PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/18534
A2

GO6K (43) International Publication Date: 15 April 1999 (15.04.99)

(21) International Application Number: PCT/US98/21296 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 6 October 1998 (06.10.98) HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,

RO, RU, SD, SE, SG, 81, SK, TJ, TM, TR, TT, UA, UG,

(30) Priority Data: UZ, VN, ARIPO patent (GH, GM, KE, LS, MW, SD, §Z,

60/061,170 6 October 1997 (06.10.97) us UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,

60/071,039 13 January 1998 (13.01.98) us RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,

09/164,499 I October 1998 (01.10.98) us ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI

patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,

(71) Applicant: WEB BALANCE, INC. [US/US]; P.O. Box 226,
Foxboro, MA 02035-0226 (US).

(72) Inventors: O’NEIL, Kevin, M.; 92 West Pond Road, Plymouth,
MA 02360 (US). NERZ, Robert, F.; 25 Maryann Way, W.
Attleboro, MA 02760 (US). AUBIN, Robert, R.; Apartment
4, 16 Fuller Road, Foxboro, MA 02035 (US).

(74) Agent: PYSHER, Paul, A.; Choate, Hall & Stewart, Exchange
Place, 53 State Street, Boston, MA 02109 (US).

NE, SN, TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

{54) Title: SYSTEM FOR BALANCING LOADS AMONG NETWORK SERVERS

(57) Abstract

A system which distributes requests among a plurality of
network servers receives a request from a remote source at a first
one of the network servers, and determines whether to process the
request in the first network server. The request is processed in the
first network server in a case that it is determined that the request
should be processed in the first network server. On the other hand,
the request is routed to another network server in a case that it
is determined that the request should not be processed in the first
network server,

SERVER CLUSTER

WEB SERVER WEB SERVER
LOAD BALANCING 20 LOAD ING|
Mobule K MOW
19
TRUSTED SEGMENT
27 BACK END PACKET FILTER BACK END

T

SERVER

WEB SERVER
==, 0

1 INTERNAL NETWORK | R
i =4

MAINFRAME

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.,

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
18
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Taly

Japan

Kenya
Kyrgyzsian
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LT

Lesotho

Lithoania
Tuxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

3dk%Rra

T
™

$43

UG
Us

YU
v

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/18534 PCT/US98/21296

SYSTEM FOR BALANCING LOADS AMONG NETWORK SERVERS

Background of the Invention

The present invention is directed to a peer-to-peer load balancing system
which is implemented in plural network servers. In particular, the invention is
directed to a computer-executable module for use in network servers which enables
each server to distribute loads among its peers based on a load currently being
processed in each server and/or contents of the network requests. The invention
has particular utility in connection with World Wide Web servers, but can be used
with other servers as well, such as CORBA servers, ORB servers, FTP servers,

SMTP servers, and Java servers.

Network systems, such as the World Wide Web (hereinafter “WWW™),
utilize servers to process requests for information. Problems arise, however, if one
server becomes overloaded with requests. For example, if a server becomes
overloaded, it may be unable to receive new requests, may be slow to process the

requests that it has already received, and may yield server errors.

Load balancing was developed to address the foregoing problems in the art.
Briefly, load balancing involves distributing requests among plural servers (e.g.,
different servers on a Web site) in order to ensure that any one server does not

become unduly burdened.

One conventional load balancing technique involves the use of a domain
name server (hereinafter “DNS”), in particular a “round-robin” DNS. This device,
which typically operates on the network, is responsible for resolving uniform
resource locators or “URLs” (e.g., “www.foo.com™) to specific IP addresses (e.g.,
111.222.111.222). In this regard, a Web site having several servers may operate
under a single URL, although each server is assigned a different IP address. A
round-robin DNS performs load balancing by routing requests to these servers in

sequential rotation based on their IP addresses.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

—

While round-robin DNSs can coarsely distribute loads AR r 2]
servers, they have several drawbacks. For example, not all requests for connection
to a Web site are necessarily received by a round-robin DNS, Rather, many
requests will have been previously “resolved” by a DNS Ilocal to the requestor and
remote from the Web site (i.e., a “a remote DNS”) or by the requestor (i.e., the
computer that issued the request on the WWW). In these cases, resolution is based
on an address which has been cached in the remote DNS or the requestor, rather
than by sequential rotation provided by the Web site’s round-robin DNS. Due to

this caching, load balancing may not be achieved to a satisfactory degree.

DNS-based load balancing techniques have another significant drawback. In
the event that a Web server fails (i.e., the Web server goes off-line), the Web site
has no real-time mechanism by which to reroute requests directed to that server
(e.g., by a remote DNS). Thus, a remote DNS with caching capabilities could
continue to route requests to a failed server for hours, or even days, after the
failure has occurred. As a result, a user’s connection would be denied with no
meaningful error message or recovery mechanism. This situation is unacceptable,

particularly for commercial Web sites.

As an alternative to the DNS-based load balancing techniques described
above, some vendors have introduced dedicated load balancing hardware devices
into their systems. One such system includes a device, called a proxy gateway,
which receives all network requests and routes those requests to appropriate Web
servers. In particular, the proxy gateway queries the servers to determine their
respective loads and distributes network requests accordingly. Responses from the
servers are routed back to the network through the proxy gateway. Unlike the
DNS-based schemes, all requests resolve to the IP address of the proxy server,
thereby avoiding the risk that remote DNS caching or failed servers will

inadvertently thwart access to the site.

