
US 2001.00024.80A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0002480 A1

DEKONING et al. (43) Pub. Date: May 31, 2001

(54) METHOD AND APPARATUS FOR (57) ABSTRACT
PROVIDING CENTRALIZED INTELLIGENT Apparatus and methods which allow multiple Storage con
CACHE BETWEEN MULTIPLE DATA trollerS Sharing access to common data Storage devices in a
CONTROLLING ELEMENTS data Storage Subsystem to access a centralized intelligent

cache. The intelligent central cache provides Substantial
(75) Inventors: RODNEY A. DEKONING, WICHITA, processing for Storage management functions. In particular,

KS (US); BRET. S. WEBER, the central cache of the present invention performs RAID
WICHITA, KS (US) management functions on behalf of the plurality of Storage

controllers including, for example, redundancy information
Correspondence Address: (parity) generation and checking as well as AID geometry
LSI LOGIC CORPORATION (striping) management. The plurality of Storage controllers
1551 MCCARTHY BLVD.,MS:D-106 (also referred to herein as RAID controllers) transmit cache
PATENT LAW DEPARTMENT requests to the central cache controllers. The central cache
MILPITAS, CA 95035 controllers performs all operations related to Storing Sup

plied data in cache memory as well as posting Such cached
(73) Assignee: LSI LOGIC CORPORATION data to the Storage array as required. The Storage controllers

are significantly simplified because the present invention
(*) Notice: This is a publication of a continued pros- obviates the need for duplicative local cache memory on

ecution application (CPA) filed under 37 each of the plurality of Storage controllers. The Storage
CFR 1.53(d). Subsystem of the present invention obviates the need for

inter-controller communication for purposes of Synchroniz
(21) Appl. No.: 08/941,770 ing local cache contents of the Storage controllers. The

Storage Subsystem of the present invention offers improved
(22) Filed: Sep. 30, 1997 Scalability in that the Storage controllers are simplified as

compared to those of prior designs. Addition of controllers
Publication Classification to enhance Subsystem performance is less costly than prior

designs. The central cache controller may include a mirrored
(51) Int. Cl." ... G06F 12/08 cache controller to enhance redundancy of the central cache
(52) U.S. Cl. 711/130; 711/113; 711/114; controller. Communication between the cache controller and

709/328; 711/202; 711/135; its mirror are performed over a dedicated communication
711/144 link.

CONTROLLER CONTROLLER CONTROLLER (MIRROR)
CACHE

DATA DATA DATA CACHING CACHING
STORAGE STORAGE STORAGE
ELEMENT ELEMENT ELEMENT CONTROLLER "..."

402

Patent Application Publication May 31, 2001 Sheet 1 of 10 US 2001/0002480 A1

DATA DATA DATA
STORAGE STORAGE STORAGE
ELEMENT ELEMENT ELEMENT

CONTROLLER CONTROLLER CONTROLLER

DATA
STORAGE STORAGE STORAGE
ELEMENT ELEMENT ELEMENT

O2 FIG. 1A
PRIOR ART

50

NETWORK Sl FILE OTHER
CONTROLLER configuer||CONTROLLER CONTROLLER

HOST STORAGE
MEMORY CONTROLLER

DATA
STORAGE
ELEMENT

FIG. 1B
PRIOR ART

Patent Application Publication May 31, 2001 Sheet 2 of 10 US 2001/0002480 A1

DATA DATA

ES EASE INESENT
CONTROER 204 CONTROER CACHE

STORAGE STORAGE STORAGE
ELEMENT ELEMENT ELEMENT

FIG. 2 2O2

Sheet 3 of 10 US 2001/0002480 A1 May 31, 2001 Patent Application Publication

20€

HETTO HLN00 INHINETE E|0\/801S WIW0

LEHV BHOIHd HETTO HIN00 INHINETE H5)WH01S WIWO

| NHWEITE H5)WH01S EÐVHOLS VIVO

Sheet 4 of 10 US 2001/0002480 A1 May 31, 2001 Patent Application Publication

207

HETTO HIN00 ?NIHOVO

HETTO HIN00
?NIH??, […]

HETTO HIN00 | NHWEITE E|0WHOIS WIW0

Patent Application Publication May 31, 2001 Sheet 5 of 10 US 2001/0002480 A1

FIG. 5

CONTROLLERWRITE

TRANSLATE HOST /O
REQUEST TO CENTRAL CACHE 500

REQUEST FORMAT

TRANSFERRANSATED WRITE
REQUEST TO CENTRAL
CACHE CONTROLLER 5O2
WITHSUPPLIED DATA

RETURN COMPLETION STATUS 504
TO REQUESTINGHOST

DONE

Patent Application Publication May 31, 2001 Sheet 6 of 10 US 2001/0002480 A1

CONTROLLER
READ

FIG. 6
TRANSLATE HOST I/O

6OO REQUEST TO CENTRAL CACHE
REQUEST FORMAT

616
DEGRADED
MODE

OPERATIONS
YES

618

REQUEST ENTRESTRIPES
OF ALL REQUESTED BLOCKS

62O

AWAIT RETURNBY CENTRAL
CACHE CONTROLLER

PERFORMPARITY (XOR)
COMPUTATION TO

GENERATE MISSING BLOCKS

TRANSFER TRANSLATED READ
REQUEST TO CENTRAL
CACHE CONTROLLER

AWAT RETURNBY CENTRAL
604 CACHE CONTROLLER

606
ALL

REQUESTED
DATA

RETURNED

NO
608

READ ADDITIONAL DATA
FROM DISK

610

CACHE
N01 AD5tionAL

DATA

622

TRANSFERADDITIONAL
DATA TO CENTRAL
CACHE CONTROLLER

RETURN REQUESTED DATA 614 DONE
TO HOST SYSTEM

Patent Application Publication May 31, 2001 Sheet 7 of 10 US 2001/0002480 A1

CONTROLLERFLUSH FIG. 7
702

LOCAL REQUEST CENTRAL
OR CENTRAL CENTRAL CACHE CONTROLLER

FLUSH OPERFORM
OPERATIO CACHEFLUSH

REQUEST STRIPE LOCK FROM
CENTRAL CACHE CONTROLLERFOR

AFFECTED STRIPES

REQUEST STRIPEMAPFROM
CENTRAL CACHE CONTROLLER

FOR AFFECTED STRIPES

PERFORMXOR GENERATION
FOR AFFECTED STRIPES

REQUEST NEWLY CACHED DATA
FROMCENTRAL CACHE

CONTROLLER FOR FLUSHING

FLUSH RETURNED
DATATO DISK(S)

UNLOCKSTRIPES

DONE

Patent Application Publication May 31, 2001 Sheet 8 of 10 US 2001/0002480 A1

FIG. 8

CACHE
CONTROLLER READ

800

REQUESTED
DATA ALN

CACHE

YES

PERFORM
ADDITIONAL RETURN CACHED PORTION

READS OFREQUESTED DATATO
CENTRALLY RAID CONTROLLER

DEGRADED
MODE

OPERATIONS

READ UNCACHED, REQUESTED
DATA INTO CACHE MEMORY

READ FULLSTRIPES FOR
UNCACHED DATA

PERFORMPARITY (XOR)
COMPUTATION TO RECOVER

MISSING DATA

RETURNALL REQUESTED
DATA TO RAID CONTROLLER

Patent Application Publication May 31, 2001 Sheet 9 of 10 US 2001/0002480 A1

FIG. 9

CACHE
CONTROLLERWRITE

LOCKSTRIPETO
PREVENT FLUSH

900

INSERT SUPPLIED DATA INTO
CACHE MEMORY AS NEW DATA
WITHATTRIBUTES AS PROVIDED
BY REQUESTING CONTROLLER

902

UNLOCK STRIPE 904

FIG. 11

CACHE CONTROLLER
STRIPE MAP

LOCATE ALLDATA
ASSOCATED WITH
REQUESTED STRIPES

1100

BUILD STRUCTURE
INDICATING STATUS OF

SUCH DAA
1 102

RETURNSTRUCTURE
TO REQUESTING
CONTROLLER

11 O4

DONE

Patent Application Publication May 31, 2001 Sheet 10 of 10 US 2001/0002480 A1

FIG. 10

CACHE CONTROLLER
CACHE WRITE

LOCK ALL STRIPES 1 OOO

LOCATE ALL NEW (UNPOSTED) 1002
DATA EN CACHE MEMORY

UNLOCK STRIPES UNAFFECTED 1004
BYFLUSH

READ ANY ASSOCATED OLD
DATA FROMDISK(S) INTO 1006
CACHE MEMORY REQUIRED
FOR POSTING NEW DATA

FLUSH NEW DATA AND
ASSOCATED UPDATED 1008

REDUNDANCY INFORMATION
TO DISK(S)

UNLOCKREMAINING 1010
LOCKED STRIPES

DONE

US 2001/0002480 A1

METHOD AND APPARATUS FOR PROVIDING
CENTRALIZED INTELLIGENT CACHE BETWEEN
MULTIPLE DATA CONTROLLING ELEMENTS

RELATED PATENTS

0001. This patent is related to commonly assigned, U.S.
patent application Ser. No. 08/772,614 entitled METHODS
AND APPARATUS FOR COORDINATING SHARED
MULTIPLE RAID CONTROLLER ACCESS TO COM
MON STORAGE DEVICES filed Dec. 23, 1996 which is
hereby incorporated by reference.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. This invention relates generally to caching within a
data Storage Subsystem and in particular to controller ele
ment(s) used as intelligent central cache apparatus within
multiple redundant controller data Storage Subsystems.
0004 2. Discussion of Related Art
0005 Modern mass storage subsystems are continuing to
provide increasing Storage capacities to fulfill user demands
from host computer System applications. Due to this critical
reliance on large capacity mass Storage, demands for
enhanced reliability are also high. Various Storage device
configurations and geometries are commonly applied to
meet the demands for higher Storage capacity while main
taining or enhancing reliability of the mass Storage Sub
Systems.

