Title: PESTICIDAL COMBINATIONS

Abstract: A method of controlling or preventing pathogenic damage or pest damage in a plant propagation material, a plant, part of a plant and/or plant organ that grow at a later point in time, which comprises applying on the plant propagation material the combination comprising (I) flutriafol and (II) one or more pesticides selected from difenoconazole, azoxystrobin, cyproconazole, fluoxastrobin, trifloxystrobin, metalaxyl, metalaxyl-M (mefenoxam), fluquinconazole, fenarimol, nufamidol, pyrifluorfen, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, carbendazim, carboxin, flutolanil, ferbam, guadinone, iproconazole, iprodione, penycyclon, propamocarb, silthiofam, thiophanate-methyl, thiram, triadimefon, a manganese compound (such as mancozeb, maneb), tebufluthrin, bifenthrin, flupyrad, lambda-cyhalothrin, imidacloprid, abamectin, a compound α and a compound β, in any desired sequence or simultaneously.
Pesticidal Combinations

The present invention relates to the use of a defined combination of pesticidal active ingredients, and compositions thereof, and methods for using such combinations in the control or prevention of pathogenic and/or pest damage, especially in the agrochemical field.

Certain combinations of active ingredients for controlling pathogens and pests are described in the literature. The biological properties of those known combinations are not entirely satisfactory in the areas of pathogenic control, phytotoxicity, and environmental and worker exposure, for example. In particular, in the instance a pathogen has become, or risks becoming resistant to the previously known combinations, improved methods of control or prevention are sought.

The protection of plant propagation materials (especially seeds) with active ingredients are target applications which partially address the need for a reduction of environmental and worker exposure when used alone or in conjunction with foliar or in-furrow active ingredient applications.

There is a continuing need to provide pesticidal combinations, which provide improved, for example, biological properties, for example, synergistic properties, especially for controlling pathogens.

That need is solved according to the invention by the provision of the present pesticidal combination. Accordingly, in a first aspect, the present invention provides a method of controlling or preventing pathogenic damage or pest damage in a plant propagation material, a plant, part of a plant and/or plant organ that grow at a later point in time, which comprises applying on the plant propagation material the combination comprising (I) flutriafol and (II) one or more, preferably any one of, pesticides selected from difenoconazole, azoxystrobin, cyproconazole, fluoxastrobin, trifloxystrobin, metalaxyl, metalaxyl-M (mefenoxam), fluquinconazole, fenarimol, nuarimol, pyrifexox, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, carbendazim, carboxin, flutolanil, fuberizadole, guazatine, ipconazole, iprodione, pencycuron, propamocarb, silthiofam, thiram, triazoxide, a manganese compound (such as mancozeb, mane), tefluthrin, bifenthrin, fipronil, lambda-cyhalothrin,
imidacloprid, abamectin, a compound α and a compound I, in any desired sequence or simultaneously, wherein compound I is represented by

\[\text{(I), and compound } \alpha \text{ is represented by} \]

In a preferred embodiment, (II) is one or more, preferably any one of, pesticides selected from fenarimol, nuarimol, pyrifenox, benalaxyl, benalaxyl-M, flutolanil, fuberizadole, guazatine, iprodione, pencycuron, propamocarb, silthiofam, triazoxide, lambda-cyhalothrin, abamectin, compound α and compound I.

Each of the combination demonstrates synergistic activity compared to activity of compounds alone.

In a second aspect, the present invention provides a method of protecting a plant propagation material, a plant, part of a plant, and/or plant organ that grow at a later point in time against pathogenic damage or pest damage by applying on the plant propagation material the combination, as defined in the first aspect, in any desired sequence or simultaneously.

The invention also relates to a plant propagation material treated with the combination defined in the first aspect.

Further, in an embodiment the present invention relates to a method which comprises (i) treating a plant propagation material, such as a seed, with a pesticidal combination as defined...
in the first aspect, and (ii) planting or sowing the treated propagation material, wherein the combination protects against pathogenic damage or pest damage of the treated plant propagation material, parts of plant and/or plant grown from the treated propagation material.

Also, in an embodiment the present invention relates to a method which comprises (i) treating a plant propagation material, such as a seed, with a pesticidal combination as defined in the first aspect, and (ii) planting or sowing the treated propagation material, and (iii) achieving protection against pathogenic damage or pest damage of the treated plant propagation material, parts of plant and/or plant grown from the treated propagation material.

In a preferred embodiment of any aspect of the invention, each combination is a composition comprising, preferably of, (I) and (II), and optionally (III) one or more customary formulation auxiliaries.

The compounds (I) and (II) defined herein are active ingredients for use in the agrochemical industry (also known as pesticides). A description of their structure as well as other pesticides (e.g., fungicides, insecticides, nematicides) can be found in the e-Pesticide Manual, version 3.1, 13th Edition, Ed. CDC Tomiin, British Crop Protection Council, 2004-05.