While proxy gateways address some of the fundamental problems of load

balancing described above, they also have several drawbacks. For example, proxy"
2

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

~ gateways add latency in both the “request” direction and the ¥yesponte” ditection.

Moreover, since the proxy gateway is, for all intents and purposes, the only way
into or out of a Web site, it can become a bottleneck that limits the capacity of that
site to the capacity of the proxy gateway. Moreover, the proxy gateway is also a

single point of failure, since its failure alone will prevent access to the Web site.

An IP redirector is a device similar to a proxy gateway which also performs
load balancing. Like a proxy gateway, an IP redirector serves as a hub that
receives and routes requests to appropriate servers based on the servers’ loads. IP
redirectors are different from proxy gateways in that IP redirectors do not handle
responses to requests, but rather let those responses pass directly from the assigned
Web servers to the requesters. However, IP redirectors suffer from many of the
same drawbacks of the proxy gateways described above, particularly insofar as
limiting the capacity of the Web site and preventing access to it as a result of

failure of the IP redirector.

Dedicated load balancers, such as proxy gateways and IP redirectors, also
have drawbacks related to sensing loads in different Web servers, Using current
technologies, a server can become busy in a matter of milliseconds. A load
balancer, however, can only query various servers so often without creating
undesirable overhead on the network and in the servers themselves. As a result,
such load balancers often must rely on “old” information” to make load balancing
decisions. Load balancing techniques which use this “old” information are often

ineffective, particularly in cases where such information has changed significantly.

Dedicated load balancers, such as proxy gateways and IP redirectors, also
have problems when it comes to electronic commerce transactions. In this regard,
electronic commerce transactions are characterized by multiple sequential requests
from a single client, where each subsequent request may need to refer to state
information provided in an earlier request. Examples of this state information

include passwords, credit card numbers, and purchase selections.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

Problems with electronic commerce arise because an entire transaction must
be serviced by one of plural network servers, since only that one server has the
original state information. A load balancer therefore must identify the first request
of a stateful transaction and keep routing requests from that requestor to the same
server for the duration of the transaction. However, it is impossible for the load
balancer to know exactly where a transaction begins or ends, since the information
in the request providing such indications may be encrypted (e.g., scrambled) when
it passes through the dedicated load balancer. In order to maintain an association
between one requestor and one server, dedicated load balancers therefore use a
mechanism referred to as a “sticky timer”. More specifically, the load balancer
infers which request may be the start of a stateful transaction and then sets a
“sticky timer” of arbitrary duration (e.g., 20 minutes) which routes all subsequent
requests from the same requestor to the same Web server, and which renews the
“sticky timer” with each subsequent request. This method is easily bypassed and

may unnecessarily defeat the load balancing feature.

Thus, there exists a need for a load balancing technique which is able to
provide more accurate load balancing than the techniques déscribed above, which is
able to perform accurate load balancing despite cached server addresses or
“maintained” Web browser addresses, which is not a significant bottleneck or
source of single point failure, and which is able to maintain the association between
a client and a server in order to preserve state information required to complete an

electronic commerce transaction.

Summary of the Invention

The present invention addresses the foregoing needs by providing, in one
aspect, a plurality of network servers which directly handle load balancing on a
peer-to-peer basis. Thus, when any of the servers receives a request, the server
either processes the request or routes the request to one of its peers -- depending on
their respective loads and/or on the contents of the request. By implementing load

balancing directly on the servers, the need for dedicated load balancing hardware is °

4

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

 reduced, as are the disadvantages resulting from such hardware. Thus, for example,

because each server has the capability to perform load balancing, access to a Web
site managed by the server is not subject to a single point of failure. Moreover,
requests tagged with IP addresses cached by remote DNSs or the requestor itself
are handled in the same way as other requests, i.e., by being routed among the load

balancing-enabled servers.

A network server according to a related aspect of the invention exchanges
information with its peers regarding their respective loads. This exchange may be
implemented based on either a query/response or unsolicited multicasts among the
server’s peers, and may be encrypted or may occur over a private communication
channel. The exchange may be implemented to occur periodically or may be
triggered by a network event such as an incoming request. In a preferred
embodiment of the invention, each server multicasts its load information to its
peers at a regular period (e.g., 500 ms). This period may be set in advance and
subsequently re-set by a user. In the preferred embodiment, the multicast message
serves the dual purposes of exchanging load information and of confirming that a

transmitting server is still on-line.

By virtue of the foregoing, and by virtue of the server having nearly
instantaneous information regarding its own workload, the server is able to make
routing determinations based on substantially up-to-date information. The most
critical decision, i.e., whether to consider rerouting, is preferably made based on the
most current information available (i.e., based on a local server load provided
nearly instantaneously from within the server and without any network transmission

latency).

In further aspects of the invention, a server processes a received request
directly when its load is below a first predetermined level, or if its load is above
the first predetermined level yet those of the server’s peers are above a second
predetermined level. Otherwise, the server routes the request to one of its peers.

By equipping a site with multiples servers of this type, it is possible to reduce the -

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

~ chances that one server will become overwhelmed with requests while another

WO 99/18534 PCT/US98/21296

server of similar or identical capabilities remains relatively idle.

