

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2020-40400
(P2020-40400A)

(43) 公開日 令和2年3月19日(2020.3.19)

(51) Int.Cl.	F 1	テーマコード (参考)
B32B 27/36 (2006.01)	B 32B 27/36	3 E 0 8 6
B32B 27/20 (2006.01)	B 32B 27/20	Z 4 F 1 0 0
B65D 65/40 (2006.01)	B 65D 65/40	D

審査請求 未請求 請求項の数 15 O L 外国語出願 (全 71 頁)

(21) 出願番号 特願2019-163677 (P2019-163677)	(71) 出願人 596099734 ミツビシ ポリエスチル フィルム ジー エムビーエイチ ドイツ連邦共和国、ヴィースバーデン、D - 6 5 2 0 3 、カステレルストラッセ 4 5
(22) 出願日 令和1年9月9日 (2019.9.9)	
(31) 優先権主張番号 10 2018 215 422.8	
(32) 優先日 平成30年9月11日 (2018.9.11)	
(33) 優先権主張国・地域又は機関 ドイツ (DE)	(74) 代理人 100097928 弁理士 岡田 数彦
	(72) 発明者 ヘルベルト・パイファー ドイツ連邦共和国、デー- 5 5 1 2 6 マ インツ、トイリングルストラッセ、2 6
	(72) 発明者 マーティン・イエスバーガー ドイツ連邦共和国、デー- 5 5 1 2 8 マ インツ、ウヴェバイエルストラッセ 5 9

最終頁に続く

(54) 【発明の名称】調理済み食品トレー製造用ヒートシール性ポリエスチルフィルム、その製造方法およびそのフィルムの使用

(57) 【要約】

【課題】

本発明の目的は、序部で述べた用途のための、共押出で熱成形性の基本的に非晶で未延伸の優れたシール特性を有するポリエスチルフィルムを提供することである。

【解決手段】

本発明は、a - P E T から成る少なくとも1つのベース層 (B) と、少なくとも80重量%以上のポリエスチルから成るヒートシール性外層 (A) とから成る共押出、非構造、透明かつ熱成形性ポリエスチルフィルムであって、a) 外層 (A) のポリエスチルが、1つ以上の芳香族ジカルボン酸から誘導される単位 2 5 ~ 9 5 モル%と、1つ以上の脂肪族ジカルボン酸から誘導される単位 5 ~ 7 5 モル%と、脂肪族ジオールとから成り (モル% 10 は常に合計 1 0 0 %) 、b) 外層 (A) は、メジアン粒径 d_{50} が 2 . 0 ~ 8 . 0 μm である無機または有機粒子を 0 . 4 重量%以下含み、c) 外層 (A) の厚さが 1 0 ~ 1 0 0 μm であり、d) フィルムの厚さが 1 0 0 ~ 1 5 0 0 μm であることを特徴とする共押出、非構造、透明かつ熱成形性ポリエスチルフィルムに関する。本発明は、更に本発明の製造方法、および、食品および他の消費物品、特にトレー中の食品および他の消費物品の包装用フィルムへの使用に関する。

【選択図】なし

【特許請求の範囲】

【請求項 1】

a - P E T から成る少なくとも 1 つ のベース層 (B) と、少なくとも 80 重量 % 以上のポリエステルから成るヒートシール性外層 (A) とから成る共押出、非構造、透明かつ熱成形性ポリエステルフィルムであって、a) 外層 (A) のポリエステルが、1 つ以上の芳香族ジカルボン酸から誘導される単位 25 ~ 95 モル % と、1 つ以上の脂肪族ジカルボン酸から誘導される単位 5 ~ 75 モル % と、脂肪族ジオールとから成り (モル % は常に合計 100 %) 、b) 外層 (A) は、メジアン粒径 d_{50} が 2.0 ~ 8.0 μm である無機または有機粒子を 0.4 重量 % 以下含み、c) 外層 (A) の厚さが 10 ~ 100 μm であり、d) フィルムの厚さが 100 ~ 1500 μm であることを特徴とする共押出、非構造、透明かつ熱成形性ポリエステルフィルム。 10

【請求項 2】

フィルムのヘーズが 10 % 未満で、フィルムの明瞭度が 80 % 以上である請求項 1 に記載のポリエステルフィルム。

【請求項 3】

それ自身のフィルムのシールシーム強度 (F I N シール) が 3 ~ 10 N / 15 mm である請求項 1 又は 2 に記載のポリエステルフィルム。

【請求項 4】

芳香族ジカルボン酸が、テレフタル酸、イソフタル酸、フタル酸およびナフタレン - 2, 6 - ジカルボン酸から成る群より選択される 1 つ以上の成分である請求項 1 ~ 3 の何れかに記載のポリエステルフィルム。 20

【請求項 5】

脂肪族ジカルボン酸が、コハク酸、グルタル酸、アジピン酸、ピメリシン酸、スペリン酸、アゼライン酸およびセバシン酸から成る群より選択される 1 つ以上の成分である請求項 1 ~ 4 の何れかに記載のポリエステルフィルム。

【請求項 6】

脂肪族ジオールが、エチレングリコール、1, 3 - プロパンジオール、1, 3 - ブタンジオール、1, 4 - ブタンジオール、1, 5 - ペンタンジオール、2, 2 - ジメチル - 1, 3 - プロパンジオール、ジエチレングリコール、トリエチレングリコール、1, 4 - シクロヘキサンジメタノール及びネオペンチルグリコールから成る群より選択される 1 つ以上の成分である請求項 1 ~ 5 の何れかに記載のポリエステルフィルム。 30

【請求項 7】

ジカルボキシレート部分とアルキレン部分が、ジカルボキシレート及びアルキレンそれぞれの合計量を基準に、25 ~ 95 モル % 、好ましくは 30 ~ 90 モル % 、特に好ましくは 40 ~ 70 モル % のテレフタレートと、0 ~ 25 モル % 、好ましくは 5 ~ 20 モル % 、特に好ましくは 10 ~ 20 モル % のイソフタレートと、5 ~ 75 モル % 、好ましくは 8 ~ 70 モル % 、特に好ましくは 11 ~ 65 モル % のセバケートと、0 ~ 50 モル % 、好ましくは 0 ~ 40 モル % 、特に好ましくは 0 ~ 30 モル % のアジペートと、30 モル % を超える、好ましくは 40 モル % を超える、特に好ましくは 50 モル % を超えるエチレン又はブチレンから成る請求項 1 ~ 6 の何れかに記載のポリエステルフィルム。 40

【請求項 8】

外層 (A) の原料が、10 重量 % 以下のポリエステルと非相溶なポリマー (アンチ P E T ポリマー) を含む請求項 1 ~ 7 の何れかに記載のポリエステルフィルム。

【請求項 9】

アンチ P E T ポリマーが、エチレン (L L D P E 、 H D P E) 、プロピレン (P P) 、シクロオレフィン (C O) 、アミド (P A) 又はスチレン (P S) 系の 1 つ以上のポリマーである請求項 8 に記載のポリエステルフィルム。

【請求項 10】

フィルムが、ベース層 (B) 、ベース層 (B) の片側面に配置されるヒートシール性外層 (A) 及びベース層 (B) の他の片側面に配置される外層 (C) の 3 層から成る請求項

1～9の何れかに記載のポリエステルフィルム。

【請求項 1 1】

フィルムのA層およびB層、又はA層、B層およびC層の個々の層用のポリマーを別々の押出機内で溶融し、それぞれの溶融体をフラットフィルムダイを介して共押出し、得られたフィルムを1つ以上のロール上で引取って固化させ、巻取る工程から成る請求項1に記載のポリエステルフィルムの製造方法。

【請求項 1 2】

外層(A)用のポリエステルが、層(A)用の押出機内に導入されるポリエステルI及びIIの2ポリエステル、好ましくはポリエステルI、II、IIIの3ポリエステルの混合物である請求項11に記載の製造方法。

10

【請求項 1 3】

ポリエステルIのジカルボキシレート部分とアルキレン部分(ジカルボキシレート及びアルキレンそれぞれの合計量を基準に)が、

60～100モル%、好ましくは62～95モル%、特に好ましくは66～93モル%のテレフタレートと、

0～40モル%、好ましくは5～38モル%、特に好ましくは7～34モル%のイソフタレートと、

50モル%を超える、好ましくは65モル%を超える、特に好ましくは80モル%を超えるエチレン単位から成り；

ポリエステルIIのジカルボキシレート部分とアルキレン部分(ジカルボキシレート及びアルキレンそれぞれの合計量を基準に)が、

20～70モル%、好ましくは30～65モル%、特に好ましくは35～60モル%のセバケートと、

0～50モル%、好ましくは0～45モル%、特に好ましくは0～40モル%のアジペートと、

10～80モル%、好ましくは20～70モル%、特に好ましくは30～60モル%のテレフタレートと

0～30モル%、好ましくは3～25モル%、特に好ましくは5～20モル%のイソフタレートと、

30モル%を超える、好ましくは40モル%を超える、特に好ましくは50モル%を超えるエチレン又はブチレンから成り；

ポリエステルIIIのジカルボキシレート部分とアルキレン部分(ジカルボキシレート及びアルキレンそれぞれの合計量を基準に)が、

80～98モル%、好ましくは82～96モル%、特に好ましくは74～95モル%のテレフタレートと、

2～20モル%、好ましくは4～18モル%、特に好ましくは5～17モル%のイソフタレートと、

50モル%を超える、好ましくは65モル%を超える、特に好ましくは80モル%を超えるエチレン単位から成る請求項12に記載の製造方法。

20

【請求項 1 4】

外層(A)中のポリエステルIの割合が10～60重量%、ポリエステルIIの割合が20～70重量%、ポリエステルIIIの割合が0～15重量%である請求項12又は13に記載の製造方法。

30

【請求項 1 5】

請求項1に記載のポリエステルフィルムの、食品および消費物品包装材、特にトレー中の食品および消費物品包装材への使用。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、トレー製造用のヒートシール性層を有する共押出、非構造、透明かつ熱成形

40

50

性ポリエステルフィルムに関する。熱成形性でヒートシール性のポリエステルフィルムは、熱成型後に魚、鶏肉、新鮮な肉などを入れるトレーをとなる。本発明は、更にフィルムの製造方法およびフィルムの使用に関する。

【背景技術】

【0002】

熱成形性で非晶のポリエチレンテレフタレート(a - P E T)から成る透明トレーは、食品工業において、例えば真空プロセスの使用により製造される。トレーの仲に食品を入れた後、蓋フィルムがトレーの端にシールされ、包装体は確実に密閉され、外部の影響から食品が保護される。この包装体は、魚、鶏肉、調理済みの肉、新鮮な肉、乾燥した調理済み食品(サンドイッチ、バーガー、ラップ等)に使用される。この包装体は清潔で衛生的な食品の製造方法として考えられており、広く使用されている方法である。

10

【0003】

真空プロセスとして知られている製造方法は、肉、魚、鶏肉などの加工のための衛生的な包装体の費用効果に優れる方法である。最終的な包装体の製造過程は、一般的に以下の通りである。トレー製造用フィルム(下部フィルムとも言う)をロール形状に機械に把持する。真空室を使い、フィルムを加熱および真空による所望の深さに熱成形してトレーを作る。トレー中に、手動で、又は数量が非常に多い場合は、機械を使用して食品を入れる。蓋フィルム(上部フィルムとも言う)を別のロールによってトレーに導き、加熱および加圧して端部を確実にシールする。熱成形されたトレーは蓋フィルムによって確実にシールされ、例えばパンチングにより個々の包装体に分離され、印刷やラベルを付ける等の更なる作業の後に、市場に出される。

20

【0004】

トレーの製造における骨格残渣の廃材は、トレーを製造するために使用されるフィルムの50%以下となる。この骨格残渣の無駄を減らすため、この残渣を、例えば再生品として直接新しい熱成形性フィルムの製造のための押出工程に導入する。

【0005】

新しく改良された包装体の開発において、蓋フィルムと食品を含むトレーとの間の耐久性があり少なくとも確実なヒートシールを達成するための、実績に基づく理由が必要となる。

30

【0006】

確実なヒートシールとは、シール力が約3~10N/15mm(フィルム片の幅)の際に達成されるというように、この分野において定義される。低いヒートシール強度の用語はこの範囲よりも低い値の場合で使われ、高いヒートシール強度の用語はこの範囲よりも高い値の場合で使われる。

【0007】

確実なヒートシールは、通常機械の使用によってトレーに入れられる新鮮な肉の包装体の製造に特に望ましい。食品をトレーに入れる際、シールされるトレーの端部は、少量の食品の基質、例えば、肉汁などによって汚染される可能性がある。肉汁で汚染された部分を介してでも2つのフィルムの完全なヒートシールが達成されることが必要である。

40

【0008】

この問題は、通常、熱成形性下部フィルムだけでなくシール性上部フィルム又は蓋フィルムの多層プラスチックフィルムの使用による技術手段によって、これまで解決していた。

【0009】

例えば、熱成形性a - P E Tを下部フィルムに、二軸延伸P E Tを上部フィルムに使用するようなポリエステルを両方のフィルムに使用した場合、多層プラスチックフィルムにおけるそれぞれのシール層は、a - P E Tとは異なる種類のプラスチックから成る。

【0010】

所望の低いシール温度において溶融される、溶融状態においてa - P E Tよりも極めて延性があるように、この異なる種類のプラスチックが選択される。この目的のための代表

50

的な材料は、ポリプロピレン（PP）、及び特にポリエチレン（PE）であり、これは低い融点を有し、溶融状態において非常に延性がある。両者（PP及びPE）は、積層、押出被覆、共押出によりポリエステルベース層に設けることが出来る。

【0011】

トレー用のベース層と蓋フィルム用のベース層とはポリエステルから成り、一方シール性層はPEから成るa-PET-PEの構成の包装体が市場では知られている。

【0012】

ポリエステルから成る蓋を有するa-PETトレーに新鮮な肉を詰めた際の、よく知られた問題がある。この材料の組合せを使用した際、最終的な包装体は、しばしばシールが不完全となる。包装体は、ただゆるくシールされており、輸送中に開いてしまったり、ガスバリア性がない。青果物鮮度保持包装（MAP）の場合において、シール部分は決められた保存期間コンテナー内で鮮度保持を保つことが出来ず、コンテナー内の食品貯蔵で腐敗を加速させる。

【0013】

ポリエステルから成る蓋フィルムを有する熱成形性ポリエステルから成るトレーは、120～220の間のシール温度でヒートシールされる。或いは、全てのポリエステルの場合でヒートシールされるには、典型的には160～220でヒートシールされる。シール時間が3秒以下に限定できれば、その製造は費用効果が良い。

【0014】

包装体の構造として2つの異なるフィルムの概念が、市場においてお互いに並行して使用されることが見受けられる。

- ・両方のフィルムが完全にポリエステルポリマーから成り、フィルムは1つ以上の層を有する。
- ・フィルムが、ポリエステルポリマーから成るコア層またはベース層とポリプロピレン又は特にポリエチレンから成るシール層とから成る。