Controlling, preventing or protecting and its inflections, within the context of the present invention, mean reducing any undesired effect, such as
- pathogenic, such as phytopathogenic, especially fungi, infestation or attack of, and
- pathogenic damage or pest damage on,
a plant, part of the plant or plant propagation material to such a level that an improvement is demonstrated.

The pesticidal combinations according to the invention have very advantageous properties for protecting plants against (i) pathogenic, such as phytopathogenic, especially fungi, attack or infestation, which result in a disease and damage to the plant and/or (ii) pest attack or damage; particularly in instance of plants, the present invention can control or prevent pathogenic damage and/or pest damage on a seed, parts of plant and/or plant grown from the treated seed.
These properties are for example the synergistically enhanced action of combinations of compounds (I) and (II), resulting in lower pathogenic damage and/or pest damage, lower rates of application, or a longer duration of action. In the instance of agriculture, the enhanced action is found to show an improvement in the growing characteristics of a plant by, for example, higher than expected control of the pathogenic infestation and/or pest damage.

The improvement in the growing (or growth) characteristics of a plant can manifest in a number of different ways, but ultimately it results in a better product of the plant. It can, for example, manifest in improving the yield and/or vigour of the plant or quality of the harvested product from the plant, which improvement may not be connected to the control of diseases and/or pests.

As used herein the phrase "improving the yield" of a plant relates to an increase in the yield of a product of the plant by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the subject method. It is preferred that the yield be increased by at least about 0.5%, more preferred that the increase be at least about 1%, even more preferred is about 2%, and yet more preferred is about 4%, or more. Yield can be expressed in terms of an amount by weight or volume of a product of the plant on some basis. The basis can be expressed in terms of time, growing area, weight of plants produced, amount of a raw material used, or the like.

As used herein the phrase "improving the vigour" of a plant relates to an increase or improvement of the vigour rating, or the stand (the number of plants per unit of area), or the plant height, or the plant canopy, or the visual appearance (such as greener leaf colour), or the root rating, or emergence, or protein content, or increased tillering, or bigger leaf blade, or less dead basal leaves, or stronger tillers, or less fertilizer needed, or less seeds needed, or more productive tillers, or earlier flowering, or early grain maturity, or less plant verse (lodging), or increased shoot growth, or earlier germination, or any combination of these factors, or any other advantages familiar to a person skilled in the art, by a measurable or noticeable amount over the same factor of the plant produced under the same conditions, but without the application of the subject method.

When it is said that the present method is capable of "improving the yield and/or vigour" of a
plant, the present method results in an increase in either the yield, as described above, or the vigor of the plant, as described above, or both the yield and the vigor of the plant.

Accordingly, the present invention also provides a method of improving the growing characteristics of a plant, which comprises applying on the plant propagation material the combination, as defined in the first aspect, in any desired sequence or simultaneously.

However, besides the actual synergistic action with respect to pesticidal activity, the combinations according to the invention also have further surprising advantageous properties which can also be described, in a wider sense, as synergistic activity. Examples of such advantageous properties that may be mentioned are: advantageous behaviour during formulation and/or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageous degradability; improved toxicological and/or ecotoxicological behaviour; or any other advantages familiar to a person skilled in the art.

A combination according to the invention can also be used to treat stored products, such as grain, for protection against pathogens and/or pests.

In a further fourth aspect, the present invention also provides a pesticidal, preferably an agrochemical, combination comprising (I) flutriafol and (II) one or more, preferably any one of, pesticides selected from difenoconazole, azoxystrobin, cyproconazole, fluoxastrobine, trifloxystrobin, fluquinconazole, fenarimol, nuarimol, pyrifenox, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, flutolanil, fuberizadole, guazatine, ipconazole, iprodione, pencycuron, propamocarb, silthiofam, abamectin, a compound \(\alpha \) and a compound \(I \).

In a preferred embodiment, (II) is one or more selected from fenarimol, nuarimol, pyrifenox, benalaxyl, benalaxyl-M, flutolanil, fuberizadole, guazatine, iprodione, pencycuron, propamocarb, silthiofam, abamectin, a compound \(\alpha \) and a compound \(I \).

A preferred combination of the fourth aspect is where (II) is one or more, preferably any one, of difenoconazole, azoxystrobin, cyproconazole, fluoxastrobine, trifloxystrobin, fluquinconazole, fenarimol, nuarimol, pyrifenox, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, flutolanil, fuberizadole, guazatine, ipconazole, iprodione, pencycuron, propamocarb, silthiofam, abamectin, a compound \(\alpha \) and a compound \(I \).
A fifth aspect of the invention relates to a method of controlling or preventing pathogenic damage or pest damage in a plant propagation material, a plant, part of a plant and/or plant organ that grow at a later point in time, which comprises applying on the plant, part of a plant, plant organ or plant propagation material, the combination comprising (I) and (II), as defined in the fourth aspect, in any desired sequence or simultaneously.

