wo 2011/163146 A1 I IO OO O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

o TN
(19) World Intellectual Property Organization /g [} 1M1 AN A0 00100 0000 0
ernational Bureau S,/ ‘) |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
29 December 2011 (29.12.2011) WO 2011/163146 A1
(51) International Patent Classification: (US). SALWASSER, Zachery [US/US]; 123 Auburn
GOGF 21/00 (2006.01) GOGF 11/36 (2006.01) Street, Cambridge, MA 02139 (US).
(21) International Application Number: (74) Agents: BREGMAN, Dion, M. et al.; Morgan Lewis &
PCT/US2011/041119 Bockius LLP, 2 Palo Alto Square, 3000 El Camino Real,

Suite 700, Palo Alto, CA 94306 (US).

20 June 2011 (20.06.2011) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date:

(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
61/358,363 24 June 2010 (24.06.2010) Us KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
13/163,578 17 June 2011 (17.06.2011) Us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
(71) Applicant (for all designated States except US): NEU- NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
RALIQ, INC. [US/US]; 1639 11th Street, Suite #119, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
Santa Monica, CA 90404 (US). TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and (84) Designated States (unless otherwise indicated, for every
(75) Inventors/Applicants (for US only): CAPALIK, Alen kind of regional protection available): ARIPO (BW, GH,
[US/US]; 17020 W. Sunset Blvd., Apt 12A, Pacific Pal- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
isades, CA 90272 (US). ANDREWS, David [AU/US]; ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
10748 Westminster Avenue, Los Angeles, CA 90034 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SAMPLING FORENSIC DATA OF UNAUTHORIZED ACTIVITIES USING EXE-
CUTABILITY STATES

(57) Abstract: A method includes receiving a list of target addresses, lo-
cating a first page table entry corresponding to the first page, and deter-
mining the first executability state. When the first executability state is
non-executable, a first set of one or more target addresses that corre-
spond to the first page, and a second set of one or more target addresses
that correspond to one or more pages other than the first page are identi-
fied. One or more target addresses are stored in breakpoint registers of
the computer system. The first executability state of the first page table
entry is set as executable, and the executability states of page table en-
tries that correspond to the second set of target addresses are set as non-
executable. When the first address matches one of the target addresses
stored in the breakpoint registers, forensic data is recorded.

100

Client Client
1011 see 101-n

Communications Network(s) 148

Firewall / Router 198

Decoy
Network
Device 106
Decoy Computer
Network 102 Protected Protected Protected IDS/IPS
Network Netwark Network
. N . System
Device Device Device 142
1361 136-2 1360 -

Protected Computer
Network 104

Figure 1

WO 2011/163146 A1 0000) A0 O MO

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2011/163146 PCT/US2011/041119

System and Method for Sampling Forensic Data of
Unauthorized Activities Using Executability States

TECHNICAL FIELD

[0001] The following relates generally to the field of systems and methods for
protecting computer networks, including but not limited to analyzing data of malicious

activities for use in protecting computer networks.

BACKGROUND

[0002] An increasing number of computers are connected to computer networks
(e.g., the Internet). Networked computers provide a significant benefit of accessing and
sharing data over the networks. However, networked computers are also vulnerable to

attacks, unwanted intrusions, and unauthorized accesses from over the network.

[0003] Network security systems have been developed to protect computers from
attacks, unwanted intrusions, unauthorized accesses, and other malicious activities. Such
network security systems include firewalls to prevent unauthorized access to the network
or its computers. Exemplary network security systems may also include intrusion
detection systems (IDS) and intrusion prevention systems (IPS) that typically contain a
library of malware fingerprints (e.g., fingerprints of malware payloads and other
unauthorized activities). By using the malware fingerprints, the IDS or the IPS can detect
attempts to access computer systems without authorization (e.g., check for malicious
activities). When a connection is attempted to a network port, the IDS or IPS examines
the low-level IP data packets and compares them to its library of fingerprints for a match.
When a match is identified, the IDS or IPS provides notification of the match and/or
prevents further malicious activities. As such, the malware fingerprints play a critical role

in network security.

[0004] A critical threat to computer networks is the so-called zero-day attack that
exploits security vulnerabilities previously unknown to software developers or system
operators. Because the security vulnerabilities are unknown to the software developers or
system operators, existing fingerprints are useless and fingerprints of the specific zero-day
attack is unavailable. Until the fingerprints are identified, attacks exploiting the same

security vulnerabilities continue without detection by the network security systems.

WO 2011/163146 PCT/US2011/041119
However, identifying the fingerprints of malicious activities in the middle of numerous

other non-malicious processes is not a trivial task.

[0005] Because network security systems depend on the above described malware
fingerprints, there is a great need for efficient methods of identifying fingerprint data for

previously unknown types of malicious and/or unauthorized activities.

SUMMARY

[0006] A number of embodiments that address the limitations and disadvantages
described above are presented in more detail below. Some embodiments described herein
provide computer-implemented methods and systems for recording forensic data for zero-
day unauthorized activities. Some embodiments described herein provide methods and
systems for hypervisor-based continuous monitoring of one or more virtualized operating

systems.

[0007] As described in more detail below, some embodiments involve a computer-
implemented method performed at a computer system having one or more processors and
memory storing one or more programs for execution by the one or more processors. The
method includes locating a list of target addresses. While executing at least one of the one
or more programs, the following operations are performed. In response to detecting a
request to execute an instruction located at a first address of a first page, a first page table
entry corresponding to the first page is located. The first page table entry has a first
executability state, and the first executability state is determined. When the first
executability state is non-executable, a first set of one or more target addresses that
correspond to the first page is identified, and a second set of one or more target addresses
that correspond to one or more pages other than the first page is identified. One or more
target addresses of the first set of target addresses are stored in breakpoint registers of the
computer system. Each breakpoint register is configured to store an address of a
respective breakpoint in the memory. The first executability state of the first page table
entry is set as executable, and the executability states of page table entries that correspond
to the second set of target addresses are set as non-executable. When the first address
corresponds to one of the target addresses stored in the breakpoint registers, forensic data

associated with the request to execute an instruction located at the first address is recorded.

[0008] In accordance with some embodiments, a computer-implemented method is

performed at a computer system having one or more processors and memory storing one

WO 2011/163146 PCT/US2011/041119
or more programs for execution by the one or more processors. The method includes

running one or more virtual machines and at least one virtual machine monitor. At the
virtual machine monitor, a first virtual memory address used in one of the one or more
virtual machines is received. A first page corresponding to the first virtual memory
address and a first page table entry corresponding to the first page are identified. The first
page table entry is associated with the virtual machine monitor. The executability state of
the first page table entry is set as non-executable. In response to detecting a request to
execute an instruction located at a second virtual memory address that corresponds to the
first page table entry, forensic data associated with the request to execute the instruction

located at the second virtual memory address is recorded.

[0009] In accordance with some embodiments, a system includes one or more
processors, memory. The memory stores one or more programs. The one or more
programs are configured for execution by the one or more processors. The one or more

programs include instructions for performing any of the methods described above.

[0010] In accordance with some embodiments, a computer readable storage
medium stores one or more programs configured for execution by one or more processors
of a computer. The one or more programs include instructions for performing any of the

methods described above.

[0011] By analyzing recorded forensic data, fingerprint data indicative of
unauthorized activities on the computer system is generated. Because the forensic data is
recorded without relying on fingerprint data, the forensic data can provide information

about zero-day attacks.

[0012] Although some of the embodiments are described herein with respect to
security applications, it should be noted that analogous methods and systems may be used

for monitoring computer systems in general.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] For a better understanding of the aforementioned aspects of the invention as
well as additional aspects and embodiments thereof, reference should be made to the
Description of Embodiments below, in conjunction with the following drawings in which

like reference numerals refer to corresponding parts throughout the figures.

[0014] Figure 1 is a high-level block diagram illustrating an exemplary distributed

computer system in accordance with some embodiments.

3

WO 2011/163146 PCT/US2011/041119
[0015] Figure 2 is a block diagram illustrating a decoy network system, in

accordance with some embodiments.

[0016] Figure 3A is a block diagram illustrating exemplary memory structures, in

accordance with some embodiments.

[0017] Figure 3B is a block diagram illustrating an exemplary page table structure,

in accordance with some embodiments.

[0018] Figure 3C is a block diagram illustrating an exemplary page table entry, in

accordance with some embodiments.

[0019] Figures 4A-4H are block diagrams illustrating a method of storing target

addresses in breakpoint registers, in accordance with some embodiments.

[0020] Figures 5A-5B are block diagrams illustrating methods of mapping a guest

virtual memory address to a page, in accordance with some embodiments.

[0021] Figures 6A-6D are flowcharts representing a method of monitoring a

computer system, in accordance with some embodiments.

[0022] Figure 7 is a flowchart representing a method of monitoring a computer

system, in accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

[0023] Methods and systems for monitoring computer systems are described
below. Reference will be made to certain embodiments of the invention, examples of
which are illustrated in the accompanying drawings. While the invention will be
described in conjunction with the embodiments, it should be understood that these
particular embodiments are not intended to limit the invention. Instead, the invention is
intended to cover alternatives, modifications and equivalents that are within the spirit and
scope of the invention as defined by the appended claims. Moreover, in the following
description, numerous specific details are set forth to provide a thorough understanding of
the present invention. However, it will be apparent to one of ordinary skill in the art that
the invention may be practiced without these particular details. In other instances,
methods, procedures, components, and networks that are well-known to those of ordinary
skill in the art are not described in detail to avoid obscuring aspects of the present

invention.

WO 2011/163146 PCT/US2011/041119
[0024] Figure 1 illustrates an exemplary distributed computer system 100,

according to some embodiments. The system 100 includes a decoy computer network
102, a communications network 148, and protected computer network 104. Various
embodiments of the decoy computer network 102 and protected computer network 104

implement the unauthorized activity identifying methods described below.

[0025] In some embodiments, the systems on the decoy computer network 102 and
the protected computer network 104 can be accessed by client computers 101. The client
computers 101 can be any of a number of computing devices (e.g., Internet kiosk, personal
digital assistant, cell phone, gaming device, desktop computer, laptop computer, handheld
computer, or combinations thereof) used to enable the activities described below. The
client computers 101 are also referred to herein as clients. The clients 101 are connected
to a decoy network device 106 and a protected network device 136 (e.g., 136-1, 136-2, and

136-n) via the communications network 148.

[0026] The protected network devices 136 are accessible from the network 148 by
one or more authorized users using one or more of the clients 101 (e.g., the protected
network devices can be servers providing services for webpages, emails, file downloading
and sharing, web applications, etc.). Typically, the protected computer network 104
includes a firewall/router 198 to protect the protected network devices 136 and route
network traffic to and from the protected network devices 136. Alternatively, the
firewall/router 198 can protect both the decoy computer network 102 and the protected

computer network 104, as illustrated in Figure 1.

[0027] In some embodiments, the protected computer network 104 also includes
an IDS/IPS system 142 (intrusion detection and prevention system). The IDS/IPS system
142 includes, or has access to, a fingerprint library (not shown in Figure 1). The
fingerprint library includes fingerprints of unauthorized activities. The IDS/IPS system
142 identifies unauthorized activities based on the fingerprints stored in the fingerprint
library, and provides notification to a user or a system administrator, and/or prevents
unauthorized activities by modifying the protected network devices 136 and/or the
firewall/router 198. Hardware for suitable IDS/IPS systems 142 include Cisco Systems’
IPS 4200 Series, Juniper’s IDP 200, and Enterasys’ Dragon IDS Network Sensor.