【0015】

本発明は、肉汁などによる汚染を介してさえヒートシールに好適であるポリエステルポリマーから成るシール性で熱成形性の下部フィルムの解決策に関するものである。

【0016】

熱成形性下部フィルムは1つだけの材料により製造され、この場合においてポリエステルは以下の種々の技術利点を有する。

- ・フィルムやトレーの製造中に生じる廃材部分（とりわけ骨格部分の廃材）が容易にリサイクル出来る。
- ・再生品を（リサイクル）、品質を損なうことなく新しいトレーの製造に再使用できる。
- ・包装体は、公知のa-PET-PE使用の解決策よりも視覚的により魅力的である。
- ・消費済みのリサイクル（PCR）が、a-PET-PE使用の解決策よりも容易である。

【0017】

従来技術：

ポリエステルから成る熱成形性フィルムがトレーの製造に使用されることとは公知である。

【0018】

特許文献1は、単層または多層シートから成る食品トレーを記載しており、それぞれの層の材料は85%以上の非晶ポリエチレンテレフタレートから成る。トレーは、ベース部と、横側の壁面と周囲のシール性蓋から成り、シール性蓋は上方に面しているシール部分を有し、基本的に平らである。シール部分は、トレー材料に加え、トレーの全外周にわたってこの発明の接着剤層から成る。トレーは、シートを熱成形して形成され、トレーの成形後に、接着剤はロールコーティング法により直接シール部分に塗布される。接着剤は、エチレンco-及びterポリマー又はそれらの混合物と、更にワックスとから成る。トレーのシール部分が例えば肉汁のような食品基質に少量汚染されていても。容器はシール

10

20

30

40

50

に非常に好適である。この発明に必要な改良点は、基本的にポリエチレンから成る接着剤層を更にシール部分に塗布することによりコスト高となること；品質を損なうことなくトレーの製造過程で生じる廃材をフィルムの押出工程に再投入できないこと；消費済みのリサイクルが極めて困難であることである。

【0019】

特許文献2は単層または多層シートから成る食品トレーを記載しており、それぞれの層の材料は85%以上の非晶ポリエチレンテレフタレートから成る。トレーは、ベース部と、横側の壁面と周囲のシール性蓋から成り、シール性蓋は上方に面しているシール部分を有し、基本的に平らである。少なくともシール性層を形成するトレー層（シール部分に相当）は、関連するシール温度、代表的には120～180において軟化が増大するよう改変されている。この層（またはこれらの層）は、更に表面エネルギーを低下させるよう改変されている。少なくともシール性層部の軟化の改良は、層中に存在するポリエチレンテレフタレートを改変するために、イソフタル酸（IPA）、シクロヘキサンジメタノール（CHDM）又はジエチレングリコール（DEG）等の共重合モノマーを、例えば共押出によって、使用することにより達成される。シール性層の表面エネルギーは、内部および/または外部の滑剤（例えばワックス）を添加することによって低下させる。添加剤は、内的には共押出法により表面層に導入され、外的には表面層のコーティングによって導入される。

【0020】

このトレーは上記の用途には好適である（汚染を介してのシール）が、シール性および光学的特性の改良が必要とされる。この発明は、トレーの表面を改変するのに数多くの原料/添加剤を必要とする。しかしながら、この発明にはフィルムの製造において具体的な処方や製造法についての情報が無く、トレーの表面層の厚さに関する情報も無い。この出願は、当業者による実施や再現性が可能なような十分な明らかで完全な開示がなされてない。

【先行技術文献】

【特許文献】

【0021】

【特許文献1】欧洲特許第2643238号明細書

【特許文献2】欧洲特許出願公開第3296227号明細書

10

20

30

【発明の概要】

【発明が解決しようとする課題】

【0022】

本発明の目的は、上記の用途のための、共押出で熱成形可能で、基本的に非晶で未延伸のポリエチレンから成る優れたシール性を有するフィルムを提供することである。フィルムのシール性層が、例えば肉汁などの少量の食品基質に汚染された場合でも、市販で得られる蓋フィルムに対して、確実なシールを達成できるような優れたシール性を有する。フィルムは更に、鮮明な光学的特性を有する。従来技術におけるフィルムの欠点を克服するために意図されたものであり、以下の要旨/特徴を有する。

・熱成形を介してトレーの製造に好適な熱成形性フィルムは、多層フィルムであり、基本的にポリエチレン原料から成る。

・熱成形性フィルムは、確実なヒートシールを目的としている。表面が、例えば肉汁などで汚染されていたとしても、このトレーと市販品の蓋フィルムとの間で耐久性がある確実なシールを与える。確実なヒートシールは、15mmのフィルム片幅に対してシール強度が約3～10Nの範囲である。

・熱成形性フィルムは、鮮明な光学的特性を目的としている。これは、フィルムのヘーズ、特に明瞭度に関してである。ヘーズは10%未満、明瞭度は80%を超え、グロスは100を超えることが望ましい（全ての光学的数値は、フィルム製造後に直接測定される）。

・熱成形性フィルムは、費用効果に優れて製造できることを目的とする。これは、工業的

40

50

に従来の製造法、例えば共押出法がフィルムの製造に使用できることを意味する。

- ・更に、熱成形性フィルム及びトレーの製造において生じる廃材（例えば、骨格廃材）を、品実を損なうことなく再生品として再利用できることが望ましい。
- ・更に、上記の種類のトレー用のフィルム製造において、再生品が50%まで再利用できることが望ましい。

【課題を解決するための手段】

【0023】

上記課題は、a-PETから成る少なくとも1つのベース層（B）と、少なくとも80重量%以上のポリエステルから成るヒートシール性外層（A）とから成る共押出、非構造、透明かつ熱成形性ポリエステルフィルムであって、

a) 外層（A）のポリエステルが、1つ以上の芳香族ジカルボン酸から誘導される単位25～95モル%と、1つ以上の脂肪族ジカルボン酸から誘導される単位5～75モル%と、脂肪族ジオールとから成り（モル%は常に合計100%）、

b) 外層（A）は、メジアン粒径 d_{50} が2.0～8.0 μmである無機または有機粒子を0.4重量%以下含み、

c) 外層（A）の厚さが10～100 μmであり、

d) フィルムの明瞭度が80%以上で、フィルムのヘーズが10%未満であり、

e) それ自身のフィルムのシールシーム強度（FINシール）が3～10N/15mmであり、

f) フィルムの厚さが100～1500 μmであることを特徴とする共押出、非構造、透明かつ熱成形性ポリエステルフィルムによって解決される。

【0024】

特に断りのない限り、上記および下記において、重量%の記載は、そのデータが規定されている関連する各系のそれぞれの層の重量を参照することとする。

【0025】

本発明の熱成形性フィルムは、基本的に共押出で、未延伸で、透明で、且つヒートシール性ポリエステルフィルム（ABC）又は（ABC）から形成される。少なくとも2層から成り、ベース層（B）と、共押出によってその上に積層されるヒートシール性外層（A）とから成る。外層（A）は主として、すなわち80重量%以上の範囲のポリエステルから成る。

【発明の効果】

【0026】

上述の本発明のフィルムにより、上記課題を達成できる。

【図面の簡単な説明】

【0027】

【図1】図1は、実施例における評価試験で使用されたトレーの仕様を示す。

【発明を実施するための形態】

【0028】

ヒートシール性外層（A）：

外層（A）のポリマー：

本発明のヒートシール性外層（A）は、少なくとも1種のポリエステルと、任意成分として耐ブロッキング剤とから成る。ポリエステルIは、芳香族および脂肪族ジカルボン酸から誘導された単位から成る。ポリエステル中の芳香族ジカルボン酸から誘導される単位の存在量は、25～95モル%、好ましくは40～90モル%、特に好ましくは50～88モル%である。ポリエステル中の脂肪族ジカルボン酸から誘導される単位の存在量は、5～75モル%、好ましくは10～60モル%、特に好ましくは12～50モル%であり、モル%のデータは常に総量が100%となる。これに対応するジオール単位もまた、常に総量が100%となる。

【0029】

本発明で使用できる芳香族ジカルボン酸の例としては、テレフタル酸、イソフタル酸、

10

20

30

40

50

フタル酸およびナフタレン-2,6-ジカルボン酸が挙げられる。

【0030】

脂肪族ジカルボン酸の例としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸およびセバシン酸が挙げられる。本発明で好適に使用できるのは、アジピン酸およびセバシン酸であり、やや劣るのがコハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸およびアゼライン酸である。

【0031】

本発明で使用できる脂肪族ジオールの例としては、エチレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、1,4-シクロヘキサンジメタノール及びネオペンチルグリコールが挙げられる。

10

【0032】

好ましい実施態様において、ポリエステルは以下のジカルボキシレート部分およびアルキレン部分を有する（それぞれの場合において、ジカルボキシレートの総量およびアルキレン部分の総量を基準とする）。

25～95モル%、好ましくは30～90モル%、特に好ましくは40～70モル%のテレフタレート、

0～25モル%、好ましくは5～20モル%、特に好ましくは10～20モル%のイソフタレート、

20

5～75モル%、好ましくは8～70モル%、特に好ましくは11～65モル%のセバケート、

0～50モル%、好ましくは0～40モル%、特に好ましくは0～30モル%のアジペート、

30モル%を超える、好ましくは40モル%を超える、特に好ましくは50モル%を超えるエチレン又はブチレン。

【0033】

外層の材料は、任意に10重量%以下のポリエステル非相溶ポリマー（＝アンチP E Tポリマー）を含んでもよい。好ましい実施態様において、アンチP E Tポリマーの含有量は1～10重量%、特に好ましくは2～9重量%である。

30

【0034】

外層（A）の材料として、ポリエステルフィルム技術において使用される粒子、添加剤、助剤および/または他の基質を5重量%以下で含有してもよい。

【0035】

外層（A）用のポリエステルは、好ましくは物理的に混合可能な2種のポリエステルI及びII、特に好ましくは物理的に混合可能な3種のポリエステルI、II及びIIIから成り、これらはこの層（A）用の押出機に混合物の形状で導入される。

【0036】

外層（A）用のポリエステルI：

1つ以上の芳香族ジカルボキシレート部分よ1つ以上の脂肪族アルキレン部分から成る外層（A）のポリエステルIの割合は、10～60重量%。好ましい実施態様においてポリエステルIの割合は15～55重量%、特に好ましい実施態様において20～50重量%である。

40

【0037】

ある実施態様において、本発明の外層（A）のポリエステルIのジカルボキシレートとアルキレン部分（ジカルボキシレート及びアルキレンそれぞれの合計量を基準に）は、

60～100モル%、好ましくは62～95モル%、特に好ましくは66～93モル%のテレフタレートと、

0～40モル%、好ましくは5～38モル%、特に好ましくは7～34モル%のイソフタレートと、

50

50モル%を超える、好ましくは65モル%を超える、特に好ましくは80モル%を超えるエチレン単位から成る。

【0038】

共重合ポリエステルIの好ましい組成は、60～80モル%のテレフタレート単位、20～40モル%のイソフタレート単位および100モル%のエチレン単位であり、これはテレフタレート-エチレンイソフタレート共重合体である。

【0039】

残余の部分は、ベース層(B)の説明で主または他の芳香族ジカルボン酸に挙げられる他の芳香族ジカルボン酸および他の脂肪族ジオールから誘導される。

【0040】

外層(A)中のポリエステルIの比率が10重量%未満の場合、共押出法の手段でフィルムを製造することが極めて困難であり、また確実にフィルムを製造することが不可能となる。フィルムはある機械の部材に、具体的には金属ロールに非常に付着しやすくなる。外層(A)中のポリエステルIの比率が60重量%を超えると、本発明の用途のフィルムのシール挙動が非常に悪化する。融点が増加する結果、シール層(A)は通常の使用温度において、汚染物を介してシール性に要求される柔軟性を有さない。

【0041】

ここでの本発明の原料のSV値は、600を超える、好ましくは650を超える、特に好ましくは700を超える。原料のSV値が600未満の場合、原料の押出性が悪化し、好ましくない。

【0042】

外層(A)のポリエステルII：

本発明の好ましい実施態様において、外層(A)中のポリエステルIIの含有量は20～70重量%、好ましい実施態様において25～65重量%、特に好ましい実施態様において30～60重量%である。

【0043】

ポリエステルIIは、好ましくは脂肪族および芳香族成分の共重合体から成り、その含有量はポリエステルII中の酸の総量を基準として20～90モル%、好ましくは30～70モル%、特に好ましくは35～60モル%である。ジカルボキシレート100モル%となるようにするための残余成分は、テレフタル酸およびイソフタル酸などの芳香族酸が挙げられ、テレフタル酸はここでは好ましく、イソフタル酸は余り好ましくない。グリコール成分は、ベース層(B)の説明で挙げられた脂肪族、脂環式または芳香族ジオールである。

【0044】

本発明の外層(A)のポリエステルIIのジカルボキシレートとアルキレン部分(ジカルボキシレート及びアルキレンそれぞれの合計量を基準に)は、

20～70モル%、好ましくは30～65モル%、特に好ましくは35～60モル%のセバケートと、

0～50モル%、好ましくは0～45モル%、特に好ましくは0～40モル%のアジペートと、

10～80モル%、好ましくは20～70モル%、特に好ましくは30～60モル%のテレフタレートと

0～30モル%、好ましくは3～25モル%、特に好ましくは5～20モル%のイソフタレートと、

30モル%を超える、好ましくは40モル%を超える、特に好ましくは50モル%を超えるエチレン又はブチレンから成る。

【0045】

好ましい実施態様において、本発明の外層(A)用のポリエステルIIのジカルボキシレートとアルキレン部分(ジカルボキシレート及びアルキレンそれぞれの合計量を基準に)は、

10

20

30

40

50

20～70モル%、好ましくは30～65モル%、特に好ましくは35～60モル%のセバケートと、

10～80モル%、好ましくは20～70モル%、特に好ましくは30～60モル%のテレフタレートと、

0～20モル%、好ましくは3～15モル%、特に好ましくは3～10モル%のイソフタレートと、

30モル%を超える、好ましくは40モル%を超える、特に好ましくは50モル%を超えるエチレンまたはブチレンから成る。

【0046】

その他の残余の成分はベース層（B）に記載した他の芳香族ジカルボン酸および他の脂肪族ジオールから誘導される。

10

【0047】

芳香族ジカルボン酸を10モル%以上存在させることで、ポリマーIIが、例えば、共押出機内での固着無しで製造できることを確実にする。

【0048】

外層（A）のポリエステルIIの割合が20重量%未満の場合、フィルムのシール挙動が大きく悪化する。既に上述したように、シール層は、通常のシール温度において、汚染物を介して良好なシールに必要な柔軟性を有さない。逆に、外層（A）中のポリエステルIIの比率が70重量%を超える場合、共押出法の手段でフィルムを製造することが極めて困難であり、また確実にフィルムを製造することが不可能となる。フィルムはある機械の部材に、具体的には金属ロールに非常に付着しやすくなる。

