发明名称
铁氧体磁芯环体的制造方法以及铁氧体磁芯的制造方法

摘要
本发明公开了一种铁氧体磁芯环体的制造方法，包括：(1) 将 70%～95% 的铁氧体粉料和 5%～30% 的粘结剂进行混炼成泥料，冷却至室温后，破碎成 Φ3~8mm 的物料，其中，铁氧体粉料包括 60% ～70% 的氧化铁、10% ～20% 的氧化镍、2% ～10% 的氧化铜、15% ～25% 的氧化锌；粘结剂包括石蜡 40% ～80%、聚乙烯 5% ～25%、聚丙烯 5% ～25%、邻苯二甲酸二辛酯 1% ～3%、邻苯二甲酸二丁酯 1% ～3% 和油酸 2% ～8%；(2) 在 120~220℃ 下，将物料加热熔化，在 50~150Bar 的压力下将熔融的物料注入模腔中；(3) 模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的铁氧体磁芯环体。
1. 一种铁氧体磁芯坯体的制造方法，其特征在于，依次包括如下步骤：

（1）将重量百分比为 70%~95% 的铁氧体粉料和重量百分比为 5%~30% 的粘结剂进行混
炼成泥料，冷却至室温后，破碎成 φ3~8mm 的物料，为注射成型做准备；其中，所
述铁氧体粉料包括如下重量百分比的组分：60%~70% 的氧化铁，10%~20% 的氧化镍，2%~10% 的氧化铜，
15%~25% 的氧化锌；所述粘结剂包括如下重量百分比的组分：石蜡 40%~80%，聚乙烯 5%~25%，
聚丙烯 5%~25%，邻苯二甲酸二辛酯 1%~3%，邻苯二甲酸丁酯 1%~3% 和油酸 2%~8%；

（2）在 120~220°C 下，将所述物料在注塑机料筒加热熔化，在 50~150Bar 的压力下将
熔融的物料注入模腔中，填充模腔；

（3）模腔充满后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为
所述铁氧体磁芯坯体。

2. 一种铁氧体磁芯的制造方法，其特征在于，包括如下步骤：

将经权利要求 1 所述的制造方法制备得到的铁氧体磁芯坯体，依次经过溶剂脱脂、热
脱脂和烧结得到所述铁氧体磁芯；

所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为
30~90°C，时间为 5~20 小时，以除去部分粘结剂；

所述热脱脂在以 0.3~1.0°C/min 的升温速度升温至 150~450°C 条件下进行，以除去更
多的粘结剂。

3. 如权利要求 2 所述的铁氧体磁芯的制造方法，其特征在于，所述烧结包括：

升温阶段：缓缓升温，以升温速率 0.3~1.0°C/min 使温度从室温缓缓升至 400~500°C，
待粘结剂排出后，以升温速率 1.0~2.0°C/min，继续升温至 850~950°C；

坯件逐渐收缩阶段：以升温速率 0.5~1.5°C/min 继续升温至 1020~1100°C；

保温阶段：在所述 1020~1100°C 下保温 0.5~1.5h；

降温阶段：磁芯烧好后，进行降温，冷却速率为 0.5~2.0°C/min。

4. 如权利要求 2 或 3 所述的铁氧体磁芯的制造方法，其特征在于，所述溶剂脱脂、热脱
脂和烧结均是在自然空气中进行的。
铁氧体磁芯坯体的制造方法以及铁氧体磁芯的制造方法

技术领域
[0001] 本发明涉及铁氧体磁芯的制造，特别是涉及一种铁氧体磁芯坯体的制造方法以及铁氧体磁芯的制造方法。

背景技术
[0002] 传统磁芯的生产工艺技术主要是干压成型法，该方法的缺点是成型产品的形状有较大限制，模具造价较高，坯体强度低，坯体内部致密性不一致，组织结构的均匀性相对较差等，又由于磁芯的芯柱一般为圆柱形，干压不能一次性完成，需要先压成方柱形，再用车床加工成圆柱形，这样不仅增加工序，而且增加了生产成本和时间，对产品的一致性也没有保证。