In other aspects of the invention, the receiving server determines whether to
process a request based on its content, e.g., its uniform resource indicator (“URID").
By virtue of this feature of the invention, it is possible to limit the server to
processing certain types of network requests, while routing others. Alternatively, it
is possible to direct particular requests to particular servers, which then may either
process or re-route those requests based on loads currently being handled by the

servers.

In other aspects of the invention, the receiving server determines which, if
any, of its peer servers are off-line. The server then routes requests to its on-line
peers and does not route requests to its off-line peers. A server may also assume
the network identity (i.e., the IP address and/or URL) of an off-line peer to insure
that requests are serviced properly even if directed to an off-line peer by virtue of
caching in a remote DNS. The server would continue to service both its own
identity and its assumed identity until the off-line peer returns to on-line service.
As a result, it is possible to reduce response errors resulting from requests being

inadvertently directed to off-line servers,

In other aspects of the invention, servers may be configured to recognize
specific URIs which designate entry points for stateful transactions. A server so
configured will not re-route requests away from itself if they are related to a
stateful transaction conforming to the URI of the server. Even URIs that arrive in
encrypted requests will be decrypted by the server and, therefore, will be subject to
intelligent interpretation in accordance with configuration rules. As a result, an
electronic commerce transaction comprised of multiple requests may be processed
entirely on one of plural servers. Once the transaction is complete, as confirmed
by comparing URI information to configuration rules, subsequent requests will

again be subject to re-routing for the purpose of load balancing.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

This brief summary has been provided so that the nature ot the invention
may be understood quickly. A more complete understanding of the invention can
be obtained by reference to the following detailed description of the preferred

embodiments thereof in connection with the attached drawings.
Brief Description of the Drawings

A more complete understanding of the invention may be attained by

reference to the drawings, in which:

Figure 1 is a diagram showing the topology of a Web site including the

present invention;

Figure 2, comprised of Figures 2A and 2B, is a flow diagram showing
process steps for distributing requests among various servers based on the loads
being handled by them;

Figure 3 is a more detailed view of a portion of the topology shown in

Figure 1 relating to load balancing;

Figure 4 is a flow diagram showing process steps for distributing requests

among various servers based on the content of the requests; and

Figure 5 is a diagram showing the topology of a Web site including the

present invention and a proxy.
Detailed Description of the Illustrated Embodiments

The present invention is directed to a system for implementing peer-to-peer
load balancing among plural network servers. Although the invention will be
described in the context of the World Wide Web (“WWW?), and more specifically

in the context of WWW servers, it is not limited to use in this context. Rather, the
7

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

~ invention can be used in a variety of different types of netwicheMystashs with\d

WO 99/18534 PCT/US98/21296

—

variety of different types of servers. For example, the invention can be used in
intranets and local area networks, and with CORBA servers, ORB servers, FTP

servers, SMTP servers, and Java servers, to name a few.

Figure 1 depicts the topology of a Web site 1 which includes the present
invention, together with hardware for accessing that Web site from a remote
location on the Internet. More specifically, Figure 1 shows router 2, local DNS 4,
server cluster 6 comprised of Web servers 7, 9 and 10, packet filter 11, and internal

network 12. A brief description of this hardware is provided below.

Router 2 receives requests for information stored on Web site 1 from a
remote location (not shown) on the Internet. Router 2 routes these requests, which

typically comprise URLs, to local DNS 4. Local DNS 4 receives a URL from

Touter 2 and resolves the domain name in the URL to a specific IP address in

server cluster 6.

Server cluster 6 is part of the untrusted segment 14 of Web site 1, to which
access is relatively unrestricted. Server cluster 6 is comprised of a plurality of
servers, including servers 7, 9 and 10. Each of these servers is capable of
retrieving information from internal network 12 in response to requests resolved by
a remote DNS on the Internet or by local DNS 4. Included on each of servers 7,9
and 10 is a microprocessor (not shown) and a memory (not shown) which stores
process steps to effect information retrieval. In preferred embodiments of the
invention, each memory is capable of storing and maintaining programs and other
data between power cycles, and is capable of being reprogrammed periodically. An

example of such a memory is a rotating hard disk.

The memory on each server also stores a computer-executable module (ie.,
a heuristic) comprised of process steps for performing the peer-to-peer load
balancing technique of present invention. More specifically, server 7 includes load

balancing module 17, server 9 includes load balancing module 19, and server 10 °

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

includes load balancing module 20. The process steps in these modules are

WO 99/18534 PCT/US98/21296

executable by the microprocessor on each server so as to distribute requests among
the Web servers. In more detail, the process steps include, among other things,
code to receive a request from a remote source at a first one of the Web servers
(e.g., server 7), code to determine whether to process the request in the first server,
code to process the request in the first server in a case that the determining code
determines that the request should be processed in the first server, and code to
route the request to another server (e.g., server 9) in a case that the determining
code determines that the request should not be processed in the first server. A
more detailed description of the load balancing technique implemented by these

process steps is provided below.

Packet filter 11 comprises a firewall for internal network 12 (i.e., the trusted
segment) of Web site 1. All transactions into or out of internal network 12 are
conducted through packet filter 11. In this regard, packet filter 11 “knows” which
inside services of internal network 12 may be accessed from the Internet, which
clients are permitted access to those inside services, and which outside services may
be accessed by anyone on internal network 12. Using this information, packet filter
11 analyzes data packets passing therethrough and filters these packets accordingly,

restricting access where necessary and allowing access where appropriate.

