(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 October 2018 (25.10.2018)

(10) International Publication Number

WO 2018/193321 Al

WIPO I PCT

(51) International Patent Classification:

F, Pangu Plaza, No. 27, Central North 4th Ring Road,

GO6F 9/38 (2006.01) Chaoyang District, Beijing 100101 (CN).
(21) International Application Number: (72) Imventors: GSCHWIND, Michael Karl; IBM Corpora-
PCT/IB2018/051646 tion, 1 North Castle Dr, Armonk, NY 10504-1784 (US).
. 1. . SHUM, Chung-Lung; IBM Corporation, 2455 South Rd,
(22) International Filing Date: 13 March 2018 (13.03.2015) Poughkeepsie, NY 12601-5400 (US). SLEGEL, Timo-
are (13.03. thy; IBM Corporation, 2455 South Rd, Poughkeepsie, NY
(25) Filing Language: English 12601-5400 (US). SALAPURA, Valentina; IBM Corpora-
. . . tion, PO Box 218, 1101 Kitchawan Rd, Yorktown Heights,
(26) Publication Language: English NY 10598 (US).
(30) fg/iz;gf)gata‘ 18 Aol 2017 (18.04.2017 Ug (% Agent: SHAW, Anita; IBM United Kingdom Limited, In-
> prt (18.04.) tellectual Property Law, Hursley Park, Winchester, Hamp-
(71) Applicant: INTERNATIONAL BUSINESS shire SO21 2JN (GB).
MACHINES CORPORATION [US/US]; New Orchard (81) Designated States (unless otherwise indicated, for every

Road, Armonk, NY 10504 (US).

(71) Applicants (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB). IBM (CHINA)
INVESTMENT COMPANY LIMITED [CN/CN]; 25/

kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,

(54) Title: REGISTER CONTEXT RESTORATION BASED ON RENAME REGISTER RECOVERY

_____________ -
I 380 3?2 |
| |
| ARCHITECTED PHYSICAL |
| REGISTER REGISTER |
I I
| r0 123 |
! |
| |
| |
| |
| |
: M1 p23 :
| |
2 !
: M3 p67 I
| |
| r14 p245 |
: 15 pl4 :
L _|

wo 20187193321 A1 | 00O

(57) Abstract: A load request to restore a plurality of architected registers is obtained. Based on obtaining the load request, one or more
architected registers of the plurality of architected registers are restored. The restoring uses a snapshot that maps architected registers
to physical registers to replace one or more physical registers currently assigned to the one or more architected registers with one or
more physical registers of the snapshot corresponding to the one or more architected registers.

[Continued on next page]

WO 2018/193321 AT MY A0C 000 0 0 00

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/193321 PCT/IB2018/051646

1

REGISTER CONTEXT RESTORATION BASED ON RENAME REGISTER RECOVERY

BACKGROUND

[0001] One or more aspects relate, in general, to processing within a computing environment, and in

particular, to facilitating such processing.

[0002] Computer programs often call functions to provide particular operations, such as print, various
mathematical operations, etc. The program calling the function is referred to as a caller, and the called function is
referred to as the callee. Many of these functions are extremely short, either due to their net static length (i.e., the

functions do not include many instructions), or their short dynamic length (e.g., due to an early-out condition).

[0003] Short functions, like any other functions, store callee-saved registers that they modify on a stack as
part of the function’s prolog and restore them as part of the epilog. The stack, also referred to as a call stack, is
used by a computer program to store information about active functions of the computer program. Similarly, callers
to such functions save caller-saved registers on the stack as part of the function’s call sequence, and restore them
upon the return, if the values live across the function call. Saving these registers is a significant expense of calling

a function.

[0004] Further, for short functions, the expense associated with saving and then restoring these registers is
even higher, since the restore can only occur after the save has completed, and that is not guaranteed to occur.

Under these circumstances, additional penalties, such as load-hit-store and forwarding penalties may be incurred.

SUMMARY

[0005] Shortcomings of the prior art are overcome and additional advantages are provided through the
provision of a computer program product for facilitating processing within a computing environment. The computer
program product comprises a storage medium readable by a processing circuit and storing instructions for
performing a method. The method includes, for instance, obtaining, by a processor, a load request to restore a
plurality of architected registers; and restoring, based on obtaining the load request, one or more architected
registers of the plurality of architected registers. The restoring uses a snapshot that maps architected registers to
physical registers to replace one or more physical registers currently assigned to the one or more architected
registers with one or more physical registers of the snapshot corresponding to the one or more architected
registers. By using the snapshot to restore the one or more architected registers, performance may be improved by

avoiding memory accesses to perform the restoring.