Examples of suitable combinations of the invention include flutriafol and difenconazole; and flutriafol and azoxystrobin.

The combinations may additionally comprise further pesticides such as imidacloprid, bifenthrin, teflurthin, fipronil, thiamethoxam, lambda cyhalothrin, and clothianidin.

Each of the combination of the invention can be used in the agricultural sector and related fields of use for controlling or preventing disease infestation and/or pest damage on plants.

A skilled person would understand that protecting (or controlling or preventing pathogenic damage or pest damage in) a plant propagation material, a plant, part of a plant and/or plant organ that grow at a later point in time can be achieved by applying on the plant propagation material and/or surrounding area thereof, the combination comprising (I) and (II), as defined herein, in any desired sequence or simultaneously.

Similarly, a skilled person would understand that protecting (or controlling or preventing pathogenic damage or pest damage in) a plant, part of a plant and/or plant organ that grow at a later point in time can be achieved by applying on the part of the plant, plant organ and/or surrounding area thereof, the combination comprising (I) and (II), as defined herein, in any desired sequence or simultaneously.

Further, a skilled person would understand that protecting (or controlling or preventing pathogenic damage or pest damage in) a plant, part of a plant and/or plant organ that grow at a later point in time can be achieved by applying on the plant and/or surrounding area thereof, the combination comprising (I) and (II), as defined herein, in any desired sequence or simultaneously.
Each of the combination according to the present invention is effective against phytopathogenic fungi, especially occurring in plants, including seedborne fungi and belong to the following classes: Ascomycetes (e.g. Penicillium, Gaeumannomyces graminis); Basidiomycetes (e.g. the genus Hemileia, Rhizoctonia, Puccinia); Fungi imperfecti (e.g. Botrytis, Helminthosporium, Rhynchosporium, Fusarium, Septoria, Cercospora, Altemaria, Pyricularia and Pseudocercosporella herpotrichoides); Oomycetes (e.g. Phytophthora, Peronospora, Bremia, Pythium, Plasmopara); Zygomycetes (e.g., Rhizopus spp.). A combination is especially effective against Altemaria spp., Aspergillus spp., Claviceps purpurea, Cochliobolus spp., Colletotrichum spp., Diplodia maydis, Erysiphe graminis, Fusarium spp. (such as Fusarium culmorum, Fusarium subglutinans, Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium moniliforme), Gaeumannomyces graminis, Giberella fujikuroi, Giberella zeae, Helminthosporium graminearum, Monographella nivalis, Puccinia spp., Pyrenophora spp. (such as Pyrenophora graminea), Peronosclerospora spp., Peronospora spp., Phakopsora pachyrhizi, Phythium spp., Phytophthora spp., Rhizoctonia solani, Septoria spp., Pseudocercosporella spp., Tilletia spp., Rhizopus spp., Typhula spp., Ustilago spp., Sphacelotheca spp. (e.g. S. reillani), Thanatephorus cucumeris, Microdochium nivale and/or Verticillium spp.

In the event a combination of the invention also includes a pesticide other than fungicide as compound (II) (such as abamectin, imidacloprid, tefluthrin, lambda-cyhalothrin) then the pesticide spectrum of the combination is broadened to include pest control, such as control of pests selected from Nematoda, Insecta and Arachnida. In that instance, the combination can also be applied on the pest to control or prevent pest damage and protect the desired material (e.g. plant and parts of plant) from pest damage. Examples of pests include:

from the order Hymenoptera, for example, Acromyrmex, Athalia rosae, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. and Vespa spp.; from the order Diptera, for example, Antherigona soccata, Bibio hortulanus, , Ceratitius spp.,

5 Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp., Drosophila melanogaster, , Liriomyza spp., , Melanagromyza spp., , Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp.; from the order Acarina, for example, Acarus siro, Aceria sheldoni, Aculus schlechtendali, Amblyomma spp., Argas spp., , Brevipalpus spp., Bryobia praetiosa, Calipitirimerus spp., Choriopites spp., Dermanyssus gallinace, Eotetranychus carpini, Eriophyes spp., Hyalomma spp., Olygonychus pratensis, Omithodoros spp., Panonychus spp., Phyllocoptura oleivora, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. and Tetranychus spp.; and from the class Nematoda, for example, the species of Meloidogyne spp. (for example,

15 The combinations of the invention can be formulated for a particular use. Preferably, the combination is formulated for protecting cultivated plants or their propagation materials. Accordingly, a combination of the prevention can be applied to the plant in a conventional manner, such as foliar spray. Advantageously, the combinations are formulated for seed treatment applications for controlling or preventing damage by pests and/or pathogens, which are found in agriculture and forestry, and can particularly damage the plant in the early stages of its development.

