An infeed arrangement for feeding sheet-like objects, primarily banknotes, into a space in which the objects are stacked, one upon the other, and to which the objects are fed through an infeed aperture from an external location. The invention is characterised in that the infeed arrangement comprises an infeed path (1) which includes at least one endless belt (2) which is arranged to move past the infeed aperture (5, 7). The infeed path (1) includes a flat part (11) beneath which an object (12) fed into the arrangement is intended to be deposited. The path (1) includes downstream of the flat part (11) a curved part where the path turns back towards the infeed aperture (5, 7). The belt (2) is provided with at least one flap (20; 21) or like element which extends rearwardly in the transport direction and the forward edge of which, seen in the transport direction (3), projects from the outwardly facing side of the belt (2), the flap (20; 21) having a length dimension in the transport direction which is shorter than the length of the object (12). The object is intended to be inserted into the infeed aperture (5), with the forward edge of the object, as seen in the transport direction, positioned between the flap (20, 21) and the belt (2). The curved part of the infeed path is configured so that the rear edge of the flap will swing away from the belt, when the rear edge of the flap leaves the flat part of the infeed path. The arrangement functions to draw the object forwards by its forward edge.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FT</td>
<td>Finland</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
An Infeed Arrangement

The present invention relates to an infeed arrangement, primarily intended for feeding banknotes into a banknote collecting space.

Cassettes into which banknotes are fed for storage purposes are becoming more and more usual.

One type of banknote storage cassette is constructed to prevent unauthorized removal of the banknotes therefrom and is provided with means operative to destroy the banknotes in the cassette by coating said banknotes with a dye, or rendering the banknotes useless in some other way, should an attempt be made to forceably feed-out the banknotes or to destroy the cassette.

Other types of cassette are also known to the art. Irrespective of the type of cassette used, or whether other forms of banknote-storage devices are used, one problem common to all such devices resides in the inability of feeding large quantities of banknotes into the banknote-storage device and stacking the banknotes therein in a smooth and trouble-free fashion.

Interruptions in the infeed of banknotes into devices of this nature is, inter alia, primarily due to jamming of a banknote so as to block the infeed path of the next banknote in line.

Such crinkling of a banknote, i.e. folding and pleating of a banknote as it is fed in to the banknote storage device, is normally caused because the banknote to be fed into the device, or the uppermost banknote of a stack of banknotes, has along one edge thereof a tear which extends parallel with the transport direction or the leading edge of the banknote. This crinkling of a banknote is more liable to occur when the tear is located close to the end of the first banknote to be fed into the device.

In the case of known banknote infeed mechanisms, a banknote is normally introduced into a banknote magazine between a pair of rubber drive-rolllers. Such mechanisms operate by inserting the uppermost or lowermost banknote of a stack of banknotes into the magazine. This known technique is unsatisfactory, when the banknotes concerned are worn, and particularly when the
banknotes are damaged. When one or more banknotes crinkle in the afore-defined fashion, the cassette cannot be used again until it has been emptied of banknotes. This magazine-emptying procedure requires the use of special devices, however, such as electronic devices, in order to enable the cassette to be opened without destroying the banknotes. These devices are not normally kept in the place or premises where the cassette is used, but in some other place.

The present invention avoids the disadvantage of known banknote infeed mechanisms with regard to the faulty functioning and deficiency of such devices when the banknotes to be fed in to banknote magazines with the aid of such mechanisms are worn and damaged.

This drawback is avoided by means of the present invention because the inventive infeed arrangement operates in accordance with a totally different principle.

Although reference has been made hitherto solely to banknotes, it will be understood that the present invention can also be applied to the infeed of tickets, betting coupons of various kinds, raffle tickets and other valuable documents.

Thus, invention is not restricted to a banknote infeed arrangement, but can be applied to all sheet-like objects.