发明内容
[0003] 本发明所要解决的技术问题是：弥补现有干压成型技术的不足，提出一种铁氧体磁芯坯体的制造方法以及铁氧体磁芯的制造方法，所述方法能够生出符合要求的产品，实现干压成型技术与注射成型技术互补。
[0004] 本发明的技术问题通过以下的技术方案予以解决：
一种铁氧体磁芯坯体的制造方法，依次包括如下步骤：
（1）将重量百分比为 70%~95% 的铁氧体粉末料和重量百分比为 5%~30% 的粘结剂进行混合，冷却至室温后，破碎成 Φ3~8mm 的物料，为注射成型做准备；其中，所述铁氧体粉末料包括如下重量百分比的组分：60%~70% 的氧化铁，10%~20% 的氧化镍，2%~10% 的氧化铜，15%~25% 的氧化锌；所述粘结剂包括如下重量百分比的组分：石蜡 40%~80%，聚乙烯 5%~25%，聚丙烯 5%~25%，邻苯二甲酸二辛酯 1%~3%，邻苯二甲酸二丁酯 1%~3% 和油酸 2%~8%；
（2）在 120~220℃下，将所述物料在注射机料筒内加热熔化，在 50~150Bar 的压力下将熔融的物料注入模腔中，填充模腔；
（3）模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为所述铁氧体磁芯坯体。
[0005] 一种铁氧体磁芯的制造方法，包括如下步骤：
将经权利要求 1 所述的制造方法制备得到的铁氧体磁芯坯体，依次经过溶剂脱脂、热脱脂和烧结得到所述铁氧体磁芯；
所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为 30~90℃，时间为 5~20 小时，以除去部分粘结剂；
所述热脱脂在以 0.3~1.0℃/min 的升温速度升温至 150~450℃条件下进行，以除去更多的粘结剂。
[0006] 优选地，所述烧结包括：
升温阶段：缓缓升温，以升温速率 0.3~1.0℃/min 使温度从室温缓缓升至 400~500℃，待粘结剂排出后，以升温速率 1.0~2.0℃/min，继续升温至 850~950℃；
坯件逐渐收缩阶段：以升温速率 0.5~1.5℃/min 继续升温至 1020~1100℃；
保温阶段：在所述 1020~1100℃下保温 0.5~1.5h；
降温阶段：磁芯烧好后，进行降温，冷却速率为 0.5~2.0℃/min。

[0007] 优选地，所述溶剂脱脂、热脱脂和烧结均是在自然空气中进行的。

[0008] 本发明与现有技术对比的有益效果是：本发明采用注射成型工艺很好地解决了不同形状（例如圆柱型、跑道型、椭圆型等）的铁氧体磁芯成型的问题，对产品的一致性也有保证，具有生产效率高，可以一模十几个甚至几十个，自动化程度较高，人工少等优点，且产品的密度大，密度均一，通过本发明的方法成型的铁氧体磁芯其密度为 5.25g/cm³，而干压成型的磁芯的密度为 5.10g/cm³；通过本发明的方法成型的铁氧体磁芯力学强度高，注射磁芯不折为 25N，芯折大于 50N，而干压成型的磁芯芯折为 15N，芯折为 38N。

附图说明
[0009] 图 1 为本发明的铁氧体磁芯的制造方法工艺流程图。

具体实施方式
[0010] 下面对照附图和结合优选具体实施方式对本发明进行详细的阐述。

[0011] 本发明提供一种铁氧体磁芯坯体的制造方法，在一个实施例中，依次包括如下步骤：

（1）将 70~95% 的铁氧体粉料和 5~30% 的粘结剂进行混炼成泥料，冷却至室温后，破碎成 Φ3~8mm 的物料，为注射成型做准备；其中，所述铁氧体粉料包括如下重量百分比的组成：60~70% 的氧化铁，10~20% 的氧化镍，2~10% 的氧化铜，15~25% 的氧化锌；所述粘结剂包括如下重量百分比的组成：石蜡 40~80%，聚乙烯 5~25%，聚丙烯 5~25%，聚苯二甲酸二辛酯 1~3%，聚苯二甲酸丁二酯 1~3% 和油酸 2~8%；