25 Further, in an an embodiment, the present invention also envisages soil application of the
combinations of the invention to control the soil-dwelling pests and/or soil-borne pathogens. Methods of applying to the soil can be via any suitable method, which ensures that the combination penetrates the soil, for example, nursery tray application, in furrow application, soil drenching, soil injection, drip irrigation, application through sprinklers or central pivot, incorporation into soil (broad cast or in band) are such methods.

The benefit from the invention can also be achieved either by (i) treating plant propagation material with a combination or (ii) applying to the locus where control is desired, generally the planting site, the combination, or both (i) and (ii).

The term "plant propagation material" is understood to denote all the generative parts of the plant, such as seeds, which can be used for the multiplication of the latter and vegetative plant material such as cuttings and tubers (for example, potatoes). Accordingly, as used herein, part of a plant includes propagation material. There may be mentioned, e.g., the seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes, parts of plants. Germinated plants and young plants, which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion.

Parts of plant and plant organs that grow at later point in time are any sections of a plant that develop from a plant propagation material, such as a seed. Parts of plant, plant organs, and plants can also benefit from the pathogenic and/or pest damage protection achieved by the application of the combination on to the plant propagation material. In an embodiment, certain parts of plant and certain plant organs that grow at later point in time can also be considered as plant propagation material, which can themselves be applied (or treated) with the combination; and consequently, the plant, further parts of the plant and further plant organs that develop from the treated parts of plant and treated plant organs can also benefit from the pathogenic and/or pest damage protection achieved by the application of the combination on to the certain parts of plant and certain plant organs.

Methods for applying or treating pesticidal active ingredients and mixtures thereof on to plant propagation material, especially seeds, are known in the art, and include dressing, coating, pelleting and soaking application methods of the propagation material. In a preferred embodiment, the combination is applied or treated on to the plant propagation
material by a method such that the germination is not induced; generally seed soaking induces germination because the moisture content of the resulting seed is too high. Accordingly, examples of suitable methods for applying (or treating) a plant propagation material, such as a seed, is seed dressing, seed coating or seed pelleting and alike.

It is preferred that the plant propagation material is a seed. Although it is believed that the present method can be applied to a seed in any physiological state, it is preferred that the seed be in a sufficiently durable state that it incurs no damage during the treatment process. Typically, the seed would be a seed that had been harvested from the field; removed from the plant; and separated from any cob, stalk, outer husk, and surrounding pulp or other non-seed plant material. The seed would preferably also be biologically stable to the extent that the treatment would cause no biological damage to the seed. It is believed that the treatment can be applied to the seed at any time between harvest of the seed and sowing of the seed or during the sowing process (seed directed applications). The seed may also be primed either before or after the treatment.

Even distribution of the active ingredients and adherence thereof to the seeds is desired during propagation material treatment. Treatment could vary from a thin film (dressing) of the formulation containing the active ingredient(s) on a plant propagation material, such as a seed, where the original size and/or shape are recognizable to an intermediary state (such as a coating) and then to a thicker film (such as pelleting with many layers of different materials (such as carriers, for example, clays; different formulations, such as of other active ingredients; polymers; and colourants) where the original shape and/or size of the seed is no longer recognisable.

The seed treatment occurs to an unsown seed, and the term "unsown seed" is meant to include seed at any period between the harvest of the seed and the sowing of the seed in the ground for the purpose of germination and growth of the plant.

Treatment to an unsown seed is not meant to include those practices in which the active ingredient is applied to the soil but would include any application practice that would target the seed during the planting process.
Preferably, the treatment occurs before sowing of the seed so that the sown seed has been
pre-treated with the combination. In particular, seed coating or seed pelleting are preferred
in the treatment of the combinations according to the invention. As a result of the
treatment, the active ingredients in the combination are adhered on to the seed and
therefore available for pathogenic and/or pest control.

The treated seeds can be stored, handled, sowed and tilled in the same manner as any
other active ingredient treated seed.

The combination according to the present invention is suitable for plants of the crops:
cereals (wheat, barley, rye, oats, corn, rice, sorghum, triticale and related crops); beet
(sugar beet and fodder beet); leguminous plants (beans, lentils, peas, soybeans); oil plants
(rape, mustard, sunflowers); cucumber plants (marrows, cucumbers, melons); fibre plants
(cotton, flax, hemp, jute); vegetables (spinach, lettuce, asparagus, cabbages, carrots,
onions, tomatoes, potatoes, paprika); as well as ornamentals (flowers, shrubs, broad-
leaved trees and evergreens, such as conifers). Especially suitable are wheat, barley, rye,
oats, triticale, corn, and soybean.