0006 A popular solution to these mass storage demands
for increased capacity and reliability is the use of multiple
Smaller Storage modules configured in geometries that per
mit redundancy of Stored data to assure data integrity in case
of various failures. In many Such redundant Subsystems,
recovery from many common failures can be automated
within the Storage Subsystem itself due to the use of data
redundancy, error codes, and So-called “hot spares” (extra
Storage modules which may be activated to replace a failed,
previously active Storage module). These Subsystems are
typically referred to as redundant arrays of inexpensive (or
independent) disks (or more commonly referred to by the
acronym RAID). The 1987 publication by David A. Patter
son, et al., from University of California at Berkeley entitled
A Case for Redundant Arrays of Inexpensive Disks (RAID),
reviews the fundamental concepts of RAID technology.
0007 RAID storage subsystems typically utilize a con
trol module that shields the user or host system from the
details of managing the redundant array. The controller
makes the Subsystem appear to the host computer as a Single,
highly reliable, high capacity disk drive. In fact, the RAID
controller may distribute the host computer System Supplied
data acroSS a plurality of the Small independent drives with
redundancy and error checking information So as to improve
Subsystem reliability.
0008. In some RAID configurations a portion of data is
distributed acroSS a plurality of data disk drives and asso
ciated redundancy information is added on an additional
drive (often referred to as a parity drive when XOR parity is
used for the redundancy information). In Such configura
tions, the related data So distributed acroSS a plurality of
drives is often referred to as a stripe. In most RAID

May 31, 2001

architectures, the “write' operation involves both a write of
the data to the data disk and also a adjustment of parity
information. The parity information adjustment may involve
the reading of other data in the same Stripe and writing of the
newly computed parity for the blocks of the stripe. This
imposes a large “write penalty” upon RAID systems (RAID
levels 3-6), often making them slower than traditional disk
Systems in the typical write I/O operation.

0009 Known RAID Subsystems provide cache memory
structures to further improve the performance of the RAID
Subsystem write operations. The cache memory is associated
with the control module Such that the Storage blocks on the
disk array are mapped to blockS in the cache. This mapping
is also transparent to the host System. The host System
Simply requests blocks of data to be read or written and the
RAID controller manipulates the disk array and cache
memory as required.

0010. It is taught in co-pending U.S. patent application
Ser. No. 08/772,614 to provide redundant control modules
Sharing access to common Storage modules to improve
Subsystem performance while reducing the failure rate of the
Subsystem due to control electronicS failures. In Such redun
dant architectures as taught by co-pending U.S. patent
application Ser. No. 08/772,614, a plurality of control mod
ules are configured Such that they control the same physical
array of disk drives. AS taught by prior designs, a cache
memory module is associated with each of the redundant
control modules. Each controller will use its cache during
control of the data Storage Volume which it accesses.
0011. In this configuration, the controllers gain the
advantage of being able to Simultaneously handle multiple
read and write requests directed to the same Volume of data
Storage. However, Since the control modules may access the
Same data, the control modules must communicate with one
another to assure that the cache modules are Synchronized.
Other communications among the cooperating controllers
are used to coordinate concurrent access to the common
resources. Semaphore locking and related multi-tasking
techniques are often utilized for this purpose. The control
modules therefore communicate among themselves to main
tain Synchronization of their respective, independent cache
memories. Since many cache operations require the control
lers to generate these Synchronization signals and messages
or Semaphore locking and releasing messages, the amount of
traffic (also referred to as coordination traffic or cache
coordination traffic) generated can be Substantial. This coor
dination traffic imposes a continuing penalty upon the opera
tion of the data Storage Subsystem by utilizing valuable
bandwidth on the interconnection bus as well as processing
overhead within the multiple control modules. If not for this
overhead imposed by coordination traffic, the data Storage
Subsystem would have more bandwidth and processing
power available for I/O processing and would thus operate
faster.

0012. In such a configuration wherein each control mod
ule has its own independent cache memory (also referred to
herein as decentralized cache), there is significant duplica
tion of the circuits and memory that comprise the cache
memory on each control module. This duplication increases
the complexity (and therefore the cost of manufacture) of the
individual control modules. A decentralized cache architec
ture Subsystem is Scaled up by addition of control modules,

US 2001/0002480 A1

each with its own duplicated cache memory circuits. This
added complexity (and associated costs) therefore makes
Simple Scaling of performance problematic.

0013 In view of the above it is clear that a need exists for
an improved cache architecture for redundant control mod
ule data Storage Subsystems which improves data Storage
Subsystem performance and Scalability while reducing
duplication and complexity of known designs.

SUMMARY OF THE INVENTION

0.014. The present invention solves the above and other
problems, and thereby advances the useful arts, by providing
an intelligent central cache shared among a plurality of
Storage controllers in a storage Subsystem. An intelligent
central cache is a cache cooperatively engaged with the
control modules (storage controllers) to provide caching
within the Storage Subsystem. Various functions are per
formed within the intelligent central cache including Stor
age, generation, and maintenance of cache meta-data, Stripe
lock functions to enable coordinated Sharing of the central
cache features, and functions to coordinate cache flush
operations among the plurality of attached control modules.
0015. By contrast, a “dumb' (unintelligent) cache,
though it may be a centralized resource, is one used merely
as a memory bank, typically for myriad purposes within the
data Storage Subsystem. The intelligent cache of the present
invention shares with the attached controllers much of the
control logic and processing for determining, for example,
when, whether, and how to cache data and meta-data in the
cache memory. Cache meta-data includes information
regarding the type of data Stored in the cache including
indications that corresponding data is clean or dirty, current
or old data, and redundancy (e.g., RAID parity) data or user
related data. The intelligent central cache of the present
invention generates, Stores, and utilizes cache meta-data for
making Such determinations relating to the operation of the
central cache independently of and/or cooperatively with the
Storage controllers of the Subsystem. Furthermore, the intel
ligent central cache of the present invention coordinates the
management of non-volatility in the cache memory by
coordinating with the control modules the monitoring of
battery backup Status, etc.

0016. The features of the central cache are made accessed
by the plurality of controllers through an application pro
gram interface (API) via inter-process communication tech
niques. In particular, the control modules may request, via an
API function, that information be inserted or deleted from
the cache. Attributes are provided by the requesting control
ler to identify the type of data to be inserted (e.g., clean or
dirty, new or old, user data or parity, etc.). Other API
functions are used to request that the central controller read
or return identified data to a requesting controller. Attribute
data may also be so retrieved. API functions of the intelli
gent central cache also assist the controllers in performing
cache flush operations (Such as required in write-back cache
management operations). An API function requests of the
central cache a map identifying the Status of data blocks in
particular identified Stripes. The requesting control module
may then use this map information to determine which data
blocks in the identified stripes are to be flushed to disk. Other
API functions allow the central cache to perform cache flush
operations independent of requests from the attached control

May 31, 2001

modules. Still other API functions provide the low level
Stripe lock (Semaphore management) functions required to
coordinate the shared acceSS by control modules to the
central cache. Details of exemplary API operations are
discussed below.

0017. The preferred embodiment of the present invention
includes a plurality of control modules interconnected by
redundant Serial communication media Such as redundant
Fibre Channel Arbitrated Loops (“FC-AL). The disk array
control modules share access to an intelligent central cache
memory (also referred to herein as a caching controller or
cache control module). The caching controller is coopera
tively engaged with the control modules in the data Storage
Subsystem (also referred to herein as controllers or as host
adapters to indicate their primary function within the Storage
Subsystem) to provide intelligent management of the cache.
The controllers access the caching controller to perform
required caching operations relating to an I/O request pro
cessed within the controller.