The present invention thus relates to an arrangement for feeding sheet-like objects, primarily banknotes, into a space in which the objects are stacked one upon the other and with which the objects are fed externally through an infeed aperture into said space. The arrangement is characterised in that it includes an infeed path which comprises at least one endless belt which is arranged to move past the infeed aperture; in that the path includes a flat part beneath which an object is intended to be deposited; in that the path includes downstream of said flat part a curved part where said path turns back towards the infeed opening; in that the belt is provided with at least one flap or corresponding element which faces rearwardly in the transport direction and the forward edge of which, as seen in said transport direction, projects outwardly from the outwardly facing side of the belt. said flap having in the transport direction a
length extension which is shorter than the length extension of an object, said object being intended to be inserted into the infeed aperture and positioned so that its leading edge is located between the flap and the belt; and in that the curved part of said belt is configured so that the rear edge of the flap will swing out from the belt when the rear edge of said flap leaves the flat belt part.

The invention will now be described in more detail with reference to exemplifying embodiments of the invention and with reference to the accompanying drawings, in which

Figure 1 illustrates schematically and in side view a first embodiment of an arrangement according to the invention;
Figures 2-4 illustrate different embodiments of an infeed belt, seen from above in Figure 1;
Figures 5a-5c illustrate the modus operandi of the arrangement starting from the position illustrated in Figure 1;
Figure 6 illustrates a method by means of which a belt can be provided with flaps;
Figure 7 illustrates schematically and in side view a second embodiment of the inventive arrangement; and
Figure 8 is a side view of an inventive arrangement constructed in accordance with a preferred embodiment.

Figure 1 illustrates schematically and in side view a first embodiment of an infeed arrangement constructed in accordance with a first embodiment. The inventive arrangement comprises the actual infeed mechanism together with some kind of sheet-collecting device, where the sheets are stacked one upon the other. The sheet-collecting device may be of any kind capable of coacting with the infeed mechanism.

As before mentioned, the present invention relates to an infeed arrangement for sheet-like objects. The invention is described hereinafter, however, with reference to banknotes as an example of such sheet-like objects.

Figure 1 illustrates the arrangement schematically, for the sake of clarity.

The infeed arrangement includes an infeed path 1 which comprises at least
one endless belt 2 which is intended to move in the direction shown by the arrow 3. The belt 2 passes an infeed aperture, generally referenced 4.

The infeed aperture includes a slot-like opening 5 provided in a casing 6 or the like surrounding the arrangement, and an infeed passage 7 which leads to the belt 2.

Guide plates 8, 9 or like elements are preferably provided along the infeed passage 7, in order to ensure that a banknote inserted through the slot 5 will be positioned correctly in relation to the belt.

In the location of the infeed aperture 4, the belt 2 runs over a first guide-roller assembly 10, which may comprise two or more mutually parallel guide rollers.

The infeed path 1 includes a flat part 11 beneath which the banknotes 12 fed into the arrangement are intended to be deposited and there stacked, where the banknote or object last inserted will lie on the top of the stack illustrated in Figure 1. Downstream of the flat part 11, the path presents a curved part, where the path 1 passes over a second guide-roller 13 and forms an angle V1 with the flat part 11 of said path, whereafter the path 1 runs over a third belt guide-roller 14 located at a distance from the second belt guide-roller 13 in a direction towards the infeed aperture.

The embodiment illustrated in Figure 1 also includes a fourth guide-roller 15.

The infeed path, or belt, is driven by an electric motor connected to the shaft of one of the guide-rollers 10, 13-15.

The belt 2 is provided with at least one flap 20, 21 which projects outwardly in the transport direction. In the case of the Figure 1 embodiment, the belt is provided with two flaps 20, 21 which are spaced apart by a distance corresponding to half the circumference of the belt.

The forward edge 22 of each of said flaps, as seen in the transport direction 3, projects outwards from the outwardly facing side of the belt 2.
The length dimension of the flaps 20, 21 is shorter than the length dimension of a banknote in the transport direction. According to one preferred embodiment, the flap 20, 21 has a length dimension which is shorter than half the length of the banknote, preferably shorter than a third of the length dimension of a banknote.