Suitable target crops also include transgenic crop plants of the foregoing types. The
transgenic crop plants used according to the invention are plants, or propagation material
thereof, which are transformed by means of recombinant DNA technology in such a way that
they are - for instance - capable of synthesizing selectively acting toxins as are known, for
example, from toxin-producing invertebrates, especially of the phylum Arthropoda, as can be
obtained from Bacillus thuringiensis strains; or as are known from plants, such as lectins; or in
the alternative capable of expressing a herbicidal or fungicidal resistance. Examples of such
toxins, or transgenic plants which are capable of synthesizing such toxins, have been

The weight ratio of active ingredient compounds is selected as to give the desired, for example
synergistic, action. In general, the weight ratio would vary depending on the specific active
ingredient and how many active ingredients are present in the combination. Generally, in the
event the combination consists of two active ingredients the weight ratio is 1:1 is from 100:1 to
1:100, preferably from 75:1 to 1:75, more preferably, 50:1 to 1.50, especially 25:1 to 1:25, advantageously 10:1 to 1:10, such as 5:1 to 1:5.

The rates of application (use) of the combination vary, for example, according to type of use, type of crop, the specific active ingredients in the combination, type of plant propagation material (if appropriate), but is such that the active ingredients in the combination is an effective amount to provide the desired enhanced action (such as disease or pest control) and can be determined by trials.

Generally for foliar or soil treatment, application rates can vary from 0.05 to 3 kg per hectare (g/ha) of active ingredients.

Generally for seed treatment, application rates can vary from 0.5 to 1000g / 100kg of seeds of active ingredients.

Suitable seed treatment application rates of (I) and (II) tend to be 0.5 - 20, preferably 1 - 15, more preferably 1.5 - 12, especially 2 - 10, g/100kg of seeds of (I) and 0.5 - 550 preferably 0.5 - 500 more preferably 1 - 450, especially 2 - 300, g/100kg of seeds of (II).

In the event the active ingredients are flutriafol, fludioxonil and mefenoxam, the application rates for (I) flutriafol and (II) fludioxonil and (III) mefenoxam, tend, independently of each, to be 0.5 - 20, preferably 3 - 15, more preferably 3 - 10, especially 6 - 9, g/100kg of seeds of (I), 0.5 - 20, preferably 1 - 10, more preferably 1.5 - 7, especially 2 - 4, g/100kg of seeds of (II), and 0.5 - 20, preferably 1 - 10, more preferably 1.5 - 7, especially 2 - 4, g/100kg of seeds of (III).

The plant propagation material treated by a combination of the present invention are, therefore, resistant to disease and/or pest damage; accordingly, the present invention also provides a pathogenic and/or pest resistant plant propagation material which is treated with the combination and consequently at least the active ingredients thereof are adhered on the propagation material, such a seed.

The seed treatment combination and composition can also comprise or may be applied together and/or sequentially with further active compounds. These further compounds can be
other pesticidal active ingredients, fertilizers or micronutrient donors or other preparations that influence plant growth, such as inoculants.

A single pesticidal active ingredient may have activity in more than area of pest control, for example, a pesticide may have fungicide, insecticide and nematicide activity. Specifically, aldicarb is known for insecticide, acaricide and nematicide activity, while metam is known for insecticide, herbicide, fungicide and nematicide activity, and thiabendazole and captan can provide nematicide and fungicide activity.

The combination of the present invention may be mixed with other pesticides, such as fungicides, insecticides and nematicides.

Suitable examples include triazole derivatives, strobilurins, carbamate (including thiocarbamate), benzimidazoles (thiabendazole), N-trihalomethylthio compounds (captan), substituted benzenes, carboxamides, phenylamides and phenylpyrroles, and mixtures thereof; and neonicotinoids, carbamates and pyrethroids. Examples of such compounds include a compound A represented by

[Chemical structure image]

or a tautomer of such a compound; a compound B represented by

[Chemical structure image]

or a tautomer of such a compound.

In an embodiment, each of the combination is used with one or more of fludioxonil, thiabendazole, imazalil, procloraz, fipronil mancozeb, maneb, clothianidin, and thiamethoxam.
Preferred combinations are flutriafol, mefenoxam and thiabendazole; flutriafol, pencycuron and thiabendazole; flutriafol, mefenoxam and fludioxonil; flutriafol, compound α or a compound B, and a compound A; and flutriafol, pencycuron and prochloraz; especially for seed treatment applications.

The compounds (I) or (II), and any other pesticides, may be used either in pure form, i.e., as a solid active ingredient, for example, in a specific particle size, or preferably together with at least one of the auxiliary (also known as adjuvants) customary in formulation technology, such as extenders, e.g., solvents or solid carriers, or surface-active compounds (surfactants), in the form of a formulation, in the present invention. Generally, the compounds (I) and (II) are in the form of a formulation composition with one or more of customary formulation auxiliaries.