0018. This centralized cache architecture obviates the
need to exchange Substantial Volumes of information
between control modules to maintain consistency between
their individual caches and to coordinate their shared access
to common Storage elements, as is taught by co-pending
U.S. patent application Ser. No. 08/772,614. Eliminating
coordination traffic within the Storage Subsystem frees the
processing power of the Several controllers for use in
processing of I/O requests. Further, the reduced bandwidth
utilization of the interconnecting bus (e.g., FC-AL) allows
the previously consumed bandwidth to be used for data
Storage purposes other then mere overhead communication.
0019. The I/O request processing power in a storage
Subsystem in accordance with the present invention is easily
Scaled as compared to known Systems. In the preferred
embodiment of the present invention, the caching controller
is a modification of an ordinary control module (host
adapter) in the Subsystem. The caching controller is simply
populated with Significant cache memory as compared to the
other controllers (host adapters) which are Substantially
depopulated of cache memory. One skilled in the art will
recognize that a limited amount of memory on each host
adapter may be used for Staging or buffering in communi
cation with the central cache. Or for example, a multi-tiered
cache Structure may utilize a Small cache on each controller
but the large cache is centralized in accordance with the
present invention. The controllers of the present invention
are therefore Simplified as compared to those of prior
decentralized cache designs wherein each controller has
local cache memory. Additional controllerS may be added to
the Subsystem of the present invention to thereby increase
I/O processing capability without the added complexity
(cost) of duplicative cache memory.

0020. In addition, the central cache controller of the
present invention, per Se, may be easily Scaled to meet the
needs of a particular application. First, an additional cache
controller is added in the preferred embodiment to provide
redundancy for the centralized cache of the Subsystem. The
redundant cache controllers communicate via a separate
communication link (e.g., an FC-AL link) to maintain mir
rored cache Synchronization. Secondly, additional cache
controllerS may be added to the Subsystem of the present
invention for purposes of enlarging the central cache capac

US 2001/0002480 A1

ity. The additional cache controllers cooperate and commu
nicate via the Separate communication link isolated to the
cache controllers. A first cache controller may perform cache
operations for a first segment of the cache (mapped to a
particular portion of the disk array) while other cache
controllers process other segments of the cache (mapped to
other portions of the disk array). Mirrored cache controllers
may be added to the Subsystem associated with each of the
Segment cache controllers.
0021. It is therefore an object of the present invention to
improve data Storage Subsystem performance in a data
Storage Subsystem having a plurality of controllers.
0022. It is another object of the present invention to
improve data Storage Subsystem performance by providing
an intelligent central cache within the data Storage Sub
System.

0023. It is still another object of the present invention is
to improve performance in a data Storage Subsystem having
a plurality of Storage controllers by providing an intelligent
central cache accessible to the plurality of Storage control
lers.

0024. It is a further object of the present invention to
reduce the complexity of Storage controllers in a data Storage
Subsystem having a plurality of Such storage controllers by
providing an intelligent central cache shared by all Such
Storage controllers.
0.025. It is yet a further object of the present invention to
improve the Scalability of a data storage Subsystem having
a plurality of Storage controllers by obviating the need for
local cache memory on each Such storage controller and
providing an intelligent central cache shared by all Such
Storage controllers in the Subsystem.
0026. The above and other objects, aspects, features and
advantages of the present invention will become apparent
from the following detailed description and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0.027 FIG. 1A is a block diagram of a prior art data
Storage Subsystem;

0028 FIG. 1B is a block diagram of a prior art data
Storage Subsystem having only generalized System memory
and non-centralized data Storage controller memory;
0029 FIG. 2 is a block diagram of a first embodiment of
the present invention, showing an intelligent central cache
accessible by multiple controllers,
0030 FIG. 3 is a block diagram of a prior art Fibre
Channel Loop Architecture data Storage Subsystem having
redundant controllers,
0.031 FIG. 4 is a block diagram of a preferred embodi
ment of the present invention, showing a plurality of con
trollers and caching controllers interconnected by a FC-AL
with a plurality of data Storage elements,
0.032 FIG. 5 is a flowchart illustrating the operation of
the data Storage controllers of the preferred embodiment in
performing a host requested write operation;
0.033 FIG. 6 is a flowchart illustrating the operation of
the data Storage controllers of the preferred embodiment in
performing a host requested read operation;

May 31, 2001

0034 FIG. 7 is a flowchart illustrating the operation of
the data Storage controllers of the preferred embodiment in
performing a cache flush operation;
0035 FIG. 8 is a flowchart illustrating the operation of
the caching controllers in conjunction with the data Storage
controllers of the preferred embodiment to perform a cache
read operation;
0036 FIG. 9 is a flowchart illustrating the operation of
the caching controllers in conjunction with the data Storage
controllers of the preferred embodiment to perform a cache
insert operation;
0037 FIG. 10 is a flowchart illustrating the operation of
the caching controllers in conjunction with the data Storage
controllers of the preferred embodiment to perform a cache
flush operation; and
0038 FIG. 11 is a flowchart illustrating the operation of
the caching controllers in conjunction with the data Storage
controllers of the preferred embodiment to perform an
operation to retrieve a map of Status information regarding
Stripes for flushing by a data Storage controller.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0039 While the invention is susceptible to various modi
fications and alternative forms, a specific embodiment
thereof has been shown by way of example in the drawings
and will herein be described in detail. It should be under
stood, however, that it is not intended to limit the invention
to the particular form disclosed, but on the contrary, the
invention is to cover all modifications, equivalents, and
alternatives falling within the Spirit and Scope of the inven
tion as defined by the appended claims.

Prior Art Storage Subsystems

0040 FIG. 1A is a block diagram of data storage sub
System 102 as known in the prior art having a decentralized
cache architecture. The System has a plurality of Storage
controllers 104 (also referred to as control modules). Each
control module 104 has its own local cache memory 106.
Controllers 104 are connected via communication medium
108 to data storage elements 110. In normal operation,
controllers 104 receive I/O requests and process the requests
reading or writing as appropriate from or to data Storage
elements 110. Each controller 104 utilizes its local cache
memory 106 to Speed response of common I/O requests.
0041. In most known storage subsystems having a plu
rality of control modules, each control module accesses a
distinct portion of the Storage elements. The control modules
do not share Simultaneous access to any portion of the
Storage elements. In Such known Systems, the control mod
ules are operable independent of one another. For example,
in most RAID Storage Subsystems, each control module of
Such a plurality of controllerS is responsible for one or more
logical units (LUNs) of the storage array. No other controller
has the ability to simultaneously access those LUNs. Though
a redundant or mirrored controller may be present, it is not
Simultaneously operable to access the LUNS managed by the
first control module.

0042. In other Storage Subsystems as taught in co-pending
U.S. patent application Ser. No. 08/772,614, the plurality of

US 2001/0002480 A1

control modules may simultaneously access common por
tions of the Storage elements to thereby enhance the Sub
System performance. In Such Systems, the plurality of con
trollerS eXchange messages amongst themselves to
coordinate the shared access to the Storage elements. For
example, in some RAID subsystems, a plurality of RAID
controllers in the Subsystem may simultaneously acceSS
common LUNs. Each controller may be operating on a
separate I/O request associated with the shared LUN. As
noted in Such Systems, the controllerS eXchange messages
with one another to coordinate the Shared access to the
common Storage elements. Among the messages are cache
Synchronization messages required to assure that all con
trollers which share access to a common portion of the
Storage elements are aware of the cache contents of other
controllers which manipulate the Shared Storage elements.
For example, if one controller completes an I/O operation
which results in updates to its local cache memory, it must
inform all other controllers of the cache update so that all
caches maintain Synchronization with respect to cached data
not yet flushed to disk. Similarly, when one of the control
modules sharing access to a common portion of the Storage
elements determines that the cached data need be flushed to
the Storage elements, it must notify other controllers asso
ciated with the shared Storage elements to assure that all are
aware of the updated State of the Storage elements. This
coordination message exchange (coordination traffic)
imposes significant overhead processing on the control
modules (host adapters) and consumes valuable bandwidth
on the communication medium interconnecting the Sub
System components and thus impairs System performance.

0.043 For example, in FIG. 1A, significant coordination
traffic in communication medium 108 between control mod
ules 104 to maintain synchronization of cache memories 106
consumes available bandwidth on communication medium
108 reducing available bandwidth for operations between
the control modules 104 and the storage elements 110.

0044 FIG. 1B is a block diagram of another prior art data
storage subsystem 150 exemplifying the use of a “dumb”
central cache by a plurality of controllers. This configuration
may represent, for example, a device commonly referred to
as a network file Server. A network file Server is often a
general purpose computer System with Special Software
dedicated to the provision of file System Services to an
attached network of host Systems (clients). Such a system
has a variety of processors operating on buS 166 and using
the same memory, general host memory 160 (dumb central
cache). For example, in FIG. 1B, network controller 152,
local host controller 154, file controller 156, storage con
troller 162, and potentially other controllers 158 all share
access host memory 160 via bus 166. Each controller
performs a unique function within the Subsystem 150. For
example, network controller 152 manages network connec
tions between the Storage Subsystem and external host
Systems, file controller 156 manages file System operations
within the subsystem 150 to perform file operations
requested by external host Systems, and Storage controller
162 translates I/O requests generated by, for example, file
controller 156 into appropriate lower level Signals appropri
ate to the storage element 164 and its connection bus 168
(e.g., SCSI, IDE, EIDE, etc.). Local host processor 154
guides and coordinates the overall operation of the control
lers of subsystem 150.

