP/VLC systems have a limited range of authority over which opening and closings of the intake and exhaust valves can be controlled. Variable cam phasing systems are operable to shift valve opening time relative to crankshaft and piston position, referred to as phasing. The typical VCP system has a range of phasing authority of 30°-50° of cam shaft rotation, thus permitting the control system to advance or retard opening and closing of the engine valves. The range of phasing authority is defined and limited by the hardware of the VCP and the control system which actuates the VCP. The VCP/VLC system is actuated using one of electro-hydraulic, hydraulic, and electric control force, controlled by the control module 5.

[0020] The engine includes a fuel injection system, comprising a plurality of high-pressure fuel injectors 28 each adapted to directly inject a mass of fuel into one of the combustion chambers, in response to a signal (‘INJ_PW) from
the control module. The fuel injectors 28 are supplied pressurized fuel from a fuel distribution system (not shown).

[0021] The engine includes a spark ignition system by which spark energy is provided to a spark plug 26 for igniting or assisting in igniting cylinder charges in each of the combustion chambers, in response to a signal (‘IGN’) from the control module. The spark plug 26 enhances the ignition timing control of the engine at certain conditions (e.g., during cold start and near a low load operation limit).

[0022] The engine is equipped with various sensing devices for monitoring engine operation, including a crankshaft rotational speed sensor 42 having output RPM, a combustion sensor 30 adapted to monitor combustion having output COMBUSTION, and, an exhaust gas sensor 40 adapted to monitor exhaust gases having output EXH, typically a wide range air/fuel ratio sensor. The combustion sensor 30 comprises a sensor device operative to determine an engine operating state from which a state of a combustion parameter is determined. The combustion sensor is depicted as a pressure sensor adapted to monitor in-cylinder combustion pressures. The control module preferably includes signal processing algorithms and circuitry which are adapted to capture and process signal outputs from the pressure sensor to derive a state for a combustion parameter of mean-effective-pressure (IMEP) for each cylinder. Preferably, the engine and control system are mechanized to monitor and determine states of IMEP for each of the engine cylinders during each cylinder firing event. Alternatively, other sensing systems can be used to monitor states of other combustion parameters within the scope of the invention, e.g., ion-sense ignition systems.

[0023] The engine is designed to operate un-throttled on gasoline or similar fuel blends with controlled auto-ignition combustion over an extended range of engine speeds and loads. However spark ignition and throttle-controlled operation may be utilized with conventional or modified control methods under conditions not conducive to the auto-ignition operation and to obtain maximum engine power to meet an operator torque request. Fueling preferably comprises direct fuel injection into the each of the combustion chambers. Widely available grades of gasoline and light ethanol blends
thereof are preferred fuels; however, alternative liquid and gaseous fuels such as higher ethanol blends (e.g. E80, E85), neat ethanol (E99), neat methanol (M100), natural gas, hydrogen, biogas, various reformates, syngases, and others may be used in the implementation of the present invention.

[0024] The control module 5 is preferably a general-purpose digital computer generally comprising a microprocessor or central processing unit, storage mediums comprising non-volatile memory including read only memory (ROM) and electrically programmable read only memory (EPROM), random access memory (RAM), a high speed clock, analog to digital (A/D) and digital to analog (D/A) circuitry, and input/output circuitry and devices (FO) and appropriate signal conditioning and buffer circuitry. The control module has a set of control algorithms, comprising resident program instructions and calibrations stored in the non-volatile memory and executed to provide the respective functions of each computer. The algorithms are typically executed during preset loop cycles such that each algorithm is executed at least once each loop cycle. Algorithms are executed by the central processing unit and are operable to monitor inputs from the aforementioned sensing devices and execute control and diagnostic routines to control operation of the actuators, using preset calibrations. Loop cycles are typically executed at regular intervals, for example each 3.125, 6.25, 12.5, 25 and 100 milliseconds during ongoing engine and vehicle operation. Alternatively, algorithms may be executed in response to occurrence of an event.

[0025] The control module 5 executes algorithmic code stored therein to control the aforementioned actuators to control engine operation, including throttle position, spark timing, fuel injection mass and timing, intake and/or exhaust valve timing and phasing, and EGR valve position to control flow of recirculated exhaust gases. Valve timing and phasing includes negative valve overlap (NVO in an exhaust recompression strategy) and lift of exhaust valve reopening (in an exhaust re-breathing strategy). The control module is adapted to receive input signals from an operator (e.g., a throttle pedal position and a brake pedal position) to determine an operator torque request \((T_{0-\text{tor}})\) and from the sensors indicating the engine speed (RPM) and intake air temperature \((T_{\text{in}})\), and coolant temperature and other ambient conditions. The
control module 5 operates to determine, from lookup tables in memory, instantaneous control settings for spark timing (as needed), EGR valve position, intake and exhaust valve timing and/or lift set points, and fuel injection timing, and calculates the burned gas fractions in the intake and exhaust systems.

