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(57) Abstract: In accordance with some embodiments, the number of bits allocated to depth compression may be changed variably
© based on a number of considerations. As a result, depth data may be compressed in a more efficient way.



VARIABLE DEPTH COMPRESSION

Background

[0001] This relates generally to graphics processing and, particularly, to

compression of depth buffers for stochastic motion blur rasterization.

[0002] Motion blur rasterization attempts to more accurately represent moving

objects and, particularly, to represent the blur that is observed when objects

move fast enough. Ignoring motion blur, information about the depths of

primitives within the scene may be readily compressed. Particularly, the depth of

each primitive may be determined as a distance from the imaging device to the

primitive. Algorithms exist for reducing this depth information when motion blur is

not involved.

[0003] However, when motion blur is involved, it is a much more complex

operation to attempt to compress depth information.

[0004] Graphics processors tend to be extremely sensitive to increased power

consumption with increased memory bandwidth usage. Memory bandwidth is

also in itself a scarce resource on modern graphics processors. Currently, there

is more emphasis on obtaining stochastic rasterization of motion blur and depth

of field and to obtain this information on an interactive or even real time rendering

basis. This involves significant memory bandwidth usage, implicating increased

power consumption.

Brief Description Of The Drawings

[0005] Some embodiments are described with respect to the following figures:

Figure 1 is a schematic depiction of one embodiment of the present invention;

Figure 2 is a flow chart for mode selection for anchor points in accordance with

one embodiment;



Figure 3 is a flow chart for dynamic residual value bit allocation in accordance

with one embodiment; and

Figure 4 is a system depiction for one embodiment.

Detailed Description

[0006] In accordance with some embodiments, the number of bits allocated to

depth compression may be changed variably based on a number of considerations.

As a result, depth data may be compressed in a more efficient way.

[0007] Depth buffer compression is one technique to reduce memory bandwidth

usage. Typically, the depth z of any primitive within a tile is linear over the primitive,

which typically is a triangle. This may be exploited to construct inexpensive

compression and decompression algorithms.

[0008] Plane encoding attempts to take advantage of this linear relationship. The

rasterizer feeds exact plane equations to a compressor and, therefore, no residual

terms are needed. However, when motion blur is involved, each vertex may move

according to a linear function. Then the depth function at a sample is a rational cubic

function. This function makes it substantially harder to predict depth over an entire

tile using a simple predictor function. As a consequence, the standard depth buffer

compression techniques, especially those exploiting exact plane equations, may fail

to compress such noisy buffers.

[0009] A block of pixels, called a tile, may be processed independently. Current

depth compression schemes do not handle motion blur and depth of field explicitly

and, therefore, they do not have the time component or lens parameters.

[001 0] Generally, depth compression algorithms use three common steps which

may be called clustering, predictor function generation, and residual encoding.

Clustering is used when sets of samples in a tile belong to different layers, for

example a background layer and a foreground layer. In this case, it is hard to

compress all depths in the tile using the same predictor function.



[001 1] The clustering step attempts to separate the samples of the tile into two or

more layers, where the samples in each layer typically share some characteristic,

such as lying in a common plane. A goal of splitting the samples into two or more

layers is that each layer may ideally become simpler to compress compared to

compressing all the samples in a single layer.

[001 2] In predictor function generation, each layer generates its own predictor

function. A goal is to use the depth samples and possibly their fixed coordinates to

create a predictor function to predict the depth of each sample using an inexpensive

function. For example, assume that a rectangle with small per pixel displacements

has been rendered to a tile. As a predictor function, one may use the plane of the

rectangle, since it is probably a good guess on where the displaced depths will lie.

Even if the guess is not perfect, imperfections can be handled in the next step.

[001 3] Residual encoding enables more exact depths to be reconstructed during

decompression of the tile, since a common requirement of graphics processors is

that the depth buffer be non-lossy. The residual is the difference between the

predictor function and the actual sample depths. Given a good predictor function,

the residuals between the depth of the samples and the predictor function may be

small. As a consequence, those residuals can be encoded using relatively few bits.