May 31, 2001

0045 All the controllers share access to the host memory
160 via bus 166. The uses of host memory 160 may vary
widely. Network controller 152 may use the storage space
for network protocol management while file controller 156
may use the Storage Space for file System management
functions. All processors and controllerS may use the host
memory for initial loading of their operation programs if not
also for runtime fetch and execution of those programs. In
other words, host memory 160 is exemplary of a dumb
memory bank used for myriad purposes within the Storage
subsystem 150 (e.g., a RAMdisk or solid state disk as known
in the art). It is not dedicated to the cache Storage of data and
meta-data relating to I/O requests from attached host Sys
temS.

0046 Typical systems with an architecture as depicted in
FIG. 1B add local cache memory to controllers in the
Subsystem which require Specialized, dedicated caching
operations. For example, file controller 154, network con
troller 152, and storage controller 162 may each have local
cache memory used for their specific functions. The central
cache (host memory 160) provides no specialized function
ality for any of the myriad controllerS Sharing access to it.
Rather, it is no more than a “dumb' memory bank in which
various controllerS may Store information for any purpose.
0047 FIG. 3 is a block diagram exemplifying another
Storage Subsystem architecture known in the art. Each Stor
age control module 304 includes a local cache memory 306
used exclusively by its corresponding control module 304.
Controllers 304 are connected via redundant FC-AL loops
308 and 310 to data storage elements 312.
0048. In this prior art system, data storage elements 312
are disk arrays. Control modules 304 are disk array control
modules having RAID management capabilities. Each con
trol module 304 maintains a decentralized cache 306 to aid
it in rapid performance of I/O operations. In order to
maintain cache Synchronization, disk array control modules
304 must continuously signal back and forth to each other.
In addition, each disk array control module 304 must carry
out all RAID operations individually: configuration of
LUNs, calculation of parity data, RAID management of
failed devices, etc. As noted above with respect to FIG. 1A,
coordination traffic on FC-AL loops 308 and 310 uses
valuable processing power of the controllers 304 as well as
communication bandwidth which could otherwise be used
for performing I/O requests initiated by attached host Sys
temS.

0049 All prior storage subsystems exemplified by FIGS.
1A, 1B and 3 share certain common problems. As noted
above, when a plurality of controllers within such sub
Systems share access to common Storage elements, a large
Volume of cache coordination message traffic is generated
on the interconnection medium thereby reducing available
processing power and communication bandwidth for pro
cessing of I/O requests between the controllers and the
Storage elements. In addition, the prior Storage Subsystems
are not easily Scaled up for performance enhancement. Since
each controller may include a local cache for boosting its
individual performance, the incremental cost of adding
another controller is increased. Each controller has the added
complexity of potentially large cache memory devices and
associated glue and custom assist logic circuits (Such as
RAID parity assist circuits).

US 2001/0002480 A1

Storage Subsystems of the Present Invention
0050. By contrast with prior designs, storage subsystems
of the present invention include an intelligent centralized
cache (also referred to as a cache controller) which is shared
by all controllers in the Storage Subsystem. Since the cache
controller of the present invention is a centralized resource,
each controller sharing its function may be simplified by
eliminating its local cache memory. Such a simplified con
troller reduces the incremental cost associated with adding a
controller to the Subsystem to enhance overall performance.
0051 More importantly, the central cache of the present
invention is intelligent in that it includes circuits dedicated
to enhancing its specific purpose of caching data destined for
Storage elements. For example, in a RAID Subsystem, the
intelligent central cache of the present invention preferably
includes parity assist (generation and checking) circuits to
aid in rapidly performing required parity operations. Cen
tralizing Such intelligent assist circuits further reduces the
cost and complexity of the RAID controllers in the Storage
Subsystem.
0.052 In addition, the centralized cache of the present
invention obviates the need found in the prior art for
extensive cache coordination message traffic (Such as cache
and Stripe lock message traffic). The central cache preferably
maintains control over the cache on behalf of all controllers
in the Subsystem. When, as in the preferred embodiment of
the present invention, a redundant (mirrored) or additional
cache controller is added to the Subsystem, a dedicated
communication path is available for the exclusive purpose of
inter-cache controller synchronization communication. No
bandwidth on the common controller communication
medium is required to assure mirrored cache Synchroniza
tion. A simpler (e.g., lower cost) embodiment may utilize the
existing communication paths to avoid the cost of an addi
tional dedicated communication path. Such an embodiment
would Sacrifice Some performance enhancements of the
present invention but at a cost and complexity Savings.
0053. Furthermore, the intelligent central cache of the
present invention provides Semaphore Services for resource
locking (stripe locking) to coordinate common access to the
disk array by the plurality of control modules. No one of the
controllers, as taught in co-pending U.S. patent application
Ser. No. 08/772,614, need be designated as a primary
controller with respect to a particular shared LUN. Rather, in
accordance with the present invention, the intelligent central
cache provides Such multiple access coordination through
Semaphore Stripe lock features.
0.054 The intelligent cache controller of the present
invention also provide cache mirroring features when addi
tional cache controllers are added to the Subsystem. AS
discussed below, multiple cache controllers coordinate their
intelligent cache management functions in accordance with
the present invention through a separate communication
channel. The primary communication channel interconnect
ing the control modules, the cache controllers, and the
Storage elements remains unburdened by the requisite coor
dination traffic for mirrored cache operation. Additional
cache modules may also operate in a cooperative manner
rather than a mirrored architecture wherein each controller is
responsible for cache operations associated with a particular
portion of the Storage elements total capacity.
0055 FIG. 2 is a block diagram of a first embodiment of
data Storage Subsystem 202 operable in accordance with the

May 31, 2001

methods and structures of the present invention. Controllers
204 access intelligent central cache 206 via communications
medium 208. Controllers 204 and central cache 206 both
acceSS Storage elements 210 via communication medium
208. Communication medium 208 may be any of several
well known buses used for interconnection of electronic
devices including, for example, SCSI, IDE, EIDE, IPI. In
addition, communication medium 208 may represent any of
Several Serial communication medium Such as FC-AL or
SSA as depicted in FIG. 4 and as discussed below.
0056 Intelligent central cache 206 is dedicated to data
and meta-data caching in data Storage Subsystem 202 as
distinct from controllers 204 which primarily serve to inter
face with attached host computer Systems. The intelligent
central cache 206 eliminates the need for coordination traffic
among controllers having local caches thereby freeing pro
cessing power within, and communication bandwidth
between, controllers 204 thereby improving overall perfor
mance of data Storage Subsystem 202. Intelligent central
cache 206 cooperates with controllers 204 to manage the
Storage Subsystem 202 Structure and organization of infor
mation on the Storage elements 210. For example, where
Storage Subsystem 202 uses RAID Storage management
techniques, many RAID management functions Specific to
the cache are performed within intelligent central cache 206.
0057 RAID cache management functions including par
ity generation and checking and logical to physical mapping
of host request Supplied addresses to locations on the array
of disk drive storage elements 210 may be performed
entirely within the intelligent central cache 206. The man
agement of the RAID disk array geometry may therefore be
off-loaded from the RAID controllers 204 to the intelligent
central cache 206. Or for example, customized circuits to
assist in RAID parity generation and checking can be
integrated within intelligent central cache 206.
0058. In particular, intelligent central cache 206 main
tains cache data and associated cache meta-data. Generation
and maintenance of cache meta-data in a decentralized cache
architecture requires significant processing within, and com
munication among, a plurality of controller Sharing access to
common Storage elements. The intelligent central cache 206
of the present invention centralizes this management func
tion to reduce processing overhead load on the controllers
204 and to reduce communication (coordination traffic)
among the controllers 204.
0059 Intelligent central cache 206 can also calculate
cache Statistical information. Using the cache Statistical
information, controllers 204 can tune their respective per
formance in View of Statistical data corresponding to the
cache usage in the overall Subsystem 202.
0060 Preferably, intelligent central cache 206 is designed
as an electronic circuit board Substantially identical to that of
controller 204 but populated differently at time of manufac
ture to distinguish their respective function. For example,
controller 204 may be depopulated of any RAID parity assist
circuits and depopulated of Substantially all cache memory
and related Support circuits. Intelligent central cache 206, by
contrast, is preferably populated with parity assist devices
and with a large cache memory for caching of data Supplied
from controllers 204 and related meta-data generated by the
cache management functions operable within intelligent
central cache 206.