（2）在 120~220℃下，将所述物料在注塑机筒里加热熔化，在 50~150Bar 的压力下将熔融的物料注入模腔中，填充模腔；

（3）模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为所述铁氧体磁芯坯体。

[0012] 其中，破碎成 Φ3~8mm 的小块物料更容易进入注塑机料筒注射成型；为了将物料注入模腔中，将物料在注塑机料筒里加热熔化，通过螺杆的往复运动来聚集、均匀化和加压物料，成型过程实际发生在螺杆往前推，把熔融物料注入模腔中，流体从喷嘴出来经过浇道、流道和浇口进而填充模腔，其中的工艺参数设置依赖于铁氧体粉料的特性，粘结剂的组成，物料的粘度，模具设计和注塑机的工作状况等，物料在料简内受到外部加热器和螺杆机械化的热作用，物料的加热温度和时间应足以让其彻底完全塑化。成型过程中，应快速控制增大压力把物料注入模腔中，发明人在经过大量的实验基础上，选出当在 120~220℃下将物料在注塑机料筒里加热熔化，在 50~150Bar 的压力下将熔融的物料注入模腔中，填充模腔，熔体流速随模腔压力加大而减小，当混合料在模具中冷却下来时，充填过程结束，模腔填充之后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体。

[0013] 本发明还提供一种铁氧体磁芯的制造方法，图 1 是阐明本发明的工艺流程图，其具体包括如下步骤：
将经上述实施例的制造方法制备得到的铁氧体磁芯坏体，依次经过溶剂脱脂、热脱脂和烧结得到所述铁氧体磁芯；

所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为30~90℃，时间为5~20小时，以除去部分粘结剂；

所述热脱脂在以 0.3~1.0 °C /min 的升温速度升温至 150~450℃条件下进行，以除去更多的粘结剂。

[0014] 其中，溶剂脱脂是指溶剂渗透到坯体内部，将坯体中粘结剂中的可溶解成分溶解出来的过程。溶剂脱脂不能溶出全部的粘结剂，只是在溶解大部分的粘结剂后，形成连通孔隙的网络，在以后的热脱脂中可缩短升温时间和保时时间，以达到减少总的脱脂时间的目的，溶解脱脂的特点是温度低，在粘结剂软化点之下进行脱脂，可保证坯体不变形。溶剂选择一般是单一溶剂一步溶解，为缩短脱脂时间，需对各种溶剂溶解速度进行筛选，发明人在经过大量的实验的基础上，选择采用煤油作为溶剂，溶解温度在30~90℃，时间在5~20小时。

[0015] 溶剂脱脂装置由水浴锅、水浴箱和加热温度控制系统组成。将坯体浸没在盛满煤油的水浴锅中，通过水浴箱底部电阻丝加热，水浴箱中的水达到一定的温度，使得水浴锅中煤油的温度升至30~90℃，溶解粘结剂中的石蜡组分，达到初步脱脂的目的。

[0016] 热脱脂是将坯体在空气中加热到粘结剂组分挥发或者分解的温度，使得粘结剂受热分解发生物态变化，转变为气态物质，达到脱脂的目的。在温度较低时，实现部分蒸汽脱除，温度升至粘结剂分解温度以上，发生分解反应，脱出更多的粘结剂。发明人在经过大量的实验证明热脱脂在以0.3~1.0 °C /min 的升温速度升温至 150~450℃条件下进行时，产品不易产生变形或者缺陷。

[0017] 在一个优选的实施例中，所述烧结包括：

升温阶段：缓缓升温，以升温速率0.3~1.0 °C /min 使温度从室温缓缓升至400~500℃，待粘结剂排出后，以升温速率1.0~2.0 °C /min，继续升温至850~950℃；

坏件逐渐收缩阶段：以升温速率0.5~1.5 °C /min 继续升温至1020~1100℃；

保温阶段：在所述1020~1100℃下保温0.5~1.5h；

降温阶段：磁芯烧好后，进行降温，冷却速率为0.5~2.0 °C /min。

[0018] 烧结直接决定铁氧体磁芯的最终组成、相的分布、晶粒大小、致密性、尺寸、外观及性能。烧结应根据所用烧结设备、预烧温度高低、预烧料的收缩性、粘结剂的种类和加入比例、产品性能要求、形状及大小、装坯重量和方式等方面的不同，确定合适的烧结温度及烧结曲线，发明人在大量的实验基础上，得出的以上优选方案中升温阶段主要是坯件体内水分、粘结剂和润滑剂的挥发过程，此时须缓慢升温以避免坯件开裂，此后是坯件逐渐收缩阶段，由于这一段烧成影响着磁芯晶粒的大小、均匀度、气孔率及分布等，此时的升温速率要适当，到最高烧结温度后，保温0.5~1.5h 为宜；在降温阶段，冷却速率对产品的电磁性能及合格率也有很大影响。