Internal network 12 includes mainframe 16 and back-end Web servers 27
and 29. Back-end Web servers 27 and 29 comprise file servers which store a
database for Web site 1. Back-end Web servers 27 and 29 may be used to access
data files on mainframe 16 (or other similar computer) in response to requests from
server cluster 6. Once such data files have been accessed, mainframe 16 may then
transmit these files back to server cluster 6. Alternatively, data on back-end Web
servers 27 and 29 may be accessed directly from server cluster 6 without the aid of

mainframe 16.

First Embodiment

Figure 2 illustrates process steps of the present invention for load balancing®

9

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

~ received network requests. To begin, in step S201 a network request is received at

a server, such as server 7 show in Figure 3. This request may be resolved by a
remote DNS on the Internet based on a cached IP address (e.g., requests 1, 2, 3 and
4) or, alternatively, the request may be resolved by a local round-robin DNS 4
(e.g., request 5). Then, in step S202, server 7 determines a load (e.g., the number
and/or complexity of network requests) that it is currently processing, and the

capacity remaining therein.

Step S203 decides if the load currently being processed in server 7 exceeds
a first predetermined level. In preferred embodiments of the invention, this
predetermined level is 50%, meaning that server 7 is operating at 50% capacity.
Of course, the invention is not limited to using 50% as the first predetermined
level. In this regard, a value for the first predetermined level may be stored in a

memory on server 7, and may be reprogrammed periodically.

If step S203 decides that server 7 is not processing a load that exceeds the
first predetermined level, flow proceeds to step S204. In step S204, the network
request is processed in server 7, and a response thereto is output via the appropriate
channels. On the other hand, in a case that step S203 determines that server 7 is

processing a load that exceeds the first predetermined level, flow proceeds to step
S205.

Step S205 determines loads currently being processed by server 7’s peers
(e.g., servers 9 and 10 shown in Figure 3). In more detail, in step S205, load
balancing module 17 compares its current load information with the most recent
load information provided by load balancing modules 19 and 20. These load
balancing modules continuously exchange information regarding their respective
loads, so that this information is instantly available for comparison. In the example
shown in Figure 3, load balancing module 19 provides information concerning the
load currently being processed by server 9, and load balancing module 20 provides

information concerning the load currently being processed by server 10.

10

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

In step 8206, load balancing module 17 determines whether the loads
currently being processed by server 7’s peers are less than the load on server 7 by a
differential exceeding a second predetermined level. In preferred embodiments of
the invention, this second predetermined level is 20%, which provides a means of
assessing whether servers 9 or 10 have at least 20% more of their capacities
available than server 7. Of course, the invention is not limited to using 20% as the
second predetermined level. In this regard, as above, a value for the second
predetermined level may be stored in a memory on server 7, and may be

reprogramméd periodically.

In a case that step S206 decides that server 7’s peers (i.e., servers 9 and 10)
do not have 20% more of their capacity available, flow proceeds to step S204. In
step S204, the network request is processed in server 7, and a responée thereto is
output via the appropriate channels. On the other hand, in a case that step S206
decides that at least one of server 7’s peers is processing a load that is less than the

percent load on server 7 by the second predetermined level, flow proceeds to step
$207.

Step S207 determines which, if any, of the servers at Web site 1 are off-line
based, e.g., on the load information exchange (or lack thereof) in step $205. A
server may be off-line for a number of reasons. For example, the server may be
powered-down, malfunctioning, etc. In such cases, the servers’ load balancing
modules may be unable to respond to a request from load balancing module 17 or
otherwise be unable to participate in an exchange of information, thereby indicating
that those servers are off-line. In addition, in preferred embodiments of the
invention, the load balancing modules are able to perform diagnostics on their
respective servers. Such diagnostics test operation of the servers. In a case that a
server is not operating properly, the server’s load balancing module may provide an
indication to load balancing module 17 that network requests should not be routed

to that server.

Next, step S208 analyzes load information from on-line servers in order to "

11

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

~ determine which of the on-line servers is processing the smallest load. Step S208

does this by comparing the various loads being processed by other servers 9 and 10
(assuming that both are on-line). Step S209 then routes the network request to the
server which is currently processing the smallest load. In the invention, routing is
performed by sending a command from load balancing module 17 to a requestor
instructing the requestor to send the request to a designated server. Thus, re-
routing is processed automatically by the requestor software and is virtually

invisible to the actual Internet user.

Thereafter, that server processes the request in step S210. At this point, it
is noted, however, that the invention is not limited to routing the request to a server
that is processing the smallest load. Rather, the invention can be configured to
route the request to any server that is operating at or below or predetermined
capacity, or something similar such as, but not limited to, a round-robin hand-off

rotation.

Figure 3 illustrates load distribution according to the present invention.
More specifically, as noted above, server 7 (more specifically, load balancing
module 17) receives requests 1, 2, 3 and 4 resolved by network DNS 21 and
request 5 via local DNS 4. Similarly, server 10 receives request 6 (i.e., a cached
request) via local DNS 4. Any of these requests may be “bookmarked” requests,
meaning that they are specifically addressed to one server. Once each load
balancing module receives a requést, it determines whether to process that request
in its associated server or to route that request to another server. This is done in
the manner shown in Figure 2. By virtue of the processing shown in Figure 2,
load balancing modules 17, 19 and 20 distribute requests so that server 7 processes
requests 1 and 2, server 9 processes requests 3 and 5, and server 10 processes

requests 4 and 6.