US 2001/0002480 A1

0061. When a controller 204 prepares units of data to be
cached in preparation for future posting to the Storage
elements 210, it simply transmits the data and a cache
request over bus 208 to the intelligent central cache 206. The
intelligent central cache 206 places the received data in its
cache memory along with any generated meta-data used to
manage the cache memory contents. The meta-data may be
generated within central cache 206 such as noted above with
respect to RAID parity assist or may be Supplied by con
troller 204 as parameters when the data is Supplied to central
cache 206. The data supplied to central cache 206 is pro
vided with addresses indicative of the desired disk location
of the data on Storage elements 210. In generating related
meta-data, central cache 206 determines which other data
either in its cache memory or on the Storage elements 210
are required for updating associated redundancy informa
tion. The meta-data therefore indicates data that is new
(currently unposted to the storage elements 210) versus old
(presently posted to the Storage elements 210 and also
resident in central cache 206). Other meta-data distinguishes
parity/redundancy information from data in central cache
2O6

0062) This central cache architecture improves overall
Subsystem performance by obviating the need for cache
coordination message traffic over bus 208 thereby reducing
overhead processing within the controller 204 and eliminat
ing cache coordination message traffic Over bus 208. Con
trollers 204 are therefore simpler than prior controllers
exemplified as discussed above. The Simpler controllers are
Substantially void of any local cache memory and parity
assist circuits. The primary function Served by the Simpler
controller is to provide an interface to attached host Systems
consistent with the Storage management structure (e.g.,
RAID) of the Subsystem. This simpler design permits easier
Scaling of the Subsystem's performance by reducing the
costs (complexity) associated with adding additional con
trollers. In like manner, additional intelligent central cache
devices may be added either to increase the cache Size and/or
to provide mirrored redundancy of the central cache con
tents. As noted below with respect to FIG. 4, when adding
cache devices to the central cache, it is preferred that the
plurality of central cache devices communicate among
themselves over a dedicated communication medium.

0.063 FIG. 4 is a block diagram of a preferred embodi
ment of the present invention representing the best presently
known mode of practicing the invention. FIG. 4 shows the
data storage subsystem 402 having caching controller 406
dedicated to Serving as an intelligent central cache memory
and a Second caching controller 408 dedicated to Serving as
a mirror of caching controller 406. Embodied in each cache
controller 406 and 408 is cache memory 410. Cache con
troller 408 maintains in its local cache memory 410 a
mirrored image of the content of cache memory 410 in cache
controller 406.

0064. Those skilled in the art will note that caching
controller 408 is not limited to the role of mirroring cache
controller 406 as in the preferred embodiment. Caching
controller 408 may also function as an additional intelligent
central cache to provide enhanced cache capacity. In Such a
configuration, a first cache controller (e.g., 406) provides
caching Services for a first range of the cache memory while
a Subsequent cache controller (e.g., 408) provides caching
Services for another portion cache memory. For example, a

May 31, 2001

first cache controller 406 (with its local cache memory 410)
may provide intelligent caching Services to RAID control
lers 404 for a first half of the storage elements 416 while the
additional cache controller 408 (with its local cache memory
410) provides caching services for the second half of the
Storage elements 416.
0065. The preferred embodiment interconnects control
lers 404, caching controllers 406 and 408, and data storage
elements 416 via redundant FC-AL media 412 and 414.
Note that caching controller 406 and caching controller 408
have an additional dedicated FC-AL loop 418 which allows
communication between them. Coordination traffic between
the caching controllers 406 and 408 thus does not utilize any
bandwidth on FC-AL loops 412 and 414, thereby enabling
the desired performance increase in data Storage Subsystem
402.

0066. In the preferred embodiment, controllers 404 are
Substantially identical electronic assemblies to that of cache
controllers 406 and 408 but have been largely depopulated
of their cache memory and associated circuits. The cache
memory function is provided centrally by caching control
lers 406 and 408. Because the caching function is central
ized, overhead processing by RAID controllers 404 and
communication on FC-AL 412 and 414 relating to cache
Synchronization is reduced or eliminated to thereby enhance
Subsystem performance.
0067. Data storage elements 416 are preferably disk
arrays. Controllers 404 and the caching controllers 406 and
408 cooperate to “map” the host-supplied address to the
physical address of the Storage elements. The tasks involved
in this "mapping” or “translation' are one important part of
the RAID management of the disk array 416. Specifically,
controllers 404 receive I/O requests from a host system (not
shown) and translate those requests into the proper address
ing format used by the caching controllers 406 and 408. The
data Supplied in the host requests is mapped into appropriate
parameters corresponding to the API operations described
below. The cache controllers 406 and 408 then perform the
logical to physical mapping required to Store the data in
cache memory 410 and to later retrieve the data for posting
to the Storage element 416.
0068 A variety of alternative modes of mapping host
Supplied request addresses into locations in the central cache
may be recognized by those skilled in the art. Each Such
method may suggest a different distribution of the RAID
management between the controllerS 404 and the caching
controllers 406 and 408. For example, the mapping process
which determines how Stripes are mapped acroSS a plurality
of disk drives (e.g., in RAID levels 2-5) may be distributed
between the control modules and the central cache. A
Spectrum of possible distributions are possible. For example
at one extreme, the control modules may be Solely respon
sible for mapping host addresses to RAID level 2-5 stripe
locations and geometries (i.e., the central cache provides a
linear address space for the control modules to access). Or
for example, at another extreme, the central cache may
possess exclusive knowledge of the mapping to RAID Stripe
geometries and distribution of data over the disk array. The
parameterS Supplied to the API functions of the central cache
describe the addresses as known to the central cache.

0069. Regardless of the particular addressing mode
(mapping of addresses) used by cache controllers 406 and

US 2001/0002480 A1

408, they are preferably responsible for RAID management
taskS Such as parity generation and checking for data Sup
plied from the RAID controllers 404. The redundancy
information, and other cache meta-data, generated and
stored within cache memory 410 of cache controllers 406
and 408 is used to assist RAID controllers 404 in their RAID
management of Storage elements 416. For example, RAID
controllers 404 operable in a cache write-back mode may
request the return of all dirty data along with associated
redundancy information for posting (flushing) to storage
elements 416. In response to Such a request, cache control
lers 406 and 408 determine which data in its cache is marked
as dirty, further determines what other data may be related
to the dirty data (i.e., other data associated with the same
Stripe), and further generates or retrieves associated redun
dancy information for return with the dirty data to the
requesting RAID controller 404. Cache controller 406 and
408 may, for example, read other related blocks of data from
Storage elements 416 and/or read old parity data from
Storage elements 416 in order to generate updated redun
dancy information. Central cache controllers 406 and 408
therefore retain all information necessary to associate cache
blocks with particular Stripes of the disk array. Furthermore,
the cache meta-data identifies new data (dirty data yet
unposted to the Storage elements) versus old data (already
posted to the Storage elements 210).
0070. As noted elsewhere herein, central cache control
lers 406 and 408 also provide a centralized control point for
Semaphore allocation, lock, and release to coordinate Stripe
locking. Stripe locking, as taught in co-pending U.S. patent
application Ser. No. 08/772,614, enables a plurality of
controllers (e.g., 404) to share and coordinate access to
commonly attached storage elements (e.g., shared access to
one or more RAID LUNs). These centralized features pro
vided by the central cache controllers 406 and 408 frees
resources of the controllers 404 to provide improved overall
Subsystem throughput. Specifically, the features and Services
provided by central cache controllers 406 and 408 free
computational processing power within controllerS 404 and
frees communication bandwidth on FC-AL 412 and 414.
The freed processing power and communication bandwidth
is then available for improved processing of host generated
I/O requests.

0.071) Further, as noted above, cache controllers 406 and
408 may operate in a mirrored operation mode. Cache
mirroring operations and communications are also off
loaded from controllers 404. Rather, cache controllers 406
and 408 communicate directly with one another via a
dedicated communication path 418. Still further as noted
above, in the preferred embodiment of FIG. 4, caching
controllers 406 and 408 preferably provide centralized cache
Statistical information Such as write over-writes or cache hit
rate to controllers 404 (or to a host system not shown).
Controllers 404 can use this centralized cache statistical
information to tune the performance of the data Storage
Subsystem 402 in view of Subsystem wide cache efficiency.