[0026] Referring now to Fig. 2, a schematic diagram depicts overall operation of the system. Inputs to the engine 10 are depicted as fuel mass, and other controls. The fuel mass is determined based upon engine operating characteristics and the operator torque request, and selectively corrected using individual fuel injector gain factors, K, derived by a fuel correction algorithm 50 when it is enabled by the enabler logic described hereinafter. The other controls comprise the aforementioned instantaneous control settings for spark timing (as needed), EGR valve position, and intake and exhaust valve timing and/or lift set points, and injected fuel timing. Signals output from the cylinder pressure sensors 30 are monitored, and input to a cylinder pressure processing unit, from which state values for IMEP for each of the cylinders is determined each firing event. The state values for EMEP for each of the cylinders determined each firing event are input to the enabler logic and the fuel correction algorithm 50. Under specific conditions described hereinbelow, the enabler logic enables the fuel correction algorithm to output individual fuel injector gains to control actuation of the fuel injectors. The fuel correction algorithm 50 comprises any one of a variety of fuel correction schemes which is operative to adjust the gains of the individual fuel injectors to correct the amount of fuel injected in each of the cylinders. The intended result is to minimize misfires/partial burns due to the low temperature at intake valve closing by adjusting fuel during transients for each cylinder. The overall engine fueling strategy comprises controlling the total fuel injected from all injectors into the engine to be equal to the commanded value so that the engine torque follows the operator torque request. The engine fueling strategy and the fuel correction scheme are outside the scope of the invention.

[0027] One example of a fuel correction algorithm includes a method, executed in the control module as algorithmic code, having two elements, including a global fuel injector adaptation algorithm, which controls fuel flow
through all the engine injectors based on MAF and air-fuel ratio measurements, and, an individual fuel injector adaptation algorithm which controls fuel flow through each injector based on combustion phasing measurements, e.g., as measured by IMEP. The individual fuel injector adaptation algorithm corrects output of each of the fuel injectors. The fuel injectors typically have different flow injection characteristics, due to fuel rail pressure pulsation, manufacturing tolerance, injector fouling, and other factors. The different characteristics between individual injectors can cause partial burns or misfires due to the differences between commanded and delivered fuel quantities. For example, when fuel is injected less than the commanded into a cylinder, either misfire or partial burn can occur in the cylinder due to low residual gas temperature.

[0028] Referring now to Figs. 3 through 6, schematic diagrams of the enabler logic are now described. In Fig. 3, each of the individual states for IMEP for the cylinders (IMEP_1, IMEP_2, . . . IMEP_x) are added and an average IMEP, IMEP_ave is determined. Absolute values of differences between the average EVIEP and each of the individual IMEP states are each compared to a threshold, and the result is digitally filtered, as depicted with reference to Fig. 4. The enabler logic for the fuel correction algorithm takes the IMEP measurements of each cylinder as inputs at each firing event. The logic enables the fuel correction algorithm only when either partial-burn or misfire is detected from the IMEP measurements, as indicated by a deviation from the average value for IMEP.

[0029] Referring to Fig. 3, the average value for IMEP (IMEP_ave) is calculated, and becomes the baseline to which each cylinder's IMEP is compared. Each cylinder's IMEP is subtracted from EVIEP_ave. After the absolute value of the result is taken, it is compared to a threshold, which is a calibration parameter. When the threshold is smaller than the absolute value, the fuel correction algorithm 50 is commanded to be activated.

[0030] The command to activate the fuel correction algorithm is subject to further analysis, described with reference to Figs. 4, 5 and 6. The activation command is digitally filtered using a filter depicted with reference to Fig. 4. The filtering activity causes the enabler logic to ignore an activation command
when a deviation from the average IMEP lasts less than a calibratable number of cycles. The number of event delays in the filter is calibratable. The filter output of Fig. 4 is input as described below with reference to Fig. 6.

[0031] The enabler logic disables the fuel correction algorithm when auto-ignited combustion is oscillatory, i.e., when the IMEP of at least one of the cylinders varies significantly for a certain amount of time. Such an operating condition occurs when the engine operates near the boundary of auto-ignited combustion, especially at low load and low engine speed conditions.

