发明名称
通气量充足性的检测

摘要
提供了一种用于检测患者呼吸的通气量充足性评估的自动方法。在一些实施例中，可从患者呼吸流量的测量值确定通气量直方图。基于该直方图或相关通气量数据，可检测通气量不足或通气过度的发生。例如，可利用与通气量直方图相关的数据来计算峰度系数和/或偏度系数，并将其作为通气不足或通气过度的指征来估计。对通气量直方图，例如双峰通气量直方图中峰的数量和其它特征进行评估，以检测通气量不足或充足的发生。所述检测方法可由测量呼吸空气的专用计算机、检测装置来实施，或由基于检测通气量充足性提供呼吸疗法的呼吸治疗设备来实施。
1. 用于控制处理器，以根据测得的可呼吸气体流量来评估通气量充足性的方法，所述方法包括：

 评估可呼吸气体流量的测量值，该测量值表征患者的呼吸；
 从所述流量测量值推导出通气量测量值，并且
 基于所述通气量测量值，利用处理器确定直方图。

2. 根据权利要求1所述的方法，其特征在于，所述方法进一步包括在虚拟显示装置上显示所述直方图的图表。

3. 根据权利要求1或2所述的方法，其特征在于，所述直方图表示通气量值在一段疗程间隔内的频率分布，其中每一通气量值包括在一段时间间隔内的体积测量值，所述时间间隔比所述疗程的时间短。

4. 根据权利要求3所述的方法，其特征在于，所述时间间隔为分钟级，所述疗程时间为小时级。

5. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括：
 在处理器中处理与所述直方图相关的数据，以计算偏度系数；
 将该偏度系数与阈值相比较，并且
 基于所述比较结果，指示通气不足。

6. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括：
 在处理器中处理与所述直方图相关的数据，以计算偏度系数；
 将该偏度系数与阈值相比较，并且
 基于所述比较结果，指示通气不足。

7. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括：
 在处理器中处理与所述直方图相关的数据，以检测所述直方图的多个峰；并且
 基于所检测到的峰的数量，指示存在有或不存在通气不足。

8. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括：
 在处理器中处理与所述直方图相关的数据，以确定峰度系数；
 将该峰度系数与阈值相比较，并且
 基于所述比较结果，指是否存在有或不存在通气不足。

9. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括用处理器控制流量传感器对可呼吸气体流量的测量。

10. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括对表示所述直方图的数据进行处理，以产生通气不足指示，该指示表示通气不足事件的发生。

11. 根据权利要求10所述的方法，其特征在于，所述通气不足指示包括概率值。

12. 根据权利要求10或11所述的方法，其特征在于，所述处理包括对所述直方图的峰的检测。

13. 根据权利要求12所述的方法，其特征在于，所述处理包括计算所述直方图的峰之间的距离，并将该距离转化为概率空间。

14. 根据权利要求12或13所述的方法，其特征在于，所述处理还包括计算所述直方图的峰之间的坡度。

15. 根据权利要求14所述的方法，其特征在于，所述处理包括计算与所述坡度相关的
面积，并将该面积转化为概率空间。

16. 根据权利要求 10 到 15 中任一项所述的方法，其特征在于，所述处理包括计算所述直方图的特征集，并基于对所述特征集的评估而产生特征。

17. 根据权利要求 16 所述的方法，其特征在于，所述特征集包含以下中一个或多个特征：两个最高峰之间的坡度，最高峰与中心点之间的坡度，次高峰与中心点之间的坡度，两个最高峰之间的面积，最高峰与中心点之间的面积，次高峰与中心点之间的面积，形状特征，峰度值和偏度值。

18. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括确定泄漏的测量值，并基于所述泄漏测量值而区分所述直方图的通气量测量值。

19. 根据以上任一项权利要求所述的方法，其特征在于，所述方法进一步包括确定通气量稳定性的测量值，并基于所述稳定性测量值来区分所述直方图的通气量测量值。

20. 根据权利要求 19 所述的方法，其特征在于，所述通气量稳定性测量值的确定包括对以下中一个或多的检测：清醒期间、呼吸暂停事件、周期性呼吸事件和觉醒事件。

21. 通气量评估设备，包括：

控制器，其具有至少一个处理器，以获取表示测得的可呼吸气流量的数据，该可呼吸气体流量是由于患者的呼吸引起的，所述控制器进一步用于（a）从流量测量值推导通气量测量值，以及（b）基于所述通气量测量值确定直方图。

22. 根据权利要求 21 所述的设备，其特征在于，所述控制器进一步用于在虚拟显示装置上显示直方图的图表。

23. 根据权利要求 21 或 22 所述的设备，其特征在于，所述直方图表示在一段治疗期间内通气量值的频率分布，每一通气量值包括在一段时间间隔内的体积测量值，所述时间间隔比所述疗程的时间短。

24. 根据权利要求 23 所述的设备，其特征在于，所述时间间隔为分钟级，所述疗程时间，为小时级。

25. 根据权利要求 21 或 22 所述的设备，其特征在于，所述控制器还用于：

处理与所述直方图相关的数据，以计算偏度系数；

将所述偏度系数与阈值相比较，并且

基于所述比较结果，指示通气不足的发生。

26. 根据权利要求 21 或 22 所述的设备，其特征在于，所述控制器还用于：

处理与所述直方图相关的数据，以计算偏度系数；

将所述偏度系数与阈值相比较，并且

基于所述比较结果，指示通气过度的发生。

27. 根据权利要求 21 到 23 中任一项所述的设备，其特征在于，所述控制器还用于：

处理与所述直方图相关的数据，以检测所述直方图的多个峰，并且基于所检测的峰的数量，指示存在或不存在通气不足。

28. 根据权利要求 21 到 24 中任一项所述的设备，其特征在于，所述控制器还用于：

处理与所述直方图相关的数据，以检测所述直方图的多个峰，并且

将该峰度系数与阈值相比较，并且

基于比较结果，指示存在或不存在通气不足。
29. 根据权利要求 21 到 25 中任一项所述的设备，其特征在于，所述设备还包括流量传感器，且所述控制器还用于利用所述流量控制器来控制可呼吸气体的流量。

30. 根据权利要求 29 所述的设备，还包括：

流量发生器，其用于以高于大气压的压力向患者产生可呼吸气体；其特征在于，所述控制器还用于控制流量发生器、以基于对一个或多个的评估而根据压力疗法产生可呼吸气体；(a) 直方图，(b) 直方图的多个峰，(c) 从与直方图相关的数据确定的峰度系数，以及 (d) 从与直方图相关的数据确定的偏度系数。

31. 根据权利要求 21 到 27 中任一项所述的设备，其特征在于，所述控制器还用于处理表示直方图的数据，以产生通气不足指标，该指标表示通气不足事件的发生。

32. 根据权利要求 31 所述的设备，其特征在于，所述通气不足指标包括概率值。

33. 根据权利要求 31 或 32 所述的设备，其特征在于，所述控制器还用于检测所述直方图的峰。

34. 根据权利要求 33 所述的设备，其特征在于，所述控制器还用于检测所述直方图的峰之间的距离，并将该距离转化为概率空间。

35. 根据权利要求 33 或 34 所述的设备，其特征在于，所述控制器还用于检测所述直方图的峰之间的坡度。

36. 根据权利要求 35 所述的设备，其特征在于，所述控制器还用于检测与所述坡度相关的面积，并将该面积转化为概率空间。

37. 根据权利要求 31 到 33 中任一项所述的设备，其特征在于，所述控制器还用于检测所述直方图的特征，以对所设特征集的评估而产生指标。

38. 根据权利要求 37 所述的设备，其特征在于，所述特征集包括以下中两个或多个特征：两个最高峰之间的坡度，最高峰与中心点之间的坡度，次高峰与中心点之间的坡度，两个最高峰之间的面积，最高峰与中心点之间的面积，次高峰与中心点之间的面积，以及形状特征，峰度值和偏度值。