20

【0049】

本発明の原料のSV値は900を超える、好ましくは950を超える、特に好ましくは1000を超える。原料のSV値が900未満の場合、フィルムのヘーズが高くなり、好ましくない。

【0050】

外層（A）の任意成分のポリエステルIII：

1つ以上の芳香族ジカルボキシレート部分と1つ以上のアルキレン部分とから成る外層（A）の任意成分のポリエステルIIIの比率は、0～15重量%、好ましい実施態様において3～12重量%、特に好ましい実施態様において4～10重量%である。

30

【0051】

外層（A）のポリエステルIIIのジカルボキシレート部分とアルキレン部分（ジカルボキシレート及びアルキレンそれぞれの合計量を基準に）は、

80～98モル%、好ましくは82～96モル%、特に好ましくは74～95モル%のテレフタレートと、

2～20モル%、好ましくは4～18モル%、特に好ましくは5～17モル%のイソフタレートと、

50モル%を超える、好ましくは65モル%を超える、特に好ましくは80モル%を超えるエチレン単位から成る。

【0052】

残余の部分は、ベース層（B）の説明で主または他の芳香族ジカルボン酸に挙げられる他の芳香族ジカルボン酸および他の脂肪族ジオールから誘導される。

40

【0053】

I、II及びIIIの混合において、重量%の比率が総計100となるように注意しなければいけない。

【0054】

特に好ましい実施態様において、共重合ポリエステルIのテレフタレート単位が84～94モル%、対応するイソフタレート単位が6～16モル%（ジカルボキシレート含有量が総計100モル%となるようにする）およびエチレン単位の比率が100モル%であり、すなわちポリエチレンテレフタレート/イソフタレートである。

50

【0055】

特に好ましい実施態様において、ポリエステルⅠⅡは好適な耐ブロッキング剤（以下に説明する）を5～25重量%含有する。特に好ましい実施態様において、ポリエステルⅠⅡは、押出法によって好適に製造されたマスターバッチである。ここでの押出中（好ましくは二軸押出機内で）にポリエステル原料に添加する耐ブロッキング剤の濃度は、その後のフィルム内に存在する濃度よりもかなり高い。本発明のここでのマスターバッチのSV値は400を超える、好ましくは425を超える、特に好ましくは450を超える。

【0056】

外層（A）は、好ましくはポリエステルⅠ、Ⅱ及びⅢの混合物から成る。この混合物は、1種のみのポリエステルの使用、その成分や成分比率と比較して、以下の有利な点がある。

・それぞれのガラス転移温度（Tg）に基づき、ポリエステルⅠ、Ⅱ及びⅢの混合物は、それぞれのポリマー構成要素の濃度と比較して単一成分原料よりも押出が容易である。高いTgを有するポリマー（ポリエステルⅠ及びⅢ）と低いTgを有するポリマー（ポリエステルⅡ）との混合物は、その平均Tgに対応する1種のポリマーと比較して、共押出機内での付着が起き難いという研究結果を示す。

・実施の上で、この混合物の方が、1種のポリエステルを使用する場合に比べて、所望のシール性能に個別に調節することをより満足いくように達成できる。

・他の有利な点は、Tg（外層全体に関する）をより効果的に／より容易に設定できる。

・特に、粒子の添加は、ポリエステルⅠ又はⅡよりもポリエステルⅢの方が容易である。

10

20

20

【0057】

ポリエステルⅠ及びⅢのガラス転移温度は、好ましくは50を超え、更に好ましくは55を超える、特に好ましくは60を超える。ポリエステルⅠ及びⅢのガラス転移温度が50未満の場合、フィルムを信頼性をもって製造できない。外層（A）の例えばロールへの付着が起きやすくなり、頻繁にフィルム破断が起こることを考えなければいけない。

【0058】

ポリエステルⅡのガラス転移温度は、好ましくは10未満、更に好ましくは8未満、特に好ましくは6未満である。ポリエステルⅡのガラス転移温度が10を超える場合、シール層は通常の使用温度において、汚染物を介してシール性に要求される柔軟性を有さない。

30

【0059】

外層（A）用のポリマーに関し、本発明において、外層（A）全体のTgは60未満、好ましくは55未満、特に好ましくは50未満である。外層（A）の柔軟性は非常に高い。

【0060】

外層（A）中のアンチP E Tポリマー：

ヒートシール性外層（A）は、任意にポリエステルと非相溶な（アンチP E Tポリマー）を所定比率配合できる。アンチP E Tポリマーの配合比率は、外層（A）の重量を基準として0～10重量%、好ましい実施態様において3～10重量%、特に好ましい実施態様において5～10重量%である。

40

【0061】

好適なアンチP E Tポリマーの例としてはエチレン系（LLDPE、HDPE）、プロピレン系（PP）、シクロオレフィン系（CO）、アミド系（PA）、スチレン系（PS）のポリマーが挙げられる。好ましい実施態様において、共重合体がアンチP E Tポリマーとして使用される。この共重合体の例としては、エチレン系（C2/C3、C2/C3/C4共重合体）、プロピレン系（C2/C3、C2/C3/C4共重合体）またはシクロオレフィン系（ノルボルネン／エチレン共重合体、テトラシクロドデカン／エチレン共重合体）が挙げられる。中でも特に好ましい実施態様において、ポリエステルと非相溶な

50

ポリマーがシクロオレフィン共重合体（COC）である。これらのシクロオレフィン共重合体は、欧州特許出願公開第1068949号明細書または特開平05-009319号にその例が記載されており、本発明に参照により引用する。

【0062】

シクロオレフィン共重合体（COC）の中でも、好ましくはノルボルネン構造を基本とする多環オレフィン単位（特に好ましくはノルボルネン又はテトラシクロドデセン）の重合体から成るものである。特に好ましくは、非環式オレフィン（特にエチレン）単位の重合体から成るシクロオレフィン共重合体である。特に好ましくは、ノルボルネン／エチレン共重合体およびテトラシクロドデセン／エチレン共重合体で、エチレン単位は5～80重量%、好ましくは10～60重量%（共重合体の重量を基準として）である。

10

【0063】

COCのガラス転移温度は、通常-20～400の範囲である。本発明の好適なCOCは、ガラス転移温度120未満、好ましくは100未満、特に好ましくは80未満を有するものである。ガラス転移温度は、好ましくは50を超え、更に好ましくは55を超え、特に好ましくは60を超える。粘度数は（デカリン中、135、DIN 53728）は、0.1～200ml/g、好ましくは50～150ml/gである。

20

【0064】

フィルムがガラス転移温度80未満のCOCから成ることにより、ガラス転移温度が80を超えるCOCから成るフィルムと比較して、低いヘーズと良好なシール性が得られる。

20

【0065】

欧州特許出願公開第0283164号明細書、欧州特許出願公開第0407870号明細書、欧州特許出願公開第0485893号明細書および欧州特許出願公開第0503422号明細書に、可溶メタロセン錯体を基にする触媒を用いるCOCの製造方法が記載されている。可溶メタロセン錯体を基にする触媒を用いて製造されたシクロオレフィン共重合体は特に好ましい。このCOCは、例えば、Topas（登録商標、Ticona社製、フランクフルト）として市販品を入手できる。

30

【0066】

更に、アンチPETポリマーは、シール性および加工特性、特に本発明のフィルムの巻取り性に有利となる。好ましい実施態様においてCOCの比率が3重量%未満の場合、シール性およびトレーの加工特性におけるポリマーの好ましい効果は得られない。トレーはプロッキングを起こしやすくなる。一方、ポリエステル非相溶ポリマーの比率が10重量%を超えないようにすべきであり、これはフィルムのヘーズが高くなりすぎるからである。

【0067】

外層（A）中の耐プロッキング剤：

フィルムの加工特性を更に改良するために、ヒートシール性外層（A）に他の修飾を施すことが好適である。最も良い方法は、ポリエステルIIIの原料としてシール性層に（耐プロッキング剤マスターbatchと同等の方法で）、フィルムのプロッキングを防ぎ、フィルムの加工特性を最良とするような量で単一の耐プロッキング剤を添加する方法である。

40

【0068】

フィルムの良好な加工特性のため、メジアン粒径 d_{50} が2.0～8.0μm、好ましくは2.5～7.5μm、特に好ましくは3.0～7.0μmの粒子を使用することが好ましい。粒径が2.0μm未満の粒子を使用すると、フィルムの加工特性の改良効果が無い。フィルムはプロッキングを起こしやすくなり好ましくない。粒径が8.0μmを超える粒子の場合、ヘーズが高くなり過ぎ、更にフィルターの問題も生じる。

【0069】

更に、ヒートシール性外層（A）の粒子濃度は0.5重量%以下、好ましくは0.01～0.4重量%、特に好ましくは0.01～0.35重量%であることが好ましい。外層

50

(A) の粒子濃度が 0.5 重量 % を超えると、フィルムのヘーズが高くなり過ぎる。

【0070】

本発明において好ましい粒子はコロイド形状の非晶 SiO_2 粒子であり、ポリマーマトリックス中への結合が優れている。 SiO_2 粒子の製造方法に関する従来技術としては、例えば、欧州特許第 1475228 号明細書に詳しくされている。

【0071】

外層 (A) 中に使用できる他の代表的な粒子としては、無機および / または有機粒子であり、例えば、炭酸カルシウム、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、 LiF 、使用されるジカルボン酸のカルシウム塩、バリウム塩、亜鉛塩またはマンガン塩、二酸化チタン、カオリンが挙げられる。

10

【0072】

外層 (A) の厚さ :

本発明におけるヒートシール性外層 (A) の厚さは、10 ~ 100 μm である。外層 (A) の厚さが 10 μm 未満の場合、フィルムのシールが不十分となる。外層の厚さが 100 μm を超えると、フィルムがブロッキングを起こしやすくなり、好ましくない。

【0073】

外層 (A) は、それ自身非常に良好なシール性を示す (FIN シーリング、外層 (A) と外層 (A) とのシール)。外層 (A) のそれ自身のシールシーム強度 (FIN シーリング) は、150 (460 N、2 秒) のヒートシール後で、3 N / 15 mm を超え、10 N / 15 mm 以下である。

20

【0074】

驚くべきことに、本発明の外層の処方に従うことにより、フィルムが例え肉汁などで汚染されても、何れの場合でも耐久性よく確実なシールが達成できる。

【0075】

ベース層 (B) :

ベース層 (B) に使用されるポリマー :

フィルムのベース層 (B) は、ジカルボン酸誘導単位とジオール誘導単位から成るか、ジカルボキシレート部分およびアルキレン部分から成る熱可塑性ポリエステル 90 重量 % 以上から成り、通常以下のジカルボキシレート部分およびアルキレン部分を含む (それ総ジカルボキシレート量および総アルキレン量 (= 主カルボン酸) を基準とする)。

30

- ・ 90 モル % を超え、好ましくは 92 モル % を超えるテレフタレート
- ・ 10 モル % 未満、好ましくは 8 モル % 未満のイソフタレート又は 2,6-ナフタレート
- ・ 90 モル % を超え、好ましくは 95 モル % を超えるエチレン

【0076】

ポリエステルを形成するための他の好適な脂肪族ジオールとしては、例えば、ジエチレングリコール、トリエチレングリコール、一般式 $\text{HO} - (\text{CH}_2)_n - \text{OH}$ で表される脂肪族グリコール (式中、n は、3 ~ 6 の整数を示す; 特に、プロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール及びヘキサン-1,6-ジオール等) および炭素数 6 以下の分岐鎖脂肪族ジオールが挙げられる。他の好適な芳香族ジオールとしては、例えば、式 $\text{HO} - \text{C}_6\text{H}_4 - \text{X} - \text{C}_6\text{H}_4 - \text{OH}$ で表される芳香族ジオール (式中 X は、- CH_2 -、- $\text{C}(\text{CH}_3)_2$ -、- $\text{C}(\text{CF}_3)_2$ -、- O -、- S - 又は - SO_2 -) が挙げられる。

40

【0077】

他の好適な芳香族ジカルボン酸としては、ベンゼンジカルボン酸、ナフタレンジカルボン酸 (例えば、ナフタレン-1,4-又は 1,6-ジカルボン酸)、ビフェニル- x , x' -ジカルボン酸 (特に、ビフェニル-4,4'-ジカルボン酸)、ジフェニルアセチレン- x , x' -ジカルボン酸 (特に、ジフェニルアセチレン-4,4'-ジカルボン酸) およびスチルベン- x , x' -ジカルボン酸が挙げられる。脂環式ジカルボン酸としては、シクロヘキサンジカルボン酸 (特に、シクロヘキサン-1,4-ジカルボン酸) が挙げ

50

られる。脂肪族ジカルボン酸としては、アルカン部位が直鎖又は分岐鎖である C₃ - C₁₉、アルカン二酸が特に好適である。

【0078】

ベース層 (B) に、テレフタレート及び少量 (< 5 モル%) のイソフタレート系共重合ポリエステル又はテレフタレート及び少量 (< 5 モル%) の 2, 6-ナフタレート系共重合を使用することが特に好ましい。この場合、フィルムは非常に製造性および光学的特性に優れる。ベース層 (B) は、基本的にテレフタル酸およびイソフタル酸単位ならびにエチレングリコール単位から主として成るポリエステル共重合体から成る。フィルムに所望の特性を付与する特に好ましい共重合ポリエステルは、テレフタレート単位およびイソフタレート単位ならびにエチレングリコール単位から成る。

10

【0079】

ベース層 (B) 用ポリエステルは、例えばエステル交換反応プロセスによって製造できる。このプロセスは、通常の亜鉛、カルシウム、リチウム及びマンガンの塩などのエステル交換反応触媒を使用してジカルボン酸エステルとジオールを反応させて行われる。中間生成物は、三酸化アンチモン、チタン塩、アルミニウム塩またはゲルマニウム塩などの公知の重縮合触媒の存在下で重縮合される。製造工程は、重縮合触媒の存在下での直接エステル化法と同じである。これはジカルボン酸およびジオールから直接製造される。

【0080】

二酸化チタンまたはゲルマニウム化合物などの存在下で中間生成物を重縮合させるか、又は、二酸化チタンまたはゲルマニウム化合物などの重縮合触媒の存在下で直接エステル化法を行うことが特に好ましい。このポリエステルフィルムはアンチモンを含まない。特に好ましい態様において、ポリエステルフィルムがアンチモンを含まない場合であり、フィルムが直接食品に接するような包装分野で使用できる。

20

【0081】

本発明のフィルムの更なる加工特性の改良を達成するために、2層フィルム構造 (A B) におけるベース層 (B) 又は3層フィルム構造 (A B C) の非シール性外層 (C) に、以下の条件にしたがった粒子を配合することが好ましい。