Centralized Cache API

0072. As noted above, the centralized cache of the
present invention presents its features to the commonly
attached controllers via an API. These API features are then
accessed by the controllers using well known inter-proceSS
communication techniques applied to a shared communica

May 31, 2001

tion path. As noted above with respect to FIGS. 2 and 4, the
shared communication path may utilize any of Several
communication media and topologies.
0073. The API functions use essentially two data struc
tures for passing of parameters. ABLOCKLIST is a variable
length list of entries each of which describes a particular
range of logical blocks in a logical unit (LUN) which are
relevant to the central cache operation requested. A
STRIPELIST is a variable length list of entries each of
which describes a particular range of RAID stripes in a LUN
which are relevant to the central cache operation requested.
0074 Each BLOCKLIST entry contains substantially the
following fields:

long LUN
longst block
long n block
parm t params

// the logical unit identifier for the desired blocks
// logical block number of the first block of interest
If number of contiguous blocks of interest
// attributes and parameters of the identified blocks

0075). Each STRIPELIST entry contains substantially the
following fields:

long LUN
longst stripe
long n stripe
parm t params

If the logical unit identifier for the desired stripes
If logical stripe number of the first stripe of interest
If number of contiguous stripes of interest
If clean? dirty, newfold, etc. attributes of data

0076. Where the API function exchanges data along with
the BLOCKLIST or STRIPELIST parameters, the associ
ated block data is transferred over the communication
medium following the API request. For example, blocks to
be added to the cache are preceded by an appropriate API
request to the central cache then the actual information in
those blockS is transferred to the central cache. In like
manner, data requested from the central cache is returned
from the central cache to the requesting controller following
execution of the API function within the central cache.
Communication protocols and media appropriate to control
Such multi-point communications are well known in the art.
In addition, those skilled in the art will readily recognize a
variety of error conditions and appropriate recovery tech
niques therefor. Error Status indications are exchanged
between the central cache and the controllers as appropriate
for the particular API function. Exemplary API functions
include:

0.077 cache insert(BLOCKLIST blist) //inserts
blocks in blist to central cache

0078. The specified list of blocks are inserted in
the central cache with the parameters and
attributes as specified in each clocks BLOCKLIST
entry. AS noted, the actual data to be inserted in the
Specified blocks of the central cache are trans
ferred following the transfer of the API request.
The Specified parameters and attributes include:
NEW/OLD
The associated block is either a NEW block in a
stripe or an OLD block.
DATA/PARITY

US 2001/0002480 A1

The associated block is either a DATA portion of
a stripe or a PARITY portion of a stripe.
VALID/INVALID
A bitmap parameter value having a bit for each
Sector in the associated block. Each Sector may be
VALID (e.g., contains useful data) or INVALID.
CLEAN/DIRTY
A bitmap parameter value having a bit for each
Sector in the associated block. Each Sector may be
DIRTY (e.g., contains data not yet posted to the
disk array) or CLEAN.

0.087 cache modify(BLOCKLIST blist) /modifies
attributes of blocks in blist

0088. The attributes of the specified list of blocks
are altered in accordance with the parameters of
the block list entries.

0089 cache delete(BLOCKLIST blist) //deletes
blocks in blist from central cache

0090 The specified list of blocks are removed
from the central cache contents.

0.091 cache read(BLOCKLIST blist)
information from the specified blocks
0092. The information in the specified list of
blockS is retrieved from the central cache memory
and returned to the requesting controllers.

0093 cache Xor(BLOCKLISTblist1, BLOCKLIST
blist2, ... BLOCKLIST blistN, BLOCKLIST blist
dest) //returns the XOR of the specified blocks
0094. The central cache retrieves the specified
blocks in central cache and computes the XOR
parity of those blocks for return to the requesting
controller in the Supplied destination block list. In
particular, a variable number of “source' block
lists may be supplied to this API function. The first
block in the first block list parameter is XOR'd
with the first block of the second block list param
eter, and the third, fourth, etc. Then the Second
block in the first block list parameter is XOR'd
with the second block in the second block list, and
the third, fourth, etc. until all specified blocks are
XOR'd together. The last block list parameter
identifies a list in which the XOR results of the
Specified blocks are returned. AS noted above, this
function may be centralized in the central cache to
further simplify the structure of the control mod
ules. The control modules need not include Special
parity assist circuits. Rather, the central cache can
provide the requisite functions to all control mod
ules.

0.095 cache stripe map(STRIPELIST slist) //re
turns info about the Specified Stripes

//returns

0096. The central cache maintains centralized
knowledge regarding the parameters of each block
in a stripe. When a controller determines that it
must flush the cache contents of “dirty” data, it
may invoke this function to retrieve a map of the
status (attributes) of each block in each of the
Specified Stripes. The map information regarding
the requested Stripes is returned to the requesting
controller.

May 31, 2001

0097 cache flush(STRIPELIST slist) //performs a
flush of the requested Stripes
0.098 As above, the controllers may perform
flushes by requesting a Stripe map then requesting
a read of the specific blocks to be flushed. In the
alternative, the controllers may request that the
central cache perform a flush on their behalf. The
central cache has centralized information regard
ing the attributes of each block in the cache. In
addition, the central cache may have a communi
cation path to the disk array devices as do the
controllers. Where Such access to the disk drives is
provided to the central cache modules, the central
cache may locally perform the requested flush
operations directly without further intervention by
the controllers. In response to this API function,
the central cache flushes all blocks in the
requested Stripes which are dirty then alters the
attributes of those blocks as required to indicate
their new Status.

0099 cache stripe lock req(STRIPELIST slist)
//locks the requested Stripes

0100. As noted above, the cooperating controllers
which share access to common disk drives must
coordinate their concurrent access via Semaphore
locking procedures. The central cache may pro
vide Such Semaphore lock procedures for use by
the cooperating controllers. The requested Stripes,
if not presently locked, are locked and appropriate
Status returned to the requesting controller. If
Some of the requested Stripes are presently locked,
a failure Status may be returned to the requesting
controller. In the alternative, the central controller
may queue Such requests and coordinate the allo
cation of locked Stripes among the various con
trollers.

0101 cache stripe lock release(STRIPELIST
slist) //unlocks the specified Stripes
0102) The converse of the lock request API func
tion. Releases the previously locked Stripes and
returns control to the requesting controller.

Exemplary Centralized Cache Methods
0103 FIGS. 5-11 are flowcharts describing the methods
of the present invention operable in controllers (e.g., 404 of
FIG. 4 and 204 of FIG. 2) in cooperation with cache
controllers (e.g., 406 and 408 of FIG. 4 and 206 of FIG. 2)
utilizing the above API functions. In particular, FIGS. 5-7
describe methods operable in Storage controllers in accor
dance with the present invention to perform host initiated
write and read requests and to initiate a cache flush opera
tion. FIGS. 8-11 are flowcharts describing cooperative meth
ods operable within the caching controllers to perform read
and write requests as well as cache flush operations. The
flowcharts of FIGS. 5-7 are intended as examples of the
application of the API functions of the present invention.
They are not intended to be exhaustive in demonstrating the
use of every API function or every combination of API
functions.

0104 FIG. 5 illustrates the operation of controllers (e.g.,
404 of FIG. 4) in processing host generated I/O write

US 2001/0002480 A1

requests in accordance with the present invention. Element
500 is first operable to translate the received write request
into appropriately formatted central cache operations
required. The request to the central cache passes the host
Supplied data to the central cache controller along with block
addressing information as discussed above. The particular
cache addressing structure employed (as noted above) deter
mines the precise processing performed by operation of
element 500.

0105 Element 502 is next operable to transfer the trans
lated cache request to the central cache controller (e.g., 406
and 408) via the controller communication medium (e.g.,
412 and 414). Once successfully transferred to the cache
controller, the controller may indicate completion of the I/O
request to the host computer and thereby complete proceSS
ing of the received I/O request from the perspective of the
attached host computer. In particular, the controller invokes
the cache insert API function to request the new data be
inserted in the central cache. The BLOCKLIST provided
includes the NEW attribute for all blocks so added to the
cache.

0106 The host computer may then continue with other
processing and generation of other I/O requests. Subsequent
operation of the controller, discussed below, may determine
that the newly posted data in the central cache needs to be
flushed to the disk array.
0107 FIG. 6 is a flowchart describing the operation of
controllers (e.g., 404 of FIG. 4) in processing host generated
I/O read requests in accordance with the present invention.
Element 600 is first operable to translate the received read
request into appropriately formatted central cache opera
tions required. The request to the central cache passes the
blockaddressing information as discussed above for the data
requested by the host read request.

0108 Element 616 is then operable to determine if the
Storage Subsystem is operating in a RAID degraded mode
due to failure of a drive in the specified LUN. If not,
processing continues with element 602 as discussed below.
If the Subsystem is operating in a degraded mode, element
618 is next operable to translate the host request into
appropriate requests for the entire Stripe(s) associated with
the requested blocks. In particular, the controller requests the
stripes by use of the cache read API function where the
BLOCKLIST requests all blocks in the associated stripes.
Element 620 then awaits return of the requested information
by the central cache controller.
0109 Element 622 then performs an XOR parity com
putation on the returned Strip blocks to generate any missing
data blocks due to the failed drive. The XOR parity com
putation may be performed locally by the controller or may
be performed by invoking the cache Xor API function to
generate the parity for a list of blocks in the affected
Stripe(s). As noted above, the latter approach may be pre
ferred if the controllers are simplified to eliminate XOR
parity assist circuits while the central cache controller
retains this centralized capability on behalf of the control
modules. Processing then completes with element 614
returning the requested data, retrieved from the central
cache, to the requesting host System.