The infeed of a banknote is commenced by inserting the banknote into the infeed aperture and therewith positioning the banknote so that its forward edge, seen in the transport direction, is placed between the flap 21 and the belt 2, as illustrated in Figure 1.

The arrangement is constructed so that the distance between the second guide roller 13 and the third guide roller 14 corresponds approximately to the length of the flap in the transport direction. As will be seen from Figure 1, as a result of this feature, the rear end 23 of the flap will swing outwards from the belt 2 when the forward edge of the flap 20 begins to bend around the guide roller 14, or prior to bending around said roller 14, or subsequent to having begun to bend around said guide roller 14.

In order to ensure that this function is achieved, the angle V2 defined between the belt parts on respective sides of the third guide roller 14 is about 150° to 30°, preferably about 90°.

Furthermore, the angle V1 between the belt parts on respective sides of the second guide roller 13 is about 150° to 30°, preferably about 90°.

For the purpose of ensuring that the forward edge of a banknote is inserted between the flap and the belt and therewith achieve smooth infeed of the banknote, as illustrated in Figure 1, it is essential that the flap and the belt define an adequate angle therebetween. Consequently, it is preferred that the belt parts on respective sides of the first guide roller 10 define an angle V3 of about 0° to 90°, preferably about 30°.

The guide rollers or guide-roller assemblies can be replaced with stationary rods or like elements over which the belt or belts are guided. Thus, the term guide roller used in the following Claims will also include rods or
like elements.

The belt and the flaps 20, 21 are made from a material which is sufficiently rigid to achieve the aforesaid effect. According to one preferred embodiment of the invention, the belt and flaps comprise a sufficiently-rigid material which will generate relatively low friction against the sheet-like object, preferably a Teflon-coated fibre-glass fabric.

Located adjacent the infeed aperture in the proximity of the first guide roller 10 is a pressure roller 24 which exerts pressure on the belt and the first guide roller.

Located adjacent the flat part 11 of the belt 2 is a pressure plate 25 or corresponding element having a surface area which corresponds to the surface area of the object 12. The plate 25 is biased into light abutment with the belt by means of a spring arrangement 26, 27.

As the banknotes 12 are stacked one upon the other, the pressure plate 25 is displaced downwards, as shown by the arrow 28, to a lower end-position shown in chain lines in Figure 1.

The forward edges of the banknotes, as seen in the transport direction, lie against a stop plate 29 or the like.

Figures 2-4 illustrate mutually different embodiments of flaps and belt, in which the flaps are shown from above in Figure 1, and hence the belt transport direction is to the right in Figure 2-4. Figure 6 illustrates a method of producing an endless belt with two flaps.

In the case of the Figure 2 embodiment, the flap 30, seen from above, has a forward part 31 which extends across the width of the belt 2 and from which two or more fingers 32, 33, 34 extend in a direction opposite to the transport direction.

It is essential that the two outer fingers 32, 34 cover those edges of a banknote which extend parallel with the transport direction. In the illustrations shown in Figure 2-4, the position of a banknote in relation to the belt 2 and the flaps is indicated in chain lines. It should be men-
tioned, however, that a banknote is never transported along the upper part or run 35 of the belt.

Figure 4 illustrates an embodiment in which the path 1 comprises three mutually parallel belts 36, 37, 38, each provided with respective flaps 39, 40, 41. The path 1 may also comprise two mutually parallel belts or more than three belts.

When more than two belts are used, two or more of the belts may be provided with a respective flap.

Figure 3 illustrates a simplified embodiment, in which the flap 42 has no fingers.

It is preferred, however, to provide the flap with fingers, such as the fingers 32, 34 illustrated in Figure 2. A flap of this construction affords an advantage when configuring the infeed passage 7.