39. 根据权利要求 21 到 38 中任一项所述的设备，其特征在于，所述控制器还用于检测泄漏流量值，并基于该泄漏流量值而区分所述直方图的通气量测量值。

40. 根据权利要求 21 到 39 中任一项所述的设备，其特征在于，所述控制器还用于检测通气量稳定性测量值，并基于该稳定性测量值而区分所述直方图的通气量测量值。

41. 根据权利要求 40 所述的设备，其特征在于，所述控制器还用于检测以下中任一个或多个而确定通气量稳定性测量值：清醒期间、呼吸暂停事件、周期性呼吸事件和觉醒事件。

42. 通气量评估系统，包括：

用于测量在一段疗程内由患者呼吸引起的可呼吸气体流量的装置；
用于从流量测量值推导通气量测量值的装置；以及
用于基于所述通气量测量值而确定直方图的装置。

43. 根据权利要求 42 所述的系统，其特征在于，所述系统还包括用于显示所述直方图虚拟图表的装置。

44. 根据权利要求 42 或 43 所述的系统，其特征在于，所述系统还包括用于基于与所述直方图相关的数据而估计偏度系数、以检测通气不足或通气过度的发生的装置。

45. 根据权利要求 42 到 43 中任一项所述的系统，其特征在于，所述系统可包括用于从
与所述直方图相关的数据估计多个直方图峰，以检测通气不足的发生的装置。

46. 根据权利要求 42 到 39 中任一项所述的系统，其特征在于，所述系统包括用于基于与所述直方图相关的数据估计峰的装置，以检测与所述直方图相关的数据估计峰的装置。

47. 根据权利要求 42 到 40 中任一项所述的系统，其特征在于，所述系统还包括用于以高于大气压的压力向患者产生可呼吸气体的装置，所述装置对以下中任一个或多个的评估而产生，(a) 直方图，(b) 直方图的多个峰，(c) 从与直方图相关的数据确定的峰度系数，以及(d) 从与直方图相关的数据确定的峰度系数。

48. 根据权利要求 42 到 41 中任一项所述的系统，其特征在于，所述系统还包括用于处理表示所述直方图的数据，以产生通气不足指数的装置，所述指数表示通气不足事件的发生。

49. 根据权利要求 48 所述的系统，其特征在于，所述通气不足指数包括概率值。

50. 根据权利要求 48 或 49 所述的系统，其特征在于，所述系统还包括用于检测所述直方图的峰的装置。

51. 根据权利要求 50 所述的系统，其特征在于，所述系统还包括用于计算所述直方图的峰之间的距离，并将该距离转化为概率间的装置。

52. 根据权利要求 50 或 51 所述的系统，其特征在于，所述系统还包括用于计算所述直方图的峰之间的距离的装置。

53. 根据权利要求 52 所述的系统，其特征在于，所述系统还包括用于计算与所述坡度相关的面积，并将该面积转化为概率间的装置。

54. 根据权利要求 31 到 33 中任一项所述的系统，其特征在于，所述系统还包括用于计算所述直方图的特征值，并基于该特征值的评估而产生指数的装置。

55. 根据权利要求 37 所述的系统，其特征在于，所述特征值包括以下中一个或多个特征，两个最高峰之间的坡度、最高峰与中心点之间的坡度、次高峰与中心点之间的坡度、两个最高峰之间的面积、最高峰与中心点之间的面积、次高峰与中心点之间的面积、形状特征、峰度值和偏度值。

56. 根据权利要求 42 到 55 中任一项所述的系统，其特征在于，所述系统还包括用于确定泄漏测量值的泄漏检测器，其中所述系统用于基于该泄漏测量值而区分所述直方图的通气量测量值。

57. 根据权利要求 42 到 56 中任一项所述的系统，其特征在于，所述系统还包括通气量稳定性检测器，其中所述系统用于基于所述稳定性测量值而区分所述直方图的通气量测量值。

58. 根据权利要求 57 所述的系统，其特征在于，所述通气量稳定性检测器包括用于检测以下中一个或多个，清醒期间、呼吸暂停事件、周期性呼吸事件和觉醒事件。
通风量充足性的检测

【0001】相关申请的交叉引用

本申请要求于2011年3月23日提交的美国临时专利申请61/466,560的申请人权益，在此以引用的方式并入该申请的内容。

【0002】技术领域

本发明涉及用于检测呼吸通气量充足性或不足性的方法和设备，例如正常患者通气、通气过度或通气不足。

【0003】背景技术

阻塞性睡眠呼吸暂停（OSA）患者常用的一种压力治疗形式是持续气道正压通气（CPAP），其由鼓风机（压缩机）经连接软管和面罩应用。正压可用于防止患者的气道在吸气过程中塌陷，从而预防经常性呼吸暂停或呼吸暂停低通气症及其后遗症。这种呼吸治疗设备可在治疗压力下或可变压力下供应清洁的可呼吸空气（通常是空气，含有或不含补充性氧气），所述可变压力针对不同事件而变化，但在患者呼吸周期（即，吸气和呼气）的给定周期内保持基本恒定，或可在患者每次呼气时降低而使其感到舒适（例如，双水平呼吸机）。

【0004】呼吸治疗设备通常可包括气流发生器、空气过滤器、面罩或插管、将气流发生器连接至面罩的空气传送导管、各种传感器和基于微处理器的控制器。气流发生器可包括伺服控制电机和叶轮。气流发生器还可包括阀，该阀能将空气释放至大气中，以改变传递至患者的气压，这是对电机速度控制的一种替代手段。传感器测量电机速度、气体体积流量和排出压力，例如利用差压变送器、流量传感器等。所述设备可选地包括位于空气传递回路中的加湿器和/or加热器元件。控制器可具有数据存储能力，具备或不具备集成的数据检索/显示和显示功能。

【0005】除呼吸暂停症或呼吸暂停低通气症外，压力疗法、如CPAP治疗的患者也可能遭受通气不足（hypoventilation）。可认为通气不足是持续低通气，而不是周期性暂停或呼吸暂停。通气不足这种事件可能不会被患者、医师或管理患者的医师记录或识别。

【0006】在患者接受CPAP疗法时，导致通气不足的原因有多种：

(a) 初步诊断患者患有肥胖低通气综合征（OHS），而正将CPAP作为一种疗法而试用。许多患者在这样治疗数月后康复。尽管夜间血氧饱和度（SpO2）记录是鉴定疗效的标准方式，然而这种方式是昂贵而繁琐的。

【0007】(b) 由于潜在的疾病过程（例如，慢性阻塞性肺疾病（COPD）进展或阻塞性睡眠呼吸暂停（OSA）导致的OHS进展），患者可能随时间推移而形成通气不足。