・粒子のメジアン粒径 d_{50} が 2 ~ 8 μm 、好ましくは 2.5 ~ 7.5 μm 、特に好ましくは 3 ~ 7 μm である。

・粒子の存在濃度は、0.5 重量% 以下、好ましくは 0.01 ~ 0.4 重量%、特に好ましくは 0.1 ~ 0.35 重量% である。

30

【0082】

上記の特性、特にフィルムの光学的特性を達成するために、A B C 構造を有する3層フィルムの場合、ベース層 (B) の粒子の含有量を外層 (C) の含有量より低くするように調節することが特に好ましい。上記の3層フィルムは、ベース層 (B) 中の粒子量が 0 ~ 0.2 重量%、好ましくは 0 ~ 0.15 重量%、特に好ましくは 0 ~ 0.1 重量% である。自己再生 (自己リサイクル) 原料のみによってベース層中に粒子が導入されることが特に好ましい。これにより、フィルムの望ましい光学的特性、特にフィルムヘーズが上手く達成できる。

【0083】

非シール性外層 (C) の厚さは、外層 (A) と同じであっても異なってもよく、通常 10 ~ 50 μm である。

【0084】

ベース層 (B) は、更に、公知の添加剤、例えば安定剤 (UV 安定剤、耐加水分解剤、熱安定剤) または、フィラー (例えば、顔料) を、製造者が推奨する濃度で含有できる。これらの添加剤は、溶融前のポリマー又はポリマー混合物に添加することが好ましい。

40

【0085】

ベース層 (B) は、60 重量% 以下で再生原料 (フィルム廃材、例えば、トリミングした廃材、スタートアップ時の廃材、骨格の廃材など) をフィルム製造中の押出工程に導入でき、フィルムの物理的特性、特に光学的特性に悪影響を及ぼすことはない。

50

【0086】

フィルムの構造：

本発明のヒートシール性フィルムは2層または3層構造を有する。層(A B C)を有する3層構造のフィルムが、上記の性質、特に必要とされる光学的性質を達成するのに有利である。本発明のフィルムは、それ故、ベース層(B)、ベース層(B)の何れかの側にヒートシール性外層(A)、及びベース層(B)の他の側に外層(C)から成る。

【0087】

フィルムの厚さ：

本発明のポリエステルフィルムの総厚さは所定の範囲内で種々取り得、100～1500μm、好ましくは110～1300μm、特に好ましくは120～1100μmであり、ベース層の厚さが少なくとも65%である。フィルムの厚さが100μm未満の場合、フィルムの機械的特性およびバリア性が不十分である。フィルムの厚さが1500μmを超えると、フィルムのシール時間が悪化し、フィルムの製造が経済的でなく、どちらも好ましくない。

10

【0088】

フィルムの製造方法：

本発明は、公知の共押出法による熱成形性ポリエステルフィルムの製造方法も提供する。この製造方法の手順は、フィルムの対応する個々の層(A B)、必要であれば層(C)に対応する溶融体をフラットフィルムダイを介して共押出しし、得られたフィルムを1つ以上のロール上に引取って固化させ、次いで巻取る。本発明において、フィルムは基本的に非晶となるような手法で冷却される。

20

【0089】

本発明のフィルムの特性：

本発明の製造方法で製造された本発明のヒートシール性且つ熱成形性のポリエステルフィルムは、種々の特性を有するが、以下に最も重要な特性を列記する。

【0090】

ヒートシール性ポリエステルフィルムのヘーズは10%未満、好ましくは9%未満、特に好ましくは8%未満である。

30

【0091】

ヒートシール性ポリエステルフィルムの明瞭度は80%を超え、好ましくは82%を超え、特に好ましくは84%を超える。

【0092】

ヒートシール性ポリエステルフィルムのグロスは100を超え、好ましい実施態様において110を超え、特に好ましい実施態様において120を超える。

【0093】

ヒートシール性ポリエステルフィルムの透明度は89を超え、好ましくは90を超え、特に好ましくは90.5を超える。

【0094】

本発明のポリエステルフィルムは非常に良好なシール性を示す。外層(A)それ自身のシールシーム強度(FINシール)は、150(460N、2秒)のシール後で、3N/15mmを超え、10N/15mm以下である。

40

【0095】

蓋フィルムに関連するシールの確実性は、全ての場合、例えば外層(A)が肉汁などで汚染されていたとしても達成できる。

【0096】

本発明のポリエステルフィルムは、食品や他の消費物品の包装、特にトレー内の食品や他の消費物品の包装、特に密閉包装に使用できるなどの優れた適応性を有する。

【0097】

本発明のポリエステルフィルムは、極めて良好な巻取り特性を有する。

【0098】

50

本発明のフィルムは包装体の製造に非常に好適に使用でき、外層(A)と適切な蓋フィルムとの間のシールシーム強度は3~10N/15mmの範囲である。

【0099】

表1に本発明のフィルムのとりわけ最も重要な特性を纏める。

【0100】

【表1】

表1

外層(A)	本発明の範囲	好ましい範囲	特に好ましい範囲	単位	測定方法
ポリエステル中の芳香族ジカルボン酸から成る単位の比率	25~95	40~90	50~88	mol%	
ポリエステル中の脂肪族ジカルボン酸から成る単位の比率	5~75	10~60	12~50	mol%	
ポリエステルI(芳香族)	10~60	15~55	20~50	重量%	
ポリエステルII(脂肪族-芳香族)	20~70	25~65	30~60	重量%	
ポリエステルIII(芳香族)	0~15	3~12	4~10	重量%	
アンチ-PETポリマー	0~10	3~10	5~10	重量%	
d_{50} 粒径	2~8	2.5~7.5	3.0~7	μm	本発明における方法
フィラー濃度	≤0.5	0.01~0.4	0.01~0.35	重量%	本発明における方法
外層(A)の厚さ	10~100			μm	本発明における方法
フィルムの特性					
フィルムの厚さ	100~1500	110~1300	120~1100	μm	
FINシール(150°C, 460N, 2秒)	3~10	3.2~10	3.5~10	N/15 mm	本発明における方法
フィルムのヘーツ	<10	<9	<8	%	ASTM D1003-52
フィルムの明瞭度	=80	=82	=84	%	ASTM D1003-51
フィルムのグロス	>100	>110	>120		DIN 67530

【0101】

定義：

ヒートシール性とは、一般に、少なくとも1つのベース層（B）と少なくとも1つのヒートシール性外層（A）とから成る多層ポリエステルフィルムが所有する性質である。シールジョーの手段を介して、所定時間（0.1～4秒）加熱され（例えば、110～220）、加圧される（圧縮力：1～6bar又は200～1000N）ことにより、熱可塑性プラスチックから成る基材、例えば、a-PETから成るトレーに、ヒートシール性外層（A）が接着される。この際、ベース層（B）は、それ自身がこのシール過程において熱可塑化しない。外層（A）のポリマーが、通常ベース層のポリマーよりも顕著に低い融点または軟化点を有することにより、このシールが達成される。例えば、254の融点を有するポリエチレンテレフタレートは（c-PET）をベース層のポリマーに使用するのであれば、ヒートシール性外層（A）の融点は、通常顕著に低い200未満となる。

10

【実施例】

【0102】

本発明の原料およびフィルムの特性付けにおいて以下の試験方法を使用した。

【0103】

評価方法：

ヘーズ、明瞭度および透明度

20

Haze-gard XL-211 Haze meter (BYK Gardner社製)がポリエステルフィルムの試験に使用された。ヘーズはASTM-D 1003-61, Method Aによって決定された。明瞭度（Clarity）は、Haze-gardの「clarity port」を使用し、ASTM-D 1003に従って測定される。透明度はASTM-D 1003-61, Method Aによって決定された。測定はフィルムの製造後に直接行われた。

【0104】

20°グロス：

30

グロスはDIN 67530に従って決定する。反射率を測定し、これをフィルム表面の光学的特性値とする。ASTM D 523-78規格およびISO 2813規格を基にした方法を使用し、入射角を20°にセットする。光線はセットした入射角度から平面の試料表面を照射し、表面から反射または散乱する。光電子検出器に当たる光線が比例電気変数が映し出される。測定値は無次元であり、入射角とともに報告されるべきである。

【0105】

標準粘度SV：

40

希薄溶液中の標準粘度（SV）は、ジクロロ酢酸（DCA）を溶媒とし、ウベローデ型粘度計を用い、25±0.05で、DIN 53728 Part 3に記載の方法に従って測定した。ポリマー濃度は、ポリマー1g/100ml純溶媒である。溶解には60で1時間を必要とする。この後、サンプルがなお完全に溶解していない場合は、80で40分間を2回繰り返し、溶液を4100分⁻¹の回転速度の遠心分離で1時間処理する。

【0106】

無次元のSV値は、相対粘度（ $\eta_{rel} = \eta / \eta_s$ ）を用いて以下の式から決定する。

$$SV = (\eta_{rel} - 1) \times 1000$$

【0107】

フィルム又はポリマー原料中の粒子の量は灰化法により決定し、粒子量によって投入した重量の増加した分を補正する。

$$\text{投入重量} = (100\% \text{ポリマーに相当する投入重量}) / [(100 - \text{粒子濃度(重量\%)} \times 0.01)]$$

【0108】

メジアン粒径d₅₀：

50

メジアン粒径 d_{50} は、使用する粒子について Malvern Mastersize r 2000 を使用して測定した先ず、試料をセルの水中に投入し、測定装置に設置する。レーザを用い、分散を解析し、検知データを較正曲線と比較して粒径分布を求める。粒径分布は 2 つのパラメーターによって表され、1 つはメジアン値 d_{50} (測定値の中央値)、もう 1 つは分散幅を表す SPAN 98 (粒径分散の測定) である。試験は自動的に行われ、粒径 d_{50} の数学的な計算も行われる。ここで d_{50} 値は、(相対的) 積算粒径分布曲線 (50% 縦軸値と積算曲線と交点が、求めるべき横軸上の d_{50} 値を与える) から決定される。

【0109】

上記の粒子を使用することによって製造されたフィルムにおける測定は、使用する粒子の粒径よりも 15 ~ 25% 低い d_{50} 値を与える。 10

【0110】

シールシーム強度 (DIN 55529) :

測定の正確性および実現可能性の理由により、FIN シールシーム強度は、シール性層 (A) を有する本発明のフィルムから直接試験よりもむしろ、熱成形されたトレーの壁から切取られた幅 15 mm のフィルム片を試験した。熱成形性ポリエステルフィルムは Multivac machine (R 245 / SN: 166619) に把持され、以下の条件で熱成形された。

成型温度 : 150 、加熱時間 2 ~ 3 秒、爆発成型 / 圧縮空気リザーバー : 2 bar、成型圧力 : 2 bar、成型時間 : 2 秒 20

図 1 はトレーの仕様を示す。絞り深さは 70 mm であった。

【0111】

FIN シールシーム強度は、DIN 55529 (2005-09) に従い測定した。幅 15 mm の 2 つのフィルム片を熱成形されたトレー (上記の製造方法を参照) の壁から切取り、シール性層 (A) が交互に重ね合わされ、150 、シール圧力 460 N で 2 秒間加圧した (装置 : Brugger NDS、片側加熱シールジョー)。シールジョーへの付着を防ぐため、12 μ m の厚さの結晶化ポリエステルフィルムを本発明のフィルムとシールジョーの間に挟んだ。シールシーム強度 (最大力) は剥離角度 90° (90° 剥離法)、速度 200 mm / 分で測定した。 30

【0112】

実施例 1 :

I. 热成形性ポリエステルフィルムの製造 :

以下の出発原料が夫々の共押出層 (ABC) に使用され、熱成形性でヒートシール性ポリエステルフィルムを製造した。 40

【0113】

外層 (A) は以下の混合物である。

- ・ポリエステル I (エチレンテレフタレート 78 モル% とエチレンイソフタレート 22 モル% とから成る共重合体で、SV 値が 850 、Tg が約 75) : 60.0 重量%
- ・ポリエステル II (エチレンセバケート 40 モル% とエチレンテレフタレート 60 モル% から成る共重合体で、SV 値が 1100 、Tg が約 -2) : 40 重量%

【0114】

ベース層 (B) :

- ・SV 値が 800 で、テレフタレート単位 95 モル% とイソフタレート単位 5 モル% とエチレングリコール単位 100 モル% とから成る共重合ポリエステル : 100 重量%

【0115】

外層 (C) :

- ・SV 値が 800 で、テレフタレート単位 95 モル% とイソフタレート単位 5 モル% とエチレングリコール単位 100 モル% とから成る共重合ポリエステル : 95 重量%
- ・98.5 重量% のポリエチレンテレフタレートと 1.5 重量% の Sylobloc 46 : 5 重量%

10

20

30

40

50

フィルムの厚さ : 300 μm

外層 (A) の厚さ : 50 μm

【0116】

上記の原料をそれぞれの層に対応する押出機内で溶融させ、3層フラットフィルムダイを介して冷却引取りロール上に押出してABCの層構造とした。得られた非晶フィルムの端をトリミングし、巻取った。

【0117】

各工程における製造条件は以下の通りである。

【0118】

【表2】

10

押出	溶融温度 (ABC)	270°C
	引取りロールの温度	20°C
	引取りロール上のフィルムの滞留時間	15秒

【0119】

表2は、フィルムの組成、本発明のフィルムに関する更なる情報、特に本発明のフィルムの特性について示す。

20

【0120】

I I . ヒートシール性蓋フィルム :

ヒートシール性蓋フィルムは、欧洲特許第1138480号明細書の実施例3を追試して製造した。

【0121】

I I I . 包装体の製造 :

熱成形性ポリエステルフィルム及びヒートシール性蓋フィルムは、それぞれ別々にM ultivac machine (R 245 / S N : 166619) に把持された。熱成形ポリエステルフィルムは以下の条件で熱成形された。

成型温度 : 150 、加熱時間 2 ~ 3 秒、爆発成型 / 圧縮空気リザーバー : 2 bar 、成型圧力 : 2 bar 、成型時間 : 2 秒

30

図1はトレーの仕様を示す。絞り深さは 70 mm であった。

【0122】

成型体を冷却し、熱成形フィルムを型から取出した。豚肉の塊 (約 1000 g) をキャビティ内に配置し、蓋フィルムをトレー上部に配置した。蓋フィルムのトレーへの配置は、上部フィルムのヒートシール性表面 (A') とトレーのシール部分とに肉片を接触させて行った。ヒートシールは同じ機械を使い、温度 160 、圧力 2 bar で 2 秒行った。シールは確実で耐久性があった。

【0123】

実施例2 :

実施例1において、外層 (A) の仕様のみを変更した以外は全て同じ仕様で熱成形性でシール性のポリエステルフィルムを製造した。

40

【0124】

外層 (A) は以下の混合物である。

・ポリエステルI (エチレンテレフタレート 78 モル%とエチレンイソフタレート 22 モル%とから成る共重合体で、SV値が 850 、Tgが約 75) : 40.0 重量%