Therefore, the combination of compounds (I) and (II) are normally used in the form of formulations. The compounds (I) and (II) can be applied to the locus where control is desired either simultaneously or in succession at short interval, for example on the same day, if desired together with further carriers, surfactants or other application-promoting adjuvants customarily employed in formulation technology. In a preferred embodiment, (I) and (II) are applied simultaneously.

In the event compounds (I) and (II) are applied simultaneously in the present invention, they may be applied as a composition containing (I) and (II), in which case each of (I) and (II) can be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry), optionally with other pesticides, or (I) and (II) can be obtained as single formulation mixture source (known as a pre-mix, concentrate, formulated compound (or product)), and optionally mixed together with other pesticides.

In an embodiment, the combination of the present invention is applied as a composition. Accordingly, the present invention is a composition comprising, as active ingredients, (I) and (II), and optionally other pesticides, and optionally one or more customary formulation auxiliaries; which may be in the form of a tank-mix or pre-mix composition.

In a preferred embodiment of the invention, the combination of flutriafol, fludioxonil and cyprodinil; flutriafol and mefenoxam; flutriafol and metalaxyl; flutriafol and imidacloprid;
flutriafol and thiamethoxam; flutriafol and propthioconazole; flutriafol and ipconazole; flutriafol and triazoxide; flutriafol and thiram; flutriafol and pentycuron; flutriafol, mefenoxam and fludioxonil; flutriafol, pencycuron and ipconazole; flutriafol, mefenoxam and thiabendazole; flutriafol, pencycuron and thiabendazole; and flutriafol, pencycuron and prochloraz are provided in the form of a pre-mix composition (or mixture).

Examples of foliar formulation types for pre-mix compositions are:

GR: Granules
WP: wettable powders
WG: water dispersible granules (powders)
SG: water soluble granules
SL: soluble concentrates
EC: emulsifiable concentrate
EW: emulsions, oil in water
ME: micro-emulsion
SC: aqueous suspension concentrate
CS: aqueous capsule suspension
OD: oil-based suspension concentrate, and
SE: aqueous suspo-emulsion.

Whereas, examples of seed treatment formulation types for pre-mix compositions are:

WS: wettable powders for seed treatment slurry
LS: solution for seed treatment
ES: emulsions for seed treatment
FS: suspension concentrate for seed treatment
WG: water dispersible granules, and
CS: aqueous capsule suspension.

Examples of formulation types suitable for tank-mix compositions are solutions, dilute emulsions, suspensions, or a mixture thereof, and dusts.

As with the nature of the formulations, the methods of application, such as foliar, drench, spraying, atomizing, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.
The tank-mix compositions are generally prepared by diluting with a solvent (for example, water) the one or more pre-mix compositions containing different pesticides, and optionally further auxiliaries.

Suitable carriers and adjuvants can be solid or liquid and are the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.

The formulations are prepared in known manner, e.g., by homogeneously mixing and/or grinding the active ingredients with extenders, e.g., solvents, solid carriers and, where appropriate, surface-active compounds (surfactants).

Suitable solvents are: aromatic hydrocarbons, preferably the fractions containing 8 to 12 carbon atoms, e.g. xylene mixtures or substituted naphthalenes, phthalates, such as dibutyl phthalate or dioctyl phthalate, aliphatic hydrocarbons, such as cyclohexane or paraffins, alcohols and glycols and their ethers and esters, such as ethanol, ethylene glycol, ethylene glycol monomethyl or monoethyl ether, ketones, such as cyclohexanone, strongly polar solvents, such as N-methyl-2-pyrrolidone, dimethyl sulfoxide or dimethylformamide, as well as vegetable oils or epoxidised vegetable oils, such as epoxidised coconut oil or soybean oil; or water.

The solid carriers used, e.g., for dusts and dispersible powders, are normally natural mineral fillers, such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order to improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepiolite or bentonite, and suitable nonsorbent carriers are, for example, calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, e.g., especially dolomite or pulverized plant residues.

Depending upon the nature of the active ingredient compounds to be formulated, suitable surface-active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as comprising mixtures of surfactants.
Particularly advantageous application-promoting adjuvants are also natural or synthetic phospholipids of the cephalin and lecithin series, e.g., phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and lysolecithin.

Generally, a tank-mix formulation for foliar or soil application comprises 0.1 to 20%, especially 0.1 to 15%, active ingredient compounds, and 99.9 to 80%, especially 99.9 to 85%, of a solid or liquid auxiliaries (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 20%, especially 0.1 to 15%, based on the tank-mix formulation.

Typically, a pre-mix formulation for foliar application comprises 0.1 to 99.9%, especially 1 to 95%, active ingredient compounds, and 99.9 to 0.1%, especially 99 to 5%, of a solid or liquid adjuvant (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 50%, especially 0.5 to 40%, based on the pre-mix formulation.

