As shown in FIGURES 2 and 3, the loading pole section 3 is made of laminated tubing comprising an inner tubing 6, which is formed of light weight metal such as aluminum, having an outer tubing 7, formed of plastic material, bonded thereto.

The complementary coupling members 4 each consist of a hook 8 having a side opening 9. The arrangement is such that the coupling members 4 are engageable with corresponding members 4 on the ends of adjoining pole sections 3 only by rotation of a pole section 3 ninety degrees to dispose its longitudinal axis at right angles to the axis of a companion pole section 3 to properly align the coupling members 4 for relative engagement and disengagement.

The hooks 8 advantageously may be made of metal, such as bronze. Each of the hooks 8 has a shank including an end portion 10, which is made of laminated tubing comprising an inner tubing 11, formed of metal having the same characteristics as the metal of the hook 8, having an outer tubing 12, formed of plastic material, bonded thereto.

The end portion 10 is received in the adjacent end of the section 3.

The shank of the hook 8 also includes a beaded intermediate portion 13, which is of larger diameter than the end portion 10. The intermediate portion 13 is received in one end of a collar 14, which is formed of plastic material. The opposite end of the collar 14 has an internal shoulder 15 formed therein for engagement by the adjacent end of the section 3, to which it is connected.

The adjacent end of the section 3 is pressed on the end portion 10, and the collar 14 is pressed on the intermediate portion 13 and the adjacent end of the section 3, to form a friction type joint whereby the coupling member 4 is attached to the section 3.

Sealing material having the same characteristics as the material of the collar 14 is applied to the joint between the collar 14 and the section 3, as at 16, to prevent leakage of fluids into the loading pole 2.

In the construction shown, the outer tubing 12, which is made of plastic material, surrounds the inner tubing 11 and insulates it electrically from the adjacent end of the inner tubing 6. The tubing 11 and the tubing 6 are formed of unlike metals, and must be insulated electrically from each other to prevent decomposition due to galvanic action.

A fluid tight seal 17, which advantageously may be formed of rubber, is inserted in each end of the section 3 adjacent the shank of the hook 8.

The invention may be modified in various ways without departing from the spirit and scope thereof.

We claim:
1. In a shot hole loading pole section comprising an elongated tubular metal member, a tubular non-conductive sleeve embracing said metal member, a coupling member attached to each end of said tubular metal member and having a substantially circular head formed with an opening on one side, a shoulder formed on said head and a shank having a circumferentially beaded portion formed with said shoulder opposite said circular head and ber and said non-conductive sleeve, and a plastic collar embraced by the adjacent end of said tubular metal member on said beaded portion of said shank and engaging
said shoulder and surrounding the adjacent ends of said tubular metal member and said non-conductive sleeve.

2. In a shot hole loading pole adapted to be connected in sections of equal length, a tubular metal body having a non-conductive sleeve embracing the same and co-extensive therewith, a coupling member connected to each end of said body, each of said coupling members being formed of a metal different from that of said tubular body, each coupling member having a substantially circular head having an opening on one side thereof forming a hook, a shank formed on said head opposite said hook and embraced by the adjacent end of said tubular body and said non-conductive sleeve, and a plastic collar surrounding said shank and the adjacent ends of said body and said sleeve to seal the said tubular body.