WO 2018/193321 PCT/IB2018/051646

2

[0006] In one aspect, based on obtaining the load request, a determination is made as to whether a snapshot
corresponding to the one or more architected registers is available. The restoring is performed using the shapshot,

based on the determining indicating the snapshot is available.

[0007] In a further aspect, the one or more architected registers are restored by loading values from memory
into the one or more architected registers, based on the determining indicating a snapshot corresponding to the one

or more architected registers is unavailable.

[0008] As one example, the determining includes using a snapshot stack to determine whether a snapshot

corresponding to the one or more architected registers is available.

[0009] The snapshot stack includes, for instance, a plurality of entries. In one example, an entry of the
snapshot stack includes a snapshot identifier identifying the snapshot. In further examples, the entry of the
snapshot stack includes additional information including at least one selected from a group consisting of: an
address in memory of contents of the one or more architected registers, an indication of the one or more architected

registers associated with the snapshot, and a validity indicator indicating whether the shapshot is valid.

[0010] In a further aspect, the snapshot is created to save a mapping of the one or more physical registers to

the one or more architected registers.

[0011] The creating the snapshot is performed, in one example, based on obtaining a save request

requesting a saving of the one or more architected registers.

[0012] As an example, the load request includes a load multiple instruction, and the save request includes a

store multiple instruction.

[0013] Further, in one embodiment, the one or more architected registers are restored absent a copying of

values for the one or more architected registers from memory.

[0014] Methods and systems relating to one or more aspects are also described and claimed herein.

Further, services relating to one or more aspects are also described and may be claimed herein.

[0015] Additional features and advantages are realized through the techniques described herein. Other

embodiments and aspects are described in detail herein and are considered a part of the claimed aspects.

WO 2018/193321 PCT/IB2018/051646

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] One or more aspects are particularly pointed out and distinctly claimed as examples in the claims at
the conclusion of the specification. The foregoing and objects, features, and advantages of one or more aspects
are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1A depicts one example of a computing environment to incorporate and use one or more aspects of the
present invention;

FIG. 1B depicts further details of a processor of FIG. 1A, in accordance with one or more aspects of the present
invention;

FIG. 1C depicts further details of one example of an instruction execution pipeline used in accordance with one or
more aspects of the present invention;

FIG. 1D depicts further details of one example of a processor of FIG. 1A, in accordance with an aspect of the
present invention;

FIG. 2A depicts one example of storing caller-saved registers, in accordance with an aspect of the present
invention;

FIG. 2B depicts one example of storing callee-saved registers, in accordance with an aspect of the present
invention;

FIG. 3 depicts one example of a mapping of architected registers to physical registers, in accordance with an
aspect of the present invention;

FIG. 4A depicts one example of processing associated with a bulk save request, in accordance with an aspect of
the present invention;

FIG. 4B depicts one example of processing associated with a bulk restore request, in accordance with an aspect of
the present invention;

FIG. 5A depicts one example of a register rename table, a plurality of snapshots, and a physical rename file used in
accordance with one or more aspects of the present invention;

FIG. 5B is a further example of a register rename table, a plurality of snapshots, and a physical rename file used in
accordance with one or more aspects of the present invention;

FIG. 5C pictorially depicts one example of rolling back a snapshot, in accordance with an aspect of the present
invention;

FIG. 5D pictorially depicts another example of rolling back a snapshot, in accordance with an aspect of the present
invention;

FIG. 6 depicts one example of a snapshot stack used in accordance with one or more aspects of the present
invention;

FIG. 7A depicts one example of a Spill Multiple instruction, in accordance with an aspect of the present invention;
FIG. 7B depicts one example of a Reload Multiple instruction, in accordance with an aspect of the present

invention;

WO 2018/193321 PCT/IB2018/051646

4

FIG. 8A depicts another example of processing associated with a bulk restore request, in accordance with an
aspect of the present invention;

FIG. 8B depicts yet another example of processing associated with a bulk restore request, in accordance with an
aspect of the present invention;

FIG. 9 pictorially depicts one example of reusing a snapshot, in accordance with an aspect of the present invention;
FIGS. 10A-10E depict examples of processing associated with managing restoration snapshots, in accordance with
one or more aspects of the present invention;

FIG. 10F depicts one example of performing recovery using shared snapshots for recovery and/or restoration, in
accordance with an aspect of the present invention;

FIGS. 11A-11C depict embodiments of checking for memory changes and optionally recovering, in accordance with
one or more aspects of the present invention;

FIG. 12 depicts one example of processing associated with mismatched Spill Multiple/Reload Multiple pairs, in
accordance with an aspect of the present invention;