【0008】(c) 患者可能已接受过受限的诊断测试，而由于例如其未进入存在通气不足的睡眠状态（例如，仰卧睡眠），因此未检测到通气不足。

【0009】因此，需要研发一种用于估测或评估患者通气量的方法，该方法也可用在通气量评估设备或用于产生呼吸压力治疗的设备中。
发明内容
[0010] 本发明一些实施例的第一方面是，提供用于评估通气量的方法和装置。
[0011] 本发明一些实施例的另一方面是，基于流量传感器的呼吸流量测量值，确定设备中的通气量直方图。
[0012] 本发明的另一方面是，基于通气量直方图或作为通气量直方图的函数，在呼吸治疗设备、例如持续气道正压装置中，实施对通气量充足性的检测。
[0013] 本发明的另一方面是，提供一种用于检测通气不足的方法，该方法包括以下步骤：(i)确定流量的测量值；(ii)计算来自所述流量测量值的通气量测量值；(iii)确定所述通气量测量值的可能性分布，以及(iv)分析该可能性分布，以检测通气不足。
[0014] 本发明的一些实施例涉及一种用于控制处理器，以从可呼吸气体的测得流量评估通气量充足性的方法。处理器的这一方法可包括获得表示患者呼吸的可呼吸气体流的流量值，从流量测量值推导通气量测量值，以及基于通气量测量值用处理器确定直方图。
[0015] 这一方法还可涉及在虚拟显示装置上显示直方图。可选地，直方图可显示通气量值在一段疗程期间内的频率分布，其中每一通气量值是在一段时间间隔内的体积测量值。所述时间间隔可以比所述疗程的时间短。可选地，时间间隔可以为分钟级，而疗程时间可以为小时级。
[0016] 在一些实施例中，所述方法可进一步涉及在处理器中处理与直方图相关的数据，以计算偏度系数，该偏度系数与阈值相比较，以基于比较结果指示通气不足或通气过度。
[0017] 在一些例子中，所述方法还可包括在处理器中处理与直方图相关的数据，以检测直方图的多个峰，并基于所检测的峰的数量指示存在有或不存在通气不足。
[0018] 在另外的例子中，所述方法还可包括在处理器中处理与直方图相关的数据，以确定峰度系数，该峰度系数与阈值相比较，并基于比较结果指示存在有或不存在通气不足。
[0019] 可选地，这样的方法可进一步包括用处理器控制流量传感器对可呼吸气体流量的测量。
[0020] 在一些例子中，所述方法可包括对表示直方图的数据进行处理，以产生通气不足指征，该指征表示通气不足事件的发生。可选地，通气不足指征可包括概率值。所述处理可包括对直方图峰的检测。所述处理还可包括计算直方图峰之间的距离，并将该距离转化为概率空间。所述处理还可包括计算直方图峰之间的坡度。所述处理还可包括计算与该坡度相关的面积，并将该面积转化为概率空间。所述处理还可包括计算直方图的特征集，并基于对该特征集的评估而产生指征。所述特征集可包括以下中一个或多个特征：两个最高峰之间的坡度、最高峰与中心点之间的坡度、次高峰与中心点之间的坡度、两个最高峰之间的面积、最高峰与中心点之间的面积、次高峰与中心点之间的面积、形状特征、峰度值和偏度值。
[0021] 在一些这类例子中，所述方法可进一步涉及确定泄漏的测量值，并基于该泄漏测量值而区分直方图的通气量测量值，例如通过对直方图分区以相应地进行显示，和/或通过忽略泄漏周期对应的通气量测量值。在更多例子中，所述方法可涉及确定通气量稳定性测量值，并基于稳定性测量值区分直方图的通气量测量值，例如通过对直方图进行分区，以相应地显示和/或忽略非稳定性周期所对应的通气量测量值。在一些例子中，对通气量稳定性测量值的确定可涉及对以下中一个或多个事件的检测：清醒期间、呼吸暂停事件、周期性呼吸事件和觉醒事件。
[0022] 本发明的一些实施例可包括通气量评估设备。该设备典型地可包括控制器，其具有至少一个处理器，以获取可呼吸气体测得流量的数据，该测得流量可归因为患者的呼吸。所述控制器进一步用于：(a) 从所述流量测量值推导通气量测量值，以及(b) 基于通气量测量值确定直方图。

[0023] 在所述设备的一些实施例中，所述控制器可进一步用于在虚拟显示装置上显示直方图的图表。在这种情形中，直方图可表示在一段治疗期间内通气量值的频率分布，其中，每一通气量值可以是一段时间间隔内的体积测量值。所述时间间隔可以比所述疗程的时间短。可选地，所述时间间隔可以是分钟级，而疗程时间可以是小时级。

[0024] 在所述设备的一些实施例中，所述控制器还可用于处理与直方图相关的数据，以计算偏度系数，并将该偏度系数与阈值相比较，从而基于比较结果指示通气不足或通气过度的发生。

[0025] 可选地，所述控制器还可用于处理与直方图相关的数据，以检测直方图的多个峰，并基于所检测的峰的数量，指示存在有或不存在通气不足。所述控制器还用于处理与直方图相关的数据，以确定峰度系数，并将该峰度系数与阈值相比较，以基于比较结果指示存在有或不存在通气不足。

[0026] 在一些实施例中，所述设备还可包括流量传感器，且所述控制器还可利用流量控制器来控制可呼吸气体的流量。

[0027] 进一步地，所述设备还可包括流量发生器，其用于以高于大气压的压力向患者产生可呼吸气体。在这种情形中，所述控制器还可用于控制流量发生器，以基于对以下中一个或多个的评估而根据压力疗法产生可呼吸气体：(a) 直方图，(b) 直方图的多个峰，(c) 从与直方图相关的数据确定的峰度系数，以及(d) 从与直方图相关的数据确定的偏度系数。

[0028] 可选地，所述控制器还可用于处理表示直方图的数据，以产生通气不足指征，其中，该指征表示通气不足事件的发生。所述通气不足指征可包括概率值。所述控制器还可用于检测直方图的峰。所述控制器还可用于计算直方图的峰之间的距离，并将该距离转化为概率空间。所述控制器还可用于计算直方图峰之间的坡度。所述控制器还可用于计算与该坡度相关的面积，并将该面积转化为概率空间。在一些实施例中，所述控制器还可包括计算直方图的特征集，并基于对该特征集的评估而产生指征。所述特征集可包括以下中一个或多个特征：两个最高峰之间的坡度、最高峰与中心点之间的坡度、次高峰与中心点之间的坡度、两个最高峰之间的面积、最高峰与中心点之间的面积、次高峰与中心点之间的面积、形状特征、峰度值和偏度值。

[0029] 可选地，在一些例子中，所述控制器还可用于确定泄露的测量值，并基于该泄露测量值而区分直方图的通气量测量值。进一步地，所述控制器还可用于确定通气量稳定性测量值，并基于该稳定性测量值来区分直方图的通气量测量值。所述控制器通过检测以下中一个或多个而确定通气量稳定性测量值：清醒期间、短暂暂停事件、周期性呼吸事件和睡醒事件。

[0030] 本发明的另一实施例可涉及一种通气量评估系统。该系统可包括用于测量在一段疗程内可归因为患者呼吸的可呼吸气体流的装置，用于从流量测量值推导通气量测量值的装置，以及用于基于通气量测量值而确定直方图的装置。

[0031] 这样的系统还可包括用于显示直方图虚拟图标的装置。其还可包括用于基于与直
方图相关的数据而估测程序系数，以检测通气不足或通气过度的发生的装置。所述系统还
可包括用于从与直方图相关的数据估测多个直方图峰、以检测通气不足的发生的装置。其
还可包括用于基于与直方图相关的数据估测程序系数，以检测存在有或不存在通气不足的
装置。在一些实施例中，所述系统还可包括用于以高于大气压的压力向患者产生可呼吸气
体的装置，其基于对几乎所有一个或多个的评估值而产生；(a) 直方图，(b) 直方图的多个
峰，(c) 从与直方图相关的数据确定的程序系数，以及(d) 从与直方图相关的数据确定的偏
度系数。

[0032] 所述系统还可包括用于处理表示直方图的数据，以产生通气不足指数征的装置，其
中，该指数征表示通气不足事件的发生。所述通气不足指数征包括概率值。所述系统还可包
括用于检测直方图峰的装置。所述系统还可包括用于计算直方图峰的峰之间的距离，并将该
距离转化为概率空间的装置。所述系统还可包括用于计算直方图峰之间的峰度的装置。所
述系统还可包括用于计算关于该峰度的面积，并将该面积转化为概率空间的装置。所述系
统还包括用于计算所述直方图的特征值，并基于该特征值的评估而产生指数征的装置。所
述特征值可包括以下中一个或多个特征；两个最高峰之间的峰度、最高峰与中心点之间的
峰度、次高峰与中心点之间的峰度、两个最高峰之间的面积、最高峰与中心点之间的面积、
次高峰与中心点之间的面积、形状特征、峰度值和偏度值。