・ポリエステルII (エチレンセバケート 40 モル%とエチレンテレフタレート 60 モル%とから成る共重合体で、SV値が 1100 、Tgが約 -2) : 60.0 重量%

【0125】

実施例3 :

50

実施例 1において、外層(A)の仕様のみを変更した以外は全て同じ仕様で熱成形性でシール性のポリエステルフィルムを製造した。

【 0 1 2 6 】

外層(A)は以下の混合物である。

- ・ポリエステル I (エチレンテレフタレート 67 モル%とエチレンイソフタレート 33 モル%とから成る共重合体で、 SV 値が 850 、 Tg が約 75) : 46 重量%
- ・ポリエステル I I (エチレンセバケート 40 モル%とエチレンテレフタレート 60 モル%から成る共重合体で、 SV 値が 1000 、 Tg が約 -2) : 49 重量%
- ・ポリエステル I I I (SV 値が 850 のエチレンテレフタレート 89 モル%とエチレンイソフタレート 11 モル%とから成る共重合体と、 15 重量%の S y l o b l o c 43 ($d_{50} = 3.9 \mu m$)、ポリエステル I I I の Tg が約 75) : 5.0 重量%

10

【 0 1 2 7 】

比較例 1 :

実施例 1とは異なり、耐プロッキング剤を備えている標準ポリエステル(= a - P E T)を選択して熱成形性ポリエステルフィルムを製造した。他の仕様については(例えばプロセス、包装体の製造)、実施例 1と同じであった。

【 0 1 2 8 】

フィルム構成 :

- ・ポリエチレンテレフタレート : 95 重量%
- ・ 85 重量%のポリエチレンテレフタレートと 15 重量%の S y l o b l o c 43 : 5 重量%

20

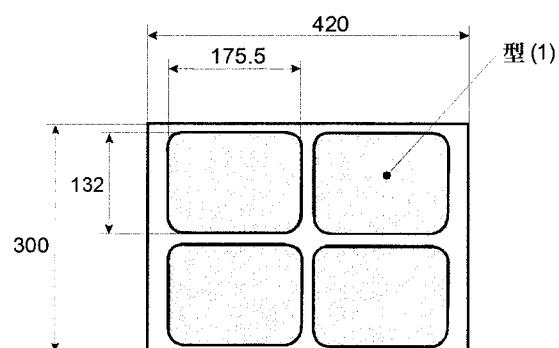
フィルムの厚さ : 300 μm

包装体は汚染物を介してのシールには不適であった。

【 0 1 2 9 】

【表3】

表2 热成形性フィルム


ポリエステルIの組成	ポリエステルIIの組成			アンチ-PETポリマー			PI/PII/PIIIとアンチ-PETポリマーの比率			PI/PII/PIII及びアンチ-PETポリマーのガラス転移温度			フィルム構造			外層の厚さ			耐プロックキシング剤FINシールシーム強度			ベースグロス			
	TA	IA	EG	SeS	TA	IA	EG	TA	IA	EG	COC	重量%	モル%	重量%	温度°C	(A)	(C)	粒径μm	μm	μm	濃度%	150°C	%	%	%
1	78	22	100	40	60	100					100	60/40/0/0	75/-2/-/-	ABC	300	50	20				7	6	127		
78	22	100	40	60	100					100	40/60/0/0	75/-2/-/-	ABC	300	50	20				6	7	121			
67	33	100	40	60	100	89	11	100	100	100	46/49/5/0	75/-2/-75/-	ABC	300	50	20	3.9	0.075	5.5	5.5	9	118			
1	100	100								100	100/0/0/0	75/-/-/-	ABC	300			3.9	0.075	2.5	2.5	11	95			
TA:テレフタレート IA:イソフタレート EG:エチレンジコール																									
SeS:セバケート																									

【産業上の利用可能性】

【 0 1 3 0 】

本発明のフィルムは、肉汁で汚染された部分を介してもヒートシールが好適にできるようなポリエステルポリマーから成るシール性で、熱成形性の下部フィルムとして好適である。

【 図 1 】

フロントページの続き

(72)発明者 ボド・クーマン

ドイツ連邦共和国、デー - 6 5 5 9 4 ルンケル、ブッヒエンハイン 2 3

(72)発明者 フィクトール・フィッシャー

ドイツ連邦共和国、デー - 6 8 7 2 3 オフタースハイム、マンハイムストラッセ 1 1 3 - 1 1

5

(72)発明者 トビアス・レンツィッヒ

ドイツ連邦共和国、デー - 6 1 3 5 0 バド - ホムブルグ、ハメルストラッセ 2 0

F ターム(参考) 3E086 AB01 AD05 AD24 BA15 BA33 BA35 BB01 BB15 BB42 BB51

BB58 BB71 CA01 CA22 CA25 DA08

4F100 AA01B AH00B AK02B AK05B AK07B AK12B AK41A AK41B AK46B AK63B

AL05B AT00C BA02 BA03 BA07 BA10B BA10C DE01B EA02 EH20

EJ17 EJ30 EJ42 GB15 GB16 GB18 JA06 JK06 JL01 JL12B

JN01 YY00B

【外国語明細書】

18/027 MFE

- 1 -

明細書

発明の名称

Heat-sealable polyester film for production of ready-meal trays, process for its production, and use of the film

技術分野

The invention relates to a coextruded and unstructured, transparent and thermoformable polyester film with a heat-sealable layer for the production of trays. The thermoformable and heat-sealable polyester film serves - after it has been thermoformed to give a tray - to receive food, e.g. fish, poultry or fresh meat. The invention further relates to a process for the production of the film and to use of the film.

背景技術

Transparent trays made of thermoformable, amorphous polyethylene terephthalate (a-PET) are produced in the food industry by way of example with use of vacuum processes. After the food has been placed therein, a lid film is sealed to the edge of the tray and the pack is thus securely closed - in order to protect the food from exterior effects. These packs are used for fish, poultry, precooked meat and fresh meat, and for dry finished products such as sandwiches, burgers or wraps. These packs are considered a method for preparing the products that is clean and hygienic; this method is therefore very widely used.

The processes known as vacuum processes provide a cost-effective method of producing hygienic packs for the processing of meat, fish or poultry. The procedure for producing the finished pack here is generally as follows: the film for producing the trays (also termed

18/027 MFE

- 2 -

lower film) is clamped in the form of roll into the machine. The film is thermoformed by way of vacuum chambers to a desired depth to give a tray with use of heat and vacuum. The food product is placed into the tray manually - or in the case of large numbers of units in essence by use of machines. The lid film (also termed upper film) is introduced by way of another roll to the tray and sealed securely to the edge thereof with use of heat and pressure. The thermoformed trays securely sealed by the lid film, are separated into individual packs, e.g. by punching, and are marketed after further operations such as printing or labelling.

The residual skeletal waste in the production of the trays here makes up up to 50 % of the film used to produce the trays. In order to reduce this waste, it is desirable that the skeletal waste can be directly introduced, for example in the form of regrind, into the extrusion procedure for the production of new thermoformable film.

In the development of packs with new and improved properties, it is necessary for performance-related reasons to achieve durable, at least secure heat-sealing between the lid film and the tray containing the food.

Secure heat-sealing is defined in terms of the application as achieved when the sealing force is in the range of about 3 to 10 N per 15 mm of film strip width. The term low-strength heat-sealing is used for values lower than these, and the term high-strength heat-sealing is used for values higher than these.

Secure heat-sealing is in particular desirable in the production of packaging for fresh meat where the

18/027 MFE

- 3 -

product is generally placed into the tray by use of machines. When the food is placed into the tray, it is possible here that the sealing edge of the tray becomes contaminated with small quantities of food substances, for example meat juices. It is essential here that complete heat-sealing of two films is achieved through the area contaminated with meat juices.

This problem has conventionally been solved hitherto by technical means consisting in the use of multilayer plastics films, not only for the thermoformable lower film but also for the sealable upper film or lid film.

If polyester is used for both films, by way of example thermoformable a-PET for the lower film and by way of example biaxially oriented PET for upper film, the respective sealing layer in the multilayer plastics films mentioned is composed of a type of plastic differing from a-PET.

This different type of plastic is selected to be more fusible at the desired low sealing temperature and, in the molten state, significantly more ductile than a-PET. Typical materials for this purpose are polypropylene (PP), and in particular polyethylene (PE), which has the lowest melting point and is very ductile in the molten state. Both materials, PP and PE, can be applied by lamination, extrusion coating or coextrusion to the polyester base layer.

Packaging in the form of a PET-PE solution where the base layer for the tray and the base layer for the lid film consists of polyester, while sealable layers consist of PE, is known in the market.

A known problem arises when fresh meat is packed in a-

18/027 MFE

- 4 -

PET trays with lids made of polyester. When this combination of materials is used, the finished packaging often exhibits incomplete sealing. The pack is found to be only loosely sealed, to open during transport, or not to be gastight. In the case of packaging with modified atmosphere (MAP), the sealed area is unable to retain the modified atmosphere within the container for the stated shelf life; this leads to accelerated spoiling of the food stored in the container.

The tray made of thermoformable polyester with the lid film likewise made of polyester is heat-sealed at sealing temperatures between 120 and 220 °C, or in the case of an "all-polyester solution" typically at 160 to 220 °C. The process is cost-effective if the sealing time can be restricted to three seconds or less.

Two different film concepts for the structure of the pack can currently be observed in use alongside one another in the market:

- films both completely composed of polyester polymers, the films here having one or more layers
- films composed of polyester polymers in the "core layers or base layers", the sealable layers here consisting of polypropylene, and or in particular of polyethylene.

The present invention relates to the solution for a sealable, thermoformable lower film made of polyester polymers that is suitable for heat-sealing through areas contaminated with meat juices or the like.

A thermoformable lower film that is produced from only a single material - in this case polyester - has a

number of technical advantages:

- waste arising during the production of the films and of the trays, inter alia "skeletal waste", can easily be recycled
- the resultant regrind (recyclate) can be reused in the production of new trays without any resultant sacrifice of quality
- the pack is more visually attractive than the pack using the known APET-PE solution
- "post-consumer recycling" (PCR) is easier than in the case of an APET-PE solution.

先行技術

Thermoformable films made of polyester are known for production of trays.

EP 2 643 238 B1 describes a food tray composed of a single- or multilayer sheet, where the material of each of the layers comprises at least 85 % of amorphous polyethylene terephthalate. The tray comprises a base component, side walls and a peripheral sealing lip, where the sealing lip has an upward-facing sealing area that is in essence flat. The sealing area comprises, in addition to the tray material, a layer of an adhesive of the invention over the entire perimeter of the tray. The tray is formed by thermoforming of the sheet, and the adhesive here can be applied to the sealing area by means of roll-coating directly after the procedure for shaping of the tray. The adhesive comprises ethylene co- and terpolymers or a mixture thereof, and also a wax. The container is in particular suitable for sealing where the sealing area of the tray has been contaminated with small quantities of food substances, for example meat juices. The inventive solution requires improvement in several respects: application, to the sealing area, of an additional adhesive layer

18/027 MFE

- 6 -

made of, in essence, polyethylene makes the product more expensive; waste arising during the procedure cannot be reintroduced into extrusion of films for tray production without loss of quality, and post-consumer recycling becomes significantly more difficult.

EP 3 296 227 A1 describes a food tray composed of a single- or multilayer sheet, where the material of each of the layers comprises at least 85 % of amorphous polyethylene terephthalate. The tray comprises a base component, side walls and a peripheral sealing lip, where the sealing lip has an upward-facing sealing area that is in essence flat. At least the tray layer that forms the sealable layer (corresponding to the sealing area) has been modified to have increased softness at relevant sealing temperatures, typically between 120 and 180 °C. This layer (or these layers) has/have moreover been modified to reduce its/their surface energy. Improved softness of at least the sealable layer is obtained by using comonomers, such as isophthalic acid (IPA), cyclohexanedimethanol (CHDM) or diethylene glycol (DEG) to modify the polyethylene terephthalate present in the layer, e.g. by coextrusion. The surface energy of the sealable layer is reduced by addition of an internal and/or external lubricant, e.g. a wax. The additive can be introduced internally for example by means of coextrusion into the surface layer, and externally by way of example by means of coating of the surface layer.

The tray is suitable for the application mentioned in the introduction - sealing through contamination - but requires improvement in sealing properties and in optical properties. The application mentions a number of materials/additives that can be used to modify the surface layer of the tray. However, the application

contains no specific information about formulations or processes for production of the films, and there is also a lack of information relating to the thickness of the inventive surface layer of the tray. The patent application therefore does not disclose the invention in a manner sufficiently clear and complete to permit its implementation, or repetition, by a person skilled in the art.

先行技術文献

特許文献

特許文献1 EP 2 643 238 B1

特許文献2 EP 3 296 227 A1

発明の概要

発明が解決しようとする課題

It was an object of the present invention to provide, for the application mentioned in the introduction, a coextruded and thermoformable, in essence amorphous, unstructured film which is made of polyester and which features excellent sealing properties. In the event that the sealable layer of the film has been contaminated with small quantities of food substances, for example meat juices, the sealing in relation to commercially obtainable lid films is intended to be sufficiently good to achieve secure sealing. The film is moreover intended to exhibit particularly brilliant optical properties. It is intended to overcome the disadvantages of films of the prior art and in particular to feature the following aspects/properties.

- The thermoformable film, suitable for production of trays via thermoforming, is a multilayer film and is in essence composed of polyester raw materials.
- The thermoformable film is intended to feature secure heat-sealing. Sealing - even via

contaminated surfaces, for example through meat juices - is intended to give a durably secure seal between the tray and commercially obtainable lid films. Secure heat-sealing is achieved when the sealing force is in the range of about 3 to 10 N per 15 mm of film strip width.

- The thermoformable film is intended to feature brilliant optical properties. This relates to the haze, and in particular the clarity, of the film. It is desirable that the haze thereof is below 10 %, the clarity thereof is above 80 % and the gloss thereof is above 100; (all optical values are measured directly after production of the film).
- The thermoformable film is intended to be amenable to cost-effective production. This means by way of example that processes conventional in industry, for example coextrusion processes, can be used to produce the film.
- It is moreover desirable that the waste arising during production of the thermoformable film and of the tray (e.g. the skeletal waste) can be reused as regrind with no sacrifice of quality.
- It is moreover desirable that the regrind can be reused at up to 50 % for the production of films for trays of the type described in the introduction.