[0028] As explained above, in some embodiments, the IDS/IPS system 142 is
coupled to the firewall/router 198 such that the IDS/IPS system can reconfigure the

firewall/router 198 to protect the protected network devices 136 in the protected computer

5

WO 2011/163146 PCT/US2011/041119
network 104 from future attacks. In some embodiments, the IDS/IPS and the firewall are

located in a single combined device.

[0029] The decoy computer network 102 includes at least one decoy network
device 106. The decoy network device 106 is a decoy system that is used to attract and
monitor unauthorized activities. In some embodiments, the decoy network device 106 is
intentionally kept vulnerable to unauthorized or malicious activities (e.g., known security
weaknesses may be intentionally left unfixed or other security components (e.g., firewalls)
are intentionally not installed). In other embodiments, the decoy network device 106
includes the same security devices and software applications of other protected network
devices (e.g., the decoy network device 106 may be protected by the firewall/router 198
and any other security measures included in the protected network devices 136). The
purpose of the decoy network device 106 is to monitor unauthorized activities occurring
on the decoy network device 106 during an attack on the decoy network device 106. In
some embodiments, the pattern of the attack is monitored and analyzed to generate a
fingerprint. This fingerprint of the attack can be used to prevent similar attacks on the

decoy network device 106 and/or other computers (e.g., protected network devices 136).

[0030] Attackers can initiate attacker activities over the communications
network(s) 148 directed at both the decoy computer network 102 and the protected
computer network 104. Ideally, the firewall/router 198 or security software on the
protected network devices 136 will prevent unauthorized access to the protected network
devices 136, whereas the decoy network device 106 is typically exposed to the attacker

activity(s) in order to attract the attacks.

[0031] Although Figure 1 illustrates the decoy computer network 102 and the
protected computer network 104 as separate networks, in some embodiments, they are part

of a same network.

[0032] Figure 2 is a block diagram illustrating the decoy network device 106 in
accordance with some embodiments. The decoy network device 106 typically includes
one or more processing units (CPUs) 202, one or more network or other communications
interfaces 204, memory 206, and one or more communication buses 208 for
interconnecting these components. In some embodiments, the communication buses 208
include circuitry (sometimes called a chipset) that interconnects and controls
communications between system components. In some other embodiments, the decoy

network device 106 includes a user interface (not shown) (e.g., a user interface having a

6

WO 2011/1631.46 PCT/US2011/041119
display device, a keyboard, and a mouse or other pointing device), but when implemented

as a server, the decoy network device 106 is more typically controlled from and accessed
by various client systems (e.g., the client 101 in Figure 1; and more typically, a client
connected through a secure private network or within the same protected computer

network 104).

[0033] The CPU(s) 202 includes one or more breakpoint registers 232. Breakpoint
registers store one or more addresses in the memory 206. In response to a request or
attempt to execute an instruction (as indicated by one or more program counters in the
CPU(s) 202) located at an address corresponding to an address stored in the one or more
breakpoint registers 232 (also called breakpoints, such as breakpoints 414 in Figures 4A-
4H), the CPU(s) 202 generates an interrupt (also called herein an exception or fault). Such
interrupt can be used to trigger an execution of code (e.g., debug handling code, memory
dump, memory scan, etc.). In some embodiments, the breakpoint registers 232 are located
in the chipset (e.g., the chipset in the communication buses 208). Alternatively, the
breakpoint registers 232 can be located in any other part of the decoy network device 106.
In some embodiments, the one or more breakpoint registers 232 include debug registers

410 (shown in Figures 4A-4H).

[0034] The memory 206 of the decoy network device 106 includes high-speed
random access memory, such as DRAM, SRAM, DDR RAM or other random access solid
state memory devices; and may include non-volatile memory, such as one or more
magnetic disk storage devices, optical disk storage devices, flash memory devices, or other
non-volatile solid state storage devices. The memory 206 may optionally include one or
more storage devices remotely located from the CPU(s) 202. The memory 206, or
alternately the non-volatile memory device(s) within the memory 206, comprises a
computer readable storage medium. The memory 206 or the computer readable storage

medium of the memory 206 stores one or more of the following programs:

« the network communication module (or instructions) 212 that is used for
connecting the decoy network device 106 to computer networks (e.g.,
communication network(s) 148, decoy computer network 102, and protected
computer network 104), and/or other computers (e.g., the client 101 and/or other
protected network devices 136) via the one or more communications interfaces 204
and one or more communications networks 148, such as the Internet, a wireless

network (e.g., Wi-Fi, WIMAX, 3G, 4G, etc.), any local area network (LAN), wide

WO 2011/163146 PCT/US2011/041119
area network (WAN), metropolitan area network, or a combination of such

networks;

o the host operating system 110 (also called Hypervisor OS) that includes procedures
for handling various basic system services and for performing hardware dependent

tasks;

o database server 128, which stores data (e.g., the fingerprint(s) 234 and/or forensic
data 236);

» fingerprint generation engine 130, which generates the fingerprint data 234 from
the decoy network device 106); and

» visualization interface 132, which prepares data (e.g., the fingerprint or
unauthorized activities on the computer system) for display (e.g., on a GUI of a

client 101).

[0035] The fingerprint(s) 234 includes data indicative of unauthorized activities on
the decoy network device 106. In some embodiments, the fingerprint 234 includes one or
more of: system calls, arguments of system calls, returns of system calls, device and
memory input-output, driver information, library calls, branching information, instruction
pointer jumps, and raw network information collected from a respective virtual machine
113 or a respective decoy operating system 112 (also called a guest operating system).
Such fingerprint(s) 234 can be used (e.g., by the IDS/IPS system 142) to detect and
prevent unauthorized activities on protected network devices 136. For example, the
fingerprint(s) 234 can be used to prevent future attacks on the computer system and/or
other computer systems (e.g., the protected network devices 136) by, for example,
increasing privileges for targeted instructions and/or files, changing the file/instruction
name, changing the file/instruction structure, moving files/instructions to different

locations, blocking a particular port, encrypting files, etc.

[0036] The forensic data 236 records a log of activity on the decoy network device
106 and/or virtual machines 216 described below. The forensic data 236 may also include

one or more fingerprint(s) 234.

[0037] In some embodiments, the host operating system (e.g., the host OS 110)

includes one or more of the following:

e avirtual machine monitor 214 (also called a hypervisor);

WO 2011/163146 PCT/US2011/041119
o virtual machines 216, including virtual machine 1 (113-1) and (optional) virtual

machine 2 (113-2);
o normal hypervisor OS user processes (e.g., 114-1 and 114-2); and

» page tables 230, which are used to translate a virtual memory address used by the
host operating system 110 to a physical memory address. The page tables 230 are
described in detail with reference to Figures 3A-3C and 5A-5B.

[0038] The virtual machine monitor 214 includes a hypervisor kernel 116 that
resides in physical memory and provides the basic services to the virtual machine monitor
214. In some embodiments, the hypervisor kernel 116 is part of the hypervisor operating
system 110 (e.g., a kernel of the hypervisor operating system 110). In such embodiments,
the hypervisor kernel 116 is a part of the operating system that activates the hardware

directly or interfaces with another software layer that, in turn, drives the hardware.

[0039] The hypervisor kernel 116 includes a hypervisor virtual machine kernel
module 118 that supports virtualization of a “guest™ decoy operating system 112. The
hypervisor kernel 116 also includes an introspection module 120 interposed between the
virtual machine monitor 214 and decoy operating system(s) 112. The introspection
module 120 performs introspection (e.g., monitoring) into the physical memory segments
assigned to each of the virtualized decoy operating system 112. Because no software is
installed in the virtualized decoy operating system 112, it is more difficult for the
virtualized decoy operating system 112 (or an attacker who has gained access to the

virtualized decoy operating system 112) to detect that its memory is being monitored.

[0040] The introspection module is configured to examine the memory assigned to
the virtualized decoy operating systems 112 in order to acquire low-level data about the
interaction between the decoy operating systems 112 and any attack activity. The
introspection module examines the memory of virtualized decoy operating systems 112 by
means of three functional components: a code region selector 222, a trace instrumentor
224, and a trace analyzer 226. Regular expressions (also known as ‘regex’) are used
throughout the process to identify, describe, and profile the contents of the memory
segments of the virtualized decoy operating systems 112. The code selector 222 identifies
regions of code in memory that are of interest for further introspection. Regions of
interest may include, but are not limited to, system calls, the arguments of system calls, the
returns of system calls, device and memory input-output, driver information, library calls,
branching information, instruction pointer jumps, and raw network information. The

9

WO 2011/163146 PCT/US2011/041119
instrumentor 224 copies the memory traces of interest identified by the code selector and

then profiles them. The trace analyzer 226 takes the profiled traces and uses them to build
a simulation of the states in the virtualized decoy operating system 112 over time. In this
manner, the introspection module examines the contents of the memory segments of the
virtualized decoy operating systems 112 in an instrumented context that generates and
retrieves forensic data (or fingerprints). In some embodiments, the trace analyzer 226 is

located outside the introspection module 120 (e.g., in the fingerprint generation engine
130).

[0041] In some embodiments, the introspection module 120 is configured to pause
the execution of the virtualized decoy operating system 112, copy the content of memory
at prescribed locations, and return execution control to the virtualized decoy operating
system 112. In some embodiments, the introspection module 120 pauses the execution of
the virtualized decoy operating system 112 for preventing malicious or undesired

execution from occurring in the virtualized decoy operating system 112.

[0042] An attacker may be able to detect that the decoy operating system 112 is a
virtualized operating system, based on the time it takes to perform standardized tasks.
However, since the introspection module 120 runs completely outside the virtualized
decoy operating system 112, it is difficult for an attacker accessing the decoy operating
system 112 to determine whether the decoy operating system 112 is being monitored. In
other words, the attacker may suspect that the virtual machine monitor 214 exists, but the
attacker may not determine whether the virtual machine monitor 214 includes the
introspection module 120. As explained above, the introspection module 120 monitors
and introspects into the memory segments of the virtualized decoy operating systems 112.
The introspection module 120 introspects and gathers information on any virtualized

operating system supported by the hypervisor operating system 110.

[0043] The virtual machines 216 are one or more software applic;ations emulating
one or more physical machines (e.g., computer systems). In some embodiments, at least
one virtual machine (e.g., the virtual machine 1 (113-1)) includes a decoy operating
system 112-1, which in turn optionally includes one or more programs (e.g., 220-1 and
220-2). The decoy operating system 112-1 also includes decoy OS page tables 228, which
are used to translate a guest virtual memory address used by the decoy operating system
112-1 to a guest physical memory address. The decoy OS page tables 228 are described in
detail with reference to Figures 3A-3C and Figures SA-5B. The virtualized decoy

10

WO 201!/163146 PCT/US2011/041119
operating systems 112 access the physical memory assigned to them by the virtual

machine monitor 214 (or the hypervisor kernel 116).

