02/071229 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

T
(19) World Intellectual Property Organization ‘g’ '.‘,_
International Bureau AN 5
7

(43) International Publication Date
12 September 2002 (12.09.2002)

PCT

A0 0 OO

(10) International Publication Number

WO 02/071229 A2

(51) International Patent Classification’: GO6F 12/00

(21) International Application Number: PCT/US02/07475

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/274,270
Not furnished

Us
Us

7 March 2001 (07.03.2001)
4 March 2002 (04.03.2002)

(71) Applicant: ORACLE CORPORATION [US/US]; 500
Oracle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors: CHANDRASEKARAN, Sashikanth; 2515
Carlmont Drive #9, Belmont, CA 94002 (US). BAM-
FORD, Roger; 555 Manzanita Way, Woodside, CA
94062 (US). BRIDGE, William; 2969 Seaview Park-
way, Alameda, CA 94502 (US). BROWER, David; 290
Livorna Heights Road, Alamo, CA 94507 (US). MAC-
NAUGHTON, Neil; 347 Penny Avenue, Los Gatos, CA

74

@n

(L))

95030 (US). CHAN, Wilson; 129 Wodbridge Circle, San
Mateo, CA 94403 (US). SRIHARI, Vinay; 7 BayCrest
Way, San Francisco, CA 94080 (US).

Agents: HICKMAN, Brian et al; HICKMAN
PALERMO TRUONG & BECKER, LLP, 1600 Wil-
low Street, San Jose, CA 95125 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: DISK WRITES IN A DISTRIBUTED SHARED DISK SYSTEM

ROLE-BASED APPROACH WITH TRANSFER DURING WRITE OPERATION

WRITE-NOTIFICATION {5)
WRITE-NOTIFICATION (4)

WRITE-REQUEST (1)

NODE 3

MODE = GLOBAL

WRITE-PERFORM (2)
WRITE-CONFIRM (3)

v DATA ITEM TRANSFER

MODE = GLOBAL

CONVERT-TO-LOCAL (6)

(57) Abstract: Techniques are provided for managing caches in a system with multiple caches that may contain different copies of
the same data item. Specifically, techniques are provided for coordinating the write-to-disk operations performed on such data items
to ensure that older versions of the data item are not written over newer versions, and to reduce the amount of processing required
to recover after a failure. Various approaches are provided in which a master is used to coordinate with the multiple caches to cause
a data item to be written to persistent storage. Techniques are also provided for managing checkpoints associated with the caches,
where the checkpoints are used to determine the position at which to begin processing recovery logs in the event of a failure.

w0 02/071229 A2 I ORI A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

WO 02/071229 PCT/US02/07475

DISK WRITES IN A DISTRIBUTED SHARED DISK SYSTEM

RELATED APPLICATION; PRIORITY CLAIM

This patent application claims priority from U.S. Provisional Patent Application
No. 60/274,270, filed March 7, 2001, entitled METHODS TO PERFORM DISK
WRITES IN A DISTRIBUTED SHARED DISK SYSTEM NEEDING CONSISTENCY
ACROSS FAILURES, the content of which is hereby incorporated by reference in its
entirety.

This patent application also claims priority to U.S. Patent Application No.
, filed March 4, 2002, entitled MANAGING CHECKPOINT QUEUES
IN A MULTIPLE NODE SYSTEM, (Attorney Docket No. 50277-1776) the content of

which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION
The present invention relates to performing disk writes and, more particularly, to
coordinating the writing of dirty data items in systems that allow dirty versions of a data

item to reside in the caches of multiple nodes.

BACKGROUND OF THE INVENTION

One way to improve scalability in database systems is to allow multiple nodes to
concurrently read and modify data in shared storage. Each node has a cache to hold data
in volatile main memory and is backed up by non-volatile shared disk storage. A global
lock manager (GLM) or a distributed lock manager (DLM) is used to maintain cache
coherency between nodes. To provide recovery from node failures that erase the contents
of main memory, the popular Write-Ahead-Logging (WAL) protocol is used. For
performance reasons, each node has a private redo log in which changes are recorded. To
reduce the amount of changes in the redo log that need to be scanned after a node failure,
incremental or periodic checkpoints are typically taken that guarantee that all changes in a
data item prior to the checkpoint need not be reapplied to the data item in non-volatile

storage.

CONCURRENCY CONTROL
Concurréncy control between transactions running either on the same node or

different nodes is implemented through global transactional page-level locks or row-level

-1-

WO 02/071229 PCT/US02/07475

locks. The transaction system can use either the force policy, where the data items (such
as pages/blocks) modified by the transaction are written to stable storage during
transaction commit, or use the no-force policy where only the transactions' changes in the
redo log are forced at transaction commit. Use of the force policy with page level locks
implies that the blocks are modified only by one node (in fact, only by one transaction)
and can be dirtied in only one system's cache at any point. In all other combinations (i.e.
row-level locks with force policy, page-level locks with no-force, and row-level locks
with no-force) the data items can be modified in multiple systems and a cache coherency
mechanism is needed.

The most general case is row-level locks with the no-force data item management policy.
For the purpose of explanation, the examples given hereafter will be given in the context
of systems that use row-level locks with the no-force data item management policy.

However, the techniques described herein are not limited to that context.

CHECKPOINT QUEUES

When a transaction commits, data that reflects the changes made by the
transaction must be stored on persistent storage. In some systems, redo records that
indicate the changes made by a transaction have to be persistently stored at commit time,
but the actual lwriting of the modified data items themselves can be delayed. A data item
that (1) contains changes, and (2) has not yet been persistently stored, is referred to as a
“dirty data item”. In general, the more dirty data items that reside in a node, the longer
the recovery time will be if the node fails. Therefore, to ensure that the recovery time is
not unacceptably long, a node may maintain a checkpoint queue.

Checkpoint queues contain entries that identify dirty data items. The entries in the
queue are ordered based on the order of corresponding redo records in a persistently
stored redo log. In the event of a failure, the redo log must be processed starting with the
redo record that corresponds to the entry that was at the head of the checkpoint queue.

When a dirty data item is written to persistent storage, the entry for that data item
is removed from the checkpoint queue. When the entry that is at the head of the
checkpoint queue is removed from the checkpoint queue, the point within the redo log at
which recovery processing must begin changes, resulting in an “advance” of the
checkpoint. The further the checkpoint has advanced in the redo log at the time of a
failure, the less work has to be done to recover from the failure. Consequently, nodes
typically attempt to write to persistent storage the dirty data items identified by the entries

at the head of their checkpoint queue. However, as shall be described in greater detail

2-

WO 02/071229 PCT/US02/07475

hereafter, coordinating the writing of dirty data items is particularly important when it is

possible for dirty versions of the same data item to reside in the caches of multiple nodes.

TRANSFER OF DATA ITEMS THROUGH SHARED PERSISTENT STORAGE
When data items can be modified concurrently by multiple systems, a mechanism
is needed to coordinate the writing of the modified data items to stable shared persistent
storage. In some systems, this problem is simplified by using the stable shared persistent
storage as the medium for transferring the modified data items from one node to another.
When a data item that is dirty in a node is needed for modification in a different node, the
data item is first written to the shared pefsistent storage before granting the page lock to
the node that wants to modify the dirtied data item. The same write-to-persistent storage
and read-from-persistent storage sequence is used when a different node needs to read the

current version of the modified data item.

TRANSFER OF DATA ITEMS THROUGH INTER-CONNECT

In systems that use nonvolatile storage as the medium through which they transfer
data items between nodes, it is not necessary to coordinate the writing of dirty data items
among the different nodes. Each node can use the conventional mechanism for writing
out dirty data items and performing checkpoints.

In some systems, the modified data item is sent to the requesting node without
writing the data item to the persistent storage when the requesting node only needs a
consistent snapshot version of the modified data item. Hence, with these coherency
control mechanisms, although multiple transactions in different nodes can modify the
same data item using row-level locks before transaction commit, any database data item is
dirty in only one node's cache. Consequently, when a node fails, only that node's redo
logs need to be scanned from the checkpoint record in that node to the end of its redo log
to recover the database. Further, when multiple nodes fail, each node's redo logs can be
scanned and applied in sequence to recover the database, i.e. there is no need for merging
changes from multiple redo logs.

However, to improve data item transfer latency, from a node that has an exclusive
lock and thaf has potentially modified the data item, to a node that requests the same data
item for exclusive use or a current version for read, it is desirable to directly transfer the
data item from the main memory of one node to the main memory of another without first

writing the data item to persistent storage. When a dirty data item is transferred from one

WO 02/071229 PCT/US02/07475

node to another, a copy of the data item, known as a past image (PI) may or may not be
retained in the sending node.

When nodes are allowed to transfer dirty data items without storing them to
persistent storage, the writing of the dirty data items must be coordinated between the
various nodes. If no coordination occurs, a node that has transferred a dirty data item
may desire to advance its checkpoint by writing the dirty data item to persistent storage.
However, if some other node has already written a more recent version of the data item to
persistent storage, then writing the dirty data item to persistent storage may corrupt the
integrity of the data.

In addition, checkpoints cannot be advanced unless dirty data items are written to
disk. If a node does not retain dirty versions of data items that the node sends to other
nodes, then the node must somehow coordinate write-to-disk operations with the other
nodes.

Further, for a system to be scalable, the number of write-to-disk operations
performed by the system should not be a function of the number of nodes in the system.
Rather, the number of write-to-disk operations should simply reflect the number of
changes actually made to data items within the system. |

Based on the foregoing, it is clearly desirable to provide techniques for
coordinating the writes of dirty data items in systems in which it is possible for dirty

versions of the same data item to reside in more than one volatile memory.

SUMMARY OF THE INVENTION

Techniques are provided for managing caches in a system with multiple caches
that may contain different copies of the same data item. Specifically, techniques are
provided for coordinating the write-to-disk operations performed on such data items to
ensure that older versions of the data item are not written over newer versions, and to
reduce the amount of processing required to recover after a failure. Various approaches
are provided in which a master is used to coordinate with the multiple caches to cause a
data item to be written to persistent storage. Such approaches include, but are not limited
to, direct write approaches, indirect write approaches, owner-based approaches, and role-
based approaches. Techniques are also provided for managing checkpoints associated
with the caches, where the checkpoints are used to determine the position at which to

begin processing recovery logs in the event of a failure.

WO 02/071229 PCT/US02/07475

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Fig. 1 is a block diagram illustrating how write-do-disk operations are coordinated
in a direct write approach according to an embodiment of the invention;

Fig. 2 is a block diagram illustrating how write-do-disk operations are coordinated
in an indirect write approach according to an embodiment of the invention;

Fig. 3a is a block diagram illustrating how write-do-disk operations are
coordinated in an owner-based write approach when the global dirty flag is false,
according to an embodiment of the invention;

Fig. 3b is a block diagram illustrating how write-do-disk operations are
coordinated in an owner-based write approach when the global dirty flag is true,
according to an embodiment of the invention;

Fig. 3c is a block diagram illustrating how write-do-disk operations are
coordinated in an owner-based write approach when the write request is not from the
owner, according to an embodiment of the invention;

Fig. 4a is a block diagram illustrating how write-do-disk operations are
coordinated in a role-based write approach when the mode is local, according to an
embodiment of the invention; |

Fig. 4b is a block diagram illustrating how write-do-disk operations are
coordinated in a role-based write approach when the mode is global, according to an
embodiment of the invention;

Fig. 4c is a block diagram illustrating how write-do-disk operations are
coordinated in a role-based write approach when the request is not from the exclusive
lock holder, according to an embodiment of the invention;

Fig. 4d is a block diagram illustrating how write-do-disk operations are
coordinated in a role-based write approach when a transfer is performed during a write
operation, according to an embodiment of the invention;

Fig. 5 is a block diagram illustrating a checkpoint queue;

Fig. 6 is a block diagram illustrating a checkpoint queue;

Fig. 7 is a block diagram illustrating a checkpoint queue with merged entries;

Fig. 8 is a block diagram illustrating a checkpoint queue where the entries are

batched into bins; and

WO 02/071229 PCT/US02/07475

Fig. 9 is a block diagram illustrating a computer system on which embodiments of

the invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for coordinating the writing of dirty data items is
described. In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, that the present invention may be practiced
without these specific details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present

invention.