[0033] 在一些例子中，所述系统可包括用于确定泄漏测量值的泄漏检测器。所述系统可
用于基于该泄漏测量值而区分直方图的通气量测量值。类似地，所述系统可包括通气量稳
定性检测器。所述系统可用于基于稳定性测量值区分直方图的通气量测量值。在一些这种
例子中，所述通气量稳定性检测器即用于检测以下中一个或多个；清醒期间、呼吸暂停事
件、周期性呼吸事件和觉醒事件。

[0034] 本发明的通气量评估技术的其他特征将在以下结合附图进行详细描述。

附图说明

[0035] 结合附图，通过举例但非限制性方式阐述本发明，图中同一附图标记指相似部件，
其中：

图 1 展示了本发明技术的通气量评估设备的例子，其具有操作流量传感器；
图 2 为用于控制设备以评估患者通气量的方法的示例性实施例的流程图；
图 3 为展示使用呼吸治疗设备在夜间疗程期间的流率、通气量、氧饱和度曲线和泄漏
信号的示图；
图 4 为基于图 3 测量值的通气量直方图的另一个例子，其展示了充足的通气量；
图 5 为展示使用呼吸治疗设备在夜间疗程期间的流率、通气量、氧饱和度曲线和脑电
图信号的示图；
图 6 为基于图 5 测量值的通气量直方图的一个例子，其展示了不充足的通气量；
图 7 为基于图 5 测量值的泄漏分区分通气量直方图的示图；
图 8 为展示使用本发明的通气量评估控制器的示例性压力治疗设备的示图；
图 9 为用于通过通气量检测设备的控制器的框图，其包括适于执行本发明的评估方法的
示例性部件；
图 10 为直方图的示图，其展示了基于直方图的持续时间计算值。
图11为通气量直方图的另一图示，其展示了基于直方图泄露量的距离计算值；
图12通气量直方图的另一图示，其展示了基于直方图峰的坡度计算值；
图13通气量直方图的另一图示，其展示了基于直方图峰和中心点的附加坡度计算值；
图14和15展示了附加的通气量直方图，其展示了基于直方图峰和中心点定义的坡度的数个面积计算值；
图16和17展示了总通气量直方图和具有通气不足特征的分区通气量直方图。

具体实施方式

如图1所示，本发明的实施例可包括通气量评估装置或设备102，其具有控制器104，该控制器104具有一个或多个处理器，用于实施特定的通气量评估方法，例如在此详细描述的算法。在一些实施例中，通气量评估可提供对通气量充足性的确定，例如通过确定通气过度或通气不足事件。所述通气量评估可选地还可用提供用于进行这种确定的信息，例如通过产生或分析通气量直方图。图示通气量直方图110的一个例子在图1中有所展示。所述装置或设备可包括集成芯片、存储器和/或其它控制指令、数据或信息存储介质。例如，实现评估方法的程序指令可编码在装置或设备的存储器的集成芯片上，以形成专用集成芯片（ASIC）。这类指令也可以或可替代地作为软件或固件使用适当的数据存储介质进行加载。

利用这样的控制器或处理器，所述装置可用于处理来自流量信号的数据。因此，处理器可基于对来自在先睡眠阶段的测得和记录的呼吸流量数据的评估，而控制对患者通气量的评价，如在此详述的实施例中所描述的。替代性地，通气量评估可在睡眠阶段期间与对呼吸流量信号的测量同期进行。因此，在一些实施例中，可选地，装置或设备本身可利用流量传感器106来测量所实施方法中使用的流量信号。例如，可使用呼吸流量计和差压变送器或类似装置，例如采用管束或导管束来得到流量信号的装置，来测量流入或流经鼻管108或面罩的气流。可选地，可通过从流量传感器产生的总流量测量值中减去排放流量和泄漏流量的估计值，来确定患者呼吸流量信号，该信号中流量传感测量除测量患者呼吸流量外，还测量气体流量。可选地，可从其它传感器中推导出流量信号，例如申请日为2005年11月2日的PCT/US2005/001688中描述的电机电流传感器，以及美国专利申请12/294,957，其国家阶段的全部公开内容在此通过交叉引用的方式并入本文。类似地，可通过非接触式传感器，例如通过脉冲射频发器来产生流量信号，过超声检查传感器对反射的脉冲射频信号进行信号处理。例如，可通过使用超声波传感器以检测呼吸参数，从而监控传感器，所述呼吸参数例如来自传感器测得的信号的呼吸流量信号。

(A)示例性通气量评估特征

如图2的流程图所示，在本发明的一些实施例中，采用评估装置的通气量自动评估可涉及对通气量直方图计算值的确定，其可基于表示可呼吸气体流量测量值的数据或呼吸流量信号。例如，在220，控制器或处理器可访问表示患者呼吸的可呼吸气体流量的测量值，该值可在疗程期间，例如夜间睡眠或治疗后数小时期间测量。在222，控制器或处理器可从流量测量值推导出患者通气量的一个或多测量值。通气量测量值典型地是表示一段时间内吸入或呼出的空气的体流量的信号。例如，该测量值可被确定为是呼吸流量的低通滤波绝对值。这样的低通滤波器可采用分钟级时间常数。例如，其可以是60到200秒范围内，但优
选地为 180 秒。可将测量值分区或采样，以从通气量信号确定离散测量值。可选地，这些通气量测量值的每个值可表示为每分钟吸入或呼出若干升（例如，分钟通气量测量值）。替代性地，通气量测量值可作为疗程期间每一呼吸周期的潮气量进行测量，例如每周期的升数。

【0039】在 224，可由处理器基于通气量测量值而确定通气量直方图。例如，可计算通气量测量值的频率分布。例如，可将确定的通气量值与离散间隔相比较（例如，每分钟 1 升或约每分钟 1 升），以获得全部测得通气量值在不同间隔内分布有多频繁。可选地，可绘制通气量直方图，从而观察具有高频率或最高频率（例如，一个或多个峰）的一个或多个间隔。类似地，可由处理器估计与其相关的数据，从而可检测具有高频率或最高频率的一个或多个间隔。可选地，可评估数据，以确定偏差和 / 或峰度。

【0040】可选地，还可估计与通气量直方图相关的数据，以确定以下中一个或多个特征：通气量直方图的形状特征；通气量直方图中连接两个最高峰的线的坡度；通气量直方图中连接的最高峰与中心点及点的线的坡度；通气量直方图中连接次高峰与中心点的线的坡度；通气量直方图中位于中心点和最高峰下方的面积；通气量直方图中位于中心点和次高峰下方的面积；两个最高峰之间的距离。

【0041】随后，可选择地单独地或组合地利用这种观察或估计，确定通气量过量或通气不足事件是否已发生。因此，除确定通气量直方图之外，通气量评估装置还可对通气不足或通气过度事件进行评分。对这类事件的评分可选地包括对表征通气过度或通气不足事件的推导通气量值进行识别。可选地，对这类事件的评分还可能包括对当事件发生和 / 或事件持续时的疗程期间的一个或多个时期的识别。

【0042】参见图 3 和 4，其描述了本发明的通气量评估的一个例子。图 3 是在单个夜间疗程期间，应用 CPAP 的患者的呼吸数据库。其中的线迹依次是（从顶部到底部）：呼吸流 330F、通气量 330V、血氧饱和度（SpQ）330S 和泄漏量 330L。在该例子中，通气量信号是具有 180 秒时间常数的呼吸流信号的低通滤波绝对值，其是整夜稳定的。血氧饱和度信号 330S 是平坦的，整夜中任何时间都不低于约 94%。泄漏信号 330L 也进行了良好控制，没有实质性的泄漏事件发生。