0110 Those skilled in the art will recognize that XOR
parity computation are associated with particular levels of

May 31, 2001

RAID management. Other RAID management, e.g., level 1
mirroring, do not require parity computation but rather
duplicate the newly posted data to a mirror disk. Element
622 therefore represents any Such RAID processing to
assure reliable, redundant data Storage as defined for the
Selected RAID management technique.

0111. If not in degraded mode, element 602 is next
operable to transfer the translated cache request to the
central cache controller (e.g., 406 and 408) via the controller
communication medium (e.g., 412 and 414). In particular,
the controller issues a cache read API function to retrieve
the requested blocks of data. Element 604 then awaits return
of the requested data (or other status) from the central cache
controller. Central cache controller may return one of three
possible conditions. First, central cache controller may
return the requested data in its entirety. Second, only a
portion of the requested data may reside in cache memory of
the central cache controller and therefore only that portion of
the requested data may be returned. Third, none of the
requested data may reside in cache memory and therefore
none of the requested data may be returned. A status code
indicative of one of these three conditions is returned from
central cache controller to the requesting RAID controller.

0112 Element 606 is then operable to determine from the
returned Status code which of the three possible conditions
is actually returned. If all requested data resided in the
central cache controller's cache memory, then all requested
data was returned and processing continues with element
614 to return the data to the host system and to thereby
complete processing of the I/O read request. If less than all
data was returned from central cache controller, element 608
is next operable to read the additional data from the Storage
elements. The additional data comprises any requested data
not returned from central cache controller.

0113 Element 610 is next operable after reading the
additional data from disk to determine whether the addi
tional data should be transferred to central cache. Well
known Storage management techniques may be applied to
make the determination as to whether the additional data
should be added to the central cache. If so, element 612 is
operable in a manner similar to that of element 502 above to
transfer the additional data read from the disk array to the
central cache. Specifically, the controller issues a cache i
insert API request to insert the additional data blocks into the
central cache memory. Lastly, element 614 is operable, as
noted above, to return all requested data to the host System
and to thereby complete processing of the host System
generated I/O read request.

0114 FIG. 7 is a flowchart describing the operation of a
RAID controller in accordance with the present invention to
flush new data (dirty data) from the central cache to the disk
array. Well known Storage management techniques may be
applied to determine when the cache need be flushed. The
methods of the present invention are rather directed to
techniques to flush a centralized cache Shared by a plurality
of controllers. Each controller may therefore make indepen
dent determinations as to whether and when to lush new data
from central cache to the disk array. In addition, the methods
and structure of the present invention allow for the intelli
gent central cache controller(s) to determine independently
that the cache memory content should be flushed (posted) to
disk. The flowchart of FIG. 7 therefore describes processing

US 2001/0002480 A1

within any of the RAID controllers after a determination has
been made that the cache data should be flushed to the disk
array.

0115) Element 700 is first operable to determine whether
the cache flush operation should be performed by the RAID
controller itself or should be requested of the central cache
controllers. This determination may be made based upon
present loading of the requesting RAID controller as com
pared to the central cache controller. If the determination is
made that the central cache controller should perform the
cache flush, element 702 is operable to generate and transfer
a request to central cache controller requesting that it flush
all new data for a given Stripe list from its cache memory to
the disk array. If the local RAID controller is to perform the
flush operation, element 708 is next operable to request a
Stripe lock from the central cache controller for all Stripes
affected by the flush request. As noted, other well known
methods are applied to determine which Stripes are to be
flushed at a particular time. Whichever stripes are to be
flushed must be locked to prevent interference from other
operations in the shared central cache controllers. Specifi
cally, the controller issues a cache Stripelock req API
request for the affected Stripes. AS noted above, the central
cache controller returns if the lock is granted. If the
requested lock cannot be immediately granted, the central
cache controller may queue the request and grant it at a later
time. In the alternative, the central cache controller may
return a failure status (not shown) and allow the controller
to determine a strategy for handling the failure.

0116. Once the requested stripe lock is successfully
granted, element 710 is operable to request a Stripe map
from the central cache controller to identify which blocks in
the affected stripes are still marked as “dirty.” Only the
central cache retains centralized knowledge of the present
State of each block in cache. Other controllers may have
previously requested a flush of the affected Stripes and
therefore blocks through to be “dirty” by this requesting
controller may have been previously posted to the disk array.
Specifically, the controller issues a cache Stripe map API
request to obtain this map information. Next, element 712
performs an XOR parity computation to generate updated
parity blocks for the affected Stripes. AS above, this parity
computation may be performed locally on the requesting
controller or centrally in the central cache controller via a
cache Xor API function.
0117 Element 704 is next operable to request and
retrieve all new (dirty) data from the central cache controller
as indicated by the Strip map previously retrieved. In par
ticular, element 704 issues cache read API requests for the
data blocks having dirty data to be posted. Element 706 is
then operable to perform the required disk operations to
flush the retrieved new data from the central cache to the
disk array. Further, element 706 issues an appropriate API
request to alter the attributes for the posted blocks. In the
preferred embodiment, a cache modify API request is
issued to alter parameters for an identified list of blocks. The
blocks just posted to disk by the flush operation would be
altered to a CLEAN attribute. Alternatively, a cache delete
API request may be issued to remove the flushed blocks
from the cache. Element 714 then unlocks the affected
Stripes.

May 31, 2001

0118 FIGS. 8-11 describe methods of the present inven
tion operable within central cache controllers 406 and 408 in
response to API requests generated by RAID controller 404
as noted above.

0119 FIG. 8 describes the operation of the central cache
controller in response to a cache read API request generated
by one of the RAID controllers. As noted above, such a
request may result in all requested data being found in the
cache memory and returned, a portion of the requested data
being found in the cache memory and returned, or none of
the requested data being found in the cache memory. Ele
ment 800 first determines whether all requested data pres
ently resides in the cache memory. If so, element 806 is next
operable to return all requested data from the cache memory
to the requesting RAID controller to thereby complete the
read cache data request.

0120) If less than all the requested data is found in cache
memory, element 802 is operable to determine whether disk
read operations to retrieve the additional data should be
issued locally within the central cache controller or left to
the option of the requesting RAID controller. If the addi
tional data will be retrieved from disk by the RAID con
troller, element 808 is next operable to return that portion of
the requested data which was found in the cache memory to
thereby complete the read cache data request.

0121 Element 810 is next operable if the additional data
is to be read from the disk drive locally within the central
cache controller. Element 810 determines whether the Sub
System is operating in a degraded mode due to failure of a
disk in the requested LUN. If not in degraded mode,
processing continues with element 804 discussed below. If
operating in degraded mode, element 812 is operable to
retrieve from the cache the entire Stripe associated with each
requested block. Element 814 then performs a local parity
computation using the parity assist features of the central
cache controller to recover any data missing due to the disk
failure. Processing then continues with element 806 below.
0.122 Element 804 reads any additional data required to
Satisfy the requested read cache data request. Well known
cache management techniques may operate within central
cache controller to determine what data, in addition to the
requested data, may also be read. For example, other data
physically near the requested data (Such as the remainder of
a track or cylinder) may be read in anticipation of future use.
Or, for example, associated parity data may be read from the
disk array in anticipation of its use in the near future.
0123 Element 806 is then operable in response to reading
the additional data to return all data requested by the read
cache data request to the requesting RAID controller to
thereby complete the request.

0.124 FIG. 9 describes the operation of the central cache
controllers 406 and 408 in response to a cache insert API
request from a RAID controller. Element 900 is first oper
able to lock the stripe(s) associated with the blocks to be
inserted. Since the central cache controls the Semaphore
locking, it performs the lock locally without intervention by
or notice to attached controllers. The lock prevents other
controllers from accessing the affected blocks until the insert
operation is completed. For example, the lock prevents
another controller from requesting a cache insert or flush
operation. Element 902 then inserts the supplied blocks into

US 2001/0002480 A1

the cache memory of the central cache controller in accor
dance with its specified block numbers and with attributes as
indicated by the parameters of the BLOCKLIST entries.
Where the blocks contain new data, the new data overwrites
any previous data in the cache whether clean or dirty, etc.
Lastly, element 904 unlocks the-locked stripes to permit
other operations.
0125 FIG. 10 describes the operation of the central
cache controller in response to a cache flush API request
from an attached controller. AS noted above, the present
invention permits the controllers to perform flushes locally
Such that each controller performs its own flush operation by
use of cache Stripe map and cache read API function
requests. The central cache controller responds to Such
requests to Supply the data requested by the controller with
centralized knowledge of the present Status of each block in
the central cache memory.
0126. In the alternative, the controllers may request that
the central cache controller perform the cache flush opera
tion on behalf of the controller. In this case as shown in FIG.
10, the controller issues a cache flush API request with a
STRIPELIST indicating the stripes that the controller has
determined should be flushed. The central cache controller
performs the cache flush for the requested stripes but with
centralized knowledge as to the present Status of each block
in the requested Stripes. In particular, Some of the requested
Stripes may have been previously flushed by operations
requested from other controllers. The central cache control
ler therefore performs the requested flush in accordance with
the present status of each block in the requested Stripes.
0127. In addition to such controller direct4ed flush opera
tions, the central cache controller may include background
processing which periodically flushes data from the central
cache memory to the disk array in response to loading
analysis within the central cache controllers. Such back
ground processing which determines what data to flush at
what time may simply invoke the processing depicted in
FIG. 10 to perform the desired flush operations.
0128 Element 1000 is first operable to lock all stripes in
the STRIPELIST of the cache flush API request. Element
1002 then locates all new (unposted or dirty) data in the
cache memory of the central cache controller for the
requested Stripes. AS noted, above, the central controller is
the central repository for present Status information regard
ing all blockS in the central cache. It is therefore possible that
the controller has requested the flushing of one or more
stripes which no longer contain “dirty” data. Element 1004
is therefore operable to unlock any Stripes among the
requested, locked Stripes which no longer contain any dirty
data to be flushed.