OPTIMIZING SYSTEMS THAT USE A PERSISTENT STORAGE
AS MEDIUM FOR TRANSFER

In systems that use a persistent storage as the medium for transferring data items
between nodes, the latency of transferring a data item from one node to another may be
reduced by modifying the database cache writing subsystem to give higher priority to
writing data items that other nodes are waiting to read or write. This can be accomplished
by having a separate queue (a “ping queue”) for dirty data items that need to be written
because other nodes are waiting to read or modify them. The dirty data items can be
moved to the ping queue on demand when a lock manager (which may be either a
distributed lock manager DLM or a global lock manager GLM) sends a message to the
holding node asking for the holding node to release its lock on the data item.

According to another approach, the latency of transferring a data item from one
node to another may be reduced by maintaining a "forced-write" count in each data item
header or data item control block. The forced-write count is incremented whenever a
write is performed in order to transfer a data item to another node. The persistent storage
writing subsystem maintains a high priority queue of dirty data items whose forced-write
count is higher than a certain threshold. Such a queue is used to allow those data items to
be written more frequently than other dirty data items that are not frequently shared
between nodes. In addition, the latency of lock transfer between nodes is improved
because the database cache writing subsystem has eagerly written out dirty data items in
anticipation that the locks on these data items need to be released.

However, even when optimized in this manner, systems that use a shared

persistent storage as the medium for transferring data items between nodes suffer the

-6-

WO 02/071229 PCT/US02/07475

overhead associated with writing the data items to persistent storage. The techniques
described hereafter relate to systems in which data items, including dirty data items, can

be transferred between nodes without first being written to persistent storage.

CORRECTNESS AND SCALABILITY

In systems that allow dirty data items to be transferred between caches without
first being stored on persistent storage, there is a need to coordinate the writes of the dirty
data items in the different per-node caches for the sake of correctness as well as
scalability. Correctness requires that when a node completes a checkpoint (i.e. records a
starting point from which changes may need to be applied from its redo log after a
failure), a version of every data item that contains changes that were committed prior to
the checkpoint has been written to the non-volatile persistent storage storage. Further, two
nodes must not be allowed to write a data item to persistent storage at the same time
(since they may clobber each other's changes) and a node must not be allowed to write an
older version of a data item over a more recent version.

Scalability requires that a persistent storage write of a data item covers as many
changes as possible even if the changes were made by different nodes. For availability
reasons, a database system may wish to limit the amount of redo log that needs to be
scanned and possibly reapplied after node failure. Hence, the number of database writes
could be proportional to the number of changes made to data items, but should not be

proportional to the number of nodes that are making these changes.

FUNCTIONAL OVERVIEW

Various techniques are provided for coordinating the writing of dirty data items to
persistent storage in systems that allow a dirty version of the same data item to reside in
multiple caches. According to one technique, the coordination is performed using a
master assigned to the data item. According to one embodiment, the master used to
coordinate the writing of dirty versions of the data item is the same entity that is assigned
to manage the locks that govern access to the data item. In such an embodiment, the
master would typically be a component of a lock management system, such as a lock
manager that belongs to either a distributed or global lock management system.

In one embodiment, a node that desires to write a dirty data item to persistent
storage sends a persistent storage-write request to the master assigned to the data item.

The master may (1) grant the requesting node permission to perform the write, or (2)

WO 02/071229 PCT/US02/07475

inform the requesting node that another node has already written to persistent storage a
version that is at least as recent as the dirty version stored in the requesting node.

In another embodiment, the master may also respond by sending a “write-
perform” message to ask a node other than the requesting node to write to persistent
storage a version of the data item that is at least as recent as the dirty version stored in the
requesting node. After the other node sends to the master a “write-confirm” message that
the write has been performed, the master sends a “write-notification” message to inform
the requesting node that another node has already written to persistent storage a version of
the data item that is at least as recent as the dirty version stored in the requesting node.

Once a particular version of a data item has been written to persistent storage, the
dirty versions of the data item that are the same as or older than that particular version are
“covered” by the writing of the particular version. Covered versions of a data item no
longer need to be (and should not be) written to persistent storage. The nodes that contain
covered versions are referred to herein as the “interested” nodes.

In addition to informing the requesting node that a data item has been written to
persistent storage, the master may send write-notification messages to inform all of the
interested nodes that the data item was written to persistent storage. The write-
notification messages to the other interested nodes may be sent immediately upon
receiving confirmation that the data item was written to persistent storage, or delayed
until some other event.

In another embodiment, to avoid the need for every node to ask the master every
time the node wants a dirty data item to be written to persistent storage, the master may
grant to a node “ownership permission” for the data item. While a node holds the
ownership permission for the data item, the node is free to write the data item to
persistent storage without sending a write-request message to the master of the data item.
The ownership permission may be éranted implicitly with ownership of the exclusive
lock, or it may be granted separately from and independent of the grant of an exclusive
lock.

According to one embodiment, a “global dirty” flag is maintained for a data item.
The global dirty flag is set to TRUE if a node transfers a dirty version of the data item to
another node. If the global dirty flag is set to TRUE when an owner writes a data item to
persistent storage, then the owner sends a write-confirm message to the master. The
master may then send write-notification messages to the interested nodes. On the other
hand, if the global dirty flag is set to FALSE, then the owner need not send a write-

confirm message to the master when the owner writes the data item.

-8-

WO 02/071229 PCT/US02/07475

DIRECT WRITE APPROACH

According to the direct write approach, the writing to persistent storage of a dirty
data item is coordinated using the master assigned to the data item. In particular, a node
that desires to write a dirty data item to persistent storage sends a write-request message
to the master assigned to the data item. The master may (1) grant the requesting node
permission to perform the write, or (2) inform the requesting node that another node has
already written to persistent storage a version that is at least as recent as the dirty version
stored in the requesting node.

More specifically, when a dirty data item is "pinged out" of a node's cache, i.e.
another node requires a current version of the same data item for read(S lock) or write(X
lock), the status of the data item in the sending node's cache is changed to PI. The data
item still remains in the dirty or checkpoint queue. When a clean data item is pinged out,
the data item can be either marked free or can remain in the cache to satisfy consistent
snapshot reads.

The master of the data item records the version number of the data item when the
data item is pinged out. Typically this version number is a log sequence nurﬁber (LSN), a
system commit number (SCN) or a globally unique timestamp that can be used to
correlate the version of the data item with the changes in the redo log. The checkpoint or
the cache writing subsystem will eventually need to write out the PI (or some successor
thereof) since the data item is still on the dirty or checkpoint queue.

According to the direct write approach, a message is sent to the master which
would either return with a status that a more recent version of the data item has been
written, or grant write permission to the requesting node. Further write requests for the
same data item from other nodes are queued until the writing node responds to the lock
manager with a write completion status. After a P is written to persistent storage, the
master of the data item records the version number of the PI as the version that is
currently on persistent storage.

Referring to Figure 1, it is a block diagram illustrating a system that employs the
direct write approach. Nodes 1, 2 and 3 have stored in their caches versions V1, V2, and
V3, respectively, of a particular data item. Assume that V3 >V2 > V1, where A >B
means that A is a newer version of the data item than B.

Master 100 is the master assigned to the data item. In the scenario illustrated in
FIG. 1, nodes 1 and 3 send write-requests to master 100. To prevent multiple nodes

writing the same data item at the same time, master 100 may contain, for example, a

9.

WO 02/071229 PCT/US02/07475

write-request queue for each data item. The write requests received for the data item are
stored in the write-request queue and processed serially by the master. In the illustrated
example, master 100 processes the write-request from node 3 first, while the write-request
from node 1 remains in the write-request queue. Master 100 responds to the write-request
of node 3 by sending node 3 a write-perform message that grants node 3 permission to
write V3 to persistent storage.

While the write-request has been granted to node 3, master 100 does not grant
write-to-persistent storage permission to any other node. Therefore, the write-request
from node 1 remains pending in the write—reqﬁest queue.

After node 3 has written V3 to persistent storage, node 3 sends master 100 a write
confirm message indicating that the write-to-persistent storage operation has been
completed, and that the write-to-persistent storage permission is being released by node 3.
Because V3 was newer than V1 and V2, V1 and V2 were covered by the writing of V3.

Master 100 then proceeds to process the next write-request in the queue. In the
present example, master 100 processes the write-request from node 1. The write-request
of node 1 is a request to write V1. Because V1 was already covered by the write of V3,
master 100 sends a write-notification message to node 1 indicating that V1 is already
covered. In response to the write-notification message, node 1 removes the entry for V1
from its checkpoint queue without writing V1 to persistent storage. Because node 1 now
knows that V1 is covered, node 1 need not retain a copy of V1 in memory.

According to one embodiment, node 2, which contains V2 that was covered by the
writing of V3, is not sent a write-notification message until node 2 sends master 100 a
write-request for V2.

INDIRECT WRITE APPROACH

Using the direct write approach, each node sends a write-request message for each
entry in the node’s checkpoint queue. In some cases, the node will receive a write-
perform message in response to the write-request. When a write-perform message is
received, the requesting node must perform a write operation. In other cases, the
requesting node will receive a write-notification in response to the write-request. When a
write-notification message is received, the requesting node does not need to perform the
write operation.

The indirect write approach attempts to increase the percentage of write-requests that are
answered with write-notification messages. To achieve this, master 100 is selective with
respect to the node that is asked to perform a write operation. In particular, master 100

may respond to a write-request message from one node by sending a write-perform

-10-

WO 02/071229 PCT/US02/07475

message to another node. The node to which a write-perform message is sent may be
selected based on a variety of factors, including the recentness of the version of the data
item stored in the cache. According to one embodiment, master 100 always sends the
write-perform message to the node that contains the current version of the data item,
regardless of the node that sent the write-request message.

More specifically, according to one embodiment, the master forwards write
requests to either the node that has the highest version among the past images, or
preferably the exclusive lock (X) holder (which would have the current version of the
data item). Forwarding the write request to the highest PI rather than to the exclusive lock
holder leaves the current data item continuously available for modification.

While a data item is being written to persistent storage, it may not be modified,;
therefore, to write a current data item that may be modified further, it is necessary either
to lock it to prevent modifications, or to "clone" it to have changes made to a different
copy. Locking is undesirable; if cloning is possible, it is preferable to direct the write
request to the node that has the current data item (i.e X lock or S lock).

Having the current version of the data written to persistent storage allows a
persistent storage write to cover as many changes as possible. When the write to
persistent storage completes, a message is sent to the master with a write completion
status and the version number of the data item that was written. The master records the
version number that is on persistent storage and sends write notification messages to all
nodes that have a PI version of the data item that is now covered by the persistent storage
write. When a node receives a write notification, the node can correctly advance its
checkpoint record and release the PI data items, provided all data items on its dirty or
checkpoint queue prior to the checkpoint record have either been written to persistent
storage or have received write notifications from the master due to writes of the same data
item in other nodes. The master logically maintains a queue of write requests when a data
item is being written, but only needs to record the version number of the highest write
request that it has received.

For example, in the scenario illustrated in FIG. 2, node 3 has not sent a write-
request message for V3 to master 100. However, in response to the write-request
message from node 1 to write version V1 of the data item, master 100 selects node 3 to be
the node to write the data item. Node 3 responds by writing V3 of the data item, and
sending a write-confirm message to master 100. Master 100 then sends a write-

notification message to node 1.