[0032] Referring now to Fig. 5, a second portion of the algorithm which overwrites the output of the aforementioned algorithm is described. As depicted, a standard deviation for IMEP for each cylinder is calculated at the end of each cylinder's firing event. The current and last three IMEP states for each of the cylinders (IMEP_x, IMEP_x_1, IMEP_x_2, MEP_x_3) are captured and stored in short-term memory, utilizing a virtual moving window capable of storing the four IMEP measurements of each cylinder 'x' to calculate the standard deviation. The standard deviation is depicted as output '3' in Fig. 5, which become inputs (stddev IMEP_1, stddev IMEP_2 ... stddev IMEP_x) to Fig. 6.

[0033] Referring now to Fig. 6, after the calculation of each cylinder's IMEP standard deviation, a maximum standard deviation of all the cylinders is identified, and compared to a calibratable threshold, depicted as '100'. When the maximum standard deviation exceeds the threshold, a counter is triggered. The counter starts from zero and increments at every firing event as long as the new maximum standard deviation is greater than the threshold. When the counter reaches a predetermined limit, i.e. Counter_Threshold, depicted as having a threshold value of 20, then the output of the logic becomes zero, through the logic sequence depicted. The output of the aforementioned logic is logically ANDed with the output of the algorithms described in Figs. 3 and 4, i.e., Fuel_Correction_EN_from_2_Output. The purpose of this algorithm is to deactivate the fuel correction algorithm 50 when unstable combustion occurs in all the cylinders. As soon as the maximum standard deviation goes below the threshold, the counter is reset back to 0 and the algorithm provides 1
to its output, i.e. fuel correction algorithm can be enabled by the logic described in Figs. 3 and 4. This portion of the algorithm acts to lock and unlock the fuel correction algorithm, with the output signal (EN_Fuel_Correction) enabling or disabling the fuel correction algorithm.

[0034] While the invention has been described by reference to certain embodiments, it should be understood that changes can be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.
1. Method for operating a multi-cylinder internal combustion engine selectively operative in one of a spark-ignition mode and an auto-ignition mode, the method comprising:
operating the engine in the auto-ignition combustion mode;
monitoring combustion in each of the cylinders;
selectively enabling fuel correction to the cylinders only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected based upon the monitored combustion.

2. The method of claim 1, wherein monitoring combustion in each of the cylinders comprises: measuring combustion during each firing event; and, determining a state for a combustion parameter for each of the firing events therefrom.

3. The method of claim 2, further comprising measuring in-cylinder pressure, and determining a state for cylinder mean-effective-pressure therefrom.

4. The method of claim 1, further comprising:
determining a state for a combustion parameter for each of the cylinders during each firing event based upon the monitored combustion in each of the cylinders;
calculating an average of the states of the combustion parameter for the cylinders;
detecting one of a partial burn and a misfire in one of the cylinders when the determined state for the combustion parameter for one of the cylinders varies from the average of the states of the combustion parameter by an amount greater than a threshold.
5. The method of claim 1, further comprising:
determining a plurality of states for a combustion parameter for each cylinder
during successive firing events based upon the monitored combustion
in each of the cylinders;
calculating a deviation for the states of the combustion parameter for each
cylinder;
determining a maximum deviation for all of the cylinders; and,
disabling the fuel correction when the maximum deviation for all the cylinders
exceeds a threshold.

6. The method of claim 5, further comprising disabling the fuel correction
when the maximum deviation for all the cylinders exceeds a threshold for a
predetermined number of firing events.

7. The method of claim 1, wherein selectively enabling fuel correction
comprises enabling an algorithm to correct fueling rate to one of the cylinders
to stabilize combustion while operating in the auto-ignition mode.

8. The method of claim 7, wherein the algorithm to correct fueling rate to
one of the cylinders to stabilize combustion while operating in the auto-
ignition mode comprises:
determining engine combustion phasing for each of the cylinders based upon
the monitored combustion in each of the cylinders;
globally adapting fuel injector pulsewidths based upon engine intake mass air
flow and an exhaust air/fuel ratio; and,
selectively adjusting individual fuel injector pulsewidths to achieve
combustion with minimum misfires and partial burns.
9. Method for controlling a multi-cylinder internal combustion engine operating in an auto-ignition mode, the method comprising:
measuring in-cylinder pressure in each of the cylinders, and determining a state for cylinder mean-effective-pressure therefrom for each firing event;
calculating an average state for the cylinder mean-effective-pressure for all the cylinders for each firing event;
detecting one of a partial burn and a misfire one of the cylinders when the cylinder mean-effective-pressure for one of the cylinders varies from the average state for the cylinder mean-effective-pressure by an amount greater than a threshold; and,
selectively enabling individual cylinder fuel correction when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.