Normally, a tank-mix formulation for seed treatment application comprises 0.25 to 80%, especially 1 to 75%, active ingredient compounds, and 99.75 to 20%, especially 99 to 25%, of a solid or liquid auxiliaries (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 40%, especially 0.5 to 30%, based on the tank-mix formulation.

Typically, a pre-mix formulation for seed treatment application comprises 0.5 to 99.9%, especially 1 to 95%, active ingredient compounds, and 99.5 to 0.1%, especially 99 to 5%, of a solid or liquid adjuvant (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 50%, especially 0.5 to 40%, based on the pre-mix formulation.

Whereas commercial products will preferably be formulated as concentrates (e.g., pre-mix composition (formulation)), the end user will normally employ dilute formulations (e.g., tank mix composition).
Preferred seed treatment pre-mix formulations are aqueous suspension concentrates. The formulation can be applied to the seeds using conventional treating techniques and machines, such as fluidized bed techniques, the roller mill method, rotostatic seed treaters, and drum coaters. Other methods, such as spouted beds may also be useful. The seeds may be presized before coating. After coating, the seeds are typically dried and then transferred to a sizing machine for sizing. Such procedures are known in the art.

The Examples which follow serve to illustrate the formulations suitable for compounds (I) and (II), "active ingredient" denoting a combination of compound I and compound II in a specific mixing ratio.

Formulation Examples

Wettable powders

<table>
<thead>
<tr>
<th>Active ingredient [I:II = 1:6(a), 1:2(b), 1:1 (c)]</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium lignosulfonate</td>
<td>5%</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>Sodium lauryl sulfate</td>
<td>3%</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>Sodium diisobutyl naphthalenesulfonate</td>
<td>-</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Phenol polyethylene glycol ether</td>
<td>-</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>(7-8 mol of ethylene oxide)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly dispersed silicic acid</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Kaolin</td>
<td>62%</td>
<td>27%</td>
<td>-</td>
</tr>
</tbody>
</table>

The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of the desired concentration.

Dusts

<table>
<thead>
<tr>
<th>Active ingredient [I:II = 1:6(a), 1:2(b), 1:10(c)]</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talcum</td>
<td>95%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kaolin</td>
<td>-</td>
<td>94%</td>
<td>-</td>
</tr>
<tr>
<td>Mineral filler</td>
<td>-</td>
<td>-</td>
<td>96%</td>
</tr>
</tbody>
</table>

Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can be used for dry dressings for seed.
Suspension concentrates

<table>
<thead>
<tr>
<th>Component</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active ingredient (1:1 = 1:1 (a); 1:8(b))</td>
<td>5%</td>
<td>30%</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Tristyrylphenol ethoxylates</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Sodium lignosulfonate</td>
<td>-</td>
<td>10%</td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>-</td>
<td>1%</td>
</tr>
<tr>
<td>Silicone oil (in the form of a 75% emulsion in water)</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Colour pigment</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Water</td>
<td>74%</td>
<td>37%</td>
</tr>
</tbody>
</table>

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Alternatively, a suspension of the active ingredients and auxiliaries (including water) is wet milled with a bead-mill to achieve a stable formulation and with the appropriate treatment characteristics.

Using such formulations either straight or diluted plant propagation material can be treated and protected against damage, for example, from pathogen(s), by, for example, spraying, pouring or immersing.

The active ingredient combinations according to the invention are distinguished by the fact that they are especially well tolerated by plants and are environmentally friendly.

Each active ingredient combination according to the invention is especially advantageous for the treatment of plant propagation material.

In a preferred embodiment, each of the combination of the present invention is a plant propagation material, preferably seed, treating composition.

In each aspect and embodiment of the invention, "consisting essentially" and inflections thereof are a preferred embodiment of "comprising" and its inflections, and "consisting of and inflections thereof are a preferred embodiment of "consisting essentially of and its inflections.

The following Examples are given by way of illustration and not by way of limitation of the invention.
Biological Examples

Inhibiting of fungal growth of the following fungi are carried out by fungal growth assays (detailed below).

Rhizoctonia solani (foot rot, damping-off): Mycelial fragments of a newly grown culture of the fungus, are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores is added. The test plates were incubated at 24 C and the inhibition of growth is measured photometrically after 72 hrs.

Gaeumannomyces graminis (take-all disease): Mycelial fragments of a newly grown culture of the fungus, are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores is added. The test plates were incubated at 24 C and the inhibition of growth is measured photometrically after 72 hrs.

Pyrenophora graminea (leaf stripe of barley): Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 C and the inhibition of growth is measured photometrically after 72 hrs.