-11-

WO 02/071229 PCT/US02/07475

Because node 3 was selected for writing V3 to persistent storage, both V1 and V2
are covered. In contrast, if (according to the direct write approach) master 100 had given
node 1 permission to write V1, then V2 and V3 would not be covered. When it came
time to write V2 and V3 to persistent storage, separate write operations would have to be
performed.

The indirect write approach also attempts to reduce the number of write-request
messages that have to be sent to master 100 by preemptively sending write-notification
messages to interested nodes that have not sent write-request messages, as well as to
those that have. For example, in the scenario illustrated in FIG. 2, using the indirect write
approach, master 100 would also send a write-notification to node 2, even though node 2
has not sent a write-request for V2. According to one embodiment, master 100 sends
write-notification messages to all of the interested nodes.

When an interested node receives a write-notification, it removes the entry for the
corresponding version of the data item from its checkpoint queue. Using the indirect
write approach, many of the entries in the checkpoint queue may be removed in this
manner before a write-request would have to be sent for the entries. Consequently, the
number of write-request messages that are sent by a node may be significantly less than

the number of entries that were placed in its checkpoint queue.

OWNER-BASED WRITES

In both the indirect write approach and the direct write approach, write-requests
messages are sent to the master of the data item even when the data item has been dirtied
only in one node's cache. In many database systems a significant fraction of the database
working set may be partitioned between the nodes either by partitioning the internal
persistent storage structures between the nodes (e.g. separate data item freelists for each
node) or by application level routing of transactions to nodes. In such systems, a data item
will frequently have been dirtied in only one node’s cache. The owner-based write
approach avoids the need to send write-requests under these circumstances.

The owner-based write approach causes all writes of a data item to be made by the
node that is currently designated to be the “owner” of the data item. In contrast to the
direct and indirect write approaches, when the owner of the data item desires a version of
the data item to be written, the owner is allowed to write the data item to persistent

storage without sending a write-request message to the master of the data item.

-12-

WO 02/071229 PCT/US02/07475

Various factors may be used to select the node that acts as the owner of the data
item. According to one embodiment, the owner for a data item is selected based on the
following rules:

(1) if a node has been granted the exclusive lock for the data item, then that node
is considered the owner of the data item,; ‘

(2) if there are no exclusive lock holders, i.e. there are multiple share lock (S)
holders, then the node that had the exclusive lock on the data item most recently is
selected as the owner of the data item; and

(3) if the data item has never been dirtied by any node, then there is no owner for
the data item.

In a node that is the owner of a data item, the data item is linked to the node's dirty
or checkpoint queue even when it may not have been dirtied in that node.

After the owner of the data item writes the data item to persistent storage, the owner
determines whether the data item was “globally dirty”. A data item is globally dirty if
any modifications made by any node other than the owner have not been saved to
persistent storage by that node. If the data item was globally dirty, then the owner sends a
write-confirm message to the master. The master may then send write-notifications to the
interested nodes. If the data item was not globally dirty, then the owner need not send a
write-confirm message to the master.

Various techniques may be used to allow the owner of a data item to determine
whether the data item was globally dirty. According to one embodiment, a global dirty
flag is associated with the data item. When a node sends a dirty version of a data item to
another node without writing the data item to persistent storage, the sending node sets the
global dirty flag of the data item to TRUE. To determine whether a data item is globally
dirty, the owner merely needs to inspect the global dirty flag associated with the data
item. If the version of the data item that is written to persistent storage is either (1) the
current version of the data item, or (2) the latest PI version, then the owner sets the global
dirty flag to FALSE after writing the data item to persistent storage.

The global dirty flag of a data item may be stored in a variety of ways. For
example, when the data item is a data item in a database system, the global dirty flag may
be stored in (1) the block header of the block that stores the data item, (2) the data item
control block of the data item, (3) the lock structures in a local lock manager when the
lock is granted to the new owner of the data item, etc.

Referring to FIG. 3a, it illustrates a scenario in which the owner of a data item

(node 3) desires to write a data item to persistent storage, where the global dirty flag is set

-13-

WO 02/071229 PCT/US02/07475

to FALSE. As can be seen in FIG. 3a, under these circumstances, node 3 need not ask
permission from master 100. In addition, node 3 need not notify master 100 that the
write-to-persistent-storage operation was performed.

Referring to FIG. 3b, it illustrates a scenario in which the owner of a data item
(node 3) desires to write a data item to persistent storage, where the global dirty flag is set
to TRUE. In the illustrated scenario, nodes 1 and 2 have dirty versions V1 and V2 of the
data item that are older than the version V3 stored in node 3. Similar to the scenario
shown in FIG. 3a, in this scenario node 3 need not request permission to write V3 to
persistent storage. However, because the global dirty flag was TRUE, node 3 sends a
write-confirm message to master 100 after writing V3 to persistent storage. Master 100
then sends write-notification messages to nodes 1 and 2. After writing V3 to persistent
storage, node 3 sets the global dirt}./ flag to FALSE.

Referring to FIG. 3c, it illustrates a scenario in which a non-owner of a data item
(node 1) desires the data item to be written to persistent storage. In this scenario, node 1
sends a write-request message to master 100. Master 100 then sends a write-perform
message to the owner (node 3) of the data item. Node 3 writes V3 to persistent storage,
sets the global dirty flag to FALSE, and sends a write-confirm message to master 100.
Master 100 then sends write-notification messages to the interested nodes (nodes 1 and
2).

ROLE-BASED APPROACH

The owner-based write approach avoids the need for the owner of a data item to
get permission from the master of the data item before writing the data item to persistent
storage. However, to avoid the possibility of two nodes attempting to write the data item
to persistent storage at the same time, the ownership of the data item is not allowed to
change while the data item’s current owner is writing the data item to persistent storage.
Consequently, in systems where the holder of an exclusive lock is considered to be the
owner, the exclusive lock cannot be transferred to another node while the data item’s
current owner is writing the data item to persistent storage. As a result, the transfer of the
modify permission to a subsequent node that desires to modify the data item is delayed
until the data item is written to persistent storage. Such delays reduce the overall
performance of the system. In addition, it is undesirable for the owner of a data item to
have to link the data item in its dirty queue even though the owner may not have dirtied

the data item.

-14-

WO 02/071229 PCT/US02/07475

The role-based approach separates (1) ownership of an exclusive lock in a data
item from (2) permission to write the data item to persistent storage without sending a
write-request. Because ownership of an exclusive lock in a data item is separated from
permission to write the data item to persistent storage without sending a write-request, the
exclusive lock ownership of a data item may be transferred between nodes even when a
write-to-persistent storage operation is in progress.

According to the role-based approach, a lock role is assigned to each lock. The
lock role is "local" if the data item could be potentially dirty only in one node's cache.
Hence, when a lock on a data item is granted to a node for the first time in the entire
system, the lock is granted with local role. A data item under a lock with local role can be
both written to persistent storage and read from persistent storage by the node that holds
the lock without master intervention.

When a data item is pinged out from a node's cache because of a lock request from
a different node, the role for the lock is converted to "global" if the data item is dirty in
the holding node's cache. Otherwise, the lock that is transferred with the data item
remains under local role. Thus, a data item needs to be under global role only if there is at
least one PI for the data item in the multi-node system.

When a PI data item or a current data item in global role needs to be written to
persistent storage, its holding node sends to the master a write-request message with the
version number of the data item that needs to be written. The master can forward the
write request to either the node that has the current data item (X lock holder) or any PI
whose version number is greater than or equal to the version number of the PI that needs
to be written. When the write completes, the master sends write notifications to all nodes
that have Pls that are covered by the version of the data item that is written to persistent
storage.

Since the node that has the exclusive lock in global role also needs to coordinate
its write-to-persistent storage operations with the master, an exclusive lock can be
transferred to another node even while the data item under the exclusive lock is in the
middle of being written. For the same reason, a node does not link a data item into its
checkpoint or dirty queue unless it has been dirtied in that node. When a dirty data item is
pinged out while it is being written under local role, the lock role is switched to global
and the in-progress write is communicated to the master.

Referring to FIG. 4a, it illustrates a scenario in which the holder of a local-mode
lock (node 3) desires to write a version of the data item to persistent storage. Because the

lock held by node 3 is in local mode, node 3 writes the data item to persistent storage

-15-

WO 02/071229 PCT/US02/07475

without asking permission from master 100. Node 3 also need not inform master 100 that
the data item was written to persistent storage.

Referring to FIG. 4b, it illustrates a scenario in which the holder of a global-mode
lock (node 3) desires to write a version V3 of a data item to persistent storage. Because
the lock mode is global, it is possible that another node is writing the data item.
Therefore, node 3 sends a write-request message to master 100. In response to the write-
request message, master 100 selects a node to write out the data item. Preferably, master
100 selects a node that has a version of the data item that is at least as recent as V3. In
the present example, V3 is the current version of the data item. Consequently, master 100
sends back to node 3 a write-perform message.

In response to the write perform message, node 3 writes V3 to persistent storage,
and sends a write-confirm message back to master 100. Master 100 then sends a write-
notification message to the interested nodes (nodes 1 and 2).

If the version of the data item that is written to persistent storage is the current
version, then the node that writes the data item to persistent storage also converts the lock
from global mode to local mode. This conversion may be performed when the current
version is written to persistent storage. The node that writes the current version to
persistent storage is able to determine that the node is writing the current version based on
the fact that the node holds an exclusive lock on the data item. In the present example,
V3 is the current version, so after writing V3 to persistent storage, node 3 converts the
mode from global to local.

Referring to FIG. 4c, it illustrates a scenario in which a node (node 1) that is not
holding the current version of a data item requests for the data item to be written to
persistent storage. The sequence of events shown in FIG. 4c are the same as those in FIG.
4b, except that the write-request message comes from node 1 rather than node 3.

As illustrated in FIG. 4b, in contrast to the owner-based approach, under the role-
based approach the owner of an exclusive lock on a data item must still seek permission
to write the data item from the master 100 when the lock is in global mode. However,
unlike the owner-based approach, a data item (and the exclusive lock thereto) may be
transferred from one node to another without waiting for a write-to-persistent storage
operation to complete.

For example, FIG. 4d illustrates the same scenario as FIG. 4c, except that a node
(node 4) has requested exclusive ownership of the data item. Node 3 is able to transfer
the data item to node 4 even when node 3 is in the process of writing V3 to persistent

storage in response to the write-perform message. With the exclusive write lock, node 4

-16-

WO 02/071229 PCT/US02/07475

may proceed to modify the data item to create version V4. However, because the mode is
global, node 4 cannot write V4 to persistent storage.

In FIG. 4c, upon receipt of the write-confirm message from node 3, master 100
sends a convert-to-local message to node 4. In response to receiving the convert-to-local
message, node 4 converts the mode from global to local. After the mode has been
changed back to local, node 4 can write the data item to persistent storage and read the
data item from persistent storage without any permission from master 100.

In an alternative embodiment, master 100 does not send a convert-to-local
message in response to the write-confirm message. Without the convert-to-local
message, the mode of the exclusive lock will remain global in node 4. Because the mode
is global, node 4 will send a write-request to master 100 if node 4 wishes to write V4 to
persistent storage. In response to the write-request message, master 100 may send the
convert-to-local message to node 4. After the mode is converted to local, node 4 may

write V4 without further permission.

DELAYED WRITE NOTIFICATIONS

In the scenarios presented above, it was mentioned that the sending of write-
notification messages can be performed immediately to all interested nodes, or the
sending may be deferred to some or all of the interested nodes. According to one
embodiment, when a write-to-persistent storage operation is performed, a write-
notification message is immediately sent only to those nodes that have requested a write
for a PI that is covered by the write that has been performed. For example, in FIG. 1,
master 100 immediately sends a write-notification message to node 1, but not to node 2.