Figure 6 illustrates a method of producing an endless belt 2 having two flaps 20, 21. In the illustrated case, those ends 90, 91 of two belts 92, 93 which are not intended to form a flap are attached to the inside of respective belts in a manner to form the flaps 20, 21. Respective flaps and their junction with respective belts will therefore form an integral unit. It will be understood that if the flaps were to be attached directly to the outer surface of an endless belt, the join between flap and belt would be liable to catch against the edge of the last banknote facing the infeed aperture during an infeed operation, therewith interfering with the infeed of said banknotes.

In accordance with one preferred embodiment, there is provided between the slot-like opening 5 and the first guide roller 10 a guide-slot defined by two mutually parallel plates 8, 9, of which the top plate 8 includes parallel fingers 51, 52, as illustrated in Figure 2. The bottom plate 9 is whole.

The fingers 51, 52 of the bottom plate 8 extend parallel with the transport direction and are positioned so that the fingers 32-34 on the flaps can pass between the fingers 51, 52 on said plate.
In the case of the embodiment illustrated in Figure 4, the fingers of the plate 8 are positioned in a corresponding manner, i.e. between the belts.

In the case of this embodiment, the flap or flaps will lie against the bottom plate 9 when the forward edge of the plate 9 is located adjacent the point at which the flap or flaps join the belt 2 or belts, while the top plate 8 may have a length extension equal to the length extension of the bottom plate 9.

Figure 1 illustrates the belt in a starting position, in which the belt is stationary. Means are provided for stopping the belt in this position, and also for stopping the belt in the position in which the flap 20 is located in the position in which the flap 21 is located. The belt is thus stopped twice with each revolution of the belt, that is when the belt is provided with two flaps 20, 21. These means may comprise a first photo-cell comprising a photo-diode 60 and a photo-transistor 61, the beam path of the photo-cell being broken when a flap 21 is located on the bottom plate 9.

The arrangement also includes a second photo-cell comprising a photo-diode 62 and a photo-transistor 63, the beam path of which is located adjacent the first guide roller 10, said beam path being broken when a banknote 12 has been inserted to a sufficient extent in between the belt 2 and the flap 21. A suitable distance between the forward edge of the banknote and the junction between flap and belt is 10-15 mm.

When this beam path is broken, a signal is sent, with the aid of suitable, known means, to a drive motor for starting the belt. The drive motor then rotates the belt 2 until the flap 20 reaches the position occupied by the flap 21 in Figure 1, whereafter the procedure is repeated and the next banknote is inserted, and so on.

The arrangement may also be provided with a third photo-cell comprising a photo-diode 64 and a photo-transistor 65, the beam path of which is located in the close proximity of the slot-like opening 5. In this case, two drive rollers or drive-roller assemblies 66, 67 are provided, the drive motors of which are started when the beam path of the third photo-cell is broken. This drive is stopped suitably a short time after the pulse occurring when
the banknote fed-in by means of the drive roller 66, 67 open the beam path of the second photo-cell, which takes place when the rear edge of the banknote passes the beam path of the third photo-cell.

5 The infeed-control circuit for controlling the afore-described procedure may be of any known kind and will not therefore be described in detail here.

The modus operandi of the infeed arrangement is as follows:

10 The belt is in its starting position, as illustrated in Figure 1. A banknote 12 is then inserted through the slot-like opening 5 until the banknote breaks the beam path of the third photo-cell 64, 65, whereupon the drive rollers 66, 67 are activated to advance the banknote 12 until the leading edge of said banknote breaks the beam path of the second photo-cell 62, 63. The belt is therewith started and moves in the direction of the arrow 3, so as to draw the banknote in between the first guide roller 10 and the pressure roller 24, with the forward edge of the banknote lying between the belt and the flap, as illustrated in Figure 5a.

20 For the sake of clarity, Figure 5a-5c illustrate the belt, the flap and the banknote slightly separated from one another.

When the flap 21 reaches the pressure plate 25, or the uppermost banknote on said pressure plate when banknotes have already been deposited on said plate, the flap presses against the banknote so as to clamp the banknote firmly between the flap and the belt.

Because the banknote is clamped firmly at its forward edge part, the banknote is drawn-in instead of being pushed-in, as illustrated in Figure 5c.