[0044] These virtualized operating systems 112 act as decoy operating systems to
attract attacker activity. For example, the decoy operating systems 112 can be one of
WINDOWS, SUN MICROSYSTEMS, SOLARIS, or any version of LINUX known to
persons skilled in the art, as well as any combination of the aforementioned. The decoy
network device 106 may include any number of virtualized decoy operating systems 112

or any number of virtual machines 113.

[0045] Each of the above identified modules, components, and applications in
Figure 2 corresponds to a set of instructions for performing one or more functions
described herein. These modules (i.e., sets of instructions) need not be implemented as
separate software programs, procedures or modules, and thus various subsets of these
modules may be combined or otherwise re-arranged in various embodiments. In some
embodiments, the memory 206 may store a subset of the modules and data structures
identified above. Furthermore, the memory 206 may store additional modules and data

structures not described above.

[0046] Notwithstanding the discrete blocks in Figures 1 and 2, these figures are
intended to be a functional description of some embodiments rather than a structural
description of functional elements in the embodiments. One of ordinary skill in the art
will recognize that an actual implementation might have the functional elements grouped
or split among various components. In practice, and as recognized by those of ordinary
skill in the art, items shown separately could be combined and some items could be
separated. For example, in some embodiments, the fingerprint generation engine 130 and
the virtualized decoy OS 112 are part of or stored within the decoy network device 106.
In other embodiments, the fingerprint generation engine 130 and the virtualized decoy OS
112 are implemented using separate computer systems. In some embodiments, the
fingerprint generation engine 130 includes the database server 128. In some
embodiments, the database server 128 is a remote database server located outside the

decoy network device 106.

[0047] The actual number of servers used to implement the decoy network device
106 and how features are allocated among them will vary from one implementation to
another, and may depend in part on the amount of data traffic that the system must handle

during peak usage periods as well as during average usage periods, and may also depend

11

WO 2011/163146 PCT/US2011/041119
on the amount of data processed by the decoy network device 106. Moreover, one or

more of the blocks in Figures 1 and 2 may be implemented on one or more servers
designed to provide the described functionality. For example, the decoy network device
106 may be implemented on two distinct computing devices: a monitor device and an
analyzer device. The monitor device includes the virtual machine monitor 214, the virtual
machines 216, and processes and modules therein. The analyzer device includes the
database server 128, the fingerprint generation engine 130, and optionally the visualization
interface 132. In such configuration, the monitor device collects unauthorized activity
data, and the analyzer device analyzes the unauthorized activity data to generate
fingerprints. In some embodiments, the monitor device includes the introspection module
comprising the code region selector 222, the trace instrumentor 224, and the trace analyzer

226 without including the virtual machine monitor 214 or virtual machines 216.

[0048] When in use, attackers typically search for vulnerable computers connected
to the shared communication network(s), and attempt to perform unauthorized activities

on such vulnerable computers through the shared communication network(s).

[0049] Attacker activity may be directed at the decoy computer network 102
through one or more ports of each of the virtualized decoy operating system 112 that are
left open as a gateway for the attacker activity. For example, the decoy network 102 can
be configured to respond to connection attempts made at network addresses that do not
exist on the protected network 104 (e.g., through a connection from the firewall/router 198
to the decoy network device 106 as illustrated in Figure 1). Connections to these non-
existent network addresses are assumed to be unauthorized and routed to one of the decoy
operating systems 112, since no production hardware (e.g., a protected network device
136) exists on the protected network 104 at these addresses. In particular, the decoy
operating systems 112 are not configured to provide any user service (e.g., the decoy
operating systems 112 may be configured to provide a dummy service), and therefore, no
ordinary (i.e., authorized and/or non-malicious) user would attempt to access to the virtual

machine.

[0050] The decoy operating systems 112 (in the form of a virtualized operating
system) may be configured to respond to any such non-existent network address. Ina
typical attack, the attacker activity scans for an open port, ostensibly in an attempt to make
a network connection and then access one or more computing devices on the protected

computer network 104. When the attacker activity scans for open ports at non-existent

12

WO 2011/163146 PCT/US2011/041119
network addresses, however, the attacker is presented with a virtualized decoy operating

system 112 instead.

[0051] When the attacker connects to a virtualized decoy operating system 112
through an open port, the attacker sees a fully-functional standard operating system
fingerprint. Since the decoy network device 106 can be configured to present any
operating system as a fully-functional virtualized decoy operating system 112, responses
to connection requests from attacker activity are guaranteed to be authentic for the
operating system running on that decoy. For example, an FTP port access request for
WINDOWS may return a specific character sequence that differs from an FTP response
for LINUX. Similarly, an FTP access request to a WINDOWS port may return a response
“> ftp: connect: Connection refused.” This character sequence may be slightly different
from that generated by LINUX. Further, different versions of WINDOWS may respond
with slightly different, version-specific character sequences. Since attackers often use
these sequences to identify what type of operating system is at a particular network
address and the version (or range of possible versions) for that operating system, the fact
that virtualized decoy operating systems 112 generate authentic responses makes them
realistic decoys and encourages intruders to attempt unauthorized access to them. The
instigator of the attack is thus lured into accessing the decoy 112, which is overseen by the
hypervisor operating system 110 running on the hardware-based, decoy network device
106. Attacker activity may then initiate previously unknown attacks for the observed
operating system. When the attacker activity proceeds to interact with the decoy operating
system 112, the attacker provides the decoy operating system 112 with the data used to
obtain control of the decoy operating system 112. These data are recorded and analyzed

by the introspection module without the knowledge of the attacker.

[0052] All scans by the attacker activity receive real-world operating system and
service information, leading the attacker to believe that there is a potentially vulnerable
system responding. The attacker is thus lured into communicating with the decoy network
device 106 and its virtualized decoy operating systems 112 and services. Since the decoy
network device 106 includes real hardware, the attacker is essentially attacking an actual
physical system and, therefore, cannot tell that the system is actually an instrumented
honeypot that monitors the attacker activity from the introspection module. When an
attacker connects to a network port and begins interacting with a virtualized decoy
operating system 112, the introspection module monitors and captures information from

the connection, including port numbers, data streams, file uploads, keystrokes, ASCII or
13

WO 2011/163146 PCT/US2011/041119
binary files, malicious payloads, memory manipulation attempts, and any other data

transfers or malicious activity.

[0053] In some embodiments, the introspection module monitors all activity on
virtualized decoy operating systems 112. But more typically, the introspection module,
instead of monitoring all activity on virtualized decoy operating systems 112, monitors
activity on virtualized decoy operating system 112 based on predefined criteria, such as a
monitoring priority. In some embodiments, certain regions of the memory or certain
memory addresses are given priority for monitoring. Alternatively, the monitoring priority
may be set based on the type of unauthorized activities. For example, in some
embodiments, incoming network packets are given high priorities, and therefore, the
incoming network packets are thoroughly monitored and analyzed. In some other
embodiments, system calls are given high priorities. In yet other embodiments, a
virtualized decoy operating system (e.g., 112-1) on a virtual machine 1 (e.g., 113-1) is
given a high priority than other virtualized decoy operating system, when the virtual
machine 1 is experiencing a high frequency of unauthorized activities. Also a

combination of the factors stated above can be used to determine the monitoring priority.

[0054] In use, the introspection module captures (through the introspection) raw
attack information. The raw attack information is then communicated to and stored on the
database server 128 as forensic data 236 for later analysis. The fingerprint generation
engine 130 or the trace analyzer 226 then uses this raw forensic information 236 to
generate a signature of the attack. In some embodiments, the fingerprint generation engine
130 or the trace analyzer 226 uses the raw attack information to generate a signature of the
attack without storing the raw attack information (i.e., unauthorized activity data) in a
database server (e.g., database server 128) first. In some embodiments, the fingerprint
generation engine 130 or the trace analyzer 226 uses the raw attack information to

generate a signature of the attack without storing the raw attack information in persistent

data storage (e.g., database server 128) at all.

[0055] In some embodiments, the entire process from attack detection through
fingerprint generation occurs automatically, i.e., without any human intervention, at a

timescale ranging from nearly immediate to several minutes. The IDS/IPS system 142
uses the forensic data 236 and/or attack signature to identify and prevent subsequent

attacks.

14

WO 2011/163146 PCT/US2011/041119
[0056] In one or more embodiments, the forensic data 236 and/or signature (e.g.,

fingerprints 234) may be sent from the fingerprint generation engine 130 to the intrusion
detection and/or prevention (IDS/IPS) signature library 134 through a second network
connection 140, which is used by the fingerprint generation engine 130 to directly interact

with the IDS/IPS system 142.

[0057] After collecting unauthorized activity data, the introspection module 120
may easily clean the virtualized decoy operating system 112 at any time by removing the
running system image of the compromised virtualized decoy operating system and
replacing it with a pre-attack system image. Thus the introspection module 120 can
cleanse or reset the virtualized decoy operating system 112 of any malicious software or
payload, removing the possibility that attacker(s) can use that virtualized decoy operating
system 112 for further attacks on other networks. In this manner, the attack can be
thwarted, and the operating system does not become a tool of the attacker(s). This

procedure may also be automated, i.e., may occur without further human intervention.

[0058] In some embodiments, a protected network device 136 (Figure 1) includes
at least a subset of the components and/or modules described herein with respect to Figure
2. For example, the protected network device 136 may include a hypervisor, page tables,

and one or more virtual machines without a decoy operating system.

[0059] Figure 3A is a block diagram illustrating exemplary memory structures, in
accordance with some embodiments. A memory of a computer system (e.g., the memory
206) is segmented into pages (e.g., a physical memory 330 is segmented into multiple
pages 332). Each page 332 is typically sized to a predefined number of bytes. For
example, a 4 GB memory may be segmented into 1,048,576 (= 2?%) pages of 4 kilobyte
(KB) memory. Although a page size of 4 KB is commonly used, smaller or larger pages
(e.g., 1 KB or 4 MB) can be used. Each page 332 contains multiple memory addresses
(e.g., a 4 KB page typically includes 4,096 addresses). Although Figure 3A is illustrated
with respect to 32-bit addresses (e.g., OxfTfffftf), it should be appreciated that the methods
and systems described herein can be used with addresses of any other length (e.g., 64-bit

addresses).

[0060] Frequently, computer systems do not allow software applications to directly
access physical memory. Instead, software applications are provided with a virtual
memory (e.g., the virtual memory 340). Similar to the physical memory 330, the virtual

memory 340 is also segmented into virtual memory pages 342 (typically of the same size

15

WO 2011/163146 PCT/US2011/041119
and number of pages). When a software application attempts to access a certain address in

a certain virtual memory page 342, such virtual memory address in the virtual memory
page (e.g., 342) is translated to a physical memory address using a page table (e.g.,
typically, the host operating system 110 translates a virtual memory address in the virtual
memory 340 to a physical memory address in the physical memory 330 using page
table(s) 230 in Figure 2).

[0061] In embodiments where the computer system includes a virtual machine
(e.g., 113), the address used in the virtual machine requires another level of translation.
Applications running in the virtual machine 113 are provided with a type of virtual
memory called guest virtual memory 350 (also called guest linear memory). An operating
system in the virtual machine 113 (e.g., the decoy operating system 112-1) translates a
guest virtual memory address in the guest virtual memory 350 using the decoy OS page
table(s) 228 (shown in Figure 2). The guest virtual memory address is translated to an
address in the virtual memory 340 (also called a guest physical memory address). Then,
as described above, the host operating system 110 translates the virtual memory address in
the virtual memory 340 to a physical memory address in the physical memory 330 using
the page table(s) 224.