FIG. 13A depicts one example of entries in a data cache with associated indicators, in accordance with an aspect of
the present invention;

FIGS. 13B-13D depict examples of processing associated with the indicators depicted in FIG. 13A, in accordance
with one or more aspects of the present invention;

FIGS. 14A-14B depict examples of processing associated with register restoration, in accordance with one or more
aspects of the present invention;

FIG. 15A depicts an example of processing associated with transactional memory and restoration, in accordance
with one or more aspects of the present invention;

FIG. 15B depicts one example of a Transaction Begin instruction, in accordance with one or more aspects of the
present invention;

FIGS. 15C-15E depict aspects of processing associated with transactional memory and restoration, in accordance
with one or more aspects of the present invention;

FIGS. 16A-16D depict examples of techniques used to track memory changes, in accordance with one or more
aspects of the present invention;

FIG. 17 depicts one example of handling a restoration request, in accordance with an aspect of the present
invention;

FIGS. 18A-18C depict examples of processing associated with context switches, in accordance with one or more
aspects of the present invention;

FIG. 19A depicts one example of processing associated with managing snapshots based on executing a
Transaction Begin instruction, in accordance with an aspect of the present invention;

FIG. 19B depicts one example of processing associated with a register save indication, in accordance with an

aspect of the present invention;

WO 2018/193321 PCT/IB2018/051646

5

FIGS. 20A-20B depict examples of processing associated with coalescing store/load instructions, in accordance
with one or more aspects of the present invention;

FIG. 21A depicts one example of a store queue that includes write back logic, used in accordance with an aspect of
the present invention;

FIGS. 21B-21C depict examples of write back logic processing, in accordance with one or more aspects of the
present invention;

FIG. 22A depicts one example of a recovery buffer, in accordance with an aspect of the present invention;

FIG. 22B depicts one example of a processor that includes a recovery buffer, in accordance with an aspect of the
present invention;

FIGS. 23A-23B depict examples of processing associated with register allocation requests, in accordance with one
or more aspects of the present invention;

FIGS. 24A-24B depict one example of an aspect of facilitating processing within a computing environment, in
accordance with an aspect of the present invention;

FIG. 25A depicts another example of a computing environment to incorporate and use one or more aspects of the
present invention;

FIG. 25B depicts further details of the memory of FIG. 25A,;

FIG. 26 depicts one embodiment of a cloud computing environment; and

FIG. 27 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

[0017] In accordance with one or more aspects, a capability is provided to optimize the saving and restoring
of registers on function calls, thereby improving processing and reducing costs associated therewith. In one

example, the capability uses register renaming for the saving/restoring.

[0018] One embodiment of a computing environment to incorporate and use one or more aspects of the
present invention is described with reference to FIG. 1A. In one example, the computing environment is based on
the z/Architecture, offered by International Business Machines Corporation, Armonk, New York. One embodiment
of the z/Architecture is described in “z/Architecture Principles of Operation,” IBM Publication No. SA22-7832-10,
March 2015, which is hereby incorporated herein by reference in its entirety. ZIARCHITECTURE is a registered

trademark of International Business Machines Corporation, Armonk, New York, USA.

[0019] In another example, the computing environment is based on the Power Architecture, offered by
International Business Machines Corporation, Armonk, New York. One embodiment of the Power Architecture is

described in “Power ISA™ Version 2.07B,” International Business Machines Corporation, April 9, 2015, which is

WO 2018/193321 PCT/IB2018/051646

6

hereby incorporated herein by reference in its entirety. POWER ARCHITECTURE is a registered trademark of

International Business Machines Corporation, Armonk, New York, USA.

[0020] The computing environment may also be based on other architectures, including, but not limited to,

the Intel x86 architectures. Other examples also exist.

[0021] As shown in FIG. 1A, a computing environment 100 includes, for instance, a computer system 102
shown, e.g., in the form of a general-purpose computing device. Computer system 102 may include, but is not
limited to, one or more processors or processing units 104 (e.g., central processing units (CPUs)), a memory 106
(referred to as main memory or storage, as examples), and one or more input/output (I/0) interfaces 108, coupled

to one another via one or more buses and/or other connections 110.

[0022] Bus 110 represents one or more of any of several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include the Industry
Standard Architecture (ISA), the Micro Channel Architecture (MCA), the Enhanced ISA (EISA), the Video

Electronics Standards Association (VESA) local bus, and the Peripheral Component Interconnect (PCI).