【0043】图 4 展示了从通气量信号 330V 的数据确定的通气量直方图 110-N。在该例中，按区间或以每分钟约 0.5 升的间隔对通气量值进行评估。与每个区间或间隔相关的频率可确定为总疗程的百分比（例如，每分钟观察或采样到的通气量值的数量除以一个疗程内观察或采样的通气量值的总数）。在一些这类实施例中，对单个峰存在于直方图中，以及对单个峰与足够的通气量值（例如，每分钟 7.5 升）相关的确定，可作为疗程中正常患者通气量的指征。应当理解，通气量直方图也可使用频率和通气量的其它测量值。例如，尽管所示的上述通气量直方图展示的是单个疗程期间分钟通气量值的频率分布，然而，一些实施例可选地允许使用来自多个疗程的通气量值来得到通气量直方图（例如，一个星期或一个月的疗程等）。

【0044】在图 4 所示的前述实施例中，选择了 05 升 / 分钟的区间宽度。然而，也可以任何可能的方式来建立区间。有一些可能有用的直方图确定和区间选择标准策略。

【0045】可通过以下步骤计算这样的直方图：

1. 选择原点 x0（与图 4 中的点 (0, 0) 重合），将实线（例如，通气量信号）分区为宽度为 h 的区间 B。其算式表达为 B_j = [x0 + (j-1)h, x0+jh], j=1,2,...
2. 计算有多少个观察值落入每个区间 B_j 内，并将区间 j 内的观察点的数量表示为 n_j；
3. 对于每个区间，将频率计数值 n_j 除以样本大小 n (例如，一个疗程)，并除以区间宽度 h，从而将这些数值转化为相对频率 $f_j = n_j/nh$。

[0046] 区间宽度和原点在有效地使数据分布特征化方面具有重要作用。直方图的原点
选在距离表的任何处，一个示例性选择可以是最小（数据）到范围 /10，其中范围 = 最大
（数据）- 平均（数据）。另外，查看区间宽度参数的另一种方式是，将其视作平滑参数。如果区间宽度过小，则直方图看起来将会是平坦的，而当区间太小时，其将是简单地复制数据。
因此，选择适当的区间宽度是很重要的。

[0047] 有多种选择区间宽度的方法；
1. 最简单的途径是，较视查看数据，并选择区间宽度。该方法的一种延伸是，找出数据
的最大值和最小值，并除以所选区间宽度。

[0048] 2. 斯特奇斯公式 (Sturges formula) $h = \log_2(n) + 1$ 其中 n = 样本大小
3. 史葛特公式 (Scott’s formula) $h = 3.5\text{o} / n^{1/3}$ σ = 样本标准偏差，n = 样本大小
4. 可使用优化技术，例如 MISE 和 AMISE，来选择区间宽度。

[0049] 在另一例中，直方图算法包含用于动态地确定区间宽度的算法，因此区间宽度
是可变的。特别地，可变区间宽度可用于使稀疏分布的数据集特征化。例如，如果患者仅在
有限时间段内经历了呼吸不足事件，那么使用恒定的区间宽度可能无法清楚地将其表示或
检测出来。在这种情形下，可变区间宽度将是很有用的。

[0050] 密度估计
通气量评估方法的另一种实施方式是基于对核密度估计的使用，以捕获通气量信号
的分布。该方法的一个优点是，其能有效地捕获分布中的尖锐特征，其在使通气量信号特征
化中非常有用。另外，原点的选择将不影响分布特征。

[0051] 参见图 5 和图 6，其展示了本发明的通气量评估的另一例子。图 5 是单个夜间疗程
期间，应用 CPAP 的患者呼吸数据图。其中的线迹依次是：脑电图 EEG，呼
吸流 530F，通气量 530V，血氧饱和度 (SpO_2) 530S。在该例子中，通气量信号是具有 180 秒
的时间常数的呼吸流信号及低通滤波器评估其在图表的后半部分延长了延长时期。血氧
饱和度信号在延长期间也下降了。图 6 展示了从通气量信号 530V 的数据确定的夜间通气
量图 110-I 的图示。通过观察或分析通气量图 110-I 数据，可得出关于患者状态的结论。
例如，分析直方图，可检测到患者的通气量具有双峰式分布。在一些实施例中，可通过检测
两个峰的存在而确定这一点。如果可归因为双峰之一的通气量值或间隔表示低通气量，则
可将分析作为通气不足事件的指征。在图 6 的例子中，一个峰在每分钟约 5 分钟处，另一个峰
在每分钟约 9 分钟处。在每分钟约 5 分钟处的峰可作为通气不足的指征。

[0052] 然而，这种分析可能会因为口漏而的存在而打乱。因此，通气量评估的一些实施例
可基于泄漏检测而对通气量数据分区。例如，本发明的通气量评估装置可与泄漏检测器相
结合，或接受来自泄漏检测器的泄漏数据，所述泄漏检测器可以是口泄漏检测器。在一些实
施例中，可利用申请日为 2010 年 7 月 30 日的美国临时专利申请 61/369, 247 中公开的方法
来使用口泄漏检测器，该申请的全部内容在此以引用的方式并入本文。因此，基于对不存在
泄漏 (例如，泄漏测量值不大于零) 的确定，可评估通气量直方图。例如，通气量直方图可以
基于仅从无泄漏期间的治疗周期中取得的通气量值。因此，通气量评估值可忽视那些与漏
漏周期同步的通气量值。

[0053] 可选地，基于仅从检测到口泄露时的治疗期间取得的通气量值，可计算另一泄露相关直方图。在这种情形中，可评估泄露相关直方图，以排除基于更完整的通气量直方图的通气不足的潜在征兆，所述更完整的通气量直方图包括来自有泄露和无泄露期间的通气量值。

[0054] 另外，清醒期间、呼吸暂停、周期性呼吸和觉醒，这形成了治疗时相对长时的通气量不稳定，且可能是混淆因素。因此，通气量评估的一些实施例可基于通气不稳定性的检测而对通气量数据分区。例如，本发明的通气量评估装置可与通气量稳定性检测器结合使用，或接收来自通气量稳定性检测器的通气量稳定性数据。在一些实施例中，可由一种或多种方法来使用通气量稳定性检测器，所述方法例如推导睡眠稳定性测量、觉醒状态、周期性呼吸、觉醒或其它事件或测量的方法，这些方法可用于示患者通气量的稳定性或稳定性欠缺如申请日为 2009 年 7 月 16 日的美国临时专利申请 61/226,069 申请日为 2010 年 7 月 14 日的国际专利申请 PCT/CA2010/000894 公开的，在此通过引用并入这两篇申请的内容。因此，基于对通气量稳定性确定（例如，无通气不稳定性（Ventilatory Instability）），可评估通气量直方图。例如，直方图可基于从这样的治疗周期取得的通气量值：在所述治疗周期内，通气量稳定性检测器指示通气水平是稳定的，因此不打破直方图的构成。

[0055] 在另一实施例中，通气量稳定性指数可计算为与通气量相关的另一呼吸特征的滚动方差。这种特征的一个例子是吸气潮气量。其它包括呼气潮气量、总呼吸潮气量（例如，流量信号绝对值的积分除以呼吸长度）。由此，可从所述治疗期间的通气量值求得通气量直方图，所述治疗时任意这些特征的滚动方差小于预定阈值。

[0056] 另外，本发明的另一实施例中，可同时根据通气量检测器和通气量稳定性检测器来计算通气量直方图。在所述中，得出的直方图将包含具有通气量稳定性和无泄露特征的治疗周期内的通气量值。