Then good compression ratios can be achieved (if there are a small number of

layers) and storage needed for the predictor function is small.

[0014] In some embodiments, the depth buffer compression may use anchor

encoding, but other techniques may be used as well, including plane encoding. The

construction of plane equations and plane encoding, based on plane data derivatives

or delta vectors, fails to handle extreme planes in the sense that the true derivatives

are very large compared to the allocated bit budget for storing these derivatives.

Consequently, the actual plane representation accuracy may be reduced. This

accuracy reduction increases with distance within the tile from the point where the

delta vectors are evaluated. On the other hand, naively allocating too many bits for

delta vectors reduces the number of bits available for storing depth value residuals.



[001 5] Thus, in some embodiments, the impact of statically assigning available

bits to delta vectors may be reduced by allowing dynamic allocation of bits

depending on the nature of the depth data.

[001 6] Depending on the rasterized geometry, a tile can be the target of a

multitude of primitives, resulting in a complex distribution of depth values over the

time. Using one or more plane equations as a base prediction of these depth values,

the residual values are encoded in the compressed depth data format. As a

consequence of the nature of the predictor planes, predicted depth values may be

more or less correct, resulting in varying need for residual correction bits.

[001 7] Current depth compression mechanisms statically allocate an equal

number of residual bits for all tile positions, which may potentially be a poor match

for actual depth values. In some embodiments, the impact of statically assigning

available bits to residual correction bits is reduced by, instead, allowing for

dynamically allocating the number of residual bits for individual tile positions.

[001 8] In an anchor encoding embodiment, a depth data compression

mechanism detects plane representations of rasterized primitives by picking one or

more points in the tile as candidate anchor points. The evaluation of an anchor point

includes the calculation of local and planar X and Y derivatives based on depth data

values. A predictor plane representation (zp(x,y) = a + b*x + c*y) is encoded in the

compressed depth data as three values: a , b, and c, where a is the depth value at

the anchor point, b is dZ/dX, and c is dZ/dY. The values b and c are the delta values

or "vectors".

[001 9] For each depth, z(x,y), in the tile, residual depth values are stored as the

difference between the predicted and the true depth values. The value d is a

residual value.

[0020] By selecting the number of bits allocated for delta and residual values, the

total bit budget for the tile depth data can be reduced without loss of the depth value

precision. A net compression of depth data may be achieved in some embodiments.



[0021] We introduce the notion of delta modes, which designate a particular

combination of X , Y, and R, where X is the number of bits for the delta-X vectors, Y

is the number of bits for the delta-Y vectors, an R is the number of residual bits per

depth. At compression, these modes are available for selection for each anchor

point in the tile.

[0022] In one variation, each anchor point may potentially have its own set of

available modes, where the modes are dynamically created during and guided by the

results of compression.

[0023] In another variation, to simplify encoding, the same number of bits can be

used for both directions (X and Y). Below, we consider a mode table to be statically

created and stored before compression begins. See Table 1 for an example set of

delta modes where B = 5 12 , N = 4 , M = 3 , A = 32, T = 32.

Table 1. Example delta mode table.

[0024] Given the tile dimensions and bit budget for compression, there is a

tradeoff between the number of bits available for delta values and residual values.

Not all combinations of X , Y, and R, are relevant. It is only meaningful to reduce X

and/or Y if R can be increased by at least one bit. This restricts the number of

available modes.

[0025] The following condition has to be met to enable compression of a tile:



T1og2(N)+ N * (M + A + X + Y) + (T - N * 3) * R < B

where

B = total bit budget to enable compression

N = number of anchor points

M = log2(number of modes) bits to represent the used mode for an anchor point

A = number of bits used for anchor point depth value

X = number of bits used for X delta

Y = number of bits used for Y delta

T = total number of depths in tile

R = number of bits used for residual depth values.