課題を解決するための手段

The object is achieved via provision of a coextruded and unstructured, transparent and thermoformable polyester film for production of trays, comprising at least one base layer (B) made of a-PET and one heat-

sealable outer layer (A), where the heat-sealable outer layer (A) comprises at least 80 % by weight of polyester, where

- a) the polyester of the outer layer (A) is composed of 25 to 95 mol% of units derived from at least one aromatic dicarboxylic acid and 5 to 75 mol% of units derived from at least one aliphatic dicarboxylic acid, and is based on aliphatic diols, where the mol% data always give a total of 100 %
- b) the outer layer (A) comprises up to 0.4 % by weight of inorganic or organic particles with median diameter d_{50} 2.0 to 8.0 μm
- c) the thickness of the outer layer (A) is 10 to 100 μm
- d) the haze of the film is below 10 % and the clarity of the film is at least 80 %
- e) the seal seam strength of the film in relation to itself (= FIN sealing) is in the range 3 to 10 N/15 mm and
- f) the thickness of the film is in the range 100 to 1500 μm .

Unless otherwise mentioned, the expression % by weight above and hereinafter always refers to the weight of the respective layer of the respective system in connection with which the data is specified.

The thermoformable film of the present invention is in essence formed by a coextruded, unoriented, transparent and heat-sealable polyester film (AB) or (ABC). It is composed of at least two layers. It then consists of the base layer (B) and of the heat-sealable outer layer (A) applied by coextrusion thereon. The outer layer (A) is composed predominantly, i.e. to an extent of at least 80 % by weight, of polyesters.

発明の効果

The above object can be attained by the above film according to the present invention.

図面の簡単な説明

図 1

Figure 1 shows the tray formats used for the evaluation tests in Examples.

発明を実施するための形態

Heat-sealable outer layer (A)

Polymers for the outer layer (A)

The heat-sealable outer layer (A) in the invention comprises at least one polyester and optionally an antiblocking agent. The polyester is composed of units derived from aromatic and aliphatic dicarboxylic acids. The quantity present in the polyester of the units derived from aromatic dicarboxylic acids is 25 to 95 mol%, preferably 40 to 90 mol%, particularly preferably 50 to 88 mol%. The quantity present in the polyester of the units derived from aliphatic dicarboxylic acids is 5 to 75 mol%, preferably 10 to 60 mol%, particularly preferably 12 to 50 mol%, where the mol% data always give a total of 100 %. The diol units corresponding thereto likewise always give 100 mol%.

Examples of the aromatic dicarboxylic acids that can be used in the invention are terephthalic acid, isophthalic acid, phthalic acid and naphthalene-2,6-dicarboxylic acid.

Examples of aliphatic dicarboxylic acids are succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azeleic acid and sebamic acid. Acids that can preferably be used in the invention are adipic acid and

18/027 MFE

- 11 -

sebacic acid; acids that can be used with less preference are succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid and azeleic acid.

Examples of the aliphatic diols that can be used in the invention are ethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, diethylene glycol, triethylene glycol, 1,4-cyclohexanedimethanol and neopentyl glycol.

In the preferred embodiment, the polyester includes the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 25 to 95 mol%, preferably 30 to 90 mol% and particularly preferably 40 to 70 mol%, of terephthalate,
- 0 to 25 mol%, preferably 5 to 20 mol% and particularly preferably 10 to 20 mol%, of isophthalate,
- 5 to 75 mol%, preferably 8 to 70 mol% and particularly preferably 11 to 65 mol%, of sebacate,
- 0 to 50 mol%, preferably 0 to 40 mol% and particularly preferably 0 to 30 mol%, of adipate,
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

The outer layer material optionally comprises up to 10 % by weight of a polymer that is incompatible with polyester (= anti-PET polymer). In a preferred embodiment, the proportion of anti-PET polymer is 1 to

18/027 MFE

- 12 -

10 % by weight and particularly 2 to 9 % by weight.

Up to 5 % by weight of the material of the outer layer (A) consists of particles, additives, auxiliaries and/or other additional substances usually used in polyester film technology.

The polyester for the outer layer (A) is preferably produced from two physically miscible polyesters I and II and particularly preferably from three physically miscible polyesters I, II and III, which are introduced into the extruder for this layer (A) in the form of mixture.

Polyester I for the outer layer (A)

The proportion in the outer layer (A), of polyester I, which consists of one or more aromatic dicarboxylate moieties and one or more aliphatic alkylene moieties, is 10 to 60 % by weight. In the preferred embodiment, the proportion of polyester I is 15 to 55 % by weight, and in the particularly preferred embodiment it is 20 to 50 % by weight.

In the preferred embodiment, the polyester I of the outer layer (A) of the invention is based on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 60 to 100 mol%, preferably 62 to 95 mol% and particularly preferably 66 to 93 mol%, of terephthalate
- 0 to 40 mol%, preferably 5 to 38 mol% and particularly preferably 7 to 34 mol%, of isophthalate, where the mol% data for the dicarboxylic acids mentioned always give a total

18/027 MFE

- 13 -

of 100 %

- more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units.

Very particular preference is given to copolymers in which the proportion of terephthalate units is 60 to 80 mol%, the corresponding proportion of isophthalate units is 20 to 40 mol% and the proportion of ethylene units is 100 mol%, these therefore being ethylene terephthalate-ethylene isophthalate copolymers.

Any residual content present derives from other aromatic dicarboxylic acids and from other aliphatic diols as listed as main and suitable other aromatic dicarboxylic acids for the base layer (B).

It has been found that in the event that the proportion of polyester I in the outer layer (A) is below 10 % by weight, it becomes significantly more difficult to produce the film by means of coextrusion technology, or becomes impossible to ensure that the film can be thus produced. The film is then highly susceptible to adhesion on certain machine components, in particular on metallic rolls. If, on the other hand, the proportion of polyester I in the outer layer (A) is more than 60 % by weight, the sealing behavior of the film for the present application is greatly impaired. As a consequence of the resultant melting point increase, the sealable layer (A) no longer has, at the sealing temperatures usually used, the desired softness required for sealing through the contamination.

The SV value of the raw material in the invention here is above 600, preferably above 650 and particularly preferably above 700. If the SV value of the raw

material is below 600, the extrudability of the raw materials becomes poorer; this is undesirable.

Polyester II for the outer layer (A)

In the preferred embodiment of the present invention, the proportion of polyester II in the outer layer (A) is 20 to 70 % by weight. In the preferred embodiment, the proportion of polyester II is 25 to 65 % by weight, and in the particularly preferred embodiment it is 30 to 60 % by weight.

The polyester II preferably consists of a copolymer of aliphatic and aromatic acid components in which the aliphatic acid components provide 20 to 90 mol%, preferably 30 to 70 mol% and particularly preferably 35 to 60 mol%, based on the total quantity of acid in the polyester II. The balance of dicarboxylate content to give 100 mol% derives from the aromatic acids terephthalic acid and isophthalic acid, terephthalic acid being mentioned here with preference and isophthalic acid being mentioned here with less preference, and also, on the glycolic side, from aliphatic, cycloaliphatic or aromatic diols as described in relation to the base layer (B).

The polyester II of the outer layer (A) of the invention is based at least on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 20 to 70 mol%, preferably 30 to 65 mol% and particularly preferably 35 to 60 mol%, of sebacate
- 0 to 50 mol%, preferably 0 to 45 mol% and particularly preferably 0 to 40 mol%, of adipate

18/027 MFE

- 15 -

- 10 to 80 mol%, preferably 20 to 70 mol% and particularly preferably 30 to 60 mol%, of terephthalate
- 0 to 30 mol%, preferably 3 to 25 mol% and particularly preferably 5 to 20 mol%, of isophthalate, where the mol% data for the dicarboxylic acids mentioned always give a total of 100 %
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

In the preferred embodiment, the polyester II of the outer layer (A) of the invention is based at least on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 20 to 70 mol%, preferably 30 to 65 mol% and particularly preferably 35 to 60 mol%, of sebacate
- 10 to 80 mol%, preferably 20 to 70 mol% and particularly preferably 30 to 60 mol%, of terephthalate
- 0 to 20 mol%, preferably 3 to 15 mol% and particularly preferably 3 to 10 mol% of isophthalate
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

Any residual content present derives from other aromatic dicarboxylic acids and from other aliphatic diols as listed for the base layer (B).

The presence of at least 10 mol% of aromatic

18/027 MFE

- 16 -

dicarboxylic acid ensures that the polymer II can be processed without sticking for example in the coextruder.

If the proportion of polyester II in the outer layer (A) is less than 20 % by weight, the sealing behavior of the film is greatly impaired. As already described above, the sealable layer then no longer has, at the usual sealing temperatures, the desired softness required for good sealing through contamination. If, in contrast, the proportion of polyester II in the outer layer (A) is above 70 % by weight, it becomes significantly more difficult to produce the film by means of coextrusion technology, or becomes impossible to ensure that the film can be thus produced. The film here is highly susceptible to adhesion on certain machine components, in particular on metallic rolls.

The SV value of the raw material in the invention here is above 900, preferably above 950 and particularly preferably above 1000. If the SV value of the raw material is below 900, the haze of the film becomes higher; this is undesirable.

Optional polyester III for the outer layer (A)

The optional proportion in the outer layer (A) of polyester III, which consists of one or more aromatic dicarboxylate moieties and one or more aliphatic alkylene moieties, is 0 to 15 % by weight. In the preferred embodiment, the proportion of polyester III in the outer layer (A) is 3 to 12 % by weight, and in the particularly preferred embodiment it is 4 to 10 % by weight.

The polyester III of the outer layer (A) of the invention is generally based on the following

18/027 MFE

- 17 -

dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, the total quantity of alkylene:

- 80 to 98 mol%, preferably 82 to 96 mol% and particularly preferably 74 to 95 mol%, of terephthalate
- 2 to 20 mol%, preferably 4 to 18 mol% and particularly preferably 5 to 17 mol%, of isophthalate
- more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units.

Any residual content present derives from other aromatic dicarboxylic acids and from other aliphatic diols as listed as main and suitable other aromatic dicarboxylic acids for the base layer (B).

In mixing of the polyesters I, II and III, care must be taken that the proportions in % by weight give a total of 100.

Very particular preference is given to copolymers in which the proportion of terephthalate units is 84 to 94 mol%, the corresponding proportion of isophthalate units is 6 to 16 mol% (where the dicarboxylate content in turn gives a total of 100 mol%), and the proportion of ethylene units is 100 mol%, these therefore being polyethylene terephthalate/isophthalates.

In a particularly preferred embodiment, the polyester III comprises a proportion of 5 to 25 % by weight of a suitable antiblocking agent (see further below). In this particularly preferred embodiment, polyester III is a masterbatch which is preferably produced by way of extrusion technology. The concentration at which the

antiblocking agent here is added to the polyester raw material during extrusion (preferably in twin-screw extruder) is significantly higher than the concentration subsequently present in the film. The SV value of the masterbatch in the invention here is above 400, preferably above 425 and particularly preferably above 450.

The outer layer (A) preferably comprises a mixture of the polyesters I, II and III. This mixture has the following advantages in comparison with the use of only one polyester with comparable components and comparable proportions of the components:

- on the basis of the respective glass transition temperatures (Tg), the mixture of the polyesters I, II and III is easier to extrude than any single raw material with comparable concentration of the respective polymer components. Studies have revealed that a mixture of polymers with high Tg (polyesters I and III) with a polymer with low Tg (polyester II) is less susceptible to sticking in the coextruder than a single polymer with a corresponding average Tg.
- in practice, individual adjustment to the desired sealing properties is more satisfactorily achievable with the mixture than when a single polyester is used.
- another advantage is that the Tg (in relation to the entire outer layer) can be set more effectively/more easily.
- in particular, additions of particles is easier with polyester III than with polyester I or II.

The glass transition temperature of polyester I and III is advantageously above 50 °C. The glass transition

temperature of polyester I and III is preferably above 55 °C and particularly preferably above 60 °C. If the glass transition temperature of polyester I and III is below 50 °C, the film cannot be produced in a reliable process. The susceptibility of the outer layer (A) toward adhesion, for example to rolls, is so great here that frequently film break-offs must be considered likely.

The glass transition temperature of polyester II is advantageously below 10 °C. The glass transition temperature is preferably below 8 °C and particularly preferably below 6 °C. If the glass transition temperature of polyester II is above 10 °C, the sealable layer no longer has, at the usual sealing temperatures, the desired softness required for sealing through contamination.

In respect of the polymers for the outer layer (A), it is advantageous in the invention that the Tg of the entire outer layer (A) is in a range below 60 °C, preferably below 55 °C and particularly preferably below 50 °C. The softness of the outer layer (A) is then particularly high.

Anti PET-polymer in the outer layer (A)

The heat-sealable outer layer (A) optionally comprises a certain concentration of a polymer (anti-PET polymer) incompatible with polyester. The proportion of the anti-PET polymer is 0 to 10 % by weight, based on the weight of the outer layer (A). In a preferred embodiment, the proportion of the anti-PET polymer is 3 to 10 % by weight, and in a particularly preferred embodiment it is 5 to 10 % by weight, likewise based on the weight of the outer layer (A).

18/027 MFE

- 20 -

Examples of suitable anti-PET polymers are polymers based on ethylene (LLDPE, HDPE), on propylene (PP), on cycloolefins (CO), or on amides (PA) or styrene (PS). In a preferred embodiment, a copolymer is used as anti-PET polymer. Examples here are copolymers based on ethylene (C2/C3, C2/C3/C4 copolymers), on propylene (C2/C3, C2/C3/C4 copolymers), or on cycloolefins (norbornene/ethylene copolymers, tetracyclododecene/ethylene copolymers). In one of the particularly preferred embodiments, the polymer incompatible with polyester is a cycloolefin copolymer (COC). These cycloolefin copolymers are described by way of example in EP-A 1 068 949 or in JP 05-009319, expressly incorporated herein by way of example.

Among the cycloolefin copolymers (COCs), preference is in particular given to those comprising polymerized units of polycyclic olefins with underlying norbornene structure, particularly preferably norbornene or tetracyclododecene. Particular preference is given to cycloolefin copolymers which comprise polymerized units of acyclic olefins, in particular ethylene. Very particular preference is given to norbornene/ethylene and tetracyclododecene/ethylene copolymers which comprise 5 to 80 % by weight of ethylene units, preferably 10 to 60 % by weight of ethylene units (based on the weight of the copolymer).

The glass transition temperatures of the COCs are generally between -20 and 400 °C. COCs suitable for the invention are those with glass transition temperature below 120 °C, preferably below 100 °C and particularly preferably below 80 °C. The glass transition temperature should preferably be above 50 °C, preferably above 55 °C, in particular above 60 °C. The viscosity number (Decalin, 135 °C, DIN 53 728) is

18/027 MFE

- 21 -

advantageously between 0.1 and 200 ml/g, preferably between 50 and 150 ml/g.

Foils comprising a COC with glass transition temperature below 80 °C feature lower haze and better sealability than those comprising a COC with glass transition temperature above 80 °C.

EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 and EP-A-0 503 422 describe the production of COCs with catalysts based on soluble metallocene complexes. Cycloolefin copolymers produced with catalysts based on soluble metallocene complexes are particularly preferred. These COCs are obtainable commercially, an example being Topas® (Ticona, Frankfurt).