As will be understood from the foregoing, the flap 21 protects the forward edge-part of the banknote and also part of those edges of the banknote which extend parallel with the transport direction.

35 Consequently, the fact that a banknote may be torn in these regions or the fact that tears may be present on the immediately underlying banknote over which said banknote is fed, will have no significance on the efficient
infeed of said banknotes.

Furthermore, the presence of tears on the immediately underlying banknote, or on the unprotected part of the edges of the banknote being fed-in by the arrangement will not result in crinkling of the lower banknote (as hereinbefore defined) because the banknote being fed into the arrangement is drawn-in by its forward edge. Furthermore, passage of the flap over the uppermost banknote in the stack will flatten-out the edges of any tears that may be present.

The arrangement according to the present invention has been found to operate effectively, without the occurrence of the problems mentioned in the introduction, even when the banknotes concerned are damaged.

The belt 2 continues to move in the transport direction, wherewith the rear edge 71 of the flap leaves the space between the belt and the uppermost banknote in the stack, or the pressure plate when no banknotes have previously been fed into said space. The rear edge 71 of the flap leaves said space when the junction 70 of the flap with the belt reaches the third drive roller 14, or prior to said junction reaching said roller.

Thus, the forward edge 72 of the banknote is drawn up to a position between the second guide roller 13 and the third guide roller 14, as shown in a broken line in Figure 5c.

When the rear edge 71 of the flap moves free, it will spring-out to the position illustrated in Figure 5c, whereupon the forward edge-part 72 of the banknote will fall down in the manner illustrated by the arrow 75.

This outward springing of the flap 21 is accentuated when the junction 70 passes the curve formed by the third guide roller 14.

The belt 2 of the illustrated embodiment is then stopped, due to the second flap 20 having reached a position in the infeed passage where it breaks the beam path of the first photo-cell 62, 63, i.e. has reached the starting position.

When the next banknote is fed-in, the preceding banknote will be advanced
slightly by means of friction against the belt, until the forward edge of
the banknote reaches the stop plate 29.

The stop plate can be replaced with upstanding pins or some other appro-
 priate stop devices.

The described cycle is repeated, with the pressure plate 25 being moved
downwards as the number of banknotes carried thereby increases, until the
plate reaches its lower limit position, which is detected by a microswitch
76 or some other appropriate sensor. When the pressure plate reaches this
position, the drive to the roller 66, 67 and the belt is stopped. This
situation is suitably indicated optically, with the aid of a photo-diode
for instance, therewith indicating that the banknote magazine is full.

Figure 7 illustrates schematically a second embodiment of the invention,
in which the curved-part of the infeed path comprises a roller or roller-
assembly 8 having a radius which corresponds approximately to the length
dimension of the flaps 20, 21 in the transport direction. In other respects,
this embodiment is similar to the first embodiment described above.

As before mentioned, the forward edge 72 of the banknote enters the curved
part of the infeed path before the rear edge of the flap leaves the space
between the belt and the pressure plate, i.e. the flat part of the infeed
path. The forward edge of the banknote falls down when the flap swings out.

Alternatively, stop hooks 90 or stop pins can be positioned upstream of
the curved part, in the transport direction, as illustrated in broken
lines in Figure 5a.

When more than two belts are used, hooks 90 are provided in the space
between the belts. When only one belt is used, a slot for each hook 90
can be formed along a given length of the belt, extending from the junction
of the flap with the belt and rearwardly in the transport direction, and
by resiliently mounting the hooks so that as the slot passes the hooks
will spring up from the depressed position shown in Figure 5a and protrude
through the slot, and will be again depressed when the slot has passed.
tion is that the forward edge of the banknote will abut the hooks and be restrained thereby as the belt continues to move. This will result in the forward part of the banknote being withdrawn from the space between the flap and the belt.

Figure 5a illustrates in broken lines a banknote 91 which has been stopped and moved-in by means of the flap 20.