[0026] The T* log2(N)-term reserves log2(N) bits per depth in a tile in order to

indicate which plane equation a depth is using. The (T - N * 3) term implies that the

anchor point depth, as well as the first-order derivatives (dZ/dX, and dZ/dY) are

exact, i.e., they do not require storage of residual bits. In another embodiment,

neither the anchor point, nor the first order derivatives, are exact, which would

require residual bits for those depths as well, making the last term of the above

inequality be T instead of (T - N * 3). If the anchor point is exact but not the

derivatives, the term instead becomes (T - N). In the example above, the anchor

value as well as derivatives land exactly on the correct depth value, which often is a

reasonable assumption.

[0027] The algorithm for selecting the mode for each anchor point is as follows,

according to one embodiment:

[0028] A table with 2M rows is constructed that stores a number of allocated

delta bits for each direction (X and Y). See Table 1 for example. Then, N anchor

point positions are given, where N = 1, 2 , 3 , T (usually between 1 and 4). Next,

for each anchor point, the minimum required number of bits to represent the delta

vectors is calculated. This may be done by simply computing the delta vectors from

the anchor point's depth to the right (or left) neighbor for dZ/dX, and to the upper (or



lower) neighbor for dZ/dY, and examining how many bits are needed (by finding the

first and most significant set bit). The corresponding mode with the maximum

number of residual bits is selected as the mode for this anchor point.

[0029] An advantage of this simple scheme is that it allows more tiles to be

compressed, which, in the end, reduces the memory bandwidth usage for depth

(which is a significant consumer of bandwidth in a graphics processor). For

example, a tile with large delta vectors which at the same time only needs a few

residual bits per depth can be compressed. Similarly, a tile with small delta vectors

which require many residual bits can be compressed as well.

[0030] Due to insufficient accuracy and/or precision, in turn due to extreme plane

representations or simply complex tile data, plane predictors need residual bits per

tile position to adjust to correct depth values. Depending on the amount of

inaccuracy in the prediction, a varying number of residual bits are actually needed to

encode the difference between the prediction and the correct value.

[0031] We propose the use of a residual mode mask with one entry per tile

location to store an indicator of how many residual bits are needed for that location.

The aim is to use as few bits as possible for each location, resulting in a total

minimum of required bits.

[0032] The possible number of residual bits used for each location can be

statically assigned with appropriate values, or dynamically calculated based on tile

data.

[0033] For dynamically assigned residual modes, the algorithm works as follows,

in one embodiment:

[0034] During compression of a tile, the predictor depth is compared with the

actual depth and calculate residual value. Then the shortest mode (i.e., the mode

that captures required difference, with the least number of bits) is selected to encode

the residuals. Next, the corresponding mode value is filled in the residual mode

mask. Finally, the residual mode mask is stored in the encoded tile data.



[0035] The technique may be illustrated with an example.

Table 2 .

Example residual mode table with four modes.

Table 3 .

Example tile of 4x4 pixels with corresponding encoding.

[0036] In the example, the total number of bits for residuals is 90

(9x2+4x8+2x1 2+1 6) because there are nine instances of mode 00 which uses 2 bits,

etc. Storing full value residuals results in 256 bits ( 1 6x1 6).

[0037] In this example, we have a 2-bit value for each depth value. However,

one may also choose to use a 2-bit value for each 2x2 depths (in order to reduce the

number of 2-bit values used). In general each WxH depth can use Q bits to indicate

the mode.

[0038] For static assignment, we can supply several modes per tile to choose

from. For example, one mode can be that the residual bits are spread out over the

depths in a totally uniform way. Another mode may use fewer bits closer to the

anchor points and more bits the farther away from the anchor point the depth is

located in the tile.



[0039] While an embodiment using an anchor encoding-based compression

technique has been described, dynamic residual bit allocation can also be used for

any compressor that encodes residuals. The dynamic delta value bit allocation is

also possible to use with other predictors. For example, if we use a bilinear patch

(which is created from four depth values plus their x,y-positions) as a predictor, we

can encode that patch as one anchor point, and two delta-vectors, and then a

residual value for the fourth point, which is the difference between the plane equation

from the first three points and the fourth point. The number of bits spent on these

two delta vectors, and the residual bits for the fourth point can be dynamically

assigned in a similar way as described above for anchor encoding. The same can

easily apply to other predictor functions as well.