[0019] 通过以上优选的烧结工序，产品的几乎不存在粘联、变形和开裂，且产品的外型尺寸和性能的一致性满足要求。

[0020] 以下通过更具体的实施例对本发明进行进一步阐述。

[0021] 实施例1

注射成型用的粒料，由如下重量百分比的组分组成：

```
 铁氧体粉末  70%
 粘结剂  30%
 所述铁氧体粉末由如下重量百分比的组分组成:
 氧化铁  60%
 氧化镍  15%
 氧化铜  4.5%
 氧化锌  20.5%
 所述粘结剂由如下重量百分比的组分组成:
 石蜡  40%
 聚乙烯  25%
 聚丙烯  25%
 邻苯二甲酸二辛酯  1%
 邻苯二甲酸二丁酯  3%
 油酸  6%

按照以上重量百分比混合放入密炼机中密炼,设定温度180℃,设置搅拌器的频率为25Hz,每密炼40分钟后,翻料1次,共翻料4次得到块状泥料。待泥料冷却至室温,用粉碎机粉碎至平均粒径为8mm的物料。

[0022] 在180℃下,将所述物料在注塑机料筒里加热熔化，在125Bar的压力下将熔融的物料注入模腔中，填充模腔，模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为所述铁氧体磁芯坯体。

[0023] 铁氧体磁芯坯体依次经过溶剂脱脂、热脱脂和烧结得到所述铁氧体磁芯；

所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为55℃，时间为10小时，以除去部分粘结剂；

所述热脱脂在以0.5℃/min的升温速度升温至450℃条件下进行，以除去更多的粘结剂。

[0024] 所述烧结包括：

升温阶段：缓缓升温，以升温速率0.5℃/min使温度从室温缓缓升至450℃，待粘结剂排出后，以升温速率1.5℃/min，继续升温至900℃；

坯件逐渐收缩阶段：以升温速率1℃/min继续升温至1040℃；

保温阶段：在所述1040℃下保温1h；

降温阶段：磁芯烧好后，进行降温，冷却速率为1.5℃/min。

[0025] 实施例2

所述成形用的粒料，由如下重量百分比的组分组成：
 铁氧体粉末  80%
 粘结剂  20%
 所述铁氧体粉末由如下重量百分比的组分组成：
 氧化铁  64.0%
 氧化镍  13.0%
 氧化铜  4.0%
氧化锌 19.0%

所述粘结剂由如下重量百分比的组分组成:

<table>
<thead>
<tr>
<th>成分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>石蜡</td>
<td>60.0%</td>
</tr>
<tr>
<td>聚乙烯</td>
<td>15.0%</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>15.0%</td>
</tr>
<tr>
<td>邻苯二甲酸二辛酯</td>
<td>2.0%</td>
</tr>
<tr>
<td>邻苯二甲酸二丁酯</td>
<td>2.0%</td>
</tr>
<tr>
<td>聚酰</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

按照以上重量百分比混合放入密炼机中密炼，设定温度 180℃，设置搅拌器的频率为 25Hz，每密炼 40 分钟后，翻料 1 次，共翻料 4 次得到块状粘料。待粘料冷却至室温，用粉碎机粉碎至平均粒径为 8mm 的物料。

[0026] 在 180℃下，将所述物料在注塑机料筒里加热熔化，在 125Bar 的压力下将熔融的物料注入模腔中，填充模腔。模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为所述铁氧体磁芯坯体。

[0027] 铁氧体磁芯坯体依次经过溶剂脱脂、热脱脂和烧结得到所述铁氧体磁芯；所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为 55℃，时间为 10 小时，以除去部分粘结剂。

所述热脱脂在以 0.5℃/min 的升温速度升温至 450℃条件下进行，以除去更多的粘结剂。

[0028] 所述烧结包括:

升压阶段：缓缓升温，以升温速率 0.5℃/min 使温度从室温缓缓升至 450℃，待粘结剂排出后，以升温速率 1.5℃/min，继续升温至 900℃；

坯件逐渐收缩阶段：以升温速率 1℃/min 继续升温至 1040℃；

保温阶段：在所述 1040℃下保温 1h；

降温阶段：磁芯烧好后，进行降温，冷却速率为 1.5℃/min。

[0029] 实施例 3

注射成型用的粒料，由如下重量百分比的组分组成:

<table>
<thead>
<tr>