Second Embodiment

In the second embodiment of the invention, load balancing is performed

based on a content of a network request, in this case a URL/URI. As noted above:

$

12

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

~ a URL addresses a particular Web site and takes the form of “www.foo.com™. A

WO 99/18534 PCT/US98/21296

—

URI, on the other hand, specifies information of interest at the Web site addressed
by the URL. For example, in a request such as “www.foo.com/banking”,
“/banking” is the URI and indicates that the request is directed to information at the
“foo” Web site that relates to “banking”. In this embodiment of the invention,

URlIs in network requests are used to distribute requests among servers.

Figure 4 is a flow diagram illustrating process steps comprising this
embodiment of the invention. To begin, in step S401, load balancing module 17
receives a request from either network DNS 21 or from local DNS 4 (see Figure
3). In step S402, the load balancing module then analyzes the request to determine
its content. In particular, load balancing module 17 analyzes the request to identify

URIs (or lack thereof) in the request.

Step 5402 determines which server(s) are dedicated to processing which
URIs, and which server(s) are dedicated to processing requests having no URI.
That is, in the invention, the load processing module of each server is configured to
accept requests for one or more URISs, thus limiting the server to processing
requests for those URIs. For example, load balancing module 17 may be
configured to accept requests with a URI of “/banking”, whereas load balancing
module 19 may be configured to accept requests with a URI of “/securities”.
Which server processes which URI may be “hard-coded” within the server’s
loading balancing module, stored within the memory of each server, or obtained

and updated via a dynamic protocol.

In any event, in a case that step S403 decides that server 17 is dedicated to
processing URIs of the type contained in the request (or no URI, whichever the
case may be), flow proceeds to step S404. In step S404, the request is accepted by
load balancing module 17 and processed in server 7, whereafter processing ends.
On the other hand, in a case that step S403 decides that server 7 does not process
URIs of the type contained in the request, flow proceeds to step S405. This step

routes the request to one of server 7’s peers that is dedicated to processing requests
13

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

~ containing such URIs. Routing is performed in the same manner as in step S209

WO 99/18534 PCT/US98/21296

of Figure 2. Once the request is received at the appropriate server, the load
balancing module associated therewith accepts the request for processing by the

server in step S406, whereafter processing ends.

Third Embodiment

The first and second embodiments of the invention described above can be
combined into a single embodiment which routes network requests based on both a
content of the request and loads being handled by the various servers. More
specifically, in this embodiment of the invention, each load balancing module is
configured to route a request to a server dedicated to a particular URI in a case that
the server is operating at less than a predetermined capacity. In a case that the
server is operating at above the predetermined capacity, the invention routes the
requests to another server which can handle requests for the URI, but which is
operating at below the predetermined capacity. The methods for performing such
routing are described above with respect to the first and second embodiments of the

invention.

Fourth Embodiment

As noted above, the present invention reduces the need for a proxy gateway
or similar hardware for distributing loads among various Web servers. It is noted,
however, that the invention can be used with such hardware. Figure 5 shows the
topology of a Web site on which the present invention is implemented, which also

includes proxy 26.

In this regard, except for proxy 26, the features show in Figure 5 are
identical in both structure and function to those shown in Figure 1. With respect to
proxy 26, proxy 26 is used to receive network requests and to route those requests
to appropriate servers. A load balancing module on each server then determines
whether the server can process requests routed by proxy 26 or whether such
requests should be routed to one of its peers. The process for doing this is set

forth in the first, second and third embodiments described above.
14

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

" Fifth Embodiment

This embodiment of the invention is directed to a system for maintaining an
association between a requestor and one of plural servers at a Web site when state

information is used during an electronic transaction.

More specifically, in accordance with this embodiment of the invention, a
server at a Web site, such as server 7 shown in Figure 1, is configured to recognize
specific URIs (e.g., URIs that designate entry points for a stateful transaction
relating to electronic commerce). In the case that one of these URIs is recognized,
the server will not route subsequent transactions away from that server, thereby
ensuring that all such requests are processed by that server. Requests may again be
re-routed from the server once a URI which matches a predetermined

“configuration rule” is detected (e.g., when a transaction is complete).

In preferred embodiments of the invention, wild card URI information may
be used to designate a stateful path. For example, the hyperlink
“http://www.foo.com/ banking/*”” would mean that “http://www.foo.com/banking/”
constitutes the entry point into a stateful transaction. Any request up to and
including this point would be subject to potential re-routing. Any request further
down this path would indicate that the requestor and the server arc engaged in a

stateful transaction and not subject to potential re-routing.

The present invention has been described with respect to particular
illustrative embodiments. It is to be understood that the invention is not limited to
the above-described embodiments and modifications thereto, and that various
changes and modifications may be made by those of ordinary skill in the art

without departing from the spirit and scope of the appended claims.