[0023] Memory 106 may include, for instance, a cache 120, such as a shared cache, which may be coupled
to local caches 122 of processors 104. Further, memory 106 may include one or more programs or applications
130, an operating system 132, and one or more computer readable program instructions 134. Computer readable

program instructions 134 may be configured to carry out functions of embodiments of agpects of the invention.

[0024] Computer system 102 may also communicate via, e.g., I/O interfaces 108 with one or more external
devices 140, one or more network interfaces 142, and/or one or more data storage devices 144. Example external
devices include a user terminal, a tape drive, a pointing device, a display, etc. Network interface 142 enables
computer system 102 to communicate with one or more networks, such as alocal area network (LAN), a general
wide area network (WAN), and/or a public network (e.g., the Internet), providing communication with other

computing devices or systems.

[0025] Data storage device 144 may store one or more programs 146, one or more computer readable
program instructions 148, and/or data, etc. The computer readable program instructions may be configured to carry

out functions of embodiments of aspects of the invention.

[0026] Computer system 102 may include and/or be coupled to removable/non-removable, volatile/non-

volatile computer system storage media. For example, it may include and/or be coupled to a non-removable, non-

WO 2018/193321 PCT/IB2018/051646

7

volatile magnetic media (typically called a "hard drive"), a magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a "floppy disk"), and/or an optical disk drive for reading from or writing
to a removable, non-volatile optical disk, such as a CD-ROM, DVD-ROM or other optical media. It should be
understood that other hardware and/or software components could be used in conjunction with computer system
102. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk

drive arrays, RAID systems, tape drives, and data archival storage systems, etc.

[0027] Computer system 102 may be operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with computer system 102 include, but are not limited to,
personal computer (PC) systems, server computer systems, thin clients, thick clients, handheld or laptop devices,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments

that include any of the above systems or devices, and the like.

[0028] Further details regarding one example of processor 104 are described with reference to FIG. 1B.
Processor 104 includes a plurality of functional components used to execute instructions. These functional
components include, for instance, an instruction fetch component 150 to fetch instructions to be executed; an
instruction decode unit 152 to decode the fetched instructions and to obtain operands of the decoded instructions;
instruction execution components 154 to execute the decoded instructions; a memory access component 156 to
access memory for instruction execution, if necessary; and a write back component 160 to provide the results of the
executed instructions. One or more of these components may, in accordance with an aspect of the present
invention, be used to execute one or more register restoration operations and/or instructions 166, and/or other

operationsfinstructions associated therewith.

[0029] Processor 104 also includes, in one embodiment, one or more registers 168 to be used by one or
more of the functional components. Processor 104 may include additional, fewer and/or other components than the

examples provided herein,

[0030] Further details regarding an execution pipeline of processor 104 are described with reference to FIG.
1C. Although various processing stages of the pipeline are depicted and described herein, it will be understood that

additional, fewer and/or other stages may be used without departing from the spirit of aspects of the invention.

[0031] Referring to FIG. 1C, in one embodiment, an instruction is fetched 170 from an instruction queue, and
branch prediction 172 and/or decoding 174 of the instruction may be performed. The decoded instruction may be

added to a group of instructions 176 to be processed together. The grouped instructions are provided to a mapper

WO 2018/193321 PCT/IB2018/051646

8

178 that determines any dependencies, assigns resources and dispatches the group of instructions/operations to
the appropriate issue queues. There are one or more issue queues for the different types of execution units,
including, as examples, branch, load/store, floating point, fixed point, vector, etc. During an issue stage 180, an
instruction/operation is issued to the appropriate execution unit. Any registers are read 182 to retrieve its sources,
and the instruction/operation executes during an execute stage 184. As indicated, the execution may be for a
branch, a load (LD) or a store (ST), a fixed point operation (FX), a floating point operation (FP), or a vector
operation (VX), as examples. Any results are written to the appropriate register(s) during a write back stage 186.
Subsequently, the instruction completes 188. If there is an interruption or flush 190, processing may return to

instruction fetch 170.

[0032] Further, in accordance with one or more aspects of the present invention, coupled to the decode unit

is a register renaming unit 192, used in one or more aspects in the saving/restoring of registers.

[0033] Additional details regarding a processor are described with reference to FIG. 1D. |n one example, a
processor, such as processor 104, is a pipelined processor that may include prediction hardware, registers, caches,
decoders, an instruction sequencing unit, and instruction execution units, as examples. The prediction hardware
includes, for instance, a local branch history table (BHT) 1054, a global branch history table (BHT) 105b, and a
global selector 105¢. The prediction hardware is accessed through an instruction fetch address register (IFAR)

107, which has the address for the next instruction fetch.