10. The method of claim 9, wherein selectively enabling individual cylinder fuel correction when either one of a partial burn and a misfire in one of the cylinders has been detected based upon the monitored combustion further comprises:
determining a state for mean-effective pressure for each of the cylinders during each firing event;
calculating an average of the states of the mean-effective pressure for the cylinders;
detecting one of a partial burn and a misfire in one of the cylinders when the determined state for the mean-effective pressure for one of the cylinders varies from the average of the states for the mean-effective pressure by an amount greater than a threshold.
11. The method of claim 9, further comprising:
 determining a plurality of states for the mean-effective pressure for each of the
cylinders during successive firing events;
calculating a deviation for the states of the mean-effective pressure for each of
the cylinders;
determining a maximum deviation in the mean-effective pressure for all of the
cylinders;
 disabling the fuel correction when the maximum deviation in the mean-
effective pressure for all the cylinders exceeds a threshold; and,
disabling the fuel correction when the maximum deviation mean-effective
 pressure for all the cylinders exceeds a threshold for a predetermined
 number of firing events.

12. The method of claim 9, wherein selectively enabling fuel correction
 comprises enabling an algorithm to correct fueling rate to one of the cylinders
to stabilize combustion in the engine while operating in the auto-ignition
 mode.

13. The method of claim 12, wherein the algorithm to correct fueling rate
to one of the cylinders to stabilize combustion in the engine while operating in
the auto-ignition mode comprises:
 determining engine combustion phasing for each of the cylinders based upon
 the mean-effective pressure in each of the cylinders;
globally adapting fuel injector pulsewidths based upon engine intake mass air
 flow and an exhaust air/fuel ratio; and,
selectively adjusting individual fuel injector pulsewidths to achieve stable
 combustion with minimum misfires and partial burns.
14. Method for controlling a multi-cylinder internal combustion engine selectively operative in one of a spark-ignition mode and an auto-ignition mode, the method comprising:
monitoring an operator torque request;
selectively operating the engine in the auto-ignition mode based upon engine operating conditions and the operator torque request;
monitoring combustion in each of the cylinders, and, determining a state for a combustion parameter therefrom for each firing event;
calculating an average state for the combustion parameter for all of the cylinders for each firing event;
detecting one of a partial burn and a misfire when the combustion parameter of one of the cylinders varies from the average state for the combustion parameter by an amount greater than a threshold;
selectively enabling fuel correction when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected, and;
selectively deactivating the fuel correction when either one of a partial burn and a misfire occurs in all the cylinders.

15. The method of claim 14, wherein selectively enabling fuel correction only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected based upon the monitored combustion parameter further comprises:
determining a state for the combustion parameter for each of the cylinders during each firing event;
calculating an average of the states of the combustion parameter for the cylinders;
detecting one of a partial burn and a misfire of a cylinder charge in one of the cylinders when the determined state for the combustion parameter for one of the cylinders varies from the average of the states for the combustion parameter by an amount greater than a threshold.
16. The method of claim 15, further comprising:
determining a plurality of states for the combustion parameter for each of the
cylinders during successive firing events based upon the monitored
combustion in each of the cylinders;
calculating a deviation for the states of the combustion parameter for each of the
 cylinders;
determining a maximum deviation for all of the cylinders;
disabling the fuel correction when the maximum deviation for all the cylinders
exceeds a threshold; and,
disabling the fuel correction when the maximum deviation for all the cylinders
exceeds a threshold for a predetermined number of firing events.

17. The method of claim 16, wherein selectively enabling fuel correction
comprises enabling an algorithm to correct fueling rate to one of the cylinders
to stabilize combustion in the engine while operating in the auto-ignition
mode.

18. The method of claim 17, wherein the algorithm to correct fueling rate
to one of the cylinders to stabilize combustion in the engine while operating in
the auto-ignition mode comprises:
determining engine combustion phasing for each of the cylinders based upon
the monitored combustion in each of the cylinders;
globally adapting fuel injector pulsewidths based upon engine intake mass air
flow and an exhaust air/fuel ratio; and,
selectively adjusting individual fuel injector pulsewidths to achieve
combustion with minimum misfires and partial burns.