The version number of the data item on persistent storage can later be
communicated from the master to the other interested nodes using any one of a variety of
techniques. For example, the version number of the data item on persistent storage can be
communicated as part of (1) lock grant messages for new lock requests, or (2) ping
messages when the current version of a data item needs to be sent to another node. Hence,
when the other interested nodes need to write or replace their Pls, they can discard their

PIs by communicating only with the local lock manager.

BATCHED MESSAGES
Another technique for reducing the number of messages that are communicated
between a master and interested nodes involves batching the write-request messages and

the write-notification messages from and to the master into fewer larger messages in

-17-

WO 02/071229 PCT/US02/07475

order to reduce the number of messages. For example, if node 1 desires to advance its
checkpoint queue by three entries, node 1 may send a single write-request message to
master 100 that identifies all three data items (and their respective versions) that must be
written to persistent storage. Similarly, if node 1 is interested in three write-to-persistent
storage operations that have been completed, master 100 may send a single write-confirm
message to node 1 that identifies the three data items (and their respective versions) that

have been written to persistent storage.

CHECKPOINT QUEUES: MANAGING MULTIPLE PAST IMAGES
OF THE SAME DATA ITEM

In the scenarios presented above, it was assumed that each node's cache has at
most one PI for each data item. In reality, a data item may circulate several times through
multiple nodes before some version of the data item is written to persistent storage. It
would be correct to create a PI every time a dirty data item is pinged out to another node
and have entries for several Pls at different positions in the dirty or checkpoint queue in a
node's cache.

For example, FIG. § illustrates a scenario in which the checkpoint queue 500 of a
node has three entries for a particular data item (data item 5). In particular, checkpoint
queue 500 has a head 502 and a tail 504 and three entries 506, 508 and 510 that
correspond to versions V1, V6 and V8 of data item 5. Similarly, FIG. 6 illustrates a
scenario in which the checkpoint queue 600 of another node has two entries for data item
5. In particular, entries 606 and 608 correspond to versions V3 and V7 of data item 5.

For the purpose of explanation, it shall be assumed that checkpoint queue 500 is
the checkpoint queue for a node A (not shown), and that checkpoint queue 600 is the
checkpoint queue for a node B (not shown).

The master of a data item is updated with the version number of the most recent PI
that is created after a dirty data item is transferred to another node. Thus, when node A
creates V1 of data item 5 and transfers data item 5 to another node, the master of data
item § is updated to indicate that node A has V1. When node A subsequently creates V6
of data item 5 and transfers data item 5 to another node, the master of data item 5 is
updated to indicate that node A has V6. Similarly, when node A subsequently creates V8
of data item 5 and transfers data item 5 to another node, the master of data item 5 is
updated to indicate that node A has V8.

However, a PI occupies memory in the cache and cannot be replaced until it or a

more recent version is written to persistent storage. Hence, when a dirty data item is

-18-

WO 02/071229 PCT/US02/07475

transferred out of a cache, the newly created PI may be merged with (replace) the
previous PI, if one exists. The checkpoint entry associated with the merged PI, however,
must remain in the same position in the dirty or checkpoint queue as the entry of the
earliest version that was involved in the merger, because a checkpoint cannot be
considered complete until the changes that were made to the data item when the first PI
was created are reflected on the persistent storage version of the data item. Further, the
merged entry cannot be removed from the checkpoint queue until the latest version in the
merger is covered by a write-to-disk operation.

For example, FIG. 7 illustrates checkpoint queue 500 were the entries 506, 508
and 510 for versions V1, V6 and V8 of data item 5 are merged into a single entry 702.
The single entry 702 is located at the position that was occupied by entry 506, because

entry 506 was the earliest entry involved in the merger.

PARTIALLY-COVERED MERGED ENTRIES

When PIs of a data item are merged, it is possible that when a version of the data
item is written to persistent storage on a different node, the version covers some but not
all of the changes that are reflected in the merged P1. For example, if node B writes V7
of data item 5 to persistent storage, then only the changes associated with V1 and V6 of
the merged entry 702 are covered. The changes that are associated with V8 are not
covered.

When the persistent storage version completely covers the changes contained in a
merged PI, the entry for the PI can be discarded and the checkpoint can be advanced past
the earliest change made in the PI. For example, if V9 of data item 5 had been written to
persistent storage, then merged entry 702 could be discarded.

On the other hand, when a persistent storage write covers only some of the
changes of a merged PI, then the entry for the merged PI cannot be discarded. For
example, even though the writing of V7 to persistent storage would allow non-merged
entries 506 and 508 to be removed from checkpoint queue 500, it does not allow the
merged entry 702 to be removed from checkpoint queue 500.

Although the entry for a partially covered merged PI cannot be discarded, the
entry can be moved in the dirty or checkpoint queue to the position of the entry for the
version that is just after the version that was written to persistent storage. For example,
after V7 of data item 5 is written to persistent storage, entry 702 can be moved to the
position in checkpoint queue 500 at which the entry for V8 of data item 5 (i.e. entry 510)
had been located. This allows the checkpoint to proceed until the first entry that is not

-19-

WO 02/071229 PCT/US02/07475

covered by the written-to-disk version, without being blocked by the entry for the merged
PL

AVOIDING THE CREATION OF PARTIALLY-COVERED MERGED ENTRIES

In some systems, the dirty or checkpoint queues are implemented as a linked list.
It may be expensive, in terms of CPU usage, to scan the linked list and insert a merged
entry in the correct position within the queue. An in-memory index can be implemented
to facilitate this, but that would cause extra overhead when linking data items to the
checkpoint queues.

According to one embodiment, the overhead associated with moving partially
covered merged entries is avoided by avoiding the creation of partially covered moved
entries. Specifically, when a merge operation is likely to create a merged entry that
would be partially covered, the merge operation is not performed.

According to one embodiment, when (1) a version of a data item is being written
to persistent storage, and (2) the data item is transferred between nodes, the master
communicates the version number of the data item that is currently being written to
persistent storage (the “being-written” version) to the node to which the data item is being
transferred (the “receiving” node). The receiving node thus knows not to merge any
version of the data item that is the same as or earlier than the being-written version with
any version of the data item that is later than the being-written version.

Referring again to FIGs. 5 and 6, assume that node A is in the process of writing
V6 of data item 5. Before the write operation is complete, node A sends data item 5 to
node B, and node B modifies the received version of data item 5 to create V7 of data item
5. The master informs node B that V6 of data item 5 was written to persistent storage
when the master sends a ping to node B. Consequently, node B does not merge V7 of
data item 5 with V3 of data item 5, because the resulting merged data item would only be
partially covered by the writing of V6. Because the writing of V6 fully covers V3, after
the writing of V6 is completed, node B may discard V3, and remove entry 606 from
queue 600. ‘

Thus, while a write-to-persistent storage operation is in progress, PIs and entries
associated with versions that are at least as old as the being-written version may be
merged with each other, and PIs and entries associated with versions that are newer than
the being-written version may be merged with each other. However, Pls associated with
versions that are at least as old as the being-written version should not be merged with the

PlIs associated with versions that are newer than the being-written version.

-20-

WO 02/071229 PCT/US02/07475

Using this technique in a system where the holder of the most recent version
always performs the write-to-persistent storage operation ensures that no merged PIs will
ever be partially covered by a write-to-persistent storage operation. Specifically, when a
node is pinged to send a data item that is undergoing a write-to-persistent storage
operation, it will not merge the new version of the data item with older versions. If the
data item is not undergoing a write-to-persistent storage operation, then the received data
item will be the most recent version, and no other node will thereafter be asked to write
an earlier version of that data item to persistent storage.

An alternative scheme to avoid writes covering partial changes is to heuristically
determine when to create new checkpoint queue entries rather than merging with existing
checkpoint queue entries. For example, assume that a checkpoint queue entry exists for
versions V7 of data item 3. It may be necessary to determine whether to create a new
entry for a new version of data item 3, or merge the new version with the existing entry.
The decision of whether to merge may be decided heuristically based, for example, on
how old the first change made to the existing entry is with respect to (1) the most recent
change present in the redo log and (2) the earliest change made to the data item at the
head of the dirty or checkpoint queue. This heuristic estimates the probability that the PI
associated with the existing entry would be written (or covered by a write) fairly soon,
and enables the node to extend the checkpoint past the first change in the PL

For example, if the most recent change in the redo log corresponds to a time that
is much later than V7, and the data item at the head of the checkpoint queue is associated
with a time that is close to V7, then there is a higher probability that the PI associated
with the existing entry will be written (or covered by a write) soon, and therefore a
separate entry should be made for the new version. On fhe other hand, if the most recent
change in the redo log corresponds to a time that is close to V7, and the data item at the
head of the checkpoint queue corresponds to a time that is much earlier than V7, then
there is a lower likelihood that the PI associated with the existing entry would be written
(or covered by a write) soon. Therefore, the new version should be merged into the

existing entry.

SINGLE-NODE-FAILURE CHECKPOINT QUEUES
As mentioned above, the entry at the head of a checkpoint queue determines the
position, within a redo log, where recovery processing must begin after a failure. For an

accurate recovery, it is safe to begin processing the redo log from the location that

21-

WO 02/071229 PCT/US02/07475

corresponds to the entry at the head of the checkpoint queue regardless of how many of
the nodes within a cluster were involved in the failure.

According to one embodiment, a checkpoint mechanism is provided to keep track
of two checkpoints for each node: a multiple-failure-checkpoint and a single-failure
checkpoint. The multiple-failure-checkpoint indicates the position to begin processing
the redo of the node after a multiple-node failure involving the node. The single-failure-
checkpoint indicates the position to begin processing the redo log of the node after a
single-node failure of the node.

As shall be described hereafter, entries may be removed from the single-failure-
checkpoint queue under circumstances that do not allow them to be removed from the
multiple-failure-checkpoint queue. Consequently, the single-failure-checkpoint will
typically be advanced further than the multiple—failufe-checkpoint. Because the single-
failure checkpoint is further advanced, maintaining the single-failure-checkpoint results in
less work that has to be performed to recover from a single node failure.

With respect to advancing the checkpoints, the multiple-node-failure checkpoint
of the node does not change when a node transfers a dirty data item to another node.
Because the data item was dirty, there is an entry for the data item in the multiple-failure-
checkpoint queue. That entry remains in the multiple-failure-checkpoint queue after the
dirty data item is transferred.

In contrast, the entry associated with a dirty data item is removed from the single-
failure-checkpoint queue when the dirty data item is transferred to another node. It is safe
to remove the entry for the transferred dirty item from the single-failure-checkpoint queue
because the changes made to the dirty data item will not be lost if only the transferring
node fails. In response to the failure of only the transferring node, the changes made by
the transferring node are reflected in the version of the data item sent to the receiving
node. Under these circumstances, the responsibility for ensuring that the changes are
saved to persistent storage are transferred with the data item. Thus, even if the receiving
node does not perform any further modifications to the data item, the receiving node must
either (1) ensure that the changes made by the transferring node (or redo for the changes)
are written to persistent storage, or (2) transfer the dirty data item (and the
responsibilities) to yet another node.

The transfer of a dirty data item to another node allows the transferring node to
remove the entry for the transferred data item from its single-node-failure checkpoint
queue. Consequently, a node that desires to advance its single-node-failure checkpoint

queue can simply transfer to another node the dirty data item that corresponds to the entry

22-

WO 02/071229 PCT/US02/07475

at the head of its single-node-failure checkpoint queue. The transfer of the dirty data item
may be performed for this purpose even if the node that receives the dirty data item never
requested the data item.