[0062] Figure 3B is a block diagram illustrating an exemplary page table structure,
in accordance with some embodiments. The exemplary page table structure illustrated in
Figure 3B is a three-level page table structure common with a Physical Address Extension '
(PAE) feature for the x86 microprocessor architecture provided by Intel Corporation
(Santa Clara, CA). The three-level page table structure includes one or more page-
directory pointer table 306, one or more page directory(s) 310, and one or more page
table(s) 314. A translation of a virtual memory address to a physical memory address (or a
guest virtual memory address to a guest physical memory address) is performed by the

following steps:

o The control register CR3 of a microprocessor includes a pointer to a page-directory
pointer table 306. Using the CR3 pointer, the page-directory pointer table 306 is

selected.

o Using a portion of a linear address 302, an entry 308 in the page-directory pointer

table 306 is selected.

o The selected entry 308 in the page-directory pointer table 306 includes a pointer to
a page directory 310. Using the pointer, the page directory 310 is selected.
16

WO 2011/163146 PCT/US2011/041119
o Using a portion of the linear address 302, an entry 312 in the page directory 310 is

selected.

o The selected entry 312 in the page directory 310 includes a pointer to a page table
314. Using the pointer, the page table 314 is selected.

o Using a portion of the linear address 302, an entry 316 in the page table 314 is

selected.

o The selected entry 316 in the page table 314 includes a pointer to a page 318.
Using the pointer, the page 318 is selected.

o Using a portion of the linear address 302 (called “offset™), an address 320 in the
page 318 is obtained. The address 320 corresponds to a physical memory address
in the physical memory (e.g., 330).

[0063] Although Figure 3B illustrates the three-level page table structure, any
other page table structure can be used (e.g., one-level page table structure, two-level page
table structure, four-level page table structure, etc.) to implement the methods described
herein. For example, a two-level page table structure may include the page directory 310
and one or more page table(s) 314, but may not include the page-directory pointer table
306.

[0064] Figure 3C illustrates an exemplary data structure for a page table entry 316-
1, in accordance with some embodiments. A page table entry 316-1 is a series of bits,
including a bit (also called a flag) representing executability state 360 of the corresponding
page table. The page table entry 316-1 also includes a page physical address 362, which
represents a physical address of a corresponding page. In some embodiments, the page
table entry 316-1 also includes page properties 364, such as writability, page-level cache

enablement, accessed/dirty states, and/or the size of the page table.

[0065] Figures 4A-4H illustrate an exemplary method of storing target addresses
in breakpoint registers for sampling fingerprint data 234 (or forensic data 236 for

generating the fingerprint data 234), in accordance with some embodiments.

[0066] Breakpoint registers 232 (shown in Figure 2; e.g., debug registers 410) are
useful in setting events to collect forensic data 236 or fingerprint data 234. Breakpoint
registers 232 (or debug registers 410) generates an interrupt (also called a fault or an
exception), when an address in a program counter (which stores the address of an

instruction being executed or the address of an instruction to be executed next; also called

17

WO 2011/163146 PCT/US2011/041119
an instruction pointer or an instruction address register) matches any of the addresses

stored in the breakpoint registers 232 (or debug registers 410). The interrupt can be used
as a trigger to collect the fingerprint data 234 (or forensic data 236). Monitoring events
that attempt to access critical portion of the memory (e.g., operating system calls, low-
level instructions, and sensitive data, etc.) consumes less computing power than

monitoring all activity on a computer system.

[0067] However, computer systems typically have a limited number of breakpoint
registers 232. For example, the x86 microprocessors typically have four debug registers
410. When there are more than four target addresses that need to be monitored, the
computer system cannot monitor all target addresses using the debug registers 410, and
therefore, unmonitored target addresses may be used for malicious activities. The
exemplary process illustrated in Figures 4A-4H address this problem by using the
breakpoint registers to monitor all target addresses, even when the number of target
addresses exceeds the number of breakpoint registers. For example, in some
embodiments, the methods described herein can be used to monitor four breakpoints on
each page in the guest process, exceeding the conventional limit of four breakpoints across

the entire guest process.

[0068] In Figure 4A, the computer system (e.g., the decoy network device 106)
includes in the memory 206 (or has access to): a list of target addresses 402 of interest,
one or more page tables 314, and multiple pages 318 (e.g., 318-1 through 318-3). The list
of target addresses 402 includes target addresses 404 (e.g., 404-1 through 404-9). Each
target address 404 corresponds to a respective breakpoint 414 in one of the multiple pages
318 (e.g., the target address 1 (404-1) corresponds to the breakpoint 1 (414-1); the target
address 2 (404-2) corresponds to the breakpoint 2 (414-2); and so forth). The one or more
page table 314 includes page table entries 316, and each page table entry 316 has an
executability state 406 (e.g., represented by an executability bit or executability state 360
shown in Figure 3C). In Figure 4A, all executability states 406 are set as executable (e.g.,
illustrated as empty boxes). The computer system also includes debug registers 410

(which are a type of breakpoint registers, as explained above), typically in the CPU(s) 202.

[0069] Figure 4B illustrates that the process starts with identifying pages 318 that
correspond to the target addresses 404. The identified pages 318 include a page 318-1.
The computer system identifies page table entries 316 that correspond to the identified

pages 318. The executability state 406-1 of the page table entry 316-1 that corresponds to

18

WO 2011/163146 PCT/US2011/041119
the page 318-1 is set as executable (e.g., illustrated as an empty box), and the executability

states 406-2 and 406-2 of the page table entries 316-2 and 316-3 that correspond to the
remainder of the identified pages (e.g., 318-2 and 318-3) are set as non-executable (e.g.,
indicated with “x” marks). The computer system stores the target addresses that
correspond to the page 318-1 in the debug registers 410 as debug register entries 412 (e.g.,
the target addresses 1 through 4 corresponding to the breakpoints 1 through 4 (414-1
through 414-4) on the page 318-1 are stored in the debug registers 410).

[0070] In Figure 4C, a request 499-C to execute an instruction located at the
breakpoint 2 (414-2) is detected, and the debug register generates an interrupt, because the
requested address (e.g., the breakpoint 2 (414-2)) matches the target address 2 in the debug
register entry 412-2. The computer system, in response to the interrupt, collects
fingerprint data 234 (or forensic data 236). After collecting fingerprint data 234 or
forensic data 236, the computer system continues the execution of the instructions (or

instructions in one or more programs running on the computer system).

[0071] Figure 4D illustrates that a request 499-D to execute an instruction located
on a page 318-2 is detected. The computer system locates a page table entry 316-2 that
corresponds to the page 318-2, and determining the executability state 406-2 of the page
table entry 316-2. The executability state 406-2 of the page table entry 316-2 is set as
non-executable, and therefore, the computer system will not execute instructions located
on the page 318-2 until the executability state 406-2 associated with the page 318-2 is set

as executable.

[0072] In addition, the target addresses that correspond to the page 318-2 are
loaded into the debug registers 410 as illustrated in Figure 4E (e.g., the target addresses 5
through 8 corresponding to the breakpoints 5 through 8 (414-5 through 414-8) on the page
318-2 are stored in the debug registers 410). The computer system sets the executability
state 406-2 associated with the page 318-2 as executable and the executability states 406
associated with other pages that correspond to the target addresses (e.g., 318-1 and 318-3)
as non-executable. After setting the executability states, the computer system continues

the execution of the instructions (or instructions in one or more programs).

[0073] Figure 4F illustrates that a request 499-F to execute an instruction located
at the breakpoint 5 (414-5) is detected. In response, the debug register generates an
interrupt, as the address of the breakpoint 5 (414-5) matches a target address 412-1 in the
debug register entry 412-1 in the debug registers 410. In response to the interrupt,

19

WO 2011/163146 PCT/US2011/041119
fingerprint data 234 (or forensic data 236) are collected. After collecting fingerprint data

234 or forensic data 236, the execution of the instructions (or instructions in one or more

programs) is continued.

[0074] In Figure 4G, a request 499-G to execute an instruction located at an
address on the page 318-1 is detected. Because the executability state 406-1 associated
with the page 318-1 is set as non-executable, the computer system will not execute
instructions located on the page 318-1 until the executability state 406-1 associated with

the page 318-1 is set as executable.

[0075] Figure 4H illustrates that the target addresses that correspond to the page
318-1 are stored in the debug registers 410. In addition, the executability state 406-1 is set
as executable, and the executability states 406-2 and 406-3 are set as non-executable. The
steps illustrated in Figures 4A-4H are repeated until sufficient fingerprint data 234 (or

forensic data 236) are collected or for a preset duration.

[0076] Figures 5A-5B illustrate methods of mapping a guest virtual memory

address to a page, in accordance with some embodiments.

[0077] In Figure 5A, the decoy network device 106 includes a virtual machine 113
and a virtual machine monitor 214. The virtual machine 113 (or the decoy operating
system 112 in the virtual machine 113, as shown in Figure 2) maintains a decoy OS page
table 228 in the virtual machine memory 506 (which is a virtual memory). The virtual
machine monitor 214 maintains a shadow page table 522 which is a replica of the decoy
OS page table 228. When the virtual machine 113 receives a request to access a particular
address, the virtual machine CPU 502 walks through the decoy OS page table 228 using a
virtual machine CR3 504, a page directory 510, and a page table 514 (e.g., in a manner
described with reference to Figure 3B). However, instead of using the address in the page
table 514, the CPU 202 in the decoy network device 108 walks through the shadow page
table 522 using the CR3 304, a page directory 310, and a page table 314. A page table
entry 316-S in the page table 314 includes a physical memory address corresponding to
the page 318. The physical memory address in the page table entry 316-S is used to
access the page 318.

[0078] In some embodiments, the page table entry 316-S in the shadow page table

522 (also called a shadow page table entry) includes an executability state (in a manner

analogous to the page table entry 316 illustrated in Figure 3C). When the virtual machine

monitor 214 sets the executability state of the shadow page table entry 316-S, a request to
20

WO 2011/163146 PCT/US2011/041119
access page 318 generates an interrupt, which can be used to collect fingerprint data 234

(or forensic data 236). Such interrupt is invisible to a software application running in the
virtual machine 113, because the shadow page table 522 is not accessible from the virtual
machine 113. Therefore, a malicious code or an unauthorized activity running on the
virtual machine 113 cannot distinguish whether such code or activity is being monitored

by another software application using executability states.

[0079] Figure 5B illustrates an alternative method of mapping a guest virtual
memory address to a page, in accordance with some embodiments. In Figure 5B, the
decoy network device 106 includes a virtual machine 113 and a virtual machine monitor
214. The virtual machine 113 (or the decoy operating system 112 in the virtual machine
113, as shown in Figure 2) maintains a decoy OS page table 228, which is used to translate
a guest virtual memory address to a guest physical memory address. The virtual machine
monitor 214 (or the CPU 202) maintains an extended page table 522, which is used to
translate a guest physical memory address to a physical memory address. When the
virtual machine 113 receives a request to access a particular address, the virtual machine
CPU 502 walks through the decoy OS page table 228 to obtain the guest physical memory
address. The virtual machine monitor 214 walks through the extended page table 532 to
translate the guest physical memory address to the physical memory address
corresponding to the page 318. The extended page table 532 includes a page table entry
316-E.