[0034] The same address is also provided to an instruction cache 109, which may fetch a plurality of

instructions referred to as a "fetch group”. Associated with instruction cache 109 is a directory 111.

[0035] The cache and prediction hardware are accessed at approximately the same time with the same
address. If the prediction hardware has prediction information available for an instruction in the fetch group, that
prediction is forwarded to an instruction sequencing unit (ISU) 113, which, in turn, issues instructions to execution
units for execution. The prediction may be used to update IFAR 107 in conjunction with branch target calculation
115 and branch target prediction hardware (such as a link register prediction stack 117a and a count register stack
117b. If no prediction information is available, but one or more instruction decoders 119 find a branch instruction in
the fetch group, a prediction is created for that fetch group. Predicted branches are stored in the prediction

hardware, such as in a branch information queue (BIQ) 125, and forwarded to ISU 113.

[0036] A branch execution unit (BRU) 121 operates in response to instructions issued to it by ISU 113, BRU
121 has read access to a condition register (CR) file 123. Branch execution unit 121 further has access to
information stored by the branch scan logic in branch information queue 125 to determine the success of a branch

prediction, and is operatively coupled to instruction fetch address register(s) (IFAR) 107 corresponding to the one or

WO 2018/193321 PCT/IB2018/051646

9

more threads supported by the microprocessor. In accordance with at least one embodiment, BIQ entries are
associated with, and identified by an identifier, e.g., by a branch tag, BTAG. When a branch associated with a BIQ
entry is completed, it is so marked. BIQ entries are maintained in a queue, and the oldest queue entry (entries) is
(are) de-allocated sequentially when they are marked as containing information associated with a completed
branch. BRU 121 is further operatively coupled to cause a predictor update when BRU 121 discovers a branch

misprediction.

[0037] When the instruction is executed, BRU 121 detects if the prediction is wrong. If so, the prediction is to
be updated. For this purpose, the processor also includes predictor update logic 127. Predictor update logic 127 is
responsive to an update indication from branch execution unit 121 and configured to update array entries in one or
more of the local BHT 105a, global BHT 105b, and global selector 105¢. The predictor hardware 105a, 105b, and
105¢ may have write ports distinct from the read ports used by the instruction fetch and prediction operation, or a
single read/write port may be shared. Predictor update logic 127 may further be operatively coupled to link stack

117a and count register stack 117b.

[0038] Referring now to condition register file (CRF) 123, CRF 123 is read-accessible by BRU 121 and can
be written to by the execution units, including but not limited to, a fixed point unit (FXU) 141, a floating point unit
(FPU) 143, and a vector multimedia extension unit (YMXU) 145. A condition register logic execution unit (CRL
execution) 147 (also referred to as the CRU), and special purpose register (SPR) handling logic 149 have read and
write access to condition register file (CRF) 123. CRU 147 performs logical operations on the condition registers
stored in CRF file 123. FXU 141 is able to perform write updates to CRF 123,

[0039] Processor 104 further includes, a load/store unit 151, and various multiplexors 153 and buffers 155,

as well as address translation tables 157, and other circuitry.

[0040] Executing within processor 104 are programs (also referred to as applications) that use hardware
registers to store information. For instance, programs that call routines, such as functions, subroutines or other
types of routines, are regponsible for saving registers used by the caller and for restoring those registers upon
return from the callee. Likewiss, the callee is responsible for saving/restoring registers that it uses, as shown in the

below code.

[0041] First, below is example code of a caller that saves a set of registers and later restores them:

Example1;

begin call to function printit
STMG 1, 5, 256(15) # Save caller's caller-saved registers

WO 2018/193321 PCT/IB2018/051646

10

LGFI 1, 1

LGFI 2,2

LGFI 3,3

LGFI 4, 4

LGFI 5,5

BRASL 14, printit ~ # Branch to the function printit
LMG 1,5, 256(15) # Restore caller-saved registers

[0042] In the above caller's code and referring to FIG. 2A, caller-saved registers are stored, STEP 200. This
includes, for instance, a bulk save of the caller-saved registers using, e.g., a Store Multiple instruction (STMG).
Optionally, function parameters are loaded (e.g., using the load instruction LGFI), STEP 202, and a function call is
performed using, for instance, a branch instruction (BRASL), STEP 204 (i.e., the callee is called). Upon return from
the function, the caller-saved registers are restored, STEP 206. In one example, this is a bulk restore using a Load
Multiple instruction (LMG). (As used herein, a bulk save or bulk store includes a store of one or more registers, and
a bulk restore or bulk reload includes a load of one or more registers. In one example, the bulk save (store) and the
bulk restore (reload) are related to saving/restoring registers related to function calls. As a particular example, the
bulk save (store) and the bulk restore (reload) are related to saving values on a program stack and restoring the

values from the program stack to the same registers from which they have been stored.)