In view of the foregoing, what we claim is:

15

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

1. A method of distributing requests among a plurality of network servers,

the method comprising the steps of:

receiving a request from a remote source at a first one of the network

servers;

executing a determining step in the first server, the determining step for

determining whether to process the request in the first network server;

processing the request in the first network server in a case that the
determining step determines that the request should be processed in the first

network server; and

routing the request to another network server in a case that the determining

step determines that the request should not be processed in the first network server.

2. A method according to claim 1, wherein the determining step makes a
determination as to whether the request should be processed in the first network

server based on a load currently being processed in the first network server.

3. A method according to claim 2, wherein the determining step makes the
determination based, in addition, on a load currently being processed in one or

more of the other network servers.

4. A method according to claim 1, wherein the determining step comprises

the steps of:

determining a load currently being processed by the first network server;

and

receiving information in the first network server from each of the other

network servers, the information from each of the other network servers comprising
16

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

information concerning a load currently being processed in each network server;

WO 99/18534 PCT/US98/21296

~—

wherein the determining step determines that the first network server should
process the request in a case that (i) the load currently being processed in the first
network server is below a first predetermined level, or (ii) the load currently being
processed in the first network server is above the first predetermined level and is
above loads currently being processed by either of the other network servers by less

than a second predetermined level; and

wherein the determining step determines that the first network server should
not process the request in a case that the load currently being processed in the first
network server is above the first predetermined level and a load currently being
processed in at least one of the other network servers is below the level of the first

network server by at least the second predetermined level.

5. A method according to claim 1, wherein, in a case that the determining
step determines that the request should not be processed in the first network server
and the plurality of network servers includes at least two other network servers, the
method further comprises a second determining step for determining which of the
at least two other network servers that the request should be routed to in the

routing step.

6. A method according to claim 5, wherein the second determining step
determines which of the at least two other network servers that the request should
be routed to based on loads currently being processed in the at least two other

network servers.

7. A method according to claim 6, wherein the second determining step
determines that the request should be routed to a network server which is currently

processing a smallest load.

8. A method according to claim 1, wherein the plurality of network servers
17

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

* comprises one or more of the following types of servers: World Wide Web

WO 99/18534 PCT/US98/21296

servers, CORBA servers, ORB servers, FTP servers, and SMTP servers.

9. A method according to claim 1, wherein the routing step comprises
sending a command to the remote source which instructs the remote source to send

the request to the other one of the network servers.

10. A method according to claim 1, wherein the determining step
determines whether to process the request in the first network server based on a

content of the request.

11. A method according to claim 10, wherein the request comprises a

uniform resource locator (“URL”) and a uniform resource indicator (“URI”); and

wherein the determining step determines whether to process the request in

the first network server based on the URI in the request.

12. A method according to claim 11, wherein the determining step
determines whether to process the request in the first network server based, in
addition, on a load currently being processed in the first network server and loads

currently being processed in one or more of the other network servers.

13. A method according to claim 1, further comprising, before the routing
step, the step of determining which, if any, of the plurality of network servers are
off-line; '

wherein the routing step routes the request to a network server which is on-

line and does not route the request to a network server which is off-line.

14. Computer-executable process steps stored on a computer-readable
medium, the computer executable process steps comprising a server module which

is installable in a plurality of network servers to distribute requests among the -
18

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

- plurality of network servers, the computer-executable process steps comprising:

WO 99/18534 PCT/US98/21296

code to receive a request from a remote source at a first one of the network

servers;

code, executable by the first server, to determine whether to process the

request in that server;

code to process the request in the first network server in a case that the
determining code determines that the request should be processed in the first

network server; and

code to route the request to another network server in a case that the
determining code determines that the request should not be processed in the first

network server.

15. Computer-executable process steps according to claim 14, wherein the
determining code comprises code to make a determination as to whether the request
should be processed in the first network server based on a load currently being

processed in the first network server.

16. Computer-executable process steps according to claim 15, wherein the
determining code comprises code to make the determination based, in addition, on

a load currently being processed in one or more of the other network servers.

17. Computer-executable process steps according to claim 14, wherein the

determining code comprises:

code to determine a load currently being processed by the first network

server; and

code to receive information in the first network server from each of the
19

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

" other network servers, the information from each of the other network servers

comprising information concerning a load currently being processed in each

network server;

wherein the determining code determines that the first network server should
process the request in a case that (i) the load currently being processed in the first
network server is below a first predetermined level, or (ii) the load currently being
processed in the first network server is above the first predetermined level and is
above loads currently being processed by either of the other network servers by less

than a second predetermined level; and

wherein the determining code determines that the first network server should
not process the request in a case that the load currently being processed in the first
network server is above the first predetermined level and a load currently being
processed in at least one of the other network servers is below the level of the first

network server by at least the second predetermined level.

18. Computer-executable process steps according to claim 14, wherein the
computer-executable process steps further comprise code to determine which of the
other network servers that the request should be routed to by the routing code in a
case that the determining code determines that the request should not be processed

in the first network server.

19. Computer-executable process steps according to claim 18, wherein the
code to determine which of the at least two other network servers that the request
should be routed to makes a determination based on loads currently being processed

in the at least two other network servers.

20. Computer-executable process steps according to claim 19, wherein the
code to determine which of the at least two other network servers that the request
should be routed to determines that the request should be routed to a network

server which is currently processing a smallest load.
20

SUBSTITUTE SHEET (RULE 26)

WO 99/18534 PCT/US98/21296

10

15

20

25

30

21. Computer-executable process steps according to claim 14, wherein the -
plurality of network servers comprises one or more of the following types of
servers: World Wide Web servers, CORBA servers, ORB servers, FTP servers,
and SMTP servers.