[0040] Referring to Figure 1, an apparatus 10 may include a rasterizer and a

series of pixel pipelines 14a-14n. A depth test unit 16a-1 6n may be provided for

each pixel pipeline. The depth caches and culling unit 18 may be used for depth

value culling. Compression may be done at a compressor 20 and decompression

may be done at a decompressor 24. A delta mode table 22 (like Table 1) may be

provided as well. Finally, random access memory 26 may be provided for the

compression and decompression engines.

[0041] Referring to Figure 2 , a mode selection sequence 30 for an anchor point

may be implemented in hardware, software, and/or firmware. In software and

firmware embodiments, it may be implemented by computer executed instructions

stored in a non-transitory computer readable medium, such as a magnetic, optical, or

semiconductor memory.

[0042] The mode selection for the anchor points begins by constructing a table

for the delta bits, as indicated in block 32. Then the anchor point positions are given

in block 34. Finally, the bits to represent each delta vector for each anchor point are

calculated in block 36.

[0043] A sequence 38 for dynamic residual value bit allocation may be

implemented in software, firmware, and/or hardware. In software and firmware

embodiments, it may be implemented by computer executed instructions stored in a



non-transitory computer readable medium, such as an optical, magnetic, or

semiconductor memory.

[0044] The sequence beings by comparing a predicted depth to the actual depth,

as indicated in block 40. Then the residual value is calculated, as shown in block 42.

[0045] The shortest mode to encode the residual value bits is then selected

(block 44). The mode value is filled in in the residual mode mask (block 46). Finally,

the residual mode mask is stored in the encoded tile data, as indicated in block 48.

[0046] The computer system 130, shown in Figure 4 , may include a hard drive

134 and a removable medium 136, coupled by a bus 104 to a chipset core logic 110 .

The computer system may be any computer system, including a smart mobile

device, such as a smart phone, tablet, or a mobile Internet device. A keyboard and

mouse 120, or other conventional components, may be coupled to the chipset core

logic via bus 108. The core logic may couple to the graphics processor 112 , via a

bus 105, and the central processor 100 in one embodiment. The graphics processor

112 may also be coupled by a bus 106 to a frame buffer 114 . The frame buffer 114

may be coupled by a bus 107 to a display screen 118 . In one embodiment, a

graphics processor 112 may be a multi-threaded, multi-core parallel processor using

single instruction multiple data (SIMD) architecture.

[0047] In the case of a software implementation, the pertinent code may be

stored in any suitable semiconductor, magnetic, or optical memory, including the

main memory 132 (as indicated at 139) or any available memory within the graphics

processor. Thus, in one embodiment, the code to perform the sequences of Figures

2 and 3 may be stored in a non-transitory machine or computer readable medium

130, such as the memory 132, and/or the graphics processor 112 , and/or the central

processor 100 and may be executed by the processor 100 and/or the graphics

processor 112 in one embodiment.

[0048] Figures 2 and 3 are flow charts. In some embodiments, the sequences

depicted in these flow charts may be implemented in hardware, software, or

firmware. In a software embodiment, a non-transitory computer readable medium,



such as a semiconductor memory, a magnetic memory, or an optical memory may

be used to store instructions and may be executed by a processor to implement the

sequences shown in Figures 2 and 3 .

[0049] The graphics processing techniques described herein may be

implemented in various hardware architectures. For example, graphics functionality

may be integrated within a chipset. Alternatively, a discrete graphics processor may

be used. As still another embodiment, the graphics functions may be implemented

by a general purpose processor, including a multicore processor.

[0050] References throughout this specification to "one embodiment" or "an

embodiment" mean that a particular feature, structure, or characteristic described in

connection with the embodiment is included in at least one implementation

encompassed within the present invention. Thus, appearances of the phrase "one

embodiment" or "in an embodiment" are not necessarily referring to the same

embodiment. Furthermore, the particular features, structures, or characteristics may

be instituted in other suitable forms other than the particular embodiment illustrated

and all such forms may be encompassed within the claims of the present application.