[0043] In one example of a Store Multiple instruction, the contents of bit positions of the set of general
registers starting with general register R+ specified by the instruction and ending with general register Rs specified
by the instruction are placed in the storage area beginning at the location designated by the second operand
address (e.g., provided by the contents of the register designated by B, plus the contents of D, both B2 and D, are
specified by the instruction) and continuing through as many locations as needed. In one example, the contents of
bit positions 32-63 of the general registers are stored in successive four-byte fields beginning at the second
operand address. The general registers are stored in the ascending order of their register numbers, starting with
general register Ry and continuing up to and including general register Rs, with general register 0 following general

register 15.

[0044] In one example of a Load Multiple instruction, bit positions of the set of general registers starting with
general register Ry, specified by the instruction, and ending with general register Rs, specified by the instruction, are
loaded from storage beginning at the location designated by the second operand address (e.g., provided by the
contents of the register designated by By plus the contents of D,. both B, and D, are specified by the instruction) and
continuing through as many locations as needed. In one example, bit positions 32-63 of the general registers are

loaded from successive four-byte fields beginning at the second operand address and bits 0-31 remain unchanged.

WO 2018/193321 PCT/IB2018/051646

11
[0045] Next, below is example code of a callee that saves a set of registers and later restores them:
Example1;
Prolog

STMG 11, 15, 88(15) # Save callee’s registers

function execution

Epilog

LG 4, 272(15) # Load return address
LMG 11, 15, 248(15) # Restore registers
BR4 # Branch back to caller

Epilog end

[0046] In the above callee’s code and referring to FIG. 2B, a set of callee-saved registers are stored, STEP
220. This oceurs, for instance, in the prolog, and includes a bulk save of the callee-saved registers via, e.g., a
Store Multiple instruction (e.g., STMG). Then, processing is performed as part of the function body, including
loading the return address back to the caller, STEP 222. Subsequently, the callee-saved registers are restored,
STEP 224. In one example, this occurs in the epilog, and includes a bulk restore of the callee-saved registers via,

for instance, a Load Multiple instruction (LMG).

[0047] The registers that are saved/restored may be architected or logical registers that are mapped to
physical registers, as shown in FIG. 3. Referring to FIG. 3, based on, for instance, an instruction referring to an
architected register 300, that architected register is associated with a physical register 302. In particular, register
renaming logic is used to look up a table (or other data structure) to determine what physical register corresponds
to an architected register. For instance, for read accesses, an architected register is replaced with a physical

register that is found in the table; and for write accesses, a new physical register is allocated out of a free list.

[0048] The renaming logic may involve, in accordance with one or more aspects, one or more units of the
processor. For instance, a processor decode unit receives instructions; renames target instructions by, e.g.,
updating a lookup table associating a set of architected registers to physical registers obtained from a free list;
updates a register rename table for source instructions; takes a rollback snapshot (e.g., copy of register rename
table) when an instruction or group of instructions may trigger a rollback (e.g., due to the instruction being able to
raise an exception or for a branch instruction that may be mispredicted); and includes rollback logic adapted to
recover a shapshot corresponding to an event requiring a rollback, e.g., for an exception handler or a new branch

target, or cause re-execution.

WO 2018/193321 PCT/IB2018/051646

12

[0049] Further, the renaming logic may involve an execution unit that includes a physical register file
accessed by physical register numbers received by the decode unit; logic to execute instructions and write results
to a specified physical register; and logic to indicate successful completion or a rollback in the event of, e.g., a

branch misprediction or exception.

[0050] Additionally, an instruction completion unit is used that receives reports indicating that instructions
have completed; marks snapshots as no longer necessary; adds physical registers to the free list; and updates an

in-order program counter or other in-order state.

[0051] While the saving and restoring of caller-saved and callee-saved registers has been described with
respect to examples using general purpose registers, other register types, such as floating point registers, vector

registers, vector-scalar registers, condition registers, control registers and/or special purpose registers, as well as

[0052] other types of registers may be saved and restored by either a caller function, a callee function, or
both.

[0053] Other, additional and/or fewer units and/or logic may be used.

[0054] The saving and restoring of the registers in either or both of the caller and the callee are costly since

they involve using memory. Therefore, in accordance with an aspect of the present invention, a capability is
provided to reduce this cost. This capability includes, for instance, using a register snapshot to save and restore
the registers, thereby avoiding, in at least one aspect, the use of memory in restoring (and optionally, saving) the

registers.