22. Computer-executable process steps according to claim 14, wherein the
routing code comprises code to send a command to the remote source which
instructs the remote source to send the request to the other one of the network

SEIvers.

23. Computer-executable process steps according to claim 14, wherein the
determining code determines whether to process the request in the first network

server based on a content of the request.

24. Computer-executable process steps according to claim 23, wherein the
request comprises a uniform resource locator (*URL”) and a uniform resource
indicator (“URI”); and

wherein the determining code determines whether to process the request in

the first network server based on the URI in the request.

25. Computer-executable process steps according to claim 24, wherein the
determining code determines whether to process the request in the first network
server based, in addition, on a load currently being processed in the first network
server and loads currently being processed in one or more of the other network

servers.

26. Computer-executable process steps according to claim 14, further

comprising code to determine which, if any, of the plurality of network servers are

off-line;

wherein the routing code routes the request to a network server which is on-

21

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

line and does not route the request to a network server which is off-line.

WO 99/18534 PCT/US98/21296

27. A network server which is capable of processing requests and of
distributing the requests among a plurality of other network servers, the network

server comprising:

a memory which stores a module comprised of computer-executable process

steps; and

a processor which executes the process steps stored in the memory so as (i)
to receive a request from a remote source at the network server, (ii) to determine
whether to process the request in the network server, (iii) to process the request in
the network server in a case that the processor determines that the request should
be processed in the network server, and (iv) to route the request to another one of
the plurality of network servers in a case that the processor determines that the

request should not be processed in the network server.

28. A network server according to claim 27, wherein the processor makes a
determination as to whether the request should be processed in the network server

based on a load currently being processed in the network server.

29. A network server according to claim 27, wherein the processor makes
the determination based, in addition, on a load currently being processed in one or

more of the other network servers.

30. A network server according to claim 27, wherein the processor
determines whether to process the request in the network server by executing
process steps so as (i) to determine a load currently being processed by the first
network server, and (ii) to receive information in the first network server from each
of the other network servers, the information from each of the other network

servers comprising information concerning a load currently being processed in each

network server; :
22

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

wherein the processor determines that the first network server should
process the request in a case that (i) the load currently being processed in the first
network server is below a first predetermined level, or (ii) the load currently being
processed in the first network server is above the first predetermined level and is
above loads currently being processed by either of the other network servers by less

than a second predetermined level; and

wherein the processor determines that the first network server should not
process the re'quest in a case that the load currently being processed in the first
network server is above the first predetermined level and a load currently being
processed in at least one of the other network servers is below the level of the first

network server by at least the second predetermined level.

31. A network server according to claim 27, wherein, in a case that the
processor determines that the request should not be processed in the network server
and the plurality of other network servers includes at least two other network
servers, the processor executes process steps to determine to which of the at least

two other network servers that the request should be routed.

32. A network server according to claim 31, wherein the processor
determines which of the at least two other network servers that the request should

be routed to based on loads currently being processed in the at least two other

network servers.

33. A network server according to claim 32, wherein the processor
determines that the request should be routed to a network server which is currently

processing a smallest load.

34. A network server according to claim 27, wherein the plurality of other
network servers comprises one or more of the following types of servers: World

Wide Web servers, CORBA servers, ORB servers, FTP servers, and SMTP servers.

23

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

35. A network server according to claim 27, wherein the processor routes
the request to another one of the plurality of network servers by executing process
steps to send a command to the remote source which instructs the remote source to

send the request to the other one of the network servers.

36. A network server according to claim 27, wherein the processor
determines whether to process the request in the network server based on a content

of the request.

37. A network server according to claim 36, wherein the request comprises

a uniform resource locator (“URL”) and a uniform resource indicator (“URI”); and

wherein the processor determines whether to process the request in the

network server based on the URI in the request.

38. A network server according to claim 37, wherein the processor
determines whether to process the request in the network server based, in addition,
on a load currently being processed in the network server and a load currently

being processed in one or more of the other network servers.

39. A network server according to claim 27, wherein the processor executes

process steps to determine which, if any, of the plurality of network servers are off-

line;

wherein the processor routes the request to a network server which is on-

line and does not route the request to a network server which is off-line.

40. A method according to Claim 1, wherein the determining step
comprises determining whether the request is related to a stateful transaction based

on a URI in the request; and

wherein (i) in a case that the request is related to a stateful transaction,
24

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/18534 PCT/US98/21296

_ determining that the request should be processed in the first network server, and (ii)

in a case that the request is not related to a stateful transaction, determining if the

request should be processed in the first network server.

41. A method according to Claim 40, wherein, in a case that the request is
related to a stateful transaction, determining that at least a second request having a
URI substantially the same as the URI of the request should be processed in the

first network server.

42. Computer-executable process steps according to Claim 14, wherein the
determining code comprises code to determine whether the request is related to a

stateful transaction based on a URI in the request; and

wherein (i) in a case that the request is related to a stateful transaction, the
determining code determines that the request should be processed in the first
network server, and (ii) in a case that the request is not related to a stateful
transaction, the determining code determines if the request should be processed in

the first network server.