19. The method of claim 18, wherein monitoring combustion in each of the
cylinders comprises measuring in-cylinder pressure, and determining a state
for cylinder mean-effective-pressure therefrom.
FIG. 2
FIG. 3

FIG. 4
A. CLASSIFICATION OF SUBJECT MATTER

F02B 5/00(2006.01)i, F02B 47/08(2006.01)i, F02D 45/00(2006.01)i, F02D 41/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 F02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models since 1975

Japanese utility models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKIPASS(KIPO) & Keyword auto-ignition, compression-ignition, misfire, monitor* and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>KR 10-2006-0127812 A (TOYOTA INDUSTRIES CORP) 13 December 2006</td>
<td>1,2,7</td>
</tr>
<tr>
<td>A</td>
<td>See page 3, lines 34-47, page 5, line 44 - page 6, line 3, page 6, lines 25-48, claims 1,4 and 5</td>
<td>3-6,8-9,14</td>
</tr>
<tr>
<td>X A</td>
<td>KR 10-2007-001 1261 A (U S ENVIRONMENTAL PROTECTION AGENCY) 24 January 2007</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>See page 3, lines 8-24, page 4, lines 9-16, page 6, lines 7-34, claims 1,2, 13-15, 17, 24, and 26</td>
<td>2-4,9,14</td>
</tr>
<tr>
<td>X A</td>
<td>JP 2004-190539 A (TOYOTA MOTOR CORP) 08 July 2004</td>
<td>1,2,7</td>
</tr>
<tr>
<td>A</td>
<td>See paragraphs 26, 43-52, 55, 64, claims 1-8</td>
<td>9,14</td>
</tr>
<tr>
<td>X A</td>
<td>US 7128048 B2 (SHIRO YAMAOKA et al) 31 October 2006</td>
<td>1,2,7</td>
</tr>
<tr>
<td>A</td>
<td>See column 5, lines 18-29, claims 1-6</td>
<td>3,9,14</td>
</tr>
<tr>
<td>X A</td>
<td>US 6286482 B1 (Patrick F Flynn et al) 11 September 2001</td>
<td>1,2,7</td>
</tr>
<tr>
<td>A</td>
<td>See column 12, lines 26-51, column 20, lines 20-39, claims 1, 3, 5, 12, and 19</td>
<td>9,14</td>
</tr>
<tr>
<td>X A</td>
<td>US 2006-191513 A1 (CHARLES L GRAY JR) 31 August 2006</td>
<td>1,2,7</td>
</tr>
<tr>
<td>A</td>
<td>See paragraphs 7-9, 20, claims 1-4, 8-11, 14-15</td>
<td>9,14</td>
</tr>
</tbody>
</table>

* Special categories of cited documents
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of invention or other special reason (as specified)
 "D" document referring to an oral disclosure use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

-T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

-X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

-Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

-"&" document member of the same patent family

Date of the actual completion of the international search
17 SEPTEMBER 2008 (17 09 2008)

Date of mailing of the international search report
17 SEPTEMBER 2008 (17.09.2008)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seomsa-ro, Seogu Daejeon 302-701, Republic of Korea
Facsimile No 82-42-472-7140

Authorized officer
LEE, KI SEONG
Telephone No 82-42-481-5485

Form PCT/ISA/210 (second sheet) (My 2008)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons

1. Claims Nos. because they relate to subject matter not required to be searched by this Authority, namely

2. Claims Nos. because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically

3. Claims Nos. because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows

The only common technical feature between group 1 (that is, claims 1-8), group 2 (that is, claims 9-13) and group 3 (that is, claims 14-19) is a method for operating a multi-cylinder internal combustion engine operating an auto-ignition mode where the method comprises monitoring combustion in each of the cylinders, and selectively enabling fuel correction to the cylinders only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected. This common technical feature lacks an inventive step with respect to the following documents cited in this ISR:KR 10-2006-0127812 A, KR 10-2007-0011261 A, JP 2004-190539 A, US 7128048 B2, US 6286482 B1 and US 2006-191513 A1

Therefore, there is no technical relationship left over the prior art among groups 1-3, leaving the claims without a single general inventive concept

Hence, there is a lack of unity "a posteo" (PCT Rules 13 1 and 13 2)

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.

Remark on Protest

- The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee
- The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation
- No protest accompanied the payment of additional search fees
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 100600027 1 A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007-016777 A</td>
<td>25.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-0761309 B1</td>
<td>27.09.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7210457 B2</td>
<td>01.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1926538 A</td>
<td>07.03.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1695233 A1</td>
<td>31.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007-514099 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005-065706 A1</td>
<td>24.03.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006-19 15 13 A1</td>
<td>31.08.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7237532 B2</td>
<td>03.07.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2005-062 194 A1</td>
<td>07.07.2005</td>
</tr>
<tr>
<td>JP 2004-190539 A</td>
<td>08.07.2004</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002-026926 A1</td>
<td>07.03.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004-103860 A1</td>
<td>03.06.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6230683 B1</td>
<td>15.05.2001</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (My 2008)