[0055] In one example, a snapshot is taken of at least a portion of the register state (e.g., at least a portion of
aregister rename map, other register restoration information, or the full register state) when a store of bulk registers
is recognized. Referring to FIG. 4A, arequest for a bulk store is obtained (e.g., received, determined, provided,
retrieved, have, etc.), STEP 400. The bulk store may be, for example, a Store Multiple Instruction that stores
multiple registers. The bulk save is performed, and the contents of the multiple registers are written to memory,
STEP 402. Based thereon, a snapshot is created, STEP 404. (In another embodiment, the storing to memory is

not performed.)

[0056] One example of a snapshot is shown in FIG. 5A. As shown, a snapshot 500a is taken of the mapping
of physical registers 502a to architected registers 504. In this example, physical register 45 is assigned to
architected register O; physical register 88 is assigned to architected register 11; physical register 96 is assigned to

architected register 12; physical register 67 is assigned to architected register 13; physical register 38 is assigned to

WO 2018/193321 PCT/IB2018/051646

13

architected register 14; and physical register 22 is assigned to architected register 15. A mapping of these physical

registers to the architected registers is captured by shapshot 500a.

[0057] A physical register file 506 indicates for each physical register 502 the value 505 stored within that

register.

[0058] In one embodiment, a snapshot identifier 508 (e.g., ID 4) is assigned to snapshot 500a. Further, in

one example, there may also be a plurality of older snapshots 510 (e.g., snapshots 2 and 3).

[0059] As described above, based on recognizing that a bulk save is to be performed, a shapshot of the
registers participating in the bulk save is taken (e.g., snapshot 500a). Then, processing continues, and as shown in

FIG. 5B, new physical registers 502b are allocated, and the function is executed.

[0060] Thereafter, when the function is complete, the shapshot may be recovered. One example of bulk
restore processing is described with reference to FIG. 4B. Initially, in one example, a bulk restore request is
obtained (e.g., received, determined, provided, have, retrieved, etc.), STEP 450. The bulk restore request may be,
for example, a Load Multiple instruction that loads multiple registers. A determination is made as to whether a
corresponding snapshot is available, INQUIRY 452. If a corresponding snapshot is unavailable, then the values are
reloaded from memory, STEP 454, However, if a corresponding snapshot is available, then a further determination
is made as to whether the bulk restore matches the bulk save, INQUIRY 456. That is, are the registers to be
restored the same registers that were saved. If they are, then the snapshot is restored, STEP 458, Additionally, in

one example, the restored snapshot is verified, STEP 460. This is pictorially depicted in FIGS. 5C-5D.

[0061] As shown in FIG. 5C, the mapping of the physical registers is restored by recovering 520 the
snapshot, resulting in a restored snapshot. A restored snapshot 530 maps to the same architected registers that
were previously saved. Thus, referring to FIGS. 5B-5C, p123 assigned to r0 is replaced with p45; p23 assigned to
r11 is replaced with p88; p58 assigned to r12 is replaced with p96; p67 assigned to r13 is replaced with p67 (or no
replace is performed); p245 assigned to r14 is replaced with p38; and p14 assigned to r15 is replaced with p22.

[0062] In one example, as depicted in FIG. 5D, only a subset of the registers is recovered. For instance,

architected registers 11-15 are recovered, while architected register 0 is not.

[0063] As indicated above, in one embodiment of recovering a snapshot, a determination is made as to
whether there is a corresponding snapshot. To determine which shapshot corresponds to a given save/restore pair,
a number of techniques may be used. One technique includes remembering the last snapshot that was taken. For

instance, based on a store multiple, a snapshot is taken, the identifier of that snapshot is remembered, and the

WO 2018/193321 PCT/IB2018/051646

14

snapshot is marked as available. Then, if another store multiple is performed, another snapshot is taken, the
snapshot id is incremented and that identifier is remembered, etc. Further, based on a bulk restore, the snapshot id

of the last bulk save is recovered and that snapshot is marked as unavailable.

[0064] The tracking of a single shapshot offers a simplified design and enables rapid snapshot-based register
restoration for leaf functions (i.e., those functions not calling another function). Leaf functions are a sizeable
fraction of all functions (typically about 50%), which are also among the shortest functions, thus, save and restore
processing represent a significant fraction of execution time for such functions, which is reduced using the

snapshot.