43. Computer-executable process steps according to Claim 42, wherein, in a
case that the request is related to a stateful transaction, the code to determine
determines that at least a second request having a URI substantially the same as the

URI of the request should be processed in the first network server.

44. A network server according to Claim 27, wherein the processor
determines whether the request should be processed in the network server by

determining whether the request is related to a stateful transaction based on a URI

in the request; and

wherein (i) in a case that the request is related to a stateful transaction, the
processor determines that the request should be processed in the network server,

and (ii) in a case that the request is not related to a stateful transaction, the
25

SUBSTITUTE SHEET (RULE 26)

WO 99/18534 PCT/US98/21296

' processor determines if the request should be processed in the network server.

45. A network server according to Claim 44, wherein, in a case that the
request is related to a stateful transaction, the processor determines that at least a
second request having a URI substantially the same as the URI of the request

should be processed in the network server.

26

SUBSTITUTE SHEET (RULE 26)

WO 99/18534 PCT/US98/21296

1/6
INTERNET
= 2
ROUTER e
LOCAL
DNS 4
14
UNTRUSTED SEGMENT | // _______________
) 7\
LOA% O%AULféVCING 1
WEB SERVER /
7

10

W 5
SERVER CLUSTER

WEB SERVER WEB SERVER
LOAD BALANCING

20— |LOAD BALANCING
MODULE K., MODULE

TRUSTED SEGMENT

27 BACK END

BACK END
WEB SERVER PACKET FILTER WEB SERVER

T e e e e e, — e, —— e ——.

11 N
' ~—~—29
INTERNAL NETWORK
12
MAINFRAME

SUBSTITUTE SHEET (RULE 26)

WO 99/18534

PCT/US98/21296

2/6

FIG.2A (o)

Y
RECEIVE NETWORK REQUEST AT ONE
OF PLURAL SERVERS.

/

!
DETERMINE LOAD CURRENTLY BEING
PROCESSED BY THE SERVER.

/

S203

IS THE LOAD
OF THE SERVER
GREATER THAN A FIRST
PREDETERMINED

S205

/

DETERMINE LOADS BEING PROCESSED
BY OTHER OF THE PLURAL SERVERS.

S206

IS THE LOAD
ON ANY OF THE OTHER

Y
TO FIG.2B

SUBSTITUTE SHEET (RULE 26)

S201

S202

WO 99/18534 PCT/US98/21296

3/6
FROM FIG.2A
/ 7~ =
FIG.2B @ @

S207

v £

DETERMINE WHICH, IF ANY, OF THE
OTHER SERVERS ARE OFF—LINE.

1
DETERMINE WHICH OF THE ON-LINE
SERVERS IS CURRENTLY \
PROCESSING THE SMALLEST LOAD. S208

|
ROUTE THE NETWORK REQUEST TO

THE SERVER CURRENTLY ~__
PROCESSING THE SMALLEST LOAD. 5209

Y

PROCESS THE NETWORK REQUEST
IN THE SERVER CURRENTLY \
PROCESSING THE SMALLEST LOAD. S210

- |
PROCESS THE NETWORK REQUEST

IN THE FIRST SERVER

|] \
S204

SUBSTITUTE SHEET (RULE 26)

WO 99/18534

4/6
FIG.3 4

INTERNET

\21

PCT/US98/21296

CACHED
REQUESTS 5 6
- _— Lo’séL
4 0
UNTRUSTED SEGMENT N/
6
SERVER CLUSTER
7 10
11 1 /
1234 5 142 5 6
WEB SERVER | peTaNED RETAINED |_WEB_SERVER
LOAD BALANCING ~ |(LOAD BALANCING
MODULE =~ = | MODULE
AR T
\ Lo WEB SERVER / 20
7NN LOAD BALANCING
\ \\ . MODULE \1 9)/
\\ \\\ ‘\\~-_/3 115 ,,/

S -
~ -
- -
-
~ - e
-

SUBSTITUTE SHEET (RULE 26)

WO 99/18534 PCT/US98/21296

5/6
FIG.4

START

l
RECEIVE NETWORK REQUEST AT ONE
OF PLURAL SERVERS

/

S401

Y
ANALYZE CONTENT OF REQUEST

/

S402

S403

IS THE
SERVER DEDICATED TO
PROCESSING REQUESTS

FOR THIS URI?
/5405

ROUTE REQUESTS TO SERVER
DEDICATED TO PROCESSING
REQUESTS FOR THIS URI

5404
L/
5406 PROCESS REQUEST IN SERVER
\ v

PROCESS REQUESTS IN SERVER
DEDICATED TO PROCESSING
REQUESTS FOR THE URI

SUBSTITUTE SHEET (RULE 26)

WO 99/18534 PCT/US98/21296

6/6

ROUTER[||]
=
26 PROXY
]
UNTRUSTED SEGMENT
—————————————— ’————-——-————-—-—-.—____._._—.-_-._—-———————————-——
LOAD BALANCING
MODULE
WEB SERVER
SERVER CLUSTER
WEB SERVER WEB SERVER
LOAD BALANCING LOAD BALANCING
MODULE MODULE
..__TRUSTED SEGMENT {
BACK END BACK END
WEB SERVER PACKET FILTER

Ej WEB SERVER

INTERNAL NETWORK

MAINFRAME

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