Ustilago nuda (barley loose smut): Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 C and the inhibition of growth is measured photometrically after 48 hrs.
Microdochium nivale: Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores is added. The test plates are incubated at 24°C and the inhibition of growth is measured photometrically after 72 hrs.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th></th>
<th>Flutriafol in ppm</th>
<th>Difenconazole in ppm</th>
<th>Expected control in %</th>
<th>Observed control in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyttozonia solani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>71.8</td>
<td>86.8</td>
</tr>
<tr>
<td>Gaeumannomyces graminis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>52.9</td>
<td>74.2</td>
</tr>
<tr>
<td>Microdochium nivale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>64.0</td>
<td>85.8</td>
</tr>
<tr>
<td>Phyttozonia solani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>40.9</td>
<td>79.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>30.6</td>
<td>66.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>36.8</td>
<td>51.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>19.5</td>
<td>42.0</td>
</tr>
<tr>
<td>Pyrenophora gramineanum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00390625</td>
<td>0.00390625</td>
<td>2.9</td>
<td>25.5</td>
</tr>
<tr>
<td>Phyttozonia solani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flutriafol in ppm</td>
<td>Azoxytrobin in ppm</td>
<td>Expected Control in %</td>
<td>Observed Control in %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03125</td>
<td>0.03125</td>
<td>70.0</td>
<td>81.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. A method of controlling or preventing pathogenic damage or pest damage in a plant propagation material, a plant, part of a plant and/or plant organ that grow at a later point in time, which comprises applying on the plant propagation material the combination comprising (I) flutriafol and (II) one or more pesticides selected from difenoconazole, azoxystrobin, cyproconazole, fluoxastrobin, trifloxystrobin, metalaxyl, metalaxyl-M (mefenoxam), fluquinconazole, fenarimol, nuarimol, pyrifenox, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, carbendazim, carboxin, flutolanil, fuberizadole, guazatine, ipconazole, iprodione, pencycuron, propamocarb, silthiofam, thiram, triazole, a manganese compound (such as mancozeb, maneub), tefluthrin, bifenthin, fipronil, lambda-cyhalothrin, imidacloprid, abamectin, a compound α and a compound I, in any desired sequence or simultaneously, wherein compound I is represented by

![Chemical Structure](attachment:image1)

(1), and compound α is represented by

![Chemical Structure](attachment:image2)

2. The method according to claim 1 wherein (II) is one or more pesticides selected from fenarimol, nuarimol, pyrifenox, benalaxyl, benalaxyl-M, flutolanil, fuberizadole, guazatine, iprodione, pencycuron, propamocarb, silthiofam, triazole, lambda-cyhalothrin, abamectin, compound α and compound I.

3. The method according to either claim 1 or claim 2 wherein the ratio of (I) to (II) is 100:1 to 1:100.
4. The method according to any one of claims 1 to 3 wherein the application rates for (I) is 0.5 - 20 g/100kg of seeds and (II) is 0.5 - 550 g/100kg of seeds.

5. The method according to any one of claims 1 to 4, wherein the combination further comprises one or more other fungicides.

6. The method according to any one of claims 1 to 5, wherein the combination further comprises one or more other insecticides and/or nematicides.

7. A method of protecting a plant propagation material, a plant, part of a plant, and/or plant organ that grow at a later point in time against pathogenic damage or pest damage by applying on the plant propagation material the combination, as defined in any one of claims 1 to 3, 5 & 6, in any desired sequence or simultaneously.

8. A method of improving the growing characteristics of a plant, which comprises applying on the plant propagation material the combination, as defined in any one of claims 1 to 3, 5 & 6, in any desired sequence or simultaneously.

9. The method according to any one of claims 1 to 8, wherein the combination, as defined in any one of claims 1 to 3, 5 & 6, are applied simultaneously.

10. A plant propagation material treated with the combination defined in any one of claims 1 to 6.

11. A pesticidal, preferably an agrochemical, combination comprising (I) flutriafol and (II) one or more pesticides selected from difenoconazole, azoxystrobin, cyproconazole, fluoxastrobin, trifloxystrobin, fluquinconazole, fenarimol, nuarimol, pyrifenox, prothioconazole, tebuconazole, triadimenol, benalaxyl, benalaxyl-M, benomyl, flutolanil, fuberizadole, guazatine, ipconazole, iprodione, pencycuron, propamocarb, silthiofam, abamectin, a compound α and a compound I.
12. The combination according to claim 11 wherein (II) is one or more selected from
fθnarimol, nuarimol, pyrifox, benalaxyl, bβnalaxyl-M, flutolanil, fuberizado©, guazatine,
iprodione, pencurion, propamocarb, sithiofam, abamectin, , a compound α and a compound
I .

13. A method of controlling or preventing pathogenic damage or pest damage in a plant
propagation material, a plant, part of a plant and/or plant organ that grow at a later point in
time, which comprises applying on the plant, part of a plant, plant organ or plant propagation
material, the combination comprising (I) and (II), as defined in either claim 11 or 12, in any
desired sequence or simultaneously.