[0080] In some embodiments, the page table entry 316-E in the extended page
table 532 (also called an extended page table entry) includes an executability state (in a
manner analogous to the page table entry 316 illustrated in Figure 3C). When the virtual
machine monitor 214 sets the executability state of the extended page table entry 316-E, a
request to access page 318 generates an interrupt, and the interrupt can be used to collect
fingerprint data 234 (or forensic data 236). Such interrupt is invisible to a software
application running in the virtual machine 113, because the extended page table 532 is not
directly accessible from the virtual machine 113. Therefore, a malicious code or an
unauthorized activity running on the virtual machine 113 cannot distinguish whether such
code or activity is being monitored by another software application using executability

states.

[0081] Figures 6A-6D are flowcharts representing a method 600 of monitoring a

computer system (e.g., the virtual machine 113-1 or a virtual machine in a protected

21

WO 2011/163146 PCT/US2011/041119
network device 136), in accordance with some embodiments. The method 600 is

performed at a computer system (e.g., the decoy network device 106 or the protected
network device 136) having one or more processors and memory storing one or more

programs for execution by the one or more processors.

[0082] The computer system locates (602) a list of target addresses. In some
embodiments, locating the list of target addresses includes checking whether the list of
target addresses is present. For example, the computer system receives or retrieves the list
of target addresses 402 (shown in Figure 4A). The list of target addresses 402 may be
located within the memory 206 or in a remotely located device (e.g., a remote hard drive

or another computer system).

[0083] In some embodiments, the computer system performs the following
operations (operations 606 through 650), while executing at least one of the one or more
programs (604). For example, such operations (e.g., operations 606 through 650) are
performed while the computer system runs at least one virtual machine monitor 214 and at
least one virtual machine 113-1. Alternatively, such operations (e.g., operations 606
through 650) are performed while the computer system runs a normal hypervisor OS user

process 114 or any other program.

[0084] In response to detecting a request to execute an instruction located at a first
address of a first page (606), the computer system locates (608) a first page table entry
corresponding to the first page, the first page table entry having a first executability state.
For example, in Figure 4D, the computer system detects a request 499-D to execute an

instruction located at a first address on a first page (e.g., page 318-2).

[0085] In some embodiments, the page table entries include (610) page table
entries in one or more shadow page tables. In some embodiments, the page table entries
include (612) page table entries in one or more extended page tables. For example, when
the first address is a guest virtual memory address used in a virtual machine 113, the page
table entry can be an entry in a shadow page table (e.g., entry 316-S in the shadow page
table 522 in Figure 5A) or an extended page table (e.g., entry 316-E in the extended page
table 532 in Figure 5B).

[0086] The computer system determines (614) the first executability state. For
example, the computer system checks a state of the first executability state 406-2
corresponding to the page 318-2 (e.g., see Figure 4D). In Figure 4D, the first
executability state 406-2 is set as non-executable (indicated with an “x” mark).

22

WO 2011/163146 PCT/US2011/041119
[0087] When the first executability state is non-executable (616), the computer

system identifies (620) a first set of one or more target addresses in the list of target
addresses that correspond to the first page. For example, the computer system identifies
target addresses corresponding to the page 318-2, which are target addresses 5 through 8
(404-5 through 8) that correspond to breakpoint addresses 5 through 8 (414-5 through 8)
on the page 318-2.

[0088] The computer system identifies (622) a second set of one or more target
addresses in the list that correspond to one or more pages other than the first page. For
example, the computer system identifies the remainder of the target addresses in the list of
target addresses 402, which are target addresses 1 through 4 and 9 (404-1 through 4 and
404-9).

[0089] The computer system stores (624) one or more target addresses of the first
set of target addresses in breakpoint registers of the computer system. Each breakpoint
register is configured to store an address of a respective breakpoint in the memory. In
Figure 4E, the computer system stores the target addresses 5 through 8 in the debug
registers 410.

[0090] In some embodiments, the one or more programs include (626) at least one
virtual machine monitor and at least one virtual machine. A respective virtual machine of
the at least one virtual machine has a respective decoy operating system (e.g., 112). The
method (e.g., at least one of operations 602, 604, 606, 608, and 614) is performed in the at
least one virtual machine monitor. The target addresses correspond to addresses in the

respective decoy operating.system in the respective virtual machine.

[0091] In some embodiments, the one or more processors include the one or more
breakpoint registers (e.g., breakpoint registers 232 in Figure 2). In some embodiments, the
breakpoint registers 232 include (628) debug registers (i.e., the debug registers 410 are a
type of breakpoint registers 232, frequently used for, including but not limited to,

debugging purposes).

[0092] In some embodiments, storing the first set of target addresses in the
breakpoint registers includes (630) determining whether a number of addresses in the first
set of target addresses exceeds a number of the breakpoint registers. When the number of
addresses in the first set of target addresses exceeds the number of the breakpoint registers,
the computer system selects a subset of target addresses from the first set of target
addresses in accordance with predefined criteria. The predefined criteria comprising at

23

WO 2011/163146 PCT/US2011/041119
least the number of the breakpoint registers. The computer system stores the subset of

target addresses in the breakpoint registers. When the number of addresses in the first set
of target addresses does not exceed the number of the breakpoint registers, the computer
system stores the first set of target addresses in the breakpoint registers. For example,
when the computer system has four breakpoint registers and the first set of target
addresses includes less than four target addresses (e.g., one, two, or three), the computer
system stores each target address in the first set of target addresses. When the computer
system has four breakpoint registers and the first set of target addresses include more than
four target addresses (e.g., five or more), the computer system selects four target addresses
out of the first set of target addresses, and stores the selected target addresses in the
breakpoint registers. In some embodiments, each target address is given a priority (e.g., as
measured by a priority level, such as 1, 2, and 3; or a score, for example, between 0 and
100), and the selection is based on the priority. In some embodiments, the target addresses
are selected based on the distance from the current execution point (e.g., as indicated by a
program counter). In some embodiments, the target addresses located after the current
execution point are selected. Any combination of the above described methods can be

used in selecting a subset of the target addresses.

[0093] In some embodiments, the breakpoint registers are used for monitoring both
function entry points and function exits (also called function exit points). For example,
when the computer system has four breakpoint registers, four function entry points are
monitored by storing corresponding addresses in the four breakpoint registers. When one
of the four function entry points is called (as monitored by the breakpoint registers), the
address of the called function entry point is replaced with a corresponding function exit
point, thereby allowing the system to monitor both entry into, and exit from, a respective
function. This in-process substitution of the function entry point with the function exit
point allows monitoring both four function entry point and four related function exit points
using four breakpoint registers instead of monitoring two function entry points and two

function exit points without using the in-process substitution.

[0094] In some embodiments, when the number of addresses in the first set of
target addresses does not exceed the number of the breakpoint registers, the computer
system removes addresses other than the first set of target addresses from the breakpoint
registers. For example, when the computer system has four breakpoint registers and the
first set of target addresses includes two target addresses, the computer system stores the

two target addresses in the first set of target addresses. If the breakpoint registers stores
24

WO 2011/163146 PCT/US2011/041119
any other addresses other than the first set of target addresses (e.g., from a previous

operation), the computer system removes addresses other than the first set of target

addresses from the breakpoint registers.

[0095] In some embodiments, when the number of addresses in the first set of
target addresses does not exceed the number of the breakpoint registers, the computer
system repeats (632) to store one or more target addresses in the first set of target
addresses to the breakpoint registers such that each breakpoint register stores one of the
first set of target addresses. For example, when the computer system has four breakpoint
registers and the first set of target addresses includes two target addresses (e.g., target
address 1 and target address 2), the computer system stores the two target addresses (e.g.,
target address 1 and target address 2) in two of the breakpoint registers, and in addition
stores one or more of the target addresses to the remaining two breakpoint registers. Asa
result, the breakpoint registers can store a set of target address 1, target address 2, target
address 2, and target address 2; a set of target address 1, target address 2, target address 1,
and target address 1; or a set of target address 1, target address 2, target address 1, and

target address 2.

[0096] The computer system sets (634) the first executability state of the first page
table entry as executable. For example, the computer system sets the first executability

state 406-2 as executable (e.g., illustrated as an empty box in Figure 4E).

[0097] The computer system sets (636) the executability states of page table
entries that correspond to the second set of target addresses as non-executable. For
example, the computer system sets the executability states 406-1 and 406-3 as non-

executable (e.g., indicated with “x” marks in Figure 4E).

[0098] In some embodiments, setting the executability states of page table entries
that correspond to the second set of target addresses as non-executable includes (638): for
a respective target address in the second set of target addresses, identifying a respective
page table entry corresponding to the respective target address. For example, setting the
executability states 406-1 and 406-3 of page table entries 316-1 and 316-3 includes
identifying page table entries 316-1 and 316-3 that correspond to the pages 318-1 and 318-
3.

[0099] In some embodiments, after setting the first executability state of the first
page table entry as executable and setting the executability states of page table entries that
correspond to the second set of target addresses as non-executable, the computer system

25

WO 2011/163146 PCT/US2011/041119
continues (640) to execute the at least one of the one or more programs. As a result, an

attacker performing unauthorized activities does not know that her activity is being
monitored, because the one or more programs continue to operate (i.e., there is no

indication that the one or more programs are stopped).

[00100] When the first address corresponds to one of the target addresses stored in
the breakpoint registers, the computer system records (618) forensic data associated with
the request to execute the instruction located at the first address (e.g., information about
one or more files and/or processes making the request, information about one or more files
and/or processes located at the first address, a snapshot of the system (e.g., system
registers, files, file structures, etc.), a snapshot of a portion of the memory (e.g., memory

dump), or any combination thereof).

[00101] In some embodiments, at least one of the one or more processors is
configured (642) to generate an interrupt (e.g., debug exception) in response to detecting a
request to execute an instruction located at an address stored in at least one of the
breakpoint registers. The computer system determines that the first address correéponds to
one of the target addresses stored in the breakpoint registers in accordance with the

interrupt.

[00102] In some embodiments, the computer system prevents (644) future attacks
that comprise the same or similar activities as indicated by the forensic data (e.g., close a
vulnerable network socket; modify a process such that the modified process does not
respond to unauthorized activities; move the vulnerable file or process to a different
location; encrypt the vulnerable file; increase the privilege requirement for the vulnerable

file or process; etc.).

[00103] In some embodiments, the computer system modifies (646) at least a
portion of the memory to prevent future attacks that comprise the same or similar activities
as indicated by the forensic data (e.g., modify a file or process in the memory such that the

modified file or process does not respond to unauthorized activities).

[00104] In some embodiments, modifying the at least a portion of the memory
includes modifying at least one of the one or more programs to prevent future attacks that

comprise the same or similar activities as indicated by the forensic data.

[00105] In some embodiments, the computer system is connected (648) to a set of

computers. A respective computer in the set of computers has a respective set of one or

26

WO 2011/163146 PCT/US2011/041119
more programs. The computer system modifies at least one program of the respective set

of one or more programs in the respective computer to prevent the respective computer
from future attacks. For example, the computer system sends the fingerprint to the
IDS/IPS system 142 or a protected network device 136 to modify at least one program in
the protected network device 136.