According to one especially preferred embodiment, one or more rotatable wheels 102 are located adjacent the curved part of the infeed path, each such wheel 102 being positioned so that its periphery 103 will lie close to but outside the infeed path 1. The wheels 102 are rotated in a direction opposite to the transport direction of the path 1. The wheel or wheels 102 has, or have, an irregular periphery, such as a toothed periphery.

Thus, a conventional cog wheel can be used. The wheel or wheels, however, may also comprise a hub carrying a radially projecting brush or like device. The wheel or wheels is, or are, intended to feed down the forward edge of a banknote when the banknote is separated from the flap, as illustrated by the forward edge 1 of the uppermost banknote in the Figure 8 illustration.

The reference 105 in Figure 8 indicates a stack of banknotes fed-in by means of the arrangement.

The provision of the wheel or wheels 102 ensures that banknotes will not be fed past the banknote-depositing location by the belt and back to the infeed aperture.

The wheel, or in the case of the illustrated embodiment wheels is, or are, carried by a shaft 106 which is driven by an electric motor (not shown). According to one embodiment, the wheel may have a width corresponding to the whole of the width of the infeed path, or a part of said width. When the infeed path has the configuration illustrated in Figure 2 or 4, two wheels are preferably used, said wheels being positioned opposite the space between the fingers 32-34 and between the belts 36-38.

It will be obvious from the foregoing that the present invention solves
the problems mentioned in the introduction.

The illustrated arrangement can, however, be modified. For instance, the infeed path 1 can have a configuration different to that illustrated in the accompanying drawings. Furthermore, the banknote magazine and the infeed passage may also have a configuration different to that illustrated.

It will therefore be understood that the invention is not restricted to the afore-described exemplifying embodiments, and that modifications can be made within the scope of the following Claims.
Claims

1. An infeed arrangement for feeding sheet-like objects, primarily banknotes, into a space in which the objects are stacked, one upon the other, and where the objects are fed through an infeed aperture to said space from an external location, characterised in that the infeed arrangement includes an infeed path (1) which comprises at least one endless belt (2) which is arranged to pass by the infeed aperture (5, 7); in that the infeed path (1) includes a flat part (11) beneath which an object (12) inserted into said arrangement is intended to be deposited; in that the infeed path (1) includes downstream of said flat part (11) a curved part where the path turns back towards the infeed aperture (5, 7); in that the belt (2) is provided with at least one flap (20; 21; 30; 39-41; 42) or the like which is directed rearwardly in the transport direction and the forward edge of which, seen in said transport direction (3), projects outwards from the outwardly facing side of the belt (2); in that the flap (20; 21; 30; 39-41; 42) has a length dimension in the transport direction which is shorter than the length dimension of an object (12), said object during an infeed operation being intended to be inserted into the infeed aperture (5) and the forward edge of said object, seen in the transport direction, located between the flap (20, 21; 30; 39-41; 42) and the belt (2); and in that the curved part of the infeed path is configured so that the rear edge of the flap will swing out from the infeed path when said rear edge of the flap leaves the flat part of said path.

2. An infeed arrangement according to Claim 1, characterised in that the length of the flap (20, 21; 30; 39-41; 42) is less than half the length of the object (12), preferably a third of the length of said object.

3. An infeed arrangement according to Claim 1 or 2, characterised in that the infeed path (1), downstream of said said flat part (11), moves over a second guide roller (13) such as to form an angle (V1) with the flat part (11) of said path, whereafter the path (1) at a distance from said second guide roller (13; 100) passes over a third guide roller (14; 101) towards the infeed aperture (5, 7), where the second guide roller (13; 100) and the third guide roller (14; 101) form said curved part; and in that the distance between the second guide roller (13; 100) and the third guide roller (14; 101) corresponds approximately to the
length of the flap (20, 21; 30; 39-41; 42) in the transport direction.

4. An infeed arrangement according to Claim 1, 2 or 3, characterised in that the parts of the path (1) located on respective sides of the third guide roller form an angle (V2) of about 150° to 30°, preferably about 90°.