Additionally anti-PET polymer is advantageous for sealing and for processing behavior, in particular here the winding of the film of the invention. If the proportion of the COC in the preferred embodiment is below 3 % by weight, there is no longer any favorable effect of the polymer on the sealing and the processing behavior of the tray. The tray is susceptible to blocking. On the other hand, the proportion of polyester-incompatible polymer should not exceed 10 % by weight, because otherwise the haze of the film becomes excessive.

Antiblocking agent in the outer layer (A)

For further improvement of the processability of the film, it has proven advantageous to carry out further modification of the heat-sealable outer layer (A). This is best achieved with the aid of simple antiblocking agents which are added to the sealable layer in the form of polyester raw material III (in a manner equivalent to antiblocking masterbatch), and

18/027 MFE

- 22 -

specifically in quantities that prevent blocking of the film and optimize the processing behavior of the film.

Food good processability of the film it has proven to be particularly advantageous to use particles with median particle diameter d_{50} 2.0 to 8.0 μm , preferably 2.5 to 7.5 μm and particularly preferably 3.0 to 7.0 μm . If particles with diameter below 2.0 μm are used, there is no longer any favorable effect of the particles on the processing behavior of the film. The film is susceptible to blocking; this is undesirable. Particles with diameter above 8.0 μm generally cause excessive haze, and also filter problems.

It has moreover proven to be advantageous that the heat-sealable outer layer (A) comprises particles at a concentration up to 0.5 % by weight, preferably 0.01 to 0.4 % by weight and particularly preferably 0.01 to 0.35 % by weight. If the outer layer (A) comprises particles at a concentration above 0.5 % by weight, the haze of the film becomes excessive.

Particles preferred in the invention are synthetically produced amorphous SiO_2 particles in colloidal form, which give excellent binding into the polymer matrix. Reference is made to the prior art in relation to the production of the SiO_2 particles; the process is disclosed in detail by way of example in EP 1 475 228 B1.

Typical other particles that can be used in the outer layer (A) are inorganic and/or organic particles, for example calcium carbonate, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, LiF , the calcium, barium,

zinc or manganese salts of the dicarboxylic acids used, titanium dioxide or kaolin.

Thickness of the outer layer (A)

The thickness of the heat-sealable outer layer (A) in the invention is 10 to 100 μm . If the thickness of the outer layer (A) is below 10 μm , sealing of the film is inadequate. If the thickness of the outer layer is above 100 μm , the film is susceptible to blocking; this is undesirable.

The outer layer (A) exhibits very good sealing properties in relation to itself (FIN sealing, outer layer (A) in relation to outer layer (A)). The seal seam strength of the outer layer (A) in relation to itself (FIN sealing) after heat-sealing at 150 °C (460 N, 2 s) is above 3 N/15 mm and is at most 10 N/15 mm.

It is highly surprising that compliance with the outer-layer formulation of the invention in all cases achieves a durably secure seal, even when the film has been contaminated with meat juices or the like.

Base layer (B)

Polymers used for the base layer (B)

The base layer (B) of the film consists of at least 90 % by weight of a thermoplastic polyester which is composed of dicarboxylic acid-derived units and diol-derived units, or of dicarboxylate moieties and of alkylene moieties, and which generally includes the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, the total quantity of alkylene (= main carboxylic acids):

- more than 90 mol%, preferably more than 92 mol%,

of terephthalate

- less than 10 mol%, preferably less than 8 mol%, of isophthalate or 2,6-naphthalate
- more than 90 mol%, preferably more than 95 mol%, of ethylene.

Examples of suitable other aliphatic diols for forming the polyester are diethylene glycol, triethylene glycol, aliphatic glycols of the general formula $\text{HO}-(\text{CH}_2)_n-\text{OH}$, where n is an integer from 3 to 6 (in particular propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol) and branched aliphatic diols having up to six carbon atoms. Suitable other aromatic diols correspond by way of example to the formula $\text{HO}-\text{C}_6\text{H}_4-\text{X}-\text{C}_6\text{H}_4-\text{OH}$, where X is $-\text{CH}_2-$, $-\text{C}(\text{CH}_3)_2-$, $-\text{C}(\text{CF}_3)_2-$, $-\text{O}-$, $-\text{S}-$ or $-\text{SO}_2-$.

Other aromatic dicarboxylic acids are preferably benzenedicarboxylic acids, naphthalenedicarboxylic acids, for example naphthalene-1,4- or -1,6-dicarboxylic acid, biphenyl- x,x' -dicarboxylic acids, in particular biphenyl-4,4'-dicarboxylic acid, diphenylacetylene- x,x' -dicarboxylic acids, in particular diphenylacetylene-4,4'-dicarboxylic acid or stilbene- x,x' -dicarboxylic acids. Among the cycloaliphatic dicarboxylic acids, mention may be made of cyclohexanedicarboxylic acids, in particular cyclohexane-1,4-dicarboxylic acid. Among the aliphatic dicarboxylic acids, the (C_3 to C_{19}) alkanedi acids are particularly suitable, where the alkane moiety can be straight-chain or branched.

It is particularly advantageous that a copolyester based on terephthalate and on small quantities (< 5 mol%) of isophthalate, or based on terephthalate and on small quantities (< 5 mol%) 2,6-naphthalate is

used in the baser layer (B). In this case the film has particularly good production properties and optical properties. The base layer (B) then in essence comprises a polyester copolymer mainly composed of terephthalic acid and isophthalic acid units and of ethylene glycol units. The particularly preferred copolyesters that provide the desired properties of the film are those composed of terephthalate units and isophthalate unit sand of ethylene glycol units.

The polyesters for the base layer (B) can by way of example be produced by the transesterification process. This proceeds from dicarboxylic esters and from diols, which are reacted with use of the usual transesterification catalysts, such as salts of zinc, of calcium, of lithium, of magnesium and of manganese. The intermediates are then polycondensed in the presence of well-known polycondensation catalysts, for example antimony trioxide or titanium, aluminum or germanium salts. Production can be achieved equally well by the direct esterification process in the presence of polycondensation catalysts. This proceeds directly from the dicarboxylic acids and the diols.

It has proven particularly advantageous to polycondense the intermediates in the presence of titanium dioxide or germanium compounds, or to carry out the direct esterification process in the presence of polycondensation catalysts such as titanium dioxide or germanium compounds. The polyester film is thus antimony-free. In the particularly preferred case, a desirable polyester film comprises no antimony and therefore can be used in packaging applications where the film has direct contact with food.

In order to achieve a further improvement of the

processing behavior of the film in the present invention, it is advantageous that particles are also incorporated into the base layer (B) in the case of a two-layer film structure (AB), or into the non-sealable outer layer (C) in the case of a three-layer film structure (ABC), with compliance with the following conditions:

- The median particle diameter d_{50} of the particles should be 2 to 8 μm . It has proven to be particularly advantageous here to use particles with median particle diameter d_{50} 2.5 to 7.5 μm and particularly preferably 3 to 7 μm .
- The particles should be present at a concentration of up to 0.5 % by weight. The concentration of the particles is preferably 0.01 to 0.4 % by weight and particularly preferably 0.1 to 0.35 % by weight.

In order to achieve the abovementioned properties, in particular the optical properties of the film, it has proven advantageous in particular in the case of a three-layer film with ABC structure to adjust the quantities of particles in the base layer (B) to be lower than in the outer layer (C). In the case of the three-layer film of the type mentioned, the quantity of the particles in the base layer (B) is advantageously to be between 0 and 0.2 % by weight, preferably between 0 and 0.15 % by weight, in particular between 0 and 0.1 % by weight. It has proven particularly advantageous to incorporate, into the base layer, only particles that pass into the film by way of self-regrind (self-recyclate). The desired optical properties of the film, in particular the haze of the film, can thus be successfully achieved.

The thickness of the other, non-sealable outer layer

(C) can be the same as that of the outer layer (A) or differ therefrom; its thickness is generally between 10 and 50 μm .

The base layer (B) can moreover additionally comprise conventional additives, for example stabilizers (UV, hydrolysis, heat) or other fillers (e.g. color pigments), in the concentrations recommended by the producer. These additives are advantageously added to the polymer or the polymer mixture before melting.

The base layer (B) additionally comprises regrind (film waste, for example trims or start-up material, or skeletal waste), a quantity of up to 60 % by weight is introduced into the extrusion process during production of the film, without any resultant adverse effect on the physical, in particular the optical, properties of the film.

Structure of the film

The heat-sealable film of the invention can have two or three layers. A three-layer structure of the film with layers (ABC) has proven advantageous for achievement of the abovementioned properties, in particular the required optical properties. The film of the invention then comprises the base layer (B), the heat-sealable outer layer (A) on one of the sides of the base layer (B), and the outer layer (C) on the other side of the base layer (B).

Thickness of the film

The total thickness of the polyester film of the invention can vary within certain limits. It is 100 to 1500 μm , preferably 110 to 1300 μm and particularly preferably 120 to 1100 μm , where the thickness of the base layer accounts for at least 65 %. If the thickness

of the film is below 100 μm , the mechanical properties and the barrier properties of the film are inadequate. If the thickness of the film is above 1500 μm , the sealing time of the film becomes poorer and moreover production of the film becomes uneconomic; both are undesirable.

Film production process

The invention also provides a process for the production of the thermoformable polyester film of the invention by the known coextrusion process. The procedure in the context of this process is that the melt corresponding to the individual layers (AB) and, if present (C) of the film are coextruded through a flat-film die, and the resultant film is drawn off on one or more rolls for solidification, and is then rolled up. The film is then cooled in the invention in a manner such that the film is in essence amorphous.

Inventive properties

The heat-sealable and thermoformable polyester film of the invention, produced by the process of the invention, has a number of properties, the most important of which are listed below.

The haze of the heat-sealable polyester film is below 10 %. The haze of the polyester film is preferably below 9 % and particularly preferably below 8 %.

The clarity of the heat-sealable polyester film is above 80 %. The clarity of the polyester film is preferably above 82 % and particularly preferably above 84 %.

The gloss of the heat-sealable polyester film is above 100, above 110 in the preferred embodiment and above

18/027 MFE

- 29 -

120 in the particularly preferred embodiment.

The transparency of the heat-sealable polyester film is above 89. The transparency is preferably above 90 and particularly preferably above 90.5.

The polyester film of the invention exhibits very good sealing properties. The seal seam strength of the outer layer (A) in relation to itself (FIN sealing) after sealing at 150 °C (460 N, 2 s) is above 3 N/15 mm and at most 10 N/15 mm.

A secure seal in relation to the lid film is achieved here in all cases, even when the outer layer (A) has been contaminated by way of example with meat juices.

The polyester film has excellent suitability for packing foods and other consumable products, in particular for the packaging of foods and other consumable products in trays, where heat-sealable polyester films are used for the closure of the packaging.

The polyester film also features very good winding behavior.

The film is particularly suitable for use for the production of packaging where seal seam strength between the outer layer (A) and a suitable lid film is in the range 3 to 10 N/15 mm.

Table 1 collates *inter alia* the most important inventive properties of the film.

Table 1

Outer layer (A)	Range of the invention	Preferred	Particularly preferred	Unit	Test method
Proportion of units composed of aromatic dicarboxylic acids in polyester	25 to 95	40 to 90	50 to 88	mol%	
Proportion of units composed of aliphatic dicarboxylic acids in polyester	5 to 75	10 to 60	12 to 50	mol%	
Polyester I (aromatic)	10 to 60	15 to 55	20 to 50	0% by wt.	
Polyester II (aliphatic-aromatic)	20 to 70	25 to 65	30 to 60	0% by wt.	
Polyester III (aromatic)	0 to 15	3 to 12	4 to 10	0% by wt.	
Anti-PET polymer	0 to 10	3 to 10	5 to 10	0% by wt.	
d_{50} particle diameter	2 to 8	2.5 to 7.5	3.0 to 7	μm	internal
Filler concentration	0 to 0.5	0.01 to 0.4	0.01 to 0.35	0% by wt.	internal
Thickness of outer layer (A)	10 to 100			μm	internal
Film properties					
Thickness of film	100 to 1500	110 to 1300	120 to 1100	μm	
FIN sealing (150 °C, 460 N, 2 s)	3 to 10	3.2 to 10	3.5 to 10	N/15 mm	internal
Haze of film	< 10	< 9	< 8	%	ASTM D1003-52
Clarity of film	>= 80	>= 82	>= 84	%	ASTM D1003-51
Gloss of film	> 100	> 110	> 120		DIN 67530

Definitions

The expression "heat-sealable" means in general terms the property possessed by a multilayer polyester film comprising at least one base layer (B) and comprising at least one heat-sealable outer layer (A). The heat-sealable outer layer (A) is bonded to a substrate made of thermoplastic, for example trays made of a-PET, by means of sealing jaws through application of heat (e.g. 110 to 220 °C) and pressure/compressive force (1 to 6 bar or 200 to 1000 N) within a defined period (0.1 to 4 sec); the base layer (B) does not itself develop plasticity during this procedure. This is achieved in that the polymer of the outer layer (A) generally has a significantly lower melting or softening point than the polymer of the base player. If, by way of example, polyethylene terephthalate with melting point 254 °C (c-PET) is used as polymer for the base layer, the melting point of the heat-sealable outer layer (A) is generally significantly below 200 °C.

実施例

The following test methods were used to characterize the raw materials and the films for the purposes of the present invention.

Test methods**Haze, clarity and transparency**

A haze-gard XL-211 haze meter from BYK Gardner was used to test the polyester films. Hölz haze was determined in accordance with ASTM D1003-61, method A. Clarity is measured in accordance with ASTM D1003 by using a haze-gard, but now using the "clarity port" of the tester. Transparency is measured in accordance with ASTM D1033-61, method A. All of the tests on the film were carried out directly after production.

20° gloss

Gloss is determined in accordance with DIN 67530. The reflectance value is measured as optical variable representing the surface of a film. Using a method based on the standards ASTM D523-78 and ISO 2813, the angle of incidence is set to 20 °. A light beam impacts the flat test surface at the set angle of incidence and is reflected or scattered thereby. Light impacting the photoelectronic detector is indicated in the form of a proportional electrical variable. The value measured is dimensionless, and must be stated together with the angle of incidence.

Standard viscosity SV

Standard viscosity in dilute solution SV was measured by a method based on DIN 53 728 part 3 in an Ubbelohde viscometer at (25 ± 0.05) °C. Dichloroacetic acid (DCA) was used as solvent. The concentration of the dissolved polymer with 1 g of polymer / 100 mL of pure solvent. Dissolution of the polymer took 1 hour at 60 °C. If the samples had not dissolved completely after this time, up to two further dissolution attempts were carried out at 80 °C in each case for 40 min, and the solutions were then centrifuged for 1 hour at a rotation rate of 4100 min^{-1} .