[00106] In some embodiments, the computer system continues (650) to execute at

least a subset of the one or more programs.

[00107] Figure 7 is a flowchart representing a method 700 of monitoring a
computer system (e.g., the virtual machine 113-1 or a virtual machine in a protected
network device 136), in accordance with some embodiments. The method 700 is
performed at a computer system (e.g., the decoy network device 106 or the protected
network device 136) having one or more processors and memory storing one or more

programs for execution by the one or more processors.

[00108] The computer system runs (702) one or more virtual machines (e.g., the
virtual machine 113-1 and the virtual machine 113-2 in Figure 2) and at least one virtual

machine monitor (e.g., the virtual machine monitor 214).

[00109] The following operations are performed (704) at the at least one virtual

machine monitor.

[00110] The computer system receives (706) a first virtual memory address used in
one of the one or more virtual machines. The computer system identifies (708) a first page
corresponding to the first virtual memory address and a first page table entry
corresponding to the first page. The first page table entry is associated with the virtual
machine monitor. In some embodiments, the first page table entry is a shadow page table

entry. In other embodiments, the first page table entry is an extended page table entry.

[00111] The computer system sets (710) the executability state of the first page

table entry as non-executable.

[00112] For example, in Figure 5A, the computer system receives a first virtual
memory address used in the virtual machine 113, and walks through the shadow page table
522 to identify a shadow page table entry 316-S corresponding to the first virtual memory
address and a corresponding page 318. The computer system sets the executability state of

the shadow page table entry 316-S as non-executable.

27

WO 2011/163146 PCT/US2011/041119
[00113] In another example, in Figure 5B, the computer system receives a first

virtual memory address used in the virtual machine 113, and walks through the decoy OS
page table 228 to identify a guest physical memory address. The computer system then
walks through the extended page table 532 to identify an extended page table entry 316-E
that corresponds to the first virtual memory address and a corresponding page 318. The
computer system sets the executability state of the extended page table entry 316-E as

non-executable.

[00114] The computer system, in response to detecting a request to execute an
instruction located at a second virtual memory address that corresponds to the first page
table entry, records (712) forensic data associated with the request to execute the
instruction located at the second virtual memory address. (e.g., see the description of the

operation 618).

[00115] In some embodiments, the at least one virtual machine monitor receives
(714) a third virtual memory address used in one of the one or more virtual machines. The
at least one virtual machine monitor identifies a second page corresponding to the third
virtual memory address and a second page table entry corresponding to the second page.
The second page table entry is associated with the virtual machine monitor. The computer
system sets the executability state of the second page table entry as non-executable, and
sets the executability state of the first page table entry as executable. For example, when a
page previously set as non-executable does not need further monitoring, the computer

system sets the executability state of a corresponding page table entry.

[00116] The foregoing description, for purpose of explanation, has been described
with reference to specific embodiments. However, the illustrative discussions above are
not intended to be exhaustive or to limit the invention to the precise forms disclosed.
Many modifications and variations are possible in view of the above teachings. The
embodiments were chosen and described in order to best explain the principles of the
invention and its practical applications, to thereby enable others skilled in the art to best
utilize the invention and various embodiments with various modifications as are suited to

the particular use contemplated.

[00117] For example, although some of the embodiments are described herein with
respect to a decoy network device, persons having ordinary skill in the art would recognize
that analogous methods and systems described herein can be used with protected network

devices. In addition, although some of the embodiments are described herein with respect

28

WO 2011/163146 PCT/US2011/041119
to monitoring unauthorized activities, persons having ordinary skill in the art would

recognize that analogous methods and systems can be used for monitoring computer
systems for other purposes (e.g., improved stability, development and debugging, and/or

improved performance).

29

WO 2011/163146 PCT/US2011/041119
What is claimed is:

1. A computer implemented method of identifying unauthorized activities on a
computer system, said computer system comprising: one or more processors; and memory
segmented into multiple pages, said memory storing one or more programs for execution
by the one or more processors, said method comprising:
locating a list of target addresses;
while executing at least one of the one or more programs:
in response to detecting a request to execute an instruction located at a first address
of a first page:
locating a first page table entry corresponding to the first page, the first
page table entry having a first executability state; and
determining the first executability state;
when the first executability state is non-executable,
identifying a first set of one or more target addresses in the list of target
addresses that correspond to the first page;
identifying a second set of one or more target addresses in the list that
correspond to one or more pages other than the first page;
storing one or more target addresses of the first set of target addresses in
breakpoint registers of the computer system, each breakpoint register configured to store
an address of a respective breakpoint in the memory;
setting the first executability state of the first page table entry as executable;
and
setting the executability states of page table entries that correspond to the
second set of target addresses as non-executable; and
when the first address corresponds to one of the target addresses stored in the
breakpoint registers, recording forensic data associated with the request to execute the

instruction located at the first address.

2. The method of claim 1, further comprising preventing future attacks that comprise

the same or similar activities as indicated by the forensic data.

3. The method of claim 1, further comprising modifying at least a portion of the
memory to prevent future attacks that comprise the same or similar activities as indicated

by the forensic data.

30

WO 2011/163146 PCT/US2011/041119
4. The method of claim 1, wherein the computer system is connected to a set of

computers; and a respective computer in the set of computers has a respective set of one or
more programs, the method further comprising modifying at least one program of the
respective set of one or more programs in the respective computer to prevent the

respective computer from future attacks.

5. The method of claim 1, wherein at least one of the one or more processors is
configured to generate an interrupt in response to detecting a request to execute an
instruction located at an address stored in at least one of the breakpoint registers; and

the method further comprising: determining that the first address corresponds to
one of the target addresses stored in the breakpoint registers in accordance with the

interrupt.

6. The method of claim 1, wherein:

the one or more programs include at least one virtual machine monitor and at least
one virtual machine, a respective virtual machine of the at least one virtual machine
having a respective decoy operating system,;

the method is performed in the at least one virtual machine monitor; and

the target addresses correspond to addresses in the respective decoy operating

system in the respective virtual machine.
7. The method of claim 1, wherein the breakpoint registers include debug registers.

8. The method of claim 1, wherein the page table entries include page table entries in

one or more shadow page tables.

9. The method of claim 1, wherein the page table entries include page table entries in

one or more extended page tables.

10. The method of claim 1, wherein setting the executability states of page table
entries that correspond to the second set of target addresses as non-executable includes: for
a respective target address in the second set of target addresses, identifying a respective

page table entry corresponding to the respective target address.

11. The method of claim 1, wherein storing the first set of target addresses in the

breakpoint registers includes:

31

WO 2011/163146 PCT/US2011/041119
determining whether a number of addresses in the first set of target addresses

exceeds a number of the breakpoint registers;
when the number of addresses in the first set of target addresses exceeds the
number of the breakpoint registers:
selecting a subset of target addresses from the first set of target addresses in
accordance with predefined criteria, the predefined criteria comprising at least the number
of the breakpoint registers; and
storing the subset of target addresses in the breakpoint registers; and
when the number of addresses in the first set of target addresses does not exceed
the number of the breakpoint registers, storing the first set of target addresses in the

breakpoint registers.

12. The method of claim 11, further comprising, when the number of addresses in the
first set of target addresses does not exceed the number of the breakpoint registers,
repeating to store one or more target addresses in the first set of target addresses to the
breakpoint registers such that each breakpoint register stores one of the first set of target

addresses.

13. The method of claim 1, further comprising:

after setting the first executability state of the first page table entry as executable
and setting the executability states of page table entries that correspond to the second set
of target addresses as non-executable, continuing to execute the at least one of the one or

more programs.

14. The method of claim 1, further comprising continuing to execute at least a subset

of the one or more programs.

15. A computer system, comprising:
one or more processors;
memory segmented into multiple pages, said memory storing:
one or more programs for execution by the one or more processors;
at least one page table comprising multiple page table entries, each page
table entry (i) comprising an executability state, and (ii) corresponding to a
respective page of the multiple pages; and

a list of target addresses; and

32

WO 2011/163146 PCT/US2011/041119
one or more breakpoint registers, each configured to store an address of a

respective breakpoint in the memory,
wherein the one or more programs include instructions for:
while executing the at least one program:
in response to detecting a request to execute an instruction located at a first address
of a first page:
locating a first page table entry associated with the first address; and
determining a first executability state of the first page table entry;
when the first executability state is non-executable:
identifying a first set of one or more target addresses in the list of target
addresses that correspond to the first page;
identifying a second set of one or more target addresses in the list that
correspond to one or more pages other than the first page;
storing at least some of the first set of target addresses in the breakpoint
registers;
setting the first executability state of the first page table entry as executable;
and
setting the executability states of page table entries that correspond to the
second set of target addresses as non-executable; and
when the first address corresponds to one of the target addresses stored in the
breakpoint registers, recording forensic data associated with the request to execute an

instruction located at the first address.

16. A computer readable storage medium storing one or more programs for execution
by one or more processors of a computer system having memory segmented into multiple
pages, the one or more programs comprising instructions for:
receiving a list of target addresses;
while executing at least one of the one or more programs:
in response to detecting a request to execute an instruction located at a first address
of a first page:
locating a first page table entry corresponding to the first page, the first
page table entry having a first executability state; and
determining the first executability state;

when the first executability state is non-executable:

33

WO 2011/163146 PCT/US2011/041119
identifying a first set of one or more target addresses in the list of target

addresses that correspond to the first page;
identifying a second set of one or more target addresses in the list that
correspond to one or more pages other than the first page;
storing one or more target addresses of the first set of target addresses in
breakpoint registers of the computer system, each breakpoint register configured to store
an address of a respective breakpoint in the memory;
setting the first executability state of the first page table entry as executable;
and
setting the executability states of page table entries that correspond to the
second set of target addresses as non-executable; and
when the first address corresponds to one of the target addresses stored in the
breakpoint registers, recording forensic data associated with the request to execute an

instruction located at the first address.

17. A computer implemented method of sampling data for identifying unauthorized
activities on a computer system, the computer system having one or more processors; and
memory segmented into multiple pages, said memory storing one or more programs, the
method comprising:

running one or more virtual machines and at least one virtual machine monitor; and
at the at least one virtual machine monitor:

receiving a first virtual memory address used in one of the one or more virtual
machines;

identifying a first page corresponding to the first virtual memory address and a first
page table entry corresponding to the first page, the first page table entry being associated
with the virtual machine monitor;

setting the executability state of the first page table entry as non-executable; and

in response to detecting a request to execute an instruction located at a second
virtual memory address that corresponds to the first page table entry, recording forensic
data associated with the request to execute the instruction located at the second virtual

memory address.

18. The method of claim 17, further comprising:

at the at least one virtual machine monitor:

34

WO 2011/163146 PCT/US2011/041119
receiving a third virtual memory address used in one of the one or more virtual

machines;

identifying a second page corresponding to the third virtual memory address and a
second page table entry corresponding to the second page, the second page table entry
being associated with the virtual machine monitor;

setting the executability state of the second page table entry as non-executable; and

setting the executability state of the first page table entry as executable.