0129. Element 1006 then reads any additional data
required for posting of the located data. For example, current
data corresponding to other data blocks in a Stripe and/or the
redundancy information (parity) for a stripe may be required
in order to update the parity (redundancy information) for
stripes about to be flushed. Or for example, element 1006
may determine that other data, unrelated to the particular
stripe to be flushed, could be optimally read at this time in
anticipation of future access (e.g., a read-ahead determina
tion made by the controller or by the central cache control
ler). Element 1008 is operable to perform any required disk
operation required to flush the located dirty data and asso

May 31, 2001

ciated parity updates to the disk array. Element 1008 is
further operable to update the status of all blocks flushed by
the disk operations performed. Those blocks which were
marked as “dirty' blocks are now marked as “clean”, no
longer in need of flushing. Lastly, element 1010 unlocks the
Stripes which are now Successfully flushed by operation of
element 1008.

0.130 Those skilled in the art will recognize that the
cache flush method of FIG. 10 may be invoked by request
of a RAID controller as noted above or may be invoked by
local RAID management intelligence of the central cache
controller. In other words, in accordance with the present
invention, a decision to flush the contents of the central
cache may be made by one of the plurality of RAID
controllers or by the intelligent central cache controller(s)
themselves. Also, as noted here, the operations required to
flush the cache content may be performed within the central
cache controller or by one of the RAID controllers by
retrieval of new data from the central cache.

0131 FIG. 11 describes the operation of the central
cache controller in response to cache Stripe map API
requests from a RAID controller. As noted above, controllers
may perform their own flush operations by requesting dirty
data from the central cache for stripes to be flushed. The
controllerS request information from the central cache con
troller for stripes believed to contain dirty data. The infor
mation consists of a map of each Stripe of interest which
describes the status of each block in the identified stripes.
0132 Element 1100 first locates the requested status
information regarding blocks in the Stripes identified by the
controllers STRIPELIST parameter. Element 1102 then
builds the map information into data Structure for return to
the requesting controller. Element 1104 then returns the data
to the requesting controller.
0.133 While the invention has been illustrated and
described in detail in the drawings and foregoing descrip
tion, Such illustration and description is to be considered as
exemplary and not restrictive in character, it being under
stood that only the preferred embodiment and minor variants
thereof have been shown and described and that all changes
and modifications that come within the Spirit of the inven
tion are desired to be protected.

What is claimed is:
1. In a data Storage Subsystem having a plurality of data

Storage elements, an apparatus comprising:

a plurality of Storage controllers,

an intelligent central cache dedicated to use by the data
Storage Subsystem, Said central cache being coopera
tively engaged with Said plurality of Storage controllers
to provide management of Said plurality of data Storage
elements, and

a controller communication medium operable for
eXchange of information among Said plurality of Stor
age controllers and Said intelligent central cache and
Said data Storage elements.

2. The apparatus of claim 1 wherein Said intelligent
central cache is further operable to provide cache Statistical
information.

US 2001/0002480 A1

3. The apparatus of claim 1 wherein requests directed to
Said intelligent central cache are addressed in correspon
dence with physical placement of data within Said intelligent
central cache.

4. The apparatus of claim 1 wherein requests directed to
Said intelligent central cache are addressed in correspon
dence with logical block address of Said data Storage ele
mentS.

5. The apparatus of claim 1 further comprising:

at least one additional intelligent central cache, Said
controller communications medium being further oper
able for exchange of information among Said at least
one additional intelligent central cache and Said plu
rality of Storage controllers and Said intelligent central
cache and Said data Storage elements.

6. The apparatus of claim 5 wherein Said at least one
additional intelligent central cache is operable to mirror data
in Said intelligent central cache.

7. The apparatus of claim I wherein said controller
communication medium includes:

a Serial communication medium.

8. The apparatus of claim 7 wherein Said Serial commu
nication medium includes:

a Fibre Channel Arbitrated Loop.
9. The apparatus of claim 7 wherein said serial commu

nication medium includes:

a plurality of redundant Fibre Channel Arbitrated Loops.
10. The apparatus of claim 1 wherein said plurality of

Storage controllers provide RAID management of Said plu
rality of data Storage elements.

11. The apparatus of claim 10 wherein said intelligent
central cache provides RAID management of Said plurality
of data Storage elements in cooperation with Said Storage
controllers.

12. In a data Storage Subsystem having a plurality of data
Storage elements, an apparatus comprising:

a plurality of RAID controllers a proper subset of which
are cache controllers having cache memory associated
therewith;

a controller communication medium operable for
eXchange of information among Said plurality of RAID
controllers and Said plurality of data Storage elements.

13. The apparatus of claim 12 wherein Said proper Subset
includes at least two of said plurality of RAID controllers.

14. The apparatus of claim 13 where said at least two of
said plurality of RAID controllers are operable in a redun
dant manner Such that each mirrors the operation of another.

15. The apparatus of claim 12, wherein said controller
communication medium includes:

a Serial communication medium.

16. The apparatus of claim 15, wherein Said Serial com
munication medium includes:

a Fibre Channel Arbitrated Loop.
17. The apparatus of claim 15, wherein said serial com

munication medium includes:

a plurality of redundant Fibre Channel Arbitrated Loops.

May 31, 2001

18. A data Storage Subsystem comprising:

at least one data Storage element,
at least one controller having no cache memory, Said at

least one controller being operable to read and write
data to Said at least one data Storage element and being
further operable to provide cooperative RAID manage
ment of Said at least one data Storage element,

a plurality of caching controllers having caches dedicated
to use by the data Storage Subsystem, said plurality of
caching controllers being operable to maintain the
cache memory as a intelligent central cache accessible
by Said at least one controller, Said plurality of caching
controllers being further operable in write-back mode,
Said plurality of caching controllers being further oper
able to provide cooperative RAID management of Said
at least one data Storage element, Said plurality of
caching controllers being further operable to redun
dantly protect cached data, and

at least one Serial communication medium operable for
communication between Said at least one data Storage
element, Said at least one controller, and Said at least
one caching controller.

19. In a storage Subsystem having a plurality of Storage
controllers, an intelligent central cache comprising:

a central cache memory; and
an intelligent cache controller coupled to Said central

cache memory and coupled to Said plurality of Storage
controllers wherein Said central cache controller is
adapted to proceSS cache requests received from Said
plurality of Storage controllers and wherein Said cache
requests include:
requests to insert data into Said central cache memory,
requests to delete previously inserted data from Said

central cache memory, and
requests to retrieve previously inserted data from Said

cache memory.
20. The intelligent central cache of claim 19 wherein said

data inserted in Said central cache memory includes cache
meta-data associated with Said data Supplied by a requesting
one of Said plurality of Storage controllers.

21. The intelligent cache controller of claim 20 wherein
Said cache meta-data includes:

indicia of a clean Status associated with Said data, and

indicia of a dirty status associated with Said data.
22. The intelligent cache controller of claim 21 wherein

Said cache requests further include:
requests to return information identifying particular por

tions of Said data previously inserted in Said central
cache memory having a dirty Status associated there
with.

23. The intelligent cache controller of claim 21 wherein
Said cache requests further include:

requests to flush to disk drives associated with Said
Storage Subsystem particular portions of Said data pre
viously inserted in Said central cache memory having a
dirty Status associated there with.

US 2001/0002480 A1

24. The intelligent cache controller of claim 20 wherein
Said cache meta-data includes:

indicia of a new status associated with Said data, and

indicia of a old Status associated with Said data.

25. The intelligent cache controller of claim 20 wherein
Said cache meta-data includes:

indicia of a parity type associated with Said data, and

indicia of a non-parity type associated with Said data.
26. The intelligent cache controller of claim 19 wherein

Said cache requests further include:

May 31, 2001

requests to lock for exclusive access particular portions of
Said data previously insert ed in Said central cache
memory, and

requests to unlock previously locked particular portions of
Said data previously inserted in Said central cache
memory.

27. The intelligent cache controller of claim 21 wherein
Said cache requests further include:

requests to compute the bitwise XOR of particular por
tions of Said data previously inserted in Said central
cache memory.