[0051] While the present invention has been described with respect to a limited

number of embodiments, those skilled in the art will appreciate numerous

modifications and variations therefrom. It is intended that the appended claims cover

all such modifications and variations as fall within the true spirit and scope of this

present invention.



What is claimed is:

1. A method comprising:

using a graphics processor to compress depth data by varying a

number of bits used to encode residual values depending on the depth data.

2 . The method of claim 1 including varying a number of bits used to

enable delta values.

3 . The method of claim 1 including using anchor point encoding.

4 . The method of claim 2 including selecting a number of bits for X

vectors and Y vectors and assigning a number of residual bits per depth.

5 . The method of claim 4 including enabling the selection of each of said

bit numbers for X vectors, Y vectors, and residual bits per depth.

6 . The method of claim 2 including providing a plurality of selectable

modes, each mode specifying a particular number of bits for X vectors, Y vectors,

and residual bits per depth.

7 . The method of claim 6 including calculating, for an anchor point, a

minimum number of bits needed to represent the delta vectors.

8 . The method of claim 7 including selecting a mode with a maximum

number of residual bits that provides the needed number of bits for the delta vectors.

9 . The method of claim 8 including storing an indicator of how many

residual bits are needed for a given anchor point.



10 . The method of claim 2 including reducing the number of bits for X or Y

values only if the number of bits for the residual value can be increased

correspondingly.

11. A non-transitory computer readable medium storing instructions

executed by a processor to:

compress depth data by varying a number of bits used to encode

residual values depending on the depth data.

12. The medium of claim 11 further storing instructions to vary a number of

bits used to enable delta values.

13. The medium of claim 11 further storing instructions to use anchor point

encoding.

14. The medium of claim 12 further storing instructions to select a number

of bits for X vectors and Y vectors and assigning a number of residual bits per depth.

15 . The medium of claim 14 further storing instructions to enable the

selection of each of said bit numbers for X vectors, Y vectors, and residual bits per

depth.

16 . The medium of claim 12 further storing instructions to provide a

plurality of selectable modes, each mode specifying a particular number of bits for X

vectors, Y vectors, and residual bits per depth.

17 . The medium of claim 16 further storing instructions to calculate, for an

anchor point, a minimum number of bits needed to represent the delta vectors.

18 . The medium of claim 17 further storing instructions to select a mode

with a maximum number of residual bits that provides the needed number of bits for

the delta vectors.



19 . The medium of claim 18 further storing instructions to store an indicator

of how many residual bits are needed for a given anchor point.

20. The medium of claim 12 further storing instructions to reduce the

number of bits for X or Y values only if the number of bits for the residual value can

be increased correspondingly.

2 1 . An apparatus comprising:

a processor to compress depth data by varying a number of bits used

to encode residual values depending on the depth data; and

a storage coupled to said processor.

22. The apparatus of claim 2 1 , said processor to vary a number of bits

used to enable delta values.

23. The apparatus of claim 2 1 , said processor to use anchor point

encoding.

24. The apparatus of claim 22, said processor to select a number of bits for

X vectors and Y vectors and assigning a number of residual bits per depth.

25. The apparatus of claim 24, said processor to enable the selection of

each of said bit numbers for X vectors, Y vectors, and residual bits per depth.

26. The apparatus of claim 22, said processor to provide a plurality of

selectable modes, each mode specifying a particular number of bits for X vectors, Y

vectors, and residual bits per depth.

27. The apparatus of claim 26, said processor to calculate, for an anchor

point, a minimum number of bits needed to represent the delta vectors.



28. The apparatus of claim 27, said processor to select a mode with a

maximum number of residual bits that provides the needed number of bits for the

delta vectors.

29. The apparatus of claim 28, said processor to store an indicator of how

many residual bits are needed for a given anchor point.

30. The apparatus of claim 22, said processor to reduce the number of bits

for X or Y values only if the number of bits for the residual value can be increased

correspondingly.
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