19. A computer system, comprising:
one or more processors; and
memory segmented into multiple pages, said memory storing:
one or more virtual machines;
a virtual machine monitor running the one or more virtual machines; and
at least one page table comprising multiple page table entries, each page
table entry (i) comprising an executability state, and (ii) corresponding to a respective
page of the multiple pages; and
one or more programs comprising instructions for:
at the at least one virtual machine monitor:
receiving a first virtual memory address used in one of the one or
more virtual machines;
identifying a first page table entry corresponding to the first virtual
memory address, the first page table entry being associated with the virtual machine
monitor;
setting the executability state of the first page table entry as non-
executable;
in response to detecting a request to execute an instruction located at
a second virtual memory address that corresponds to the first page table entry, recording
forensic data associated with the request to execute the instruction located at the second

virtual memory address.

20. A computer readable storage medium storing one or more programs for execution
by one or more processors of a computer system having memory segmented into multiple
pages, the one or more programs comprising instructions for:

running one or more virtual machines and at least one virtual machine monitor; and

at the at least one virtual machine monitor:

35

WO 2011/163146 PCT/US2011/041119
receiving a first virtual memory address used in one of the one or more virtual

machines;

identifying a first page corresponding to the first virtual memory address and a first
page table entry corresponding to the first page, the first page table entry being associated
with the virtual machine monitor;

setting the executability state of the first page table entry as non-executable;

in response to detecting a request to execute an instruction located at a second
virtual memory address that corresponds to the first page table entry, recording forensic
data associated with the request to execute the instruction located at the second virtual

memory address.

36

WO 2011/163146

PCT/US2011/041119

Client
101-1

Client
L 101-n

Communications Network(s) 148

100
s

Decoy
Network
Device 106

Decoy Computer
Network 102

Protected Protected Protected

Network Network Network
Device Device Device
136-1 136-2 136-n

IDS/IPS
System
142

Protected Computer
Network 104

Figure 1

120

WO 2011/163146

PCT/US2011/041119

Memory 206
Decoy Network Network Communication Module e
Device 106 Host Operating System (Hypervisor OS) e
|V|rtL_|a_I E/I_gghlne Morytgr_ (flyperv:sor)_ L "
\ i : Hypervisor Kernel ul
: | Hyperwsor Virtual Machine Kernel —
L : Module
202 - m—— = — e —————
CPU(s) _ : :I Introspection Module -
232 rool [1=~ l
— o | 222 | 224 | 226 |
208 e]
| e e e e e e
|
|l e e e
| V|rtual Machines ;f
e
| 'Vlrtygl_Macbmgj _____________ +
: : : Decoy Operating System L
i 1 IProgram1] -
| | A A R R R R R R R)
It 1 Program 2 1
| Network .\ 1 | Decoy OS Page Tables T
Interface | | | |__::::::::::::__:—_:::::1
: : : | s e
e -/
t !'Virtual Machine 2
! e
I
: | se e
| |
Normal Hypervisor OS User Process 1 P
Normal Hypervisor OS User Process 2 s
Page Tables e
o 00
Database Server s
|F|ngerpr|nt(s) —a
Forensic Data -
Fingerprint Generation Engine s
Visualization Interface e
[2 BN J

Figure 2

2/20

212

110
214
116

118

120

216
113-1

112-1

220-1
220-2
228

113-2

114-1

114-2

230

128

234
236

130

132

PCT/US2011/041119

WO 2011/163146

ovs Aowsay [edisAyd 1seno

06¢ Alowsp

oce Aows fedisAyd J Kiowapy [enpip |enuiA 3sen9
muxo HHUEXO0 \ HHHX0 \
RRAR E+U)ChE f | Ueeee |
AR ZHU)TvE 1 TTEE
[+0)2EE [+UFCrE _ |4X
a-ZeC U-ZvE \
[] ®
° / °
® / o
[J
. \
(E+U)ZES . \
(Z+U)ZEE _ K
‘ E'I
:e-mmwmm / [+b125¢ |
\
oo - _ ° _
I2vE -
o A4S .
: e >~ *
. GZve v >
¢ vore ~ N Pese [
Teve -« — < — TEse |
zcee - Zehe .-— N Tese |
1-28¢ T-ZvE i
00000000X0 00000000%0 00000000%0

V¢ ainbi4

3/20

PCT/US2011/041119

WO 2011/163146

gL¢ obed

AV

ssaIppy Jeaur

| g¢ 2.nb1y
¥1¢ ajqe] ebed 01 € Aloyoauq abed
° ° $0€ €40
L °
[] [
. ajge] Jsjuio
: s
Anu3 a|qe] abed b ! f
1-91¢€ <
— 1-80¢€ Anuz
Oct A 2lgeL sbed Jajuiod Aloyoaaqg
ssalppy
: ¢80t Anuz |
° 71 A3 J Jojuiod Aojoanq
” Aioyauq ebed =80¢ Anug
° Jsjuiod Aiojyoaliq
. . 7-80€ Anu3
. Jajuiod Aso108.1(
[
_A
4 N N N

4/20

WO 2011/163146

Page Table Entry 316-1

e

PCT/US2011/041119

S :

Executability 360 Page Physical Address 362

Figure 3C

5/20

\

Page Properties 364

WO 2011/163146

Target 1 404-1

Target 9 404-9

PCT/US2011/041119

L~ 412-1

| — 412-2

| — 412-3

|~ 412-4

Debug Registers 410

N . Page 318-2
List of Target Page . \
Addresses 402 318-1 ol o Page 318-3
®
Breakpoint 1 ¢ \
414-1 ¢
. Breakpoint 5
° 414-5
®
®
Breakpoint 2 i
414-2 ¢
° Breakpoint 6 Breakpoint 9
° 414-6 414-9
®
[4
* Breakpoint 3 ° o
: 414-3 g .
406-1
(° Breakpoint 7 *
! Page Table Entry ¢ 414-7
316-1 ¢ .
Page Table Entry Breakpoint 4 *
~406-2 316-2 414-4 ¢
Page Table Entry . Breakpoint 8
C 316-3 . 414-8
) °
406-3 ° *
® ®
[] []
Page Table 314
Figure 4A

6/20

WO 2011/163146

Target 1 404-1

PCT/US2011/041119

Target 2 404-2 Target 1 |~ 412-1
Target 3 404-3 Target 2 -~ 412-2
Target 4 404-4 Target 3 — 412-3
Target 5 404-5 Target 4 — 412-4
Target 6 404-6
"| Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
®
®
®
\ . Page 318--2
List of Target Page 3 \
Addresses 402 318-1 ° . Page 318-3
Breakpoint 1 * \
414-1 ¢
o Breakpoint 5
o 414-5
®
[J
Breakpoint 2 i
414-2 ¢
. Breakpoint 6 Breakpoint 9
[J
®
° Breakpoint 3 ° o
. 414-3 . .
406-1 3 o
L ° Breakpoint 7
\ Page Table Entry * 414-7
316-1 ¢
®
X Page Table Entry Breakpoint 4 ¢
406-2 316-2 414-4 *
X Page Table Entry o Breakpoint 8
C 316-3 ° 414-8
) []
406-3 * .
[J ®
[] []
. Page Table 314
Figure 4B

7/20

WO 2011/163146

PCT/US2011/041119

Target 1 404-1
Target 2 404-2 Target 1 |~ 412-1
Target 3 404-3 0898 27 4122
Target 4 404-4 Target 3 — 412-3
Target 5 404-5 Target 4 — 412-4
Target 6 404-6
Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
[]
[]
[
\ . Page 318--2
List of Target Page . \
Addresses 402 318-1 ° . Page 318-3
Breakpoint 1 d \
414-1 *
° Breakpoint 5
° 414-5
[]
a > °
499-C Breakpoint 2 i
414-2 *
° Breakpoint 6 Breakpoint 9
. 414-6 414-9
[]
[]
° Breakpoint 3 o o
. 414-3 ° .
406-1 : °
L ° Breakpoint 7
\ Page Table Entry * 414-7
316-1 °
®
X Page Table Entry Breakpoint 4 d
——406-2 316-2 414-4 *
X Page Table Entry ° Breakpoint 8
C 316-3 . 414-8
) ®
406-3 ¢ °
® []
[] []
Page Table 314
Figure 4C

8/20

WO 2011/163146

Target 1 404-1
Target 2 404-2
Target 3 404-3
Target 4 404-4
Target 5 404-5
Target 6 404-6
Target 7 404-7
Target 8 404-8
Target 9 404-9

PCT/US2011/041119
Target 1 |~ 412-1
Target 2 — 412-2
Target 3 | — 412-3
Target 4 — 4124

Debug Registers 410

N . Page 318--2
List of Target Page .
Addresses 402 -l B) 499-D
® < J
Breakpoint 1 d
414-1 ¢
° Breakpoint 5
° 414-5
[]
[J
Breakpoint 2 g
414-2 *
° Breakpoint 6 Breakpoint 9
. 414-6 414-9
[]
[]
: Breakpoint 3 * °
. 414-3 ¢ .
406-1 : °
. ° Breakpoint 7
L Page Table Entry ° 414-7
316-1 * .
X Page Table Entry Breakpoint 4 i
——406-2 316-2 414-4 ¢
X Page Table Entry ° Breakpoint 8
C 316-3 ° 414-8
) []
406-3 ® °
[] ®
[] [J
\ >
Page Table 314 >
Figure 4D

9/20

WO 2011/163146

Target 1 404-1

PCT/US2011/041119

Target 2 404-2 Target 5 |~ 412-1
Target 3 404-3 Target 6 |~ 412-2
Target 4 404-4 Target 7 |~ 412-3
Target 5 404-5 Target 8 |~ 412-4
Target 6 404-6 \
Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
[]
[]
[]
\ . Page 318--2
List of Target Page .
Addresses 402 318-1 l ° \ /499'D
® -«
Breakpoint 1 *
414-1 *
° Breakpoint 5
° 414-5
[]
[]
Breakpoint 2 d
414-2 ¢
° Breakpoint 6 Breakpoint 9
° 414-6 414-9
[]
[
[] .
. Breakpoint 3 : °
o 414-3 °
406-1 : °
L ° Breakpoint 7
)2 Page Table Entry i 414-7
316-1 * .
Page Table Entry Breakpoint 4 °
——406-2 316-2 414-4 *
X Page Table Entry ° Breakpoint 8
C 316-3 ° 414-8
] °
406-3 ° —p ¢
® []
[] [J
\ >
Page Table 314
Figure 4E

10/20

WO 2011/163146

Target 1 404-1

PCT/US2011/041119

Target 2 404-2 72702096t 5777772 4%
Target 3 404-3 Target 6 | — 412-2
Target 4 404-4 Target 7 | — 412-3
Target 5 404-5 Target 8 | — 412-4
Target 6 404-6 \
Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
[]
[]
[
Y . Page 318--2
List of Target Page .
Addresses 402 318-1 d ° \
®
1 []
BreZI;gf‘llnt 1 . 499-F
° Breakpoint 5 B
° 414-5
[]
[J
Breakpoint 2 ¢
414-2 ¢
° Breakpoint 6 Breakpoint 9
. 414-6 4149
[]
[J
° Breakpoint 3 o .
. 414-3 ° .
406-1 : °
. ° Breakpoint 7
)2 Page Table Entry J 414-7
316-1 ¢ .
Page Table Entry Breakpoint 4 i
~—4062 316-2 414-4 *
X Page Table Entry ° Breakpoint 8
C 316-3 ° 414-8
] °
406-3 ® . ¢
[] []
[[
Page Table 314
Figure 4F