5. An infeed arrangement according to Claim 1, 2, 3, or 4, characterised in that the parts of the path (1) on respective sides of the second guide roller form an angle (V1) of about 150° to 30°, preferably about 90°.

6. An infeed arrangement according to Claim 1, 2, 3, 4 or 5, characterised in that the part of of the path (1) on respective sides of the first guide roller (10) form an angle (V3) of about 0° to 90°, preferably about 30°.

7. An infeed arrangement according to Claim 1 or 2, characterised in that the curved part of the infeed path comprises a roller or roller assembly (80) having a radius which corresponds approximately to the length dimension of the flap (20, 21; 30; 39-41; 42) as seen in the transport direction.

8. An infeed arrangement according to Claim 1, 2, 3, 4, 5, 6 or 7, characterised in that one or more rotatable wheels (102) is, or are, arranged adjacent the curved part of said path, each of said wheels (102) being positioned so that its periphery lies close to but outside said path (1); and in that said wheel or wheels (102) rotates, or rotate, in a direction opposite to the transport direction of the path (1).

9. An infeed arrangement according to Claim 8, characterised in that said wheel (102) has an irregular periphery, such as a toothed periphery.

10. An infeed arrangement according to any one of the preceding Claims, characterised in that the infeed path (1) comprises two or more mutually parallel belts (36-38).

11. An infeed arrangement according to any one of the preceding Claims, characterised in that, when seen from above, said flap (30) has a forward part (31) which extends over the belt and from which two or more fingers (32-34) project in a direction opposite to the transport direction.
12. An infeed arrangement according to Claim 10, characterised in that two or more of the belts (36-38) are provided with said flaps (39-41).

13. An infeed arrangement according to Claim 10, 11 or 12, characterised in that between the infeed aperture (5) and the first guide roller (10) there is provided a guide plate or a guide slot defined by two mutually parallel plates (8, 9) for guiding an object fed into the arrangement, of which plates the top plate (8) includes parallel fingers (51, 52) which extend parallel with the transport direction; and in that the plate fingers (51, 52) are positioned so that the flaps (32-34; 39-41) on the belt or belts are able to pass between the plate fingers (51, 52).

14. An infeed arrangement according any one of the preceding Claims, characterised in that the belt or belts (2) and the flap or flaps (20, 21; 30; 39-41; 42) comprise a material which will generate relatively low friction against the object, preferably a teflon-coated fibre-glass fabric.

15. An infeed arrangement according to any one of the preceding Claims, characterised in that mounted adjacent said flat part (11) of the path (1) is a pressure plate (25) or the like having a surface which corresponds to the surface of the object (12) and which is lightly biased into abutment with the belt (2) by means of a spring (26).

16. An infeed arrangement according to any one of the preceding Claims, characterised in that a pressure roller (24) is mounted adjacent the first guide roller (10) for exerting pressure on the belt (12) and the first guide roller (10).
INTERNATIONAL SEARCH REPORT

International Application No. PCT/SE89/00529

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

B 65 H 29/04, G 07 D 11/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>B 65 H; G 07 D</td>
</tr>
<tr>
<td>US C1</td>
<td>271</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation

to the Extent that such Documents are Included in the Fields Searched

SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 1 920 715 (L. R. SAGER) 1 August 1933</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3 266 796 (D. W. HANEY ET AL) 16 August 1966</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3 915 447 (PERNO) 28 October 1975</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 026 199 (ADAMS ET AL) 31 May 1977</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE, A, 2 104 440 (WINDMÖLLER & HÖLSCHER) 28 September 1972</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE, C1, 3 735 815 (WINDMÖLLER & HÖLSCHER) 16 February 1989</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1 174 457 (WELDWOOD OF CANADA LIMITED) 17 December 1969</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2 011 866 (LEVI STRAUSS & CO.) 18 July 1979 .../...</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

1989-11-20

Date of Mailing of this International Search Report

International Searching Authority

Swedish Patent Office

Signature of Authorized Officer

Kjell Lundahl

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
</table>