The two checkpoints may be implemented in a variety of ways, and the present
invention is not limited to any particular implementation. For example, the single-failure-
checkpoint queue and the multiple-failure-checkpoint queue may be maintained as two
entirely separate queues. Alternatively, a single “combined” queue of entries may be
maintained to serve both as the single-failure-checkpoint queue and the multiple-failure-
checkpoint queue. When a combined queue is used, a pointer may be used to identify,
within the combined queue, which entry is at the head of the single-failure-checkpoint
queue. When entries are removed from the multiple-failure-checkpoint queue, they are
removed from the combined queue. When entries are removed from the single-failure-
checkpoint queue, they are marked accordingly, but are not removed from the combined

queue.

BIN-BASED BATCHING

According to the bin-based batching approach, two separate checkpoint queues
are maintained in a node: a globally-dirty checkpoint queue and a locally-dirty checkpoint
queue. The locally-dirty checkpoint queue of a node includes entries for data items that
are dirty only in that node. The globally-dirty checkpoint queue of a node includes
entries for data items that have also been dirtied in other nodes.

According to one embodiment, the entries in the globally-dirty checkpoint queue
are grouped into “bins”. Each bin is associated with a range of time, and contains those
entries that are for versions of data items that were first dirtied within that range of time.
Thus, if a merged entry corresponds to those versions of a data item that were made when
the data item was dirtied at times T7, T9 and T12, then the merged entry would fall into
the bin that corresponds to the time range that includes T7, since T7 is the “first-dirtied
time” covered by the entry.

For example, FIG. 8 illustrates a globally-dirty checkpoint queue 800 of a node X
that has been divided into bins 812, 814 and 816. Bin 812 is associated with the time
range T15 to T25 and contains entries for the globally dirty data items that have first-
dirtied times between T15 and T25. Bin 814 is associated with the time range T16 to T35
and contains entries for the globally dirty data items that have first-dirtied times between
T16 and T35. Bin 816 is associated with the time range T36 to T45 and contains entries
for the globally dirty data items that have first-dirtied times between T36 and T45.

23-

WO 02/071229 PCT/US02/07475

According to an embodiment, each bin is assigned a version number. The version
number of a bin may be, for example, the first-dirtied time value of any entry in that bin.
For example, bin 812 includes three entries 805, 806 and 807 that are respectively
associated with V1 of data item 1, V1 of data item 5, and V3 of data item 8. Assume that
V1 of data item 1, V1 of data item 5, and V3 of data item 8 were first dirtied at times T17,
T19 and T23, respectively. In this scenario, T23 is the highest first-dirtied time of any PI
in bin 812. Hence, bin 812 would be assigned the version number T23.

According to one embodiment, the number of write-request messages is reduced
by having the persistent storage writing subsystem issue write-requests to a master on a
bin-by-bin basis, rather than on an entry-by-entry basis. For example, to advance
checkpoint queue 800, the node X sends the master a single write-request message for the
writing of the data items that correspond to all entries in bin 812. The write-request
message may simply identify bin 812 by the version number T23 (and not the specific
entries within the bin). In response to the write-request, the master sends write-perform
messages to the current lock holders of all data items that have a PI1 whose first-dirtied
time is less than or equal to the version number specified in the write-request. In the
present example, the master sends write-perform messages to the current lock holders of
all data items that have a PI whose first-dirtied time is less than or equal to T23.

When each node finishes writing to disk all dirty data items whose earliest change
is on or before T23, the node sends a write-confirm message to the master. When the
master receives write-confirm messages from all nodes to which write-perform messages
were sent, the master sends write-notification messages to all nodes to inform them that
the requested writes have been completed. In response, every node can empty the
corresponding bin. For example, when node X is informed that all data items with first-
dirtied times on or before T23 have been written to disk, then node X may empty bin 812.
Bin 812 may be emptied by (1) discarding all entries that do not cover changes made after
T23, and (2) moving to other bins those entries within bin 812 that do cover changes
made after T23. For example, if entry 806 was a merged entry that covered changes
made at T19 and T40, then when bin 812 is emptied, entry 806 is moved to bin 814.

According to one embodiment, the master tracks both (1) the first-dirtied time of a
PI and (2) the version number associated with the last change to the PI (the “last-dirtied
time”). For example, for merged entry 702, the master would know that merged entry is
for version V8 (the latest version in the merged entry) and version V1 (the earliest version
in the merged entry). In such an embodiment, when a node receives a write-notification

from the master with a version number of a bin, it empties the bin by discarding all entries

24-

WO 02/071229 PCT/US02/07475

in the bin whose last-dirtied times are less than or equal to the bin version number, and
(2) moving all entries in the bin whose last-dirtied times are greater than the bin version
number into the next bin in the queue. In this scheme, when a new Pl is created because a
dirty data item is transferred to another node, the entry for the new PI can always replace
the entry for the older PI, if any, in the older PI's bin because the entry for the resulting
merged PI can then be easily moved to its appropriate bin when there is a write that
partially covers changes contained in the PL

Bin-based batching is generally more suitable to multi-node systems that use a
global master rather than a distributed lock manager. The messages to the current lock
holders can be easily batched because they are generated at the same time. In essence,
instead of tracking the version numbers of data items that are on persistent storage and the
version numbers of data items that are in the process of being written, the master also
tracks the persistent storage version number for all globally dirty data items, much like a

checkpoint record tracks the changes for all the dirty data items in a node.

RECOVERY

It is important to keep track of the write-to-disk operations that are performed in a
multi-node system. Such information is critical, for example, for determining which
entries can be removed from checkpoint queues, and for determining whether past images
of data items can be written-to-disk and/or deallocated (“flushed”) from cache.
Specifically, a version of a data item should never be written to disk if a later version of
the data item has already been written to disk. Further, PI versions of a data item may be
flushed from cache when a more recent version of the data item has been written to disk.

Under certain circumstances, it can be unclear whether a write-to-disk operation is
successfully performed. For example, if a node writing a data item to disk fails during the
write operation, it may be unclear whether the failure occurred before or after the write
operation was successfully completed. Similarly, if the node on which the master of a
particular data item resides fails, the failure may result in a loss of information about the
data item. Such information may include information that indicates the last version of the
data item to be written to disk.

When a situation occurs where it is unclear whether a write-to-disk operation was
successfully performed, the issue may be resolved by scanning the data items on disk to
determine their versions. However, scanning the disk as part of the recovery operation
would consume a significant amount of time and resources, and may unduly delay the

availability of the data.

-25-

WO 02/071229 PCT/US02/07475

According to one aspect of the invention, the need to scan the on-disk data items
is avoided by (1) if it is unclear whether a particular version of a data item has been
written to disk and the recovery information (e.g. redo log) indicates that the particular
version was written to disk, causing the recovery process to assume that the particular
data item was successfully written to disk, and (2) marking all earlier cached versions of
that data item as “suspect”. After the recovery operation, the system may then proceed |
under the opposite assumption. Specifically, the system proceeds under the assumption
that the particular version of the data item was not written to disk. However, prior to
writing any suspect version of the data item to disk, the system reads the version of the
data item that resides on disk. If the on-disk version of the data item is more recent, then
the write-to-disk operation is not performed, and the master is informed of which version
is on disk. Optionally, the master then sends write-notification messages to all nodes that
hold versions that are covered by the version that is on the disk. On the other hand, the
data item is recovered.

Similarly, when a node requests the current version of a data item, the requesting
node cannot be supplied a suspect version of the data item because the disk may contain a
more recent version of the data item. Instead, the on-disk version of the data item is read
from disk. Ifthe version of the data item that is read from disk is the most recent version,
then that version is provided to the requesting node. If the on-disk version of the data
item is not the most recent version, then the most recent version is created based on the

recovery information maintained in the redo log of the node that had failed.

MANAGING CHECKPOINTS WITHOUT RETAINING PAST IMAGES

In many of the scenarios given above, it was assumed that each node is configured
to retain a PI until the PI is covered by a write-to-disk operation. However, according to
one embodiment of the invention, such PIs are not retained.

Specifically, each node maintains a globally-dirty checkpoint queue and a locally-
dirty checkpoint queue. The dirty data items associated with the entries in the locally-
dirty checkpoint queue are retained until covered by a write-to-disk operation. However,
the Pls associated with the entries in the globally-dirty checkpoint queue need not be
retained in that manner.

In this embodiment, the right to perform write-to-disk operations is tied to the
mode of the lock held on the data item, as described above. Specifically, a node has the

right to perform a write-to-disk operation for a data item if (1) the node holds the

-26-

WO 02/071229 PCT/US02/07475

exclusive lock for the data item, or (2) no node holds the exclusive lock for the data item,
and this node was the most recent node to hold the exclusive lock.

Since a node will have the exclusive lock for all data items that are locally dirty,
the node will be able to write the data items associated with the locally-dirty queue to disk
without master intervention. The node may also have an exclusive lock, or have held the
most recent exclusive lock, for a data item associated with an entry in the globally-dirty
queue, and therefore be able to write that data item to disk without master intervention.

Because the node does not retain a PI when a dirty data item is pinged out of the
cache, special recovery processing is required. Specifically, when the current version of
the data item is lost during data item transfer or due to node failure, the system applies
changes from the merged redo logs of all nodes to the data item on persistent storage in
order to reconstruct the current version of the data item. The location, within each redo
log, where recovery processing must begin is determined by a checkpoint associated with
the node. A checkpoint in a node cannot be considered complete unless a version of the
data item containing changes made in the node prior to the checkpoint is on persistent
storage. Hence, when a dirty data item is pinged out to another node, rather than
retaining a past image of the data item in any checkpoint queue, the data item itself may
be discarded, and the data item header or control block is linked into the globally-dirty
queue.

The globally-dirty queue is ordered by the first-dirtied times associated with the
entries and is similar to the locally-dirty queue, except that there is no real data item
associated retained for each of the entries (i.e. the data item's contents are not present in
the cache of the node). The checkpoint in a node will be the lower of the first-dirtied time
of the entry at the head of the locally-dirty queue and the first-dirtied time of the entry at
the head of the globally-dirty queue.

When a node wants to advance its checkpoint, it can write the data items in the
locally-dirty queue without master intervention (because there is never a possibility of
two nodes writing the same data item at the same time) or send a write request to the
master for writing out the data item at the owner node that corresponds to a more current
version of the data item header in the globally-dirty queue.

According to an alternative embodiment, two checkpoint records are stored in
each node (one for each queue). The first checkpoint record would indicate a time TX,
where all changes made to data items that are presently dirty in the node's cache prior to
TX have been recorded on the version of the data item that is on persistent storage. The

second checkpoint record would consist of the list of data items, along with the version

27-

WO 02/071229 PCT/US02/07475

numbers of the first change made in this node, that were once dirtied in this node but have
since been pinged out and not written to persistent storage. The cache loses track of the
dirty data item once it has been pinged out, while still leaving the lock open in the master
(i.e. the locks are not closed until there is a write notification).

On a node failure, the starting position for scanning the redo log on the failed node
is computed by determining the lesser of (1) the position in the log as determined by the
first checkpoint record (call it a local checkpoint record) and (2) the positions in the log as
determined by the earliest change made to the list of the data items in the second
checkpoint record (which may be considered that particular node's part of a global
checkpoint record).

During recovery, only those log records that correspond to the data items present
in the global checkpoint record need to be considered for potential redo for the portion of
the log between the global checkpoint record of a node to the local checkpoint record of
the node (assuming that the global checkpoint record is behind the local checkpoint
record). Once the local checkpoint record is reached, all log records need to be considered
for potential redo until the end of the log is reached.