[0057] （B）示例性呼吸治疗设备实施例

参见图 8，本发明的通气评估技术可通过呼吸治疗设备 802，例如 CPAP 装置，或其它向患者提供加压可呼吸气体的呼吸治疗设备（例如，恒定 CPAP 或双水平 CPAP）来实现。这样的设备可包括流量发生器，例如伺服控制鼓风机 809。该鼓风机 809 通常可包括空气入口和由电机（未示出）驱动的叶轮。

[0058] 呼吸治疗设备 802 通常还包括或可连接至患者接口，患者接口可包括空气传递管路 807 和面罩 808，以将空气流或可呼吸气体传送至患者和/或从患者排出。可选地，如图 8 所示，面罩可包括排气口，以提供有益泄漏。

[0059] 设备 802 还可包括或可连接至一个或多个传感器 806，例如压力传感器、流量传感器和/或血氧饱和度传感器。在这样的实施例中，压力传感器，例如差压变送器，可测量鼓风机 809 产生的压力，并产生表示压力测量值的压力信号 p(t)。类似地，流量传感器产生表示患者呼吸流量的信号。例如，可使用呼吸流量计和差压变送器或类似装置，例如采用管束或导管束的装置推导流量信号 f(t)，从而测量患者接口 808 附近的流量，或鼓风机 809 附近的检测管（未示出）的流量。可选地，如果采用集成式血氧饱和度传感器，则血氧饱和度传感器可以是脉冲血氧饱和度传感器，以产生血氧饱和度信号 O_2(t)，其表示血液含气饱和度水平，例如氧饱和度。可使用其它传感器来产生表示流量、压力或血氧饱和度的数据，以服务
于设备 802 的方法。

【0060】基于传感器信号，例如流量 f(t) 和/或压力 p(t) 信号，控制器 804 可产生鼓风机控制信号。例如，控制器可产生理想压力设定点，通过将设定值与压力传感器的测量值比较，以控制鼓风机的速度以满足设定点。因此，控制器 804 可使鼓风机 809 传递至患者的接口的压力产生受控改变。典型地，可这样设置以设定理想治疗压力，使治疗与患者呼吸同步或支持患者的呼吸，并与对患者呼吸状态的检测相组合，例如通过分析流量信号，结合控制参数，例如触发和循环阈值。可选地，可由机械释放阀（未图示）来控制排气，以增加或减少排气，同时保持相对恒定的鼓风机机速度，从而改变压力。类似地，基于流量 f(t) 和压力 p(t) 信号，控制器 804 可实施在此详述的评估方法。

【0061】因此，控制器 804 可包括一个或多个处理器。所述处理器中输入有执行在此详述的特定方法或算法的程序。所述控制器可包括集成芯片/存储器和/或其它控制指令、数据或信息存储介质。例如，执行此控制方法的程序指令可编码在装置的处理器的集成芯片上。这类指令也可以或可替代地作为软件或固件使用适当的数据存储介质进行加载。

【0062】在这些实施例中，控制器可基于在此之前所述的对通气量直方图的评估，检测或记录通气不足或通气过度事件，包括对这类事件的检测而修正用于呼吸治疗的压力控制参数。例如，如果检测到一个或多个通气不足事件，则控制器可增大压力，或自动改变治疗协议，以减少通气量，例如从更恒定的 CPAP 模式切换至双水平 PAP 模式。类似地，如果检测到一个或多个通气过度事件，则控制器可降低压力，或自动改变治疗协议，以减少通气量，例如从双水平 PAP 模式切换至更恒定的 CPAP 模式。

【0063】在一些实施例中，控制器可基于通气量直方图的通气量评估，产生警告或信息性消息。例如，控制器可显示（例如，在设备的 LCD 或其它显示装置上）和/或传输（例如，通过有线或无线通信或其它数据传输）关于通气不足或通气过度的消息。控制器也可产生具有通气量直方图数据的消息。控制器还可产生消息以建议进一步测试。例如，基于对通气量直方图的评估，例如对通气不足的检测，控制器可产生消息，以建议或要求患者开始在利用呼吸治疗设备的连续治疗过程中使用脉冲血氧饱和度传感器。因此，基于对前一阶段通气量直方图的分析，控制器可随后在连续治疗阶段启动和/或调整流量和/或压力数据的分析。可由控制器分析后通气量直方图的分析，以确定在前一阶段通气量直方图的分析和检测到的通气量缺失（例如，通气不足）的发生。在对血氧饱和度数据进行分析之后，所述装置产生更多消息，以使患者和/或医师辨识出，由于在通气量以上或通气量以下，其它治疗可能是必要的，或可认识到通气量可能受到限制。

【0064】还可基于通气量直方图评估，根据对通气不足或通气过度的检测，改变或建议改变呼吸治疗设备的控制参数或消息。

【0065】（C）通气量评估方法的更多例子

在本发明的通气量评估的一些实施例中，例如当由用于提供压力疗法的呼吸治疗设备和/或控制的控制可执行以下步骤或程序中任何一个或全部。

【0066】1. 测量治疗设备的流量发生器（FG）中的流量（Q_{FG})。

【0067】2. 测量流量发生器中或其附近的压力（P_{FG})。

【0068】3. 使用已知的电路电阻（R_{cet})，计算患者接口或面罩压力，其为：

\[
P_{mask} = P_{FG} - Q_{FG} \times R_{cet}
\]
4. 计算有泄露（例如，在发生因使用带排气口的面罩而导致的排气时），其是面罩处压力的已知函数（f）：

\[Q_{vent} = f(P_{mask}) \]

5. 计算“面罩流”（Q_{mask}），其为：

\[Q_{mask} = Q_{c} - Q_{vent} \]

6. 计算瞬时无泄露有泄露（Q_{leak}）（例如，通过前述方法和/or美国专利6,659,101中描述的任何泄露检测方法检测的口泄露），其是面罩压力的函数（f）：

\[Q_{leak} = f(P_{mask}, Q_{mask}) \]

7. 计算患者呼吸流锁定测值，其为：

\[Q_{resp} = Q_{mask} - Q_{leak} \]

8. 计算患者通气量锁定测值，其为：

\[V = LP(0.5 \times \sqrt{Q_{resp}}) \]

其中，LP是例如具有约180秒时间常数的单极点低通滤波器；

9. 计算在夜间或疗程持续期间患者通气量锁定测值的直方图；

10. 使用峰值检测器或其它方法确定直方图中是否存在有在零通气量处或非常接近零通气量的峰。如果存在，则移除该峰或与其相关的原始数据（这样的数据可表示缺失或反常数据的延长周期）例如当流量发生器为ON状态，但未连接至患者。

11. 从直方图或相关数据计算统计数值。例如，确定代表峰态的指数和/or代表偏度的指数。

[0069] 12. 利用作为通气不足或通气过度指数的过度正或负偏度，评估分布。例如，如果偏度系数超过正阈值，则比较结果可作为发生通气不足的指数或作为该指数的基础。类似地，如果偏度系数小于正阈值则，比较结果可作为发生通气过度的指数或作为该指数的基础。可经验地确定这些比较结果的一些阈值。

[0070] 13. 估计低峰态分布（例如，峰度<1）。此处的阈值可设为1。例如，可采用较小的峰度值，表示直方图将具有较小的峰和较大的尾部。典型地，可从通气不足的患者的通气量直方图中看出这一点。总体上，标准常态分布将具有值为3的峰度，且在多数情形下双模式分布将具有较大的尾部和平坦的峰。