11/20

WO 2011/163146

Target 1 404-1

PCT/US2011/041119

Target 2 404-2 Target 5 |~ 412-1
Target 3 404-3 Target 6 | — 412-2
Target 4 404-4 Target 7 | — 412-3
Target 5 404-5 Target 8 _— 4124
Target 6 404-6
Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
[
[]
[J
Y . Page 318-2
List of Target Page .
Addresses 402 313_1 d o &
®
Breakpoint 1 .
414-1 ¢
° Breakpoint 5
° 414-5
®
[]
Breakpoint 2 .
499-G_ 414-2 *
BN . Breakpoint 6| |Breakpoint 9
®
L]
: Breakpoint 3 ¢ .
. 414-3 ¢ .
406-1 ; .
L ° Breakpoint 7
)2 Page Table Entry * 414-7
316-1 * .
Page Table Entry Breakpoint 4 .
—~406-2 316-2 414-4 ¢
X Page Table Entry ° Breakpoint 8
C 316-3 . 414-8
) ®
406-3 ° - °
o [4
o [
\ —>
Page Table 314
Figure 4G

12/20

WO 2011/163146

Target 1 404-1

PCT/US2011/041119

Target 2 404-2 Target 1 |~ 412-1
Target 3 404-3 Target 2 | — 412-2
Target 4 404-4 Target 3 _— 412-3
Target 5 404-5 Target 4 L~ 412-4
Target 6 404-6
Target 7 404-7 Debug Registers 410
Target 8 404-8
Target 9 404-9
]
[J
[
Y . Page 318--2
List of Target Page . \
Addresses 402 318-1 ol .
[J
Breakpoint 1 d
414-1 ¢
® Breakpoint 5
° 414-5
[]
[]
Breakpoint 2 i
499-G 414-2 *
— ° Breakpoint 6 Breakpoint 9
° 414-6 414-9
[J
) ®
® Breakpoint 3 o o
. 414-3 * .
406-1 - d
L ° Breakpoint 7
L Page Table Entry . 414-7
316-1 *
[
X Page Table Entry Breakpoint 4 g
——406-2 316-2 414-4 N
X Page Table Entry ° Breakpoint 8
C 316-3 . 414-8
1 []
406-3 * °
[] [
[] L J
Page Table 314
Figure 4H

13/20

WO 2011/163146

PCT/US2011/041119

Decoy
Network
Device 106

J

Virtual Machine 11

Virtual Machine Memory 506

Decoy OS Page Table 228

Page
Directory >
510

\ 4

Page
Table
514

CR3
504

Virtual Machine
CPU
902

Page
318

Page Table

314

&

Page
Directory ——»]
310

Entry
316-S

Shadow Page Table 522

Virtual Machine Monitor 21

Memory 206

CR3
304

CPU
202

Figure 5A

14/20

PCT/US2011/041119

WO 2011/163146

gs a24nbi4

r

20¢C
NdO
90¢ Aowsy
z€S 205
a|qe abeyd Ndo
papua)xg SUlySeN [enuiA
ssalppy
3or¢ Apug [< Miowspy
- Ssalppy ssalppy (Y44 [enHIA }S8N0)
mwm_% fiowsy Aows ajge| abed
d [edisAyd [edisAyd jseno SO AooaQg
905 Mows| aulyoely [enMIA
(2%4
JOJIUOIN SUIYDEIA [enuIA €11 sulyoey [enuIA

901 ®dlAeQ
JIOMISN
Aooa(g

15/20

WO 2011/163146

PCT/US2011/041119

Locate a list of target addresses

608 —l__— Locate a first page table entry corresponding to the

In response to detecting a request to execute an instruction

located at a first address of a first page

first page, the first page table entry having a first
executability state

— The page table entries include page table

| entries in one or more shadow page tables

| The page table entries include page table
) entries in one or more extended page tables

Determine the first executability state

A 4

When the first executability state is non-executable...

v

When the first address corresponds to one of the target

addresses stored in the breakpoint registers, record forensic
data associated with the request to execute the instruction

located at the first address

Figure 6A

16/20

600

WO 2011/163146 PCT/US2011/041119

616 —_|

620 — | |

622 — | |

624 — |

626 —

628 — |

630 — |

632 |

When the first executability state is non-executable

Identify a first set of one or more target addresses in the list of target
addresses that correspond to the first page

v

Identify a second set of one or more target addresses in the list that
correspond to one or more pages other than the first page

!

Store one or more target addresses of the first set of target addresses
in breakpoint registers of the computer system. Each breakpoint
register is configured to store an address of a respective breakpoint in

the memory

=
I "The one or more programs include at least one virtual machine

~: monitor and at least one virtual machine. A respective virtual
machine of the at least one virtual machine has a respective decoy
operating system. The method is performed in the virtual machinel

monitor. The target addresses correspond to addresses in the
respective decoy operating system in the respective virtual |

L o o o e machine. — _ _ _ _ _ _ _ _ |
~r|__ " 7 The breakpoint registers include debug registers -;

:-Determlne whether a number of addresses in the first set of target |
| addresses exceeds a number of the breakpoint registers.
| When the number of addresses in the first set of target addresses
| exceeds the number of the breakpoint registers, select a subset ofl
| target addresses from the first set of target addresses in
| accordance with predefined criteria, the predefined criteria |
I comprising at least the number of the breakpoint registers; and |
I store the subset of target addresses in the breakpoint registers. |
I When the number of addresses in the first set of target addresses
| does not exceed the number of the breakpoint registers, store the I
L first set of target addresses in the breakpoint registers. I

| | When the number of addresses in the first set of target addresses |
| does not exceed the number of the breakpoint registers, repeat to |
I store one or more target addresses in the first set of target |
| addresses to the breakpoint registers such that each breakpoint |
I register stores one of the first set of target addresses |

Figure 6B

17/20

WO 2011/163146 PCT/US2011/041119

634 — | Set the first executability state of the first page table entry as
executable

l

636 — _ |Set the executability states of page table entries that correspond to
the second set of target addresses as non-executable

P —— e — — —— — — — — — — — — — — — — — — —

Setting the executability of page table entries that
correspond to the second set of target addresses as non-
executable includes: for a respective target address in the

second set of target addresses, identifying a respective
page table entry corresponding to the respective target
address

P e ———— — — — — — —— — — — — — — — — — — —

I I
| After setting the first executability state of the first page |
640 —J__| table entry as executable and setting the executability |
| states of page table entries that correspond to the second |
| set of target addresses as non-executable, continue to |
| execute the at least one of the one or more programs |
I I

Figure 6C

18720

WO 2011/163146 PCT/US2011/041119

642 —_

644 — |

646 —|

650 —_|

When the first address corresponds to one of the target addresses
stored in the breakpoint registers, generate fingerprint data
indicative of unauthorized activities on the computer system

| At least one of the one or more processors is configured to |
— generate an interrupt in response to detecting a request to !
execute an instruction located at an address stored in at !
least one of the breakpoint registers. :

I

I

I

target addresses stored in the breakpoint registers in

l

I

| Determine that the first address corresponds to one of the
I

| accordance with the interrupt.

______________________ -
I

_| Prevent future attacks that comprise the same or similar
| activities as indicated by the forensic data

| Modify at least a portion of the memory to prevent future '
—1 attacks that comprise the same or similar activities as '
| indicated by the forensic data :

— —— — — — — — —— — — — — —— —— — — — — — — — —

r .

I The computer system is connected to a set of computers, |

L and a respective computer in the set of computers has a |
| respective set of one or more programs. Modify at least |
| One program of the respective set of one or more programs |
I in the respective computer to prevent the respective I

L computer from future attacks |

— i ——— — — — — — — — — — —— — — — — — — — —

I I
| Continue to execute at least a subset of the one or more |
| programs |

I

— e — e ———— — — — — — — — ———— — — — — —

Figure 6D

19/20

WO 2011/163146 PCT/US2011/041119
700

</

702 — __|Run one or more virtual machines and at least one virtual machine

monitor
704 —_| At the at least one virtual machine monitor
706 — | | Receive a first virtual memory address used in one of the

one or more virtual machines

!

708 —| Identifying a first page corresponding to the first virtual
memory address and a first page table entry corresponding
to the first page. The first page table entry is associated
with the virtual machine monitor.

v

710 — Set the executability state of the first page table entry as
non-executable

v

In response to detecting a request to execute an instruction
located at a second virtual memory address that
corresponds to the first page table entry, record forensic
data associated with the request to execute the instruction
located at the second virtual memory address

______________________ -
714 | Receive a third virtual memory address used in one of the |
™ one or more virtual machines. Identify a second page |
corresponding to the third virtual memory address and a |
second page table entry corresponding to the second page. |
The second page table entry is associated with the virtual |
machine monitor. Set the executability of the second page |
table entry as non-executable. Set the executability of the |

first page table entry as executable. |

Figure 7

20720

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/041119

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/00 GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Lionel Litty ET AL: "Hypervisor Support 17-20

for Identifying Covertly Executing

Binaries",

SS'08 Proceedings of the 17th conference
on Security symposium,

31 December 2008 (2008-12-31), pages 1-16,
XP55007124,

[retrieved on 2011-09-14]

Y abstract; figure 1 1-16
page 1, column 1, paragraph 2
page 4, column 2, paragraph 5
page 5, column 1, paragraph 1
page 5, column 2, paragraph 2
page 10, column 2, paragraph 5

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i i "

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
21 September 2011 04/10/2011
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040, . .
Fax: (+31-70) 340-3016 Koblitz, Birger

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/041119

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y
A

US 5 664 159 A (RICHTER DAVID E [US] ET
AL) 2 September 1997 (1997-09-02)
abstract; figures 1,10

column 1, Tine 55 - column 2, line 29
KURNIADI ASRIGO ET AL: "Using VYMM-Based
Sensors to Monitor Honeypots",

20060614; 20060614 - 20060616,

14 June 2006 (2006-06-14), pages 13-23,
XP007902017,

I1SBN: 978-1-59593-332-4

the whole document

Ashlesha Joshi ET AL: "Detecting Past and
Present Intrusions through
YulnerabilitySpecific Predicates",

26 October 2005 (2005-10-26), pages 1-14,
XP55006679,

Brighton, United Kingdom

Retrieved from the Internet:
URL:http://www.cs.princeton.edu/courses/ar
chive/spring06/cos592/bib/intrusions_sosp-
joshi05.pdf

[retrieved on 2011-09-09]

the whole document

"Debug Register",

52 March 2010 (2010-03-22), XP55007207,
[retrieved on 2011-09-15]

the whole document

Andrés Krapf: "XEN Memory Management
(Intel IA-32)",

30 October 2007 (2007-10-30), XP55007240,
Retrieved from the Internet:
URL:http://www-sop.inria.fr/everest/person
nel/Andres.Krapf/docs/xen-mm. pdf
[retrieved on 2011-09-15]

the whole document

1-16
17-20

1-20

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/041119
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5664159 A 02-09-1997 US 5440710 A 08-08-1995
us 5652872 A 29-07-1997
us 5598553 A 28-01-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - wo-search-report
	Page 60 - wo-search-report
	Page 61 - wo-search-report