The dimensionless SV value is determined as follows from the relative viscosity ($\eta_{\text{rel}} = \eta / \eta_s$):

$$SV = (\eta_{\text{rel}} - 1) \times 1000$$

The proportion of particles in the film or polymer raw material was determined by ashing and corrected by increasing input weight accordingly, i.e.:

$$\text{input weight corresponding} \\ \text{input weight} = \frac{\text{to 100 \% of polymer}}{[(100 - \text{particle content})]}$$

in % by weight) · 0.01]

Median particle diameter d_{50}

Median diameter d_{50} is determined by using a Malvern Mastersizer 2000 on the particle to be used. For this, the samples are placed in a cell with water, and the cell is then placed in the tester. A laser is used to analyze the dispersion, and the particle size is determined from the signal via comparison with a calibration curve. The particle size distribution is characterized by two parameters, the median value d_{50} (= measure of position of the central value) and of the degree of scattering, the value known as SPAN98 (= measure of scattering of the particle diameter). The test procedure is automatic, and also includes mathematical determination of the d_{50} value. The d_{50} value is defined here as being determined from the (relative) cumulative particle size distribution curve: the point of intersection of the 50 % ordinate value with the cumulative curve provides the desired d_{50} value on the abscissa axis.

Measurements on the film produced by using these particles give a d_{50} value that is lower by from 15 to 25 % than that of the particles used.

Seal seam strength (DIN 55529)

For reasons of measurement accuracy and feasibility, FIN seal seam strength was tested on film strips of width 15 mm cut from the side walls of a thermoformed tray, rather than directly on the film of the invention with the sealable layer (A). The thermoformable polyester film was clamped into a Multivac machine (R 245/SN:166619) and thermoformed under the following conditions: (mold temperatures 150 °C, heating time 2 - 3 s, explosive forming / compressed-air reservoir

18/027 MFE

- 34 -

2 bar, mold pressure 2 bar, molding time: 2 s). Figure 1 shows the tray formats. Draw depth was 70 mm.

FIN seal seam strength was measured in accordance with DIN 55529 (2005-09). Two film strips of width 15 mm were cut from the side walls of a thermoformed tray (see above for production process), the sealable layers (A) were mutually superposed and pressed together at 150 °C for a period of 2 s with "sealing pressure" 460 N (equipment: Brugger NDS, single-side-heated sealing jaw). In order to avoid sticking on the sealing jaw, a crystalline polyester film of thickness 12 µm was placed between the film of the invention and the sealing jaw. Seal seam strength (maximal force) was determined with peel angle 90 ° (90 ° peel method) at velocity 200 mm/min.

Inventive example 1

I Production of thermoformable polyester film

The following starting materials were used for the respective coextruded layers (ABC) to produce the thermoformable and heat-sealable polyester film:

Outer layer (A), mixture of

60.0 % by weight of polyester I (copolymer of 78 mol% of ethylene terephthalate, 22 mol% of ethylene isophthalate) with SV value 850. The T_g of polyester I is about 75 °C.

40 % by weight of polyester II (= copolymer comprising 40 mol% of ethylene sebacate, 60 mol% of ethylene terephthalate)

18/027 MFE

- 35 -

with SV value 1100. The T_g of polyester II is about -2°C .

Base layer (B)

100 % by weight

of copolyester composed of 95 mol% of terephthalate units and 5 mol% of isophthalate units and of 100 mol% of ethylene glycol units, with SV value 800

Outer layer (C)

95 % by weight

of copolyester composed of 95 mol% of terephthalate units and 5 mol% of isophthalate units and of 100 mol% of ethylene glycol units, with SV value 800

5 % by weight

of 98.5 % by weight of polyethylene terephthalate and 1.5 % by weight of Syllobloc 46

Thickness of film300 μm **Thickness of outer layer (A)** 50 μm

The abovementioned raw materials were melted in a respective extruder per layer, and extruded through a three-layer flat-film die with ABC layer structure onto a chilled take-off roll. The resultant amorphous film was edge-trimmed and then rolled up.

The production conditions in the individual steps were:

18/027 MFE

- 36 -

Extrusion	Melt temperatures (ABC)	270	°C
	Take-off roll temperature	20	°C
	Residence time of film on take-off roll	15	s

Table 2 presents the composition of the film, and also further information relating to the film of the invention, in particular relating to the properties of the film of the invention.

II Heat-sealable lid film

The heat-sealable lid film was produced by repeating example 3 of EP 1 138 480 B1.

III Production of packaging

The thermoformable polyester film and the heat-sealable lid film were respectively separately clamped into a Multivac machine (R 245/SN:166619). The thermoformable polyester film was thermoformed under the following conditions: (mold temperatures 150 °C, heating time 2 - 3 s, explosive forming / compressed-air reservoir 2 bar, mold pressure 2 bar, molding time: 2 s). Figure 1 shows the tray formats. Draw depth was 70 mm.

The mold was cooled, and the thermoformed film was ejected from the mold. Portions of pork (about 1000 g) were placed into the cavity, and the lid film was applied to the upper side of the tray. The manner of application of the lid film to the tray here was such that the heat-sealable surface (A') of the upper film was in contact with the portion of meat and with the sealable area of the tray. Heat-sealing was carried out in the same machine at a temperature of 160 °C for 2 s

18/027 MFE

- 37 -

with a pressure of 2 bar. The seal was secure and durable.

Inventive example 2

The only change made from inventive example 1 for the production of the thermoformable and sealable polyester film was the formulation of the outer layer (A); all other parameters remained unchanged.

Outer layer (A), mixture of

40.0 % by weight of polyester I (copolymer of 78 mol% of ethylene terephthalate, 22 mol% of ethylene isophthalate) with SV value 850. The T_g of polyester I is about 75 °C.

60 % by weight of polyester II (= copolymer comprising 40 mol% of ethylene sebacate, 60 mol% of ethylene terephthalate) with SV value 1000. The T_g of polyester II is about -2 °C.

Inventive example 3

The only change made from inventive example 1 for the production of the thermoformable and sealable polyester film was the formulation of the outer layer (A); all other parameters remained unchanged.

Outer layer (A), mixture of

46 % by weight of polyester I (copolymer of 67 mol% of ethylene terephthalate, 33 mol% of

18/027 MFE

- 38 -

49 % by weight

ethylene isophthalate) with SV value 850. The T_g of polyester I is about 75°C.

5.0 % by weight

of polyester II (= copolymer comprising 40 mol% of ethylene sebacate, 60 mol% of ethylene terephthalate) with SV value 1000. The T_g of polyester II is about -2 °C.

of polyester III (copolymer of 89 mol% of ethylene terephthalate, 11 mol% of ethylene isophthalate) with SV value 850 and 15 % by weight of Sylobloc 43 with d_{50} 3.9 μm . The T_g of polyester III is about 75°C.

Comparative example 1

Unlike in inventive example 1, a standard polyester (= a-PET) equipped with an antiblocking agent was selected to produce the thermoformable polyester film. In all other aspects (e.g. process, production of pack) there is no difference from inventive example 1.

Film structure

95 % by weight

of polyethylene terephthalate

5 % by weight

of 85 % by weight of polyethylene terephthalate and 15 % by weight of

18/027 MFE

- 39 -

Syllobloc 43

Thickness of film

300 μm

The pack is not suitable for sealing through contamination.

Table 2 - Thermoformable film

Composition of polyester I mol%	Composition of polyester II			Composition of polyester III mol%			Anti-PET polymer COC	Ratios of PI/PI/PII to anti-PET polymer % by weight	Glass transition temperatures of PI/PII and anti-PET polymer °C	Film structure/thickness (A) (C) μm	Outer-layer thicknesses (A) (C) μm	Antiblocking agent Concen- tration % μm	F1N seal seam strength 150°C g	Gloss	
	TA mol%	IA mol%	EG mol%	TA mol%	IA mol%	EG mol%									
Ex 1	78	22	100	40	60	100	100	60:40:0:0	75:-2--	ABC	300	50	20	7	6
Ex 2	78	22	100	40	60	100	100	40:60:0:0	75:-2--	ABC	300	50	20	6	7
Inv. Ex 67	53	33	100	10	60	100	100	46:49:5:0	75:-275:-	ABC	300	50	20	5.5	9
Comp 9	100	100					100	100:0:0:0	75:-2--	ABC	300	3.9	0.075	3.9	118
Comp 1	100	100												2.5	11
Comp 1	100	100												2.5	9.5

TA terephthalate, IA isophthalate, EG ethylene glycol

SeS sebacate

産業上の利用可能性

The film according to the present invention is suitable for a sealable, thermoformable lower film made of polyester polymers that is suitable for heat-sealing through areas contaminated with meat juices or the like.

請求の範囲

1. A coextruded, unstructured, transparent and thermoformable polyester film comprising at least one base layer (B) made of a-PET and one heat-sealable outer layer (A), where the heat-sealable outer layer (A) comprises at least 80 % by weight of polyester, where
 - a) the polyester of the outer layer (A) is composed of 25 to 95 mol% of units derived from at least one aromatic dicarboxylic acid and 5 to 75 mol% of units derived from at least one aliphatic dicarboxylic acid, and is based on aliphatic diols, where the mol% data always give a total of 100 %
 - b) the outer layer (A) comprises up to 0.4 % by weight of inorganic or organic particles with median diameter d_{50} 2.0 to 8.0 μm
 - c) the thickness of the outer layer (A) is 10 to 100 μm , and
 - d) the thickness of the film is in the range 100 to 1500 μm .
2. The polyester film as claimed in claim 1, where the haze of the film is below 10 % and the clarity of the film is at least 80 %.
3. The polyester film as claimed in claim 1 or 2, where the seal seam strength of the film in relation to itself (= FIN sealing) is in the range 3 to 10 N/15 mm.
4. The polyester film as claimed in any of claims 1 to 3, where the aromatic dicarboxylic acid is

selected from one or more elements from the group consisting of terephthalic acid, isophthalic acid, phthalic acid and naphthalene-2,6-dicarboxylic acid.

5. The polyester film as claimed in any of claims 1 to 4, where the aliphatic dicarboxylic acid is selected from one or more elements from the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, preferably adipic acid and sebacic acid.
6. The polyester film as claimed in any of claims 1 to 5, where the aliphatic diol is selected from one or more elements from the group consisting of ethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, diethylene glycol, triethylene glycol, 1,4-cyclohexanedimethanol and neopentyl glycol.
7. The polyester film as claimed in any of claims 1 to 6, where the polyester includes the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:
 - 25 to 95 mol%, preferably 30 to 90 mol% and particularly preferably 40 to 70 mol%, of terephthalate,
 - 0 to 25 mol%, preferably 5 to 20 mol% and particularly preferably 10 to 20 mol%, of isophthalate,
 - 5 to 75 mol%, preferably 8 to 70 mol% and particularly preferably 11 to 65 mol%, of

sebacate,

- 0 to 50 mol%, preferably 0 to 40 mol% and particularly preferably 0 to 30 mol%, of adipate,
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

8. The polyester film as claimed in any of claims 1 to 7, where the raw material for the outer layer (A) comprises up to 10 % by weight of a polymer that is incompatible with polyester (= anti-PET polymer).

9. The polyester film as claimed in claim 8, where the anti-PET polymer comprises one or more polymers based on ethylene (LLDPE, HDPE), on propylene (PP), on cycloolefins (CO), or on amides (PA) or styrene (PS).

10. The polyester film as claimed in any of claims 1 to 9, where the film is composed of three layers and has a base layer (B), a heat-sealable outer layer (A) on one of the sides of the base layer (B) and an outer layer (C) on the other side of the base layer (B).

11. A process for the production of the polyester film as claimed in claim 1, where the polymers for the individual layers A and B or A, B and C of the film are melted in separate extruders, and the corresponding melts are coextruded through a flat-film die, and the resultant film is drawn off for solidification on one or more rolls and then is rolled up.

12. The process as claimed in claim 11, where the polyester for the outer layer (A) is a mixture of two polyesters I and II, or preferably of three polyesters I, II and III, which are introduced into the extruder for the layer (A).
13. The process as claimed in claim 12, where the polyester I is based on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:
 - 60 to 100 mol%, preferably 62 to 95 mol% and particularly preferably 66 to 93 mol%, of terephthalate
 - 0 to 40 mol%, preferably 5 to 38 mol% and particularly preferably 7 to 34 mol%, of isophthalate
 - more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units;and where the polyester II is based on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:
 - 20 to 70 mol%, preferably 30 to 65 mol% and particularly preferably 35 to 60 mol%, of sebacate
 - 0 to 50 mol%, preferably 0 to 45 mol% and particularly preferably 0 to 40 mol%, of adipate
 - 10 to 80 mol%, preferably 20 to 70 mol% and particularly preferably 30 to 60 mol%, of terephthalate
 - 0 to 30 mol%, preferably 3 to 25 mol% and

18/027 MFE

- 46 -

particularly preferably 5 to 20 mol%, of isophthalate

- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene;

and the polyester III is based on the following dicarboxylate moieties and alkylene moieties, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 80 to 98 mol%, preferably 82 to 96 mol% and particularly preferably 74 to 95 mol%, of terephthalate
- 2 to 20 mol%, preferably 4 to 18 mol% and particularly preferably 5 to 17 mol%, of isophthalate
- more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units.

14. The process as claimed in claim 12 or 13, where the proportion of polyester I in the outer layer (A) is 10 to 60 % by weight and the proportion of polyester II is 20 to 70 % by weight and the proportion of polyester III is 0 to 15 % by weight.
15. The use of a polyester film as claimed in claim 1 for the packaging of foods and of other consumable products, in particular for the packaging of foods and of other consumable products in trays.

要約書**要約****課題**

It is an object of the present invention to provide, for the application mentioned in the introduction, a coextruded and thermoformable, in essence amorphous, unstructured film which is made of polyester and which features excellent sealing properties.

解決手段

The invention relates to a coextruded, unstructured, transparent and thermoformable polyester film comprising at least one base layer (B) made of a-PET and one heat-sealable outer layer (A), where the heat-sealable outer layer (A) comprises at least 80 % by weight of polyester, where

- a) the polyester of the outer layer (A) is composed of 25 to 95 mol% of units derived from at least one aromatic dicarboxylic acid and 5 to 75 mol% of units derived from at least one aliphatic dicarboxylic acid, and is based on aliphatic diols, where the mol% data always give a total of 100 %
- b) the outer layer (A) comprises up to 0.4 % by weight of inorganic or organic particles with median diameter d_{50} 2.0 to 8.0 μm
- c) the thickness of the outer layer (A) is 10 to 100 μm , and
- d) the thickness of the film is in the range 100 to 1500 μm .


the invention further relates to a process for the production of the film of the invention, and also to use of said film for the packaging of foods and of other consumable products, in particular for the packaging of foods and of other consumable products in trays.

18/027 MFE

- 48 -

図面

Figure 1