[0071] 14. 估计分布，并确定其是否是双峰的，例如通过检测一个或多个峰（例如，局部极大值）。如果是双峰式（例如，检测到两个峰），则通过比较通气量值与适当阈值，检查得出可归因于一个峰的通气量值是通气不足的指数。类似地，通过比较通气量值与适当阈值，检查得出，另一峰可归因于这样的通气量值，该通气量值是正常呼吸的表征。例如，在6.5到8.5之间，以及更具体地在7到8之间的通气量值，例如7.5/分钟，可用作表示正常通气的这种阈值。

[0072] 15. 可选地，可估测分布，通过使用M形检测算法来确定双峰。这可用作为检测双峰存在性的度量标准。一种这样的方法在申请日为2008年6月9日的国际专利申请PCT/AU2008/000647中有所描述，该申请的全部内容在此以引用的方式并入。

[0073] 16. 检查以确定通气不足不是由过度的口泄露（例如，通过对上述的泄露分区分通气量直方图进行分析）引起的，也不受其影响。

[0074] 17. 报告量度标准，例如呼吸暂停低通气指数，或计算夜间流量数据的阶段是经历
通气不足的指征的概率。

[0075] 18. 当给出口气不足的正指征时，建议一夜或数夜给予 SpO₂ 监控。

[0076] 19. 使用用于睡眠相关的通气不足 / 血氧不足的典型“规则”来确定通气不足存在于 SpO₂。

[0077] 通气量评估步骤和方法的更多例子

除以上所述的外，或可替代以上所述的是，可实施以下一个或多个步骤或程序。这些步骤或程序可以是一个或多个处理器或控制器的受控操作，其可以结合图 10 到 17 来描述：

a. 计算夜间或疗程期间患者的血气量的测值的直方图，例如当只有很少泄漏或没有泄漏时，且存在通气量稳定性时；

b. 使用峰检测器，计算直方图中峰的数量及其高度，例如图 10 显示的示例性高度 Yₐ 和 Yₐ；

c. 计算直方图中两个最高峰之间的距离，例如峰位置 Pₐ 和峰位置 Pₐ之间的距离 Peakₐ，如图 11 所示；

d. 使用变换函数，将两个最高峰之间的距离转化为概率空间（例如从 0 到 1 的概率空间）。通常，就通气不足而言，两个峰越远离，则发生通气不足的几率越大。即，可预期到在患者“自然”通气量水平中的峰，以及在患者“较低”通气量水平中另一峰（即预期在通气不足中会看到的）。变换函数的一个例子见下表 T。尽管如此，可使用能使与峰之间距离相关的数据发生变换的其它任何函数，将实际数据空间变换为概率空间，例如从 0 到 1 的空间。

[0078] 表 T

<table>
<thead>
<tr>
<th>X (L/分钟)</th>
<th>G(X) (通气不足的发生概率)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x < 0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>0.05 ≤ x < 0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>0.15 ≤ x < 0.2</td>
<td>0.13</td>
</tr>
<tr>
<td>0.2 ≤ x < 0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>0.25 ≤ x < 0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>0.35 ≤ x < 0.4</td>
<td>0.24</td>
</tr>
<tr>
<td>0.4 ≤ x < 0.45</td>
<td>0.28</td>
</tr>
<tr>
<td>0.45 ≤ x < 0.5</td>
<td>0.32</td>
</tr>
<tr>
<td>0.5 ≤ x < 0.55</td>
<td>0.38</td>
</tr>
<tr>
<td>0.55 ≤ x < 0.6</td>
<td>0.45</td>
</tr>
<tr>
<td>0.6 ≤ x < 0.65</td>
<td>0.52</td>
</tr>
<tr>
<td>0.65 ≤ x < 0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7 ≤ x < 0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>0.75 ≤ x < 0.8</td>
<td>0.76</td>
</tr>
<tr>
<td>0.8 ≤ x < 0.85</td>
<td>0.8</td>
</tr>
<tr>
<td>0.85 ≤ x</td>
<td>0.85</td>
</tr>
</tbody>
</table>

利用患者通气量直方图，还可估测通气不足的持续时间。峰（例如 Pₐ）下部的 X 坐标，表示该峰发生处的通气量水平，可视为通气不足水平。峰的幅宽（例如 Yₐ）表示已检测到特定通气量的 3 分钟期间内的数量，因此，可用于估测已测量了给定通气量的总持续时长。可使用处理器来计算估测持续时间，图 10 展示了示例公式的估测持续时长。

[0079] 可报告度量标准或概率（例如，记录或作为输出来产生），以提供可能性指征，即时
间流量数据表示正经历呼吸不足的可能性。图16展示了基本为单峰的直方图，其中基于表T的函数G(x)的概率分类系统返回的是0.2的“低”概率。这样的低概率可被认为表示不太可能存在通气不足。而另一方面，图17展示了双峰直方图，其中概率分类系统返回了0.85的“高”概率。这可作为极有可能存在通气不足的征兆。在一些实施例中，处理器可产生度量标准/和或直方图，以提供通气不足的征兆，例如通气不足概率值、通气不足程度和/或与通气不足概率值相关的通气不足水平。

[0080] 所报告的结果随后可作提供进一步治疗的征兆。例如，通气量正征兆可来建议进行一夜或数夜SpO2监控。在一个这种实施例中，通过将概率与一个或多个阈值相比，处理器可检查所报告的概率。基于这种比较，可发出消息，以建议进行进一步检验（例如，进一步的SpO2监控）或一些其它治疗。可选地，这样的比较可做触发事件，以控制进一步检验或治疗，例如使用呼吸治疗设备对所产生压力疗法的改变（例如，压力支持（PS）的增大，或压力支持通气量的气动，以伺服控制通气量测量值从而满足目标通气量）或进一步检测。

[0081] 例如，在一些这类例子中，设备102还可用于检测血气，如使用由设备处理器控制的血氧计。处理器可基于对直方图的评估，通过控制对SpO2数据的分析，从而确认存在通气不足。在该例中处理器可用于执行典型的“规则”，用于从血气中检测的睡眠相关的通气不足/血氧不足检测。所述处理器随后可基于通气直方图估计和血氧估计中之一或同时基于二者，产生作为输出的确定结果。

[0082] 在另一实施方式中，还可由一个或多个处理器执行以下中一个或多个过程或步骤：

a. 使用例如表检测器，将计算所计算的患者通气量直方图的峰（全部直方图或是无非稳定性直方图）；

b. 计算中点，例如直方图的中心，其可以是直方图尾部的两个极点（TL1和TL2）之间的中点Pc（如图13所示）；

c. 计算直方图中两个最高峰之间的距离Peak，如前参照图11所述的；

d. 计算一个或多个坡度，例如连接直方图中两个最高峰的线的坡度。图12展示了计算这种坡度的一个示例性公式；

e. 计算两个最高峰与中心点（例如，坡度Gradc）之间的坡度，例如用图13的例子所示的公式；

f. 计算次高峰与中心点之间的坡度（例如，坡度Gradc），例如用图13的例子所示的公式；

g. 计算峰之间的面积，其是一个或多个坡度的函数，例如图14中的坚直线所标记的；最高点与中心点之间的面积，如图15中水平线所标记的；和/或次高峰与中心点之间的面积，如图15中坚直线所示的；

h. 计算一个或多个形状特征，例如使用M-形检测器或检测算法的形状特征。这可作为用于检测双峰性存在的度量标准。一个这种方法在申请日为2008年5月9日的国际专利申请PCT/AU2008/000647中有所描述，其全文在此通过引用并入。可选地，可执行基于其他形状检测函数的其他或附加形状特征。

[0083] i. 使用变换函数，将两个最高峰之间的坡度转换为概率空间，例如从0到1的空间。如果坡度是高度为正或高度为负的，则其可用作表示峰位置过于靠近或较小峰过小的
指针。这可从患者无通气不足的直方图中看出，且根据变换函数，与高度为正或高度为负的
坡度相关的通气不足的概率可接近 0。根据这样的函数，坡度越接近 0，则概率将约接近 1。