<th>成分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>铁氧体粉料</td>
<td>90%</td>
</tr>
<tr>
<td>粘结剂</td>
<td>10%</td>
</tr>
</tbody>
</table>

所述铁氧体粉料由如下重量百分比的组分组成:

<table>
<thead>
<tr>
<th>成分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化铁</td>
<td>70.0%</td>
</tr>
<tr>
<td>氧化镍</td>
<td>11.0%</td>
</tr>
<tr>
<td>氧化铜</td>
<td>4.0%</td>
</tr>
<tr>
<td>氧化锌</td>
<td>15.0%</td>
</tr>
</tbody>
</table>

所述粘结剂由如下重量百分比的组分组成:

<table>
<thead>
<tr>
<th>成分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>石蜡</td>
<td>80.0%</td>
</tr>
<tr>
<td>聚乙烯</td>
<td>5.0%</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>5.0%</td>
</tr>
<tr>
<td>邻苯二甲酸二辛酯</td>
<td>3.0%</td>
</tr>
</tbody>
</table>
邻苯二甲酸二丁酯  1.0%
油酸  6.0%

按照以上重量百分比混合放入密炼机中密炼，设定温度 180℃，设置搅拌器的频率为25Hz，每密炼 40 分钟后，翻料 1 次，共翻料 4 次得到块状料。待泥料冷却至室温，用粉碎机粉碎至平均粒径为 8mm 的物料。

[0030] 在 180℃下，将所述物料在注塑机料筒里加热熔化，在 125Bar 的压力下将熔融的物料注入模具中，填充模腔，模腔填充后，物料中的热量通过模具传导出去，打开模具，取出已固化的坯体，即为所述铁氧体磁芯坯体。

[0031] 铁氧体磁芯坯体，依次经过溶剂脱脂、热脱脂和烧结得到所述铁氧体磁芯；

所述溶剂脱脂依次包括泡油、晾干和烘干，所述泡油以煤油作为溶剂，溶解温度为 55℃，时间为 10 小时，以除去部分粘结剂；

所述热脱脂在以 0.5℃/min 的升温速度升温至 450℃条件下进行，以除去更多的粘结剂。

[0032] 所述烧结包括：

升温阶段：缓慢升温，以升温速率 0.5℃/min 使温度从室温缓缓升高至 450℃，待粘结剂排出后，以升温速率 1.5℃/min 继续升温至 900℃；

坯件逐渐收缩阶段：以升温速率 1℃/min 继续升温至 1040℃；

保温阶段：在所述 1040℃下保温 1h；

降温阶段：磁芯烧好后，进行降温，冷却速率为 1.5℃/min。

[0033] 对上述三个实施例所生产的铁氧体磁芯进行性能测试，与传统的干压成型方法生产的铁氧体磁芯进行对比，如下表所示：

<table>
<thead>
<tr>
<th>实施例</th>
<th>力学性能测试</th>
<th>磁芯密度（g/cm³）</th>
<th>热震性能测试</th>
</tr>
</thead>
<tbody>
<tr>
<td>检测项目</td>
<td>拉折（N）</td>
<td>芯折（N）</td>
<td></td>
</tr>
<tr>
<td>实施例 1</td>
<td>25</td>
<td>＞50</td>
<td>5.25</td>
</tr>
<tr>
<td>实施例 2</td>
<td>25</td>
<td>＞50</td>
<td>5.25</td>
</tr>
<tr>
<td>实施例 3</td>
<td>25</td>
<td>＞50</td>
<td>5.25</td>
</tr>
<tr>
<td>传统干燥方法</td>
<td>15</td>
<td>38</td>
<td>5.10</td>
</tr>
</tbody>
</table>

由实施例 1-3 检测结果可知，用本发明铁氧体磁芯射出成型用的粒料所生产的磁芯力学性能和热震性能都比传统的干压方法生产出的磁芯要好，其磁芯密度也要大于传统的干压方法生产出的磁芯密度。

[0034] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明，不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下，做出若干等同替代或明显变型，而且性能或用途相同，都应当视为属于本发明的保护范围。
图 1