This scheme is superior to prior approaches in that it limits the list of data items in
the second checkpoint record to only data items that had been previously dirtied in this
node (as opposed to all dirty data items in the entire system). Second, each node's global
checkpoint record can be written independent of other nodes (i.e. there is no need for
coordinating a global master or GLM checkpoint). Finally, the portion of each node's redo
log that needs to be scanned during recovery is always shorter because the redo log for
every node does not need to be scanned from the earliest unwritten change in the entire
system.

Further, prior persistent storage write protocols, in the presence of a global cache,
assume access to a synchronized global clock, where values from the clock are used as
log sequence numbers (LSNs). The techniques presented herein do not need access to a
synchronized global clock. Further, prior techniques require a global master (GLM) that
maintains lock coherency and the recovery sequence numbers of the dirty data items in
the cluster. In addition, prior techniques cannot be easily extended to systems where the

master is distributed across several nodes (DLM).

HARDWARE OVERVIEW
Figure 9 is a data item diagram that illustrates a computer system 900 upon which

an embodiment of the invention may be implemented. Computer system 900 includes a

28-

WO 02/071229 PCT/US02/07475

bus 902 or other communication mechanism for communicating information, and a
processor 904 coupled with bus 902 for processing information. Computer system 900
also includes a main memory 906, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 902 for storing information and instructions to be
executed by processor 904. Main memory 906 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 904. Computer system 900 further includes a read only memory
(ROM) 908 or other static storage device coupled to bus 902 for storing static information
and instructions for processor 904. A storage device 910, such as a magnetic persistent
storage or optical persistent storage, is provided and coupled to bus 902 for storing
information and instructions.

Computer system 900 may be coupled via bus 902 to a display 912, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
914, including alphanumeric and other keys, is coupled to bus 902 for communicating
information and command selections to processor 904. Another type of user input device
is cursor control 916, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 904 and for
controlling cursor movement on display 912. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The invention is related to the use of computer system 900 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 900 in response to processor 904 executing
one or more sequences of one or more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from another computer-readable
medium, such as storage device 910. Execution of the sequences of instructions
contained in main memory 906 causes processor 904 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 904 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and

transmission media. Non-volatile media includes, for example, optical or magnetic

-29.

WO 02/071229 PCT/US02/07475

persistent storages, such as storage device 910. Volatile media includes dynamic
memory, such as main memory 906. Transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus 902. Transmission media can
also take the form of acoustic or light waves, such as those generated during radio-wave
and infra-red data communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 904 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
900 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 902. Bus 902 carries
the data to main memory 906, from which processor 904 retrieves and executes the
instructions. The instructions received by main memory 906 may optionally be stored on
storage device 910 either before or after execution by processor 904.

Computer system 900 also includes a communication interface 918 coupled to bus
902. Communication interface 918 provides a two-way data communication coupling to
a network link 920 that is connected to a local network 922. For example,
communication interface 918 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 918 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 918 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

Network link 920 typically provides data communication through one or more
networks to other data devices. For example, network link 920 may provide a connection

through local network 922 to a host computer 924 or to data equipment operated by an

-30-

WO 02/071229 PCT/US02/07475

Internet Service Provider (ISP) 926. ISP 926 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 928. Local network 922 and Internet 928 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 920 and through communication
interface 918, which carry the digital data to and from computer system 900, are
exemplary forms of carrier waves transporting the information.

Computer system 900 can send messages and receive data, including program
code, through the network(s), network link 920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested code for an application program
through Internet 928, ISP 926, local network 922 and communication interface 918.

The received code may be executed by processor 904 as it is received, and/or
stored in storage device 910, or other non-volatile storage for later execution. In this
manner, computer system 900 may obtain application code in the form of a carrier wave.
In the foregoing specification, the invention has been described with reference to specific
embodiments thereof. It will, however, be evident that various modifications and changes
may be made thereto without departing from the broader spirit and scope of the invention.
The specification and drawings are, accordingly, to be regarded in an illustrative rather

than a restrictive sense.

31-

WO 02/071229 PCT/US02/07475

CLAIMS

What is claimed is:

1. A method for managing caches in a system with multiple caches that may contain

different copies of a data item, comprising the steps of:

‘modifying the data item in a first node of said multiple caches to create a modified
data item;

sending the modified data item from said first node to a second node of said
multiple caches without durably storing the modified data item from said
first node to persistent storage;

after said modified data item has been sent from said first node to said second
node, said first node sending a request to a master of said data item for
writing said data item to persistent storage; and

in response to said request, said master coordinating with said multiple caches to

cause said data item to be written to persistent storage.

2. The method of Claim 1 wherein:
the method includes the step of maintaining, within an ordered series of bins,
entries for past-image versions of data items;
each bin in said ordered series corresponds to a time range;
a particular bin corresponds to the time range that covers the time at which the
data item is modified in said first node; and
the step of sending a request is performed by sending a request for writing a

particular bin of said ordered series of bins to persistent storage.

3. The method of Claim 2 wherein the step of said master coordinating with said
multiple caches to cause said data item to be written to persistent storage includes
said master causing said multiple caches to write data items to persistent storage
to cover all past image versions of data items that were modified during the time

range of said particular bin.

4. The method of Claim 3 further comprising the step of emptying said particular bin

after said multiple caches write data items to persistent storage to cover all past

-32-

WO 02/071229 PCT/US02/07475

10.

image versions of data items that were modified during the time range of said

particular bin.

The method of Claim 4 wherein the step of emptying said particular bin includes

the steps of:

discarding entries within said particular bin that are associated with past images
that have last-dirtied times within the time range of said particular bin; and

moving to one or more other bins the entries within said particular bin that are
associated with past images that have last-dirtied times later than the time

range of said particular bin.

The method of Claim 1 wherein the step of sending a request to a master is

performed by sending the request to a global lock manager.

The method of Claim 1 wherein the step of sending a request to a master is
performed by sending the request to a lock manager that is one of a plurality of

lock managers within a distributed lock management system.

The method of Claim 1 further comprising the step of sending from the master, to
interested nodes, write-notification messages indicating that said data item has
been written to persistent storage, in response to said data item being written to

persistent storage.

The method of Claim 8 wherein the step of sending write-notification messages
includes the master sending to at least one interested node a single message that
notifies said at least one interested node that a plurality of data items have been

written to persistent storage.

The method of Claim 1 wherein the step of said first node sending a request to a
master of said data item for writing said data item to persistent storage includes
the first node sending to said master a single message that requests writing a
plurality of data items to persistent storage, wherein said plurality of data items

includes said data item.

233

WO 02/071229 PCT/US02/07475

11.

12.

13.

14.

15.

16.

17.

The method of Claim 10 wherein the step of sending a single message includes
sending a message that identifies a bin to request that all data items that belong to

the bin be written to persistent storage.

The method of Claim 11 wherein the bin is associated with a range of time and
includes data items that were first dirtied by the first node during said range of
time and that were subsequently transferred to other nodes without first being

written to persistent storage.

The method of Claim 8 wherein the step of sending from the master to interested

nodes write-notification messages includes the steps of:

immediately sending write-notification messages to a first set of interested nodes,
where said first set of interested nodes includes the interested nodes that
have requested said data item to be written to persistent storage; and

delaying the sending of write-notification messages to a second set of nodes,
where said second set of nodes includes interested nodes that do not

belong to said first set of interested nodes.

The method of Claim 8 wherein the step of sending from the master to interested
nodes includes delaying the sending of write-notification messages to at least one

interested node.

The method of Claim 14 wherein a write-notification message is sent to the at
least one interested node in response to a lock request made by said at least one

interested node.

The method of Claim 14 wherein a write-notification message is sent to the at
least one interested node in response to the at least one interested node requesting

that said data item be written to persistent storage.

The method of Claim 14 wherein a write-notification message is sent to the at
least one interested node within a ping request that the master sends to the at least
one interested node for the at least one interested node to transfer another data

item to another node.

-34-

WO 02/071229 PCT/US02/07475

18.

19.

20.

21.

22.

23.

The method of Claim 1 wherein the step of coordinating includes the steps of:

determining whether a version of said data item, that is at least as recent as said
modified version, has already been written to persistent storage; and

if a version of said data item that is at least as recent as said modified version has
already been written to persistent storage, then sending a write-notification
message from said master to notify said first node that a version of said
data item that is at least as recent as said modified version has already been

written to persistent storage.

The method of Claim 18 wherein the step of coordinating includes, if a version of
said data item that is at least as recent as said modified version has not already
been written to persistent storage, then sending a write-perform message from said

master to grant permission for said modified version to be written to persistent

_storage.

The method of Claim 1 wherein the step of coordinating includes the

steps of:

selecting a particular node of said multiple caches that has a particular version of
said data item, wherein said particular version is at least as recent as the
modified data item in said first node; and

causing said particular version of said data item to be written from said particular

node to persistent storage.

The method of Claim 20 wherein the step of selecting a particular node includes
selecting the node, of said multiple caches, that has a most recently modified

version of said data item.

The method of Claim 20 further comprising the step of the master informing the
first node that said data item has been written to persistent storage in response to
the master receiving confirmation that said particular version of said data item has

been written to persistent storage.

The method of Claim 20 further comprising the step of the master informing a set
of caches that said data item has been written to persistent storage in response to

the master receiving confirmation that said particular version of said data item has

-35-

WO 02/071229 PCT/US02/07475

been written to persistent storage, wherein said set of caches includes caches,
other than said particular node, that contain modified versions of said data item

that are not more recent than said particular version.

24. A method for managing caches in a system with multiple caches that may contain
different copies of a data item, comprising the steps of:
modifying the data item in a first cache to create a modified data item;
in response to writing the modified data item to persistent storage, performing the
steps of:

a node associated with the first cache determining whether any other cache
in said multiple caches had created a dirty version of said data
item; and

if any other cache in said multiple caches had created a dirty version of
said data item, then the node associated with the first cache
informing a master of said data item that said modified data item
has been written to persistent storage; and |

if no other cache in said multiple caches had created a dirty version of said
data item, then the step of writing the modified data item is
performed without informing said master that said modified data

item has been written to persistent storage.

25. The method of Claim 24 wherein the step of determining whether any other cache
in said multiple caches had created a dirty version of said data item includes

inspecting a global dirty flag associated with said data item.

26. The method of Claim 25 wherein:
prior to modifying the data item in said first cache, the data item had been
modified in a second cache;
the data item is not persistently stored between being modified in said second
cache and being modified in said first cache; and
a node associated with the second cache causes said global dirty flag to be set to

indicate that said data item is globally dirty.

-36-

WO 02/071229 PCT/US02/07475

27.

28.

29.

30.

31

The method of Claim 26 wherein the node associated with the second cache
causes said global dirty flag to be set in response to transferring said data item

from said second cache to another cache of said multiple caches.

A method for managing caches in a system with multiple caches that may contain
different copies of a data item, comprising the steps of:
modifying the data item in a first cache to create a modified data item;
when a node associated with the first node desires to write said modified data item
to persistent storage, performing the steps of:
if then node associated with the first cache does not currently have
ownership rights to said data item, then the node associated with
the first cache sending a request to a master of said data item for
said data item to be written to persistent storage; and
if said node associated with said first cache currently has ownership rights
to said data item, then the first node writing said data item to
persistent storage without sending a request to said master for said

data item to be written to persistent storage.

The method of Claim 28 further comprising the step of designating holders of

exclusive locks in data items to be owners of said data items.

A method for managing a data item, the method comprising the steps of:
when a node that has an exclusive lock on a data item desires to write the data
item to persistent storage, performing the steps of
determining whether a mode associated with the data item is local or
global;
if the mode associated with the data item is local, then the node writing the
data item to persistent storage without communicating with a
master of said data item; and
if the mode associated with the data item is global, then the node sending a
message to the master of the data item to request writing of said

data item to persistent storage.

The method of Claim 30 wherein:

the mode associated with the data item is global; and

37-

WO 02/071229 PCT/US02/07475

32.

33.

34.

35.

36.

37.

the method further includes:
the node receiving permission from the master to write the data item to
persistent storage; and
after writing the data item to persistent storage, changing the mode from

global to local.

The method of Claim 30 wherein:
the mode associated with the data item is local; and
before the node has completed writing of the data item to persistent storage, the

node transfers the exclusive lock on the data item to another node.

The method of Claim 32 wherein the node changes the mode from local to global

prior to transferring the exclusive lock on the data item to another node.

The method of Claim 32 wherein the node informs the master when the node has

completed writing the data item to persistent storage.

The method of Claim 32 wherein the master informs the other node that the node
has completed writing the data item to persistent storage in response to the node
informing the master that the node has completed writing the data item to

persistent storage.

The method of Claim 33 wherein the other node changes the mode from global to
local in response to a message from the master after the node has informed the

master that the node has completed writing the data item to persistent storage.

A method for managing a data item, the method comprising the steps of:
when a data item 1s transferred from one node to another node, performing the
steps of
if the data item has been dirtied by the node and a mode associated with
the data item is local, then changing the mode from local to global
prior to sending the data item to another node;
if the data item has not been dirtied by the node and the mode associated
with the data item is local, then sending the data item to the other

node without changing the mode;

-38-

WO 02/071229 PCT/US02/07475

38.

39.

40.

41.

allowing the other node to write the data item to persistent storage without
requesting permission if the mode is local; and
requiring the other node to obtain permission to write the data item to

persistent storage if the mode is global.

The method of Claim 37 wherein the node transfers the data item to the other node

prior to completion of the node writing the data item to persistent storage.

The method of Claim 38 wherein, after completion of the node writing the data
item to persistent storage, the node sends a message to a master of the data item to

indicate that the data item has been written to persistent storage.

The method of Claim 39 wherein:

the other node receives the data item in global mode; and

the other node sends a request to the master of the node for permission to write the
data item; and

the master responds to said request by informing said other node to change said

mode from global to local.

A method for managing versions of a data item, the method comprising the steps
of:
when a dirty version of a data item is transferred from a first node to a second
node while a being-written version of the data item is being written to
persistent storage, performing the steps of:
communicating version information about the being-written version to the
second node; and
based on the version information, the second node preventing any version
of the data item that belongs to a first set of versions from being
merged with any version of the data item that belongs to a second
set of versions;
wherein the first set of versions includes all versions of the data item
within the second node that are at least as old as the being-written

version; and

-39

WO 02/071229 PCT/US02/07475

wherein the second set of versions includes versions of the data item
within the second node that are newer than the being-written

version.

42. The method of Claim 41 wherein the step of communicating is performed by a

master assigned to said data item.

43. The method of Claim 41 wherein:
the second node includes a plurality of versions in said first set; and

the second node merges said plurality of versions.

44. The method of Claim 41 further comprising the steps of:
informing the second node when the being-written version has been successfully
written to persistent storage; and
after the second node has been informed that the being-written version has been
successfully written to persistent storage, allowing said second node to

discard all versions in said first set of versions.

45. The method of Claim 43 further comprising the steps of:
informing the second node when the being-written version has been successfully
written to persistent storage; and
after the second node has been informed that the being-written version has been
successfully written to persistent storage, allowing said second node to

discard a merged version created by merging said plurality of versions.

46. A method for managing past images of a data item, the method comprising the

steps of:

estimating a likelihood that a first past version of a data item will soon be written
to persistent storage or covered by a write to persistent storage;

if the estimated likelihood is exceeds a particular threshold, then storing a second
past version of the data item separate from the first past version of the data
item; and

if the estimated likelihood falls below a particular threshold, then merging the
second past version of the data item with the first past version of the data

item.

-40-

WO 02/071229 PCT/US02/07475

47.

48.

49.

50.

51.

The method of Claim 46 wherein the step of estimating is based on a comparison
between a time associated with the first past version of the data item and a time

associated with a recent entry in a redo log file.

The method of Claim 46 wherein the step of estimating is based on a comparison
between a time associated with the first past version of the data item and a time

associated with an entry at the head of a checkpoint queue.

A computer-readable medium carrying instructions for managing caches in a

system with multiple caches that may contain different copies of a data item, the

instructions comprising instructions for performing the steps of:

modifying the data item in a first node of said multiple caches to create a modified
data item;

sending the modified data item from said first node to a second node of said
multiple caches without durably storing the modified data item from said
first node to persistent storage;

after said modified data item has been sent from said first node to said second
node, said first node sending a request to a master of said data item for
writing said data item to persistent storage; and

in response to said request, said master coordinating with said multiple caches to

cause said data item to be written to persistent storage.

The computer-readable medium of Claim 49 wherein:

the computer-readable medium includes instructions for performing the step of
maintaining, within an ordered series of bins, entries for past-image
versions of data items;

each bin in said ordered series corresponds to a time range;

a particular bin corresponds to the time range that covers the time at which the
data item is modified in said first node; and

the step of sending a request is performed by sending a request for writing a

particular bin of said ordered series of bins to persistent storage.

The computer-readable medium of Claim 50 wherein the step of said master

coordinating with said multiple caches to cause said data item to be written to

41-

WO 02/071229 PCT/US02/07475

52.

53.

54.

55.

56.

57.

persistent storage includes said master causing said multiple caches to write data
items to persistent storage to cover all past image versions of data items that were

modified during the time range of said particular bin.

The computer-readable medium of Claim 51 further comprising instructions for
performing the step of emptying said particular bin after said multiple caches
write data items to persistent storage to cover all past image versions of data items

that were modified during the time range of said particular bin.

The computer-readable medium of Claim 52 wherein the step of emptying said

particular bin includes the steps of:

discarding entries within said particular bin that are associated with past images
that have last-dirtied times within the time range of said particular bin; and

moving to one or more other bins the entries within said particular bin that are
associated with past images that have last-dirtied times later than the time

range of said particular bin.

The computer-readable medium of Claim 49 wherein the step of sending a request

to a master is performed by sending the request to a global lock manager.

The computer-readable medium of Claim 49 wherein the step of sending a request
to a master is performed by sending the request to a lock manager that is one of a

plurality of lock managers within a distributed lock management system.

The computer-readable medium of Claim 49 further comprising instructions for
performing the step of sending from the master, to interested nodes, write-
notification messages indicating that said data item has been written to persistent

storage, in response to said data item being written to persistent storage.

The computer-readable medium of Claim 56 wherein the step of sending write-
notification messages includes the master sending to at least one interested node a
single message that notifies said at least one interested node that a plurality of data

items have been written to persistent storage.

-42-

WO 02/071229 PCT/US02/07475

58.

59.

60.

61.

62.

63.

64.

The computer-readable medium of Claim 49 wherein the step of said first node
sending a request to a master of said data item for writing said data item to
persistent storage includes the first node sending to said master a single message
that requests writing a plurality of data items to persistent storage, wherein said

plurality of data items includes said data item.

The computer-readable medium of Claim 58 wherein the step of sending a single
message includes sending a message that identifies a bin to request that all data

items that belong to the bin be written to persistent storage.

The computer-readable medium of Claim 59 wherein the bin is associated with a
range of time and includes data items that were first dirtied by the first node
during said range of time and that were subsequently transferred to other nodes

without first being written to persistent storage.

The computer-readable medium of Claim 56 wherein the step of sending from the
master to interested nodes write-notification messages includes the steps of:
immediately sending write-notification messages to a first set of interested nodes,
where said first set of interested nodes includes the interested nodes that
have requested said data item to be written to persistent storage; and
delaying the sending of write-notification messages to a second set of nodes,
where said second set of nodes includes interested nodes that do not

belong to said first set of interested nodes.

The computer-readable medium of Claim 56 wherein the step of sending from the
master to interested nodes includes delaying the sending of write-notification

messages to at least one interested node.

The computer-readable medium of Claim 62 wherein a write-notification message
is sent to the at least one interested node in response to a lock request made by

said at least one interested node.

The computer-readable medium of Claim 62 wherein a write-notification message
1s sent to the at least one interested node in response to the at least one interested

node requesting that said data item be written to persistent storage.

-43-

WO 02/071229 PCT/US02/07475

65.

66.

67.

68.

69.

The computer-readable medium of Claim 62 wherein a write-notification message
is sent to the at least one interested node within a ping request that the master
sends to the at least one interested node for the at least one interested node to

transfer another data item to another node.

The computer-readable medium of Claim 49 wherein the step of coordinating

includes the steps of:

determining whether a version of said data item, that is at least as recent as said
modified version, has already been written to persistent storage; and

if a version of said data item that is at least as recent as said modified version has
already been written to persistent storage, then sending a write-notification
message from said master to notify said first node that a version of said
data item that is at least as recent as said modified version has already been

written to persistent storage.

The computer-readable medium of Claim 66 wherein the step of coordinating
includes, if a version of said data item that is at least as recent as said modified
version has not already been written to persistent storage, then sending a write-
perform message from said master to grant permission for said modified version

to be written to persistent storage.

The computer-readable medium of Claim 49 wherein the step of

coordinating includes the steps of:

selecting a particular node of said multiple caches that has a particular version of
said data item, wherein said particular version is at least as recent as the
modified data item in said first node; and

causing said particular version of said data item to be written from said particular

node to persistent storage.
The computer-readable medium of Claim 68 wherein the step of selecting a

particular node includes selecting the node, of said multiple caches, that has a

most recently modified version of said data item.

-44-

WO 02/071229 PCT/US02/07475

70. The computer-readable medium of Claim 68 further comprising instructions for
performing the step of the master informing the first node that said data item has
been written to persistent storage in response to the master receiving confirmation

that said particular version of said data item has been written to persistent storage.

71. The computer-readable medium of Claim 68 further comprising instructions for
performing the step of the master informing a set of caches that said data item has
been written to persistent storage in response to the master receiving confirmation
that said particular version of said data item has been written to persistent storage,
wherein said set of caches includes caches, other than said particular node, that
contain modified versions of said data item that are not more recent than said

particular version.

72. A computer-readable medium carrying instructions for managing caches in a
system with multiple caches that may contain different copies of a data item, the
instructions comprising instructions for performing the steps of:
modifying the data item in a first cache to create a modified data item;
in response to writing the modified data item to persistent storage, performing the

steps of:

a node associated with the first cache determining whether any other cache
in said multiple caches had created a dirty version of said data
item; and

if any other cache in said multiple caches had created a dirty version of
said data item, then the node associated with the first cache
informing a master of said data item that said modified data item
has been written to persistent storage; and |

if no other cache in said multiple caches had created a dirty version of said
data item, then the step of writing the modified data item is
performed without informing said master that said modified data

item has been written to persistent storage.
73. The computer-readable medium of Claim 72 wherein the step of determining

whether any other cache in said muitiple caches had created a dirty version of said

data item includes inspecting a global dirty flag associated with said data item.

-45-

WO 02/071229 PCT/US02/07475

74.

75.

76.

71.

78.

The computer-readable medium of Claim 73 wherein:

prior to modifying the data item in said first cache, the data item had been
modified in a second cache;

the data item is not persistently stored between being modified in said second
cache and being modified in said first cache; and

a node associated with the second cache causes said global dirty flag to be set to

indicate that said data item is globally dirty.

The computer-readable medium of Claim 74 wherein the node associated with the
second cache causes said global dirty flag to be set in response to transferring said

data item from said second cache to another cache of said multiple caches.

A computer-readable medium carrying instructions for managing caches in a
system with multiple caches that may contain different copies of a data item, the
instructions comprising instructions for performing the steps of:
modifying the data item in a first cache to create a modified data item;
when a node associated with the first node desires to write said modified data item
to persistent storage, performing the steps of:
if then node associated with the first cache does not currently have
ownership rights to said data item, then the node associated with
the first cache sending a request to a master of said data item for
said data item to be written to persistent storage; and
if said node associated with said first cache currently has ownership rights
to said data item, then the first node writing said data item to
persistent storage without sending a request to said master for said

data item to be written to persistent storage.

The computer-readable medium of Claim 76 further comprising instructions for
performing the step of designating holders of exclusive locks in data items to be

owners of said data items.

A computer-readable medium carrying instructions for managing a data item, the
instructions comprising instructions for performing the steps of:
when a node that has an exclusive lock on a data item desires to write the data

item to persistent storage, performing the steps of

-46-

WO 02/071229 PCT/US02/07475

determining whether a mode associated with the data item is local or
global;

if the mode associated with the data item is local, then the node writing the
data item to persistent storage without communicating with a
master of said data item; and

if the mode associated with the data item is global, then the node sending a
message to the master of the data item to request writing of said

data item to persistent storage.

79. The computer-readable medium of Claim 78 wherein:
the mode associated with the data item is global; and
the computer-readable medium further includes instructions for:
the node receiving permission from the master to write the data item to
persistent storage; and
after writing the data item to persistent storage, changing the mode from

global to local.

80. The computer-readable medium of Claim 78 wherein:
the mode associated with the data item is local; and
before the node has completed writing of the data item to persistent storage, the

node transfers the exclusive lock on the data item to another node.

81. The computer-readable medium of Claim 80 wherein the node changes the mode
from local to global prior to transferring the exclusive lock on the data item to

another node.

82. The computer-readable medium of Claim 80 wherein the node informs the master

when the node has completed writing the data item to persistent storage.

83. The computer-readable medium of Claim 80 wherein the master informs the other
node that the node has completed writing the data item to persistent storage in
response to the node informing the master that the node has completed writing the

data item to persistent storage.

-47-

WO 02/071229] PCT/US02/07475

84.

85.

86.

87.

88.

The computer-readable medium of Claim 81 wherein the other node changes the
mode from global to local in response to a message from the master after the node
has informed the master that the node has completed writing the data item to

persistent storage.

A computer-readable medium carrying instructions for managing a data item, the
instructions comprising instructions for performing the steps of:
when a data item is transferred from one node to another node, performing the
steps of
if the data item has been dirtied by the node and a mode associated with
the data item is local, then changing the mode from local to global
prior to sending the data item to another node;
if the data item has not been dirtied by the node and the mode associated
with the data item is local, then sending the data item to the other
node without changing the mode;
allowing the other node to write the data item to persistent storage without
requesting permission if the mode is local; and
requiring the other node to obtain permission to write the data item to

persistent storage if the mode is global.

The computer-readable medium of Claim 85 wherein the node transfers the data
item to the other node prior to completion of the node writing the data item to

persistent storage.

The computer-readable medium of Claim 86 wherein, after completion of the
node writing the data item to persistent storage, the node sends a message to a
master of the data item to indicate that the data item has been written to persistent

storage.

The computer-readable medium of Claim 87 wherein:

the other node receives the data item in global mode; and

the other node sends a request to the master of the node for permission to write the
data item; and

the master responds to said request by informing said other node to change said

mode from global to local.

-48-

WO 02/071229 PCT/US02/07475

89. A computer-readable medium carrying instructions for managing versions of a
data item, the instructions comprising instructions for perforfning the steps of:
when a dirty version of a data item is transferred from a first node to a second

node while a being-written version of the data item is being written to

persistent storage, performing the steps of:

communicating version information about the being-written version to the
second node; and

based on the version information, the second node preventing any version
of the data item that belongs to a first set of versions from being
merged with any version of the data item that belongs to a second
set of versions;

wherein the first set of versions includes all versions of the data item
within the second node that are at least as old as the being-written
version; and

wherein the second set of versions includes versions of the data item
within the second node that are newer than the being-written

version.

90. The computer-readable medium of Claim 89 wherein the step of communicating

is performed by a master assigned to said data item.

91. The computer-readable medium of Claim 89 wherein:
the second node includes a plurality of versions in said first set; and

the second node merges said plurality of versions.

92. The computer-readable medium of Claim 89 further comprising instructions for
performing the steps of:
informing the second node when the being-written version has been successfully
written to persistent storage; and
after the second node has been informed that the being-written version has been
successfully written to persistent storage, allowing said second node to

discard all versions in said first set of versions.

-49.

WO 02/071229 PCT/US02/07475

93.

94.

95.

96.

The computer-readable medium of Claim 91 further comprising instructions for

performing the steps of:

informing the second node when the being-written version has been successfully
written to persistent storage; and

after the second node has been informed that the being-written version has been
successfully written to persistent storage, allowing said second node to

discard a merged version created by merging said plurality of versions.

A computer-readable medium carrying instructions for managing past images of a

data item, the instructions comprising instructions for performing the steps of:

estimating a likelihood that a first past version of a data item will soon be written
to persistent storage or covered by a write to persistent storage;

if the estimated likelihood is exceeds a particular threshold, then storing a second
past version of the data item separate from the first past version of the data
item; and

if the estimated likelihood falls below a particular threshold, then merging the
second past version of the data item with the first past version of the data

item.

The computer-readable medium of Claim 94 wherein the step of estimating is
based on a comparison between a time associated with the first past version of the

data item and a time associated with a recent entry in a redo log file.
The computer-readable medium of Claim 94 wherein the step of estimating is

based on a comparison between a time associated with the first past version of the

data item and a time associated with an entry at the head of a checkpoint queue.

-50-

PCT/US02/07475

WO 02/071229

114

| "OId

00T

(¥) WHIINOD TLIHM HILSYW

(€) WHOJH3d-3LIEM

(G) NOILYDIJILON-ILIHM

1S3NO3Y-3LHM (1)

HOVOHddY 3 LIHM LO3HIA

SINOIY-ALIEM (@)

PCT/US02/07475

WO 02/071229

2/14

¢ Ol

(€) WHIANOD JLI¥Mm

1SINOFL-TLIEM (1)

(2) WHOFH3d-3 LM
(¥) NOLLYDIJLLON-TLIMM

(G) NOILYDIJLLON-TLIMM

HOVOUddY J1I-M LOFHIANI

PCT/US02/07475

WO 02/071229

3/14

e¢ "Old

d31SVIA

LA

\
3S1V4 = ALHIAQ TvE01O

3S71vd SI ALYIA V01O NIHM S3LIMM d3SYE-4aNMO

PCT/US02/07475

WO 02/071229

4/14

q¢ "old

001

(1) WHIINOD ALIEM HILSYN

(2) NOILYOIJILON-ILIMM

EA

(€TNOILYOIJILON-TLIMM

\
dNYL = ALHId TvE01O

JdNYL SI ALHIA V01O NIHM SALIYM A3SYE-HINMO

PCT/US02/07475

WO 02/071229

5/14

9¢ "Old

001

(€) WHIANOD I LIIM d31SYW

1S3aNOIY-3LEM (1)

(2) NHOSHId-ILIIMm () NOILYDIILON-TLIMM

(GTNOILYOIILON-TLIMM

EN

N\
JNdL = A1dId VE01O

€ JdON

HINMO WOY4 LON SI L1SIND3H NIHM STLIIM A3Sva-4aNMO

PCT/US02/07475

WO 02/071229

6/14

ey "Old

LA

N\
v301= 3A0n

d3ALSYWN

001 SI 30N NIHM HOVOUddY A3sva-310y

PCT/US02/07475

WO 02/071229

7114

(€) WHIANOD JLIUM

(2) WHOSH3d-a LM

EA

\
va019 = 300N

001
d31SYW

(1) 1S3IN0IY-3LIuMm (7) NOILYDI4ILON-ILIMM

(G) NOLLYOIILON-3LIMM

V8019 Sl 3A0N NIHM HOVOdddY a3Sva-310d

qy 'Ol

PCT/US02/07475

WO 02/071229

8/14

(€) WHIANOD TLIHM

(1) 1S3ND3IY3

001

(2) WHO4¥3d-ILIEM Y3LSYW

() NOILYDIJILON-TLIMM

eA (G) NOLLYOIHILON-3LI4M

\
8019 = 3A0N

d3dT0H MO0 IAISITTOXT NOHL LON S1 1SINDIY NIHM HOVOUddY d3svd

LM

Y "Old

370

PCT/US02/07475

WO 02/071229

9/14

d34SNVHL WAL V1ivd

(9) Y20 1-OL-LY¥3IANOD

Py "Old

(1) LS3INOIY-TLIUM

VA

vd019 = 3d0ON

001
d31SWA

(€) WHIANOD-ILIMM
(2) WHO443d-3LIMM

¥ 3dON

(¥) NOILYOIJILON-ILIMM
(G) NOLLYOIJILON-TLIMM

EA

|
V8019 = 3d0N

NOILYH3dO FLIHM ONIINA d34SNVHL HLIM HOVOYddY a3sve-310Y

WO 02/071229

10/14

PCT/US02/07475

CHECKPOINT QUEUE 500

HEAD 502

ENTRY FOR DATAITEM 1 V1

ENTRY FOR DATAITEM S V1

_/506

ENTRY FOR DATAITEM8 V3

ENTRY FOR DATA ITEM 5 V6

_/508

ENTRY FOR DATAITEM 3 V10

ENTRY FOR DATA ITEM 6 V4

ENTRY FOR DATAITEM5 V8

510

ENTRY FOR DATAITEM9 V2

p—

TAIL 504

FIG. 5

WO 02/071229 PCT/US02/07475

1114

CHECKPOINT QUEUE 600

HEAD 602

ENTRY FOR DATA ITEM 1 V1

ENTRY FOR DATAITEM7 V1

- 606
ENTRY FOR DATAITEM5 V3 —/6

ENTRY FOR DATAITEM 6 V6

ENTRY FOR DATA ITEM 3 V10

08
ENTRY FOR DATAITEM 5 V7 Je

ENTRY FOR DATAITEM 4 V8

ENTRY FOR DATAITEM 9 V2

‘\

TAIL 604

FIG. 6

WO 02/071229 PCT/US02/07475

12/14

CHECKPOINT QUEUE 500

HEAD 502

ENTRY FOR DATA ITEM 1 V1

702
MERGED ENTRY FOR DATA ITEM 5 VI, V6, V8 —

ENTRY FOR DATA ITEM 8 V3

ENTRY FOR DATAITEM3 V10

ENTRY FOR DATA ITEM6 V4

ENTRY FOR DATAITEM9 V2

—

TAIL 504

FIG.7

WO 02/071229 PCT/US02/07475

13/14
CHECKPOINT QUEUE 800
HEAD 802
Tz~ —m—————— = — =
(
ENTRY FORDATAITEM1V1 (T17) 3%
BINS12 | ENTRY FORDATAITEM5 V1 (T1g) —0°
ENTRY FORDATAITEM8V3(T23) 207
\ o _____
[N - 808
ENTRY FOR DATA [TEM 5 V6 —
ENT Vi 809
BIN 816 < RY FOR DATAITEM3 V10
ENTRY FOR DATA [TEM 6 V4 /810
R |
ENTRY FOR DATA [TEM 5 V8 /811
BINS14 ENTRY FOR DATA [TEM9 V2 /812
TAIL 804
Teds V- —— — = —— - —mm

FIG. 8

PCT/US02/07475

WO 02/071229

14/14

8¢6

JINH3INI

0E6
d3AH3S

JOV4HILNI ¥06
NOILYOINNAWOD HOSS3O0Hd
206
sng
016 806 906
301A30 AHOW3N
IOVHOLS WOH NIV

— ~NJ9TI6

TOHINOD
HOSHND

v v16
30IA3A 1NdNiI

Illlv .m..a><._n_w_o

6 ‘Ol

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