J. 使用变换函数，将最高峰与中心点之间的坡度转换为概率空间，例如从 0 到 1 的
概率空间。如果坡度是高度为正或高度为负的，则其可用作表示峰位置过于靠近或较小峰
过小的指征。这可从患者无通气不足的直方图中看出，且在该例中，根据变换函数，通气不
足的概率可接近 0。根据这样的函数，坡度越接近 0，则概率将约接近 1。

K. 使用变换函数，将次高峰与中心点之间的坡度转换为概率空间，例如从 0 到 1 的
概率空间。如果坡度是高度为正或高度为负的，则其可用作表示峰位置过于靠近或较小峰
过小的指征。这可从患者无通气不足的直方图中看出，且根据变换函数，通气不足的概率可
接近 0。利用这样的函数，坡度越接近 0，则概率将约接近 1。

L. 使用变换函数，将峰之间的面积转换为概率空间，例如从 0 到 1 的概率空间。如果
该面积足够大，则其将表示峰间隔足够远。根据概率函数，该例中的通气不足该例可接近
1。利用这样的函数，随着峰变小，则概率可接近 0。

M. 使用变换函数，将最高峰与中心点之间的面积转换为概率空间，例如从 0 到 1 的
概率空间。如果该面积足够大，则其将用作表示峰之间间隔足够远的指征。根据这样的概
率函数，对于这类具有增大面积的例子，概率可接近 1。而利用这样的函数，对于较小的面
积，随着峰变小，概率可接近 0。

N. 使用变换函数，将形状特征转换为概率空间，例如从 0 到 1 的概率空间。所执行
的这样的变换函数将取决于用于计算形状特征的逼近函数的性质。

O. 计算由直方图体现的分布的峰度和偏度。

P. 使用变换函数，将峰度和偏度转换为概率空间，例如从 0 到 1 的概率空间。正偏
度可用作为发生通气不足的几率较高的指征，因此对于正度，变换概率可更接近 1。负偏度
值可表示发生通气不足的几率较低，因此根据这样的函数，通气不足概率可更接近 0。较高的
峰度可用作为发生通气不足的几率较高的指征，因此，因此根据这样的函数，变换概率可更
接近 1。较低的峰度可用作为发生通气不足的几率较低的指征，因此，因此根据这样的函数，通
气不足概率可更接近 0。

Q. 利用这样的步骤，可得到特征集中一个或多个特征。这样的特征可包括：

a. 两个最高峰之间的变换的坡度；
b. 最高峰与中心点之间的变换的坡度；
c. 次高峰与中心点之间的变换的坡度；
d. 两个最高峰之间的变换的面积；
e. 最高峰与中心点之间的变换的面积；
f. 次高峰与中心点之间的变换的面积；
g. 变换的形状特征；
h. 变换的峰度特征；
i. 变换的偏度特征；

与前述这些特征中每一个相关的变换函数可凭经验确定，或基于外部公开数据而生
成。

R. 在一些实施例中，基于特征集，可使用处理器来计算通气不足概率，例如使用分类
算法。可对上述特征中一些或全部特征进行评估。可使用加权系数，在一些例子中，变换概率或权重概率集与阈值集相比较，以在给定变换概率值时评估通气不足的整体可能性。在一个特定实施例中，处理器可使用线性分类器来计算整体通气不足概率。然而，也可采用能利用上述特征的其它分类方法，例如贝叶斯分类法（Bayesian Classification），来计算最终通气概率。在上述实施例所述的，通气概率可作为输出而报告。可进行数值评估，例如通过与一个或多个阈值相对比，以控制进一步治疗或评估，或如前述的消息的产生。

（D）示例性系统构建

图8的框图展示了图1或图8的装置的控制器的示例性系统构建图。在图中，通气量评估装置902或通用计算机可包括一个或多个处理器908。所述装置还可包括显示接口910，以输出通气量检测报告（例如，通气量直接数值、通气不足事件数据、通气过度数据、偏度系数、峰度系数和/或通气数值等）、结果或图表（例如，图3.4.5.6和7的例子中展示的通气量直接图和/或信号踪迹），如在此所述的在监控器或LCD面板上。还可提供用户控制/输入接口912，例如为键盘、触摸面板、控制按钮、鼠标等，以启用在此所述的方法。所述设备还可包括传感器或数据接口914，例如总线，用于接收/传输数据，例如程序指令、血氧计数据、流量数据、压力数据、通气计数值数据、通气量直接图数据等。所述设备典型地还可包括存储器/数据存储元件，其含有前述方法（例如图2）的控制指令。

这些可包括用于922处的流量信号处理的处理器控制指令（例如，预处理方法、滤波器），如在此详述的。其还可包括在924处用于进行通气量测量值确定的处理器控制指令（例如，分区、滤波和采样等）。其还可包括在926处用于进行通气量直方图确定或相关数据评估的处理器控制指令（例如峰检测、峰计数、特征分析、变换函数、峰度系数确定和阈值化、偏度系数确定和阈值化，双峰检测，泄漏评估，通气不足和/或通气度过度评分等）。其还可包括用于这些方法的存储的额外数据928，例如通气量数据、流量数据、直方图、峰度系数、偏度系数、峰、峰计数、坡度、变换的可能性、报告和图表等。最后，其还可包括在930处的用于控制对直方图评估数据的相应的处理器控制指令，例如告警或消息产生、压力治疗控制变化、进一步测试控制等。

在一些实施例中，用于控制上述方法的处理器控制指令和数据可作为软件包含在计算机可读存储介质中，由通用计算机使用，从而该通用计算机在载入软件后可作为根据在此所述任种方法的专用计算机。例如，该专用计算机无需配置以控制压力治疗或测量压力或流量数据。相反，该计算机仅需获得可从呼吸治疗装置中传输的数据。随后，计算机实施在此所述的通气量评估方法，例如确定直方图，并基于传输的数据进行分析，并可在此基础上产生告警或信息性消息。

在前述说明书和附图中，特定的术语、等式和附图标记仅用于提供对本技术的更好理解。在一些情形中，术语和标记可暗含无需实施本技术的具体细节。例如，尽管在附图中按顺序地描述或阐释了评估方法中的操作步骤，然而，这种顺序其实是不必要的。本领域技术人员将认识到，可对这种次序进行修正，和/或可平行地进行着一些步骤的一些方面。

另外，尽管在此结合了一些特定实施例来描述本发明，然而，应当理解为，这些实施例仅对本发明的原理和应用进行了阐述。因此，应当理解，可对阐释性形式实例作出大量修正，且其他配置都不脱离本发明的精神和范围。
图 1
获取表征患者呼吸的可呼吸气体流量的测量值

从流量测量值推导通气量测量值

用处理器基于通气量测量值确定直方图
图 7
处理器 显示接口 用户控制/输入接口 传感器/数据接口

内存/数据存储器

用于处理流量信号的处理器控制指令（例如，预处理和滤波器等）

用于确定通量测量值的处理器控制指令（例如，分区、滤波和采样等）

用于控制对直方图的响应的数据处理器控制指令（例如，警告性消息、压力治疗控制变化等）

存储的数据（例如，流体数据、流量数据、通量系数、偏度系数、峰计数、报告和图表等）

用于确定通量直方图或相关数据的处理器控制指令（例如，峰检测、峰计数、偏度系数确定、双峰检测、泄漏评估等）

图 9
图 10

通气量直方图特征

YA—最高峰点
Yb—次高峰点
PA—最高峰位置
Ph—次高峰位置

估测时长计算

较低峰位置= PA
时长= YA * 总区间计数
采样率
总区间计数= 计算直方图所用的样本总数