[0065] Another technique is to maintain a snapshot stack that can remember a number of snapshots. As
shown in FIG. 6, a snapshot stack 600 includes one or more snapshot identifiers (snapshot ID) 602, one for each
snapshot taken with the latest shapshot on top, as indicated by a top-of-stack (TOS) pointer 604. In addition to the
snapshot ID, in one or more embodiments, the snapshot stack may optionally include additional information. For
instance, the values of the registers are saved to memory (STEP 402) for a number of situations, including, for
instance, in case the snapshot is lost (STEP 454), or if there is a need to confirm if the snapshot contains the latest
values (STEP 460). Thus, the additional information may include an address or address range 606 of where the

value or values of the snapshot registers are stored in memory.

[0066] Additionally, in another embodiment, the snapshot may not be valid for all of the registers contained
within the shapshot, but instead only for a subset of the registers. Thus, in one example, the shapshot stack may
include for each snapshot, a register from indication 608 and a register to indication 610 that provide the registers

that are valid for the shapshot.

[0067] Further, a valid indicator 612 may optionally be provided to indicate whether the shapshot is valid.

Other, additional and/or less information may be provided in other embodiments.

[0068] To manage the snapshot stack, the top-of-stack pointer is adjusted. For instance, based on creating a
snapshot, a new entry is added to the stack, and the top-of-stack pointer is incremented. Further, when restoring a
snapshot, the entry corresponding to the top-of-stack pointer is removed from the stack, and the top-of-stack pointer
is decremented. If, for instance, there is a branch misprediction or an exception, then multiple entries may be

removed and the top-of-stack pointer is appropriately adjusted.

[0069] Other techniques for determining corresponding Store Multiple/Load Multiple pairs may be used.

WO 2018/193321 PCT/IB2018/051646

15

[0070] In one aspect, the save and restore of the registers are based on performing Store Multiple or Load
Multiple instructions (or similar instructions). However, these instructions may be used for many purposes, and
therefore, checking and/or heuristics may be used to ensure correct execution is preserved. Thatis, a
determination is made of the store/load pairs, which then may be optimized using the saving and restoring aspects
of the present invention. Unmatching storefload pairs are not optimized using the saving/restoring aspects of the
present invention. Thus, to facilitate processing and to reduce the checking or heuristics associated with, e.g.,
finding the matching pairs to ensure correct execution, new instructions are defined that behave differently than the
load multiple/store multiple instructions. For instance, the new instructions, referred to herein as Spill Multiple
(Spillm) and Reload multiple (Reloadm) are defined such that they do not consider modifications to memory that
oceour between the spill and reload. That is, in accordance with one architectural definition of those instructions, the
user of Spillm/Reloadm is not to modify the in-memory values corresponding to those registers between the spill
and the reload. Thus, if an in-memory image is modified, the new instructions are not obligated to consider that

value.

[0071] One example of a Spill Multiple instruction is described with reference to FIG. 7A. In one example, a
Spill Multiple (Spillm) instruction 700 includes at least one operation code field 702 that includes an operation code
(opcode) indicating a spill multiple operation; a first register (R1) field 704; a second register (Rs) field 706; a base
field (B2) 708; and a displacement field (D2) 710 (e.g., a 12-bit unsigned binary integer). In another embodiment,
the displacement field may include multiple fields (e.g., DLz and DH,) and may be, e.g., a 20-bit unsigned binary
integer (other sizes are also possible). Each of the fields is separate from one another, in one example. However,
in other examples, one or more of the fields may be combined. Further, in one example, the subscript number
associated with a field designates the operand to which that field corresponds. For instance, afield having a
subscript number 1 corresponds to a first operand; a field having a subscript number 2 corresponds to a second

operand; and so on.

[0072] In operation, the contents of bit positions of the set of general registers starting with general register
R+ and ending with general register Rs are preserved for later restoration. The storage area beginning at the
location designated by the second operand address (e.g., provided by the contents of the register designated by B
plus the contents of D, or DL plus DH2) and continuing through as many locations as heeded may be used as a
buffer to store some or all of the registers. The corresponding buffer storage address is to be specified for a
corresponding recovery address. |n one example, the contents of bit positions 32-63 of the general registers are
stored in successive four-byte fields beginning at the second operand address. The general registers are
preserved for later restoration. In another format of Spillm, the contents of bit positions 0-63 of the general registers
are preserved for |ater restoration. A buffer corresponding to 4 bytes (or in the other embodiment, 8 bytes) per
register may be used and are to be accessible. The content of the buffer is undefined and may change from

system generation to system generation. In another embodiment, the buffer is defined and contains a value

WO 2018/193321 PCT/IB2018/051646

16

corresponding to the value of the storage area in accordance with the definition of a corresponding Store Multiple

instruction.

[0073] Further, in operation, in accordance with one aspect, a snapshot of the one or more registers
indicated by the instruction is taken to have a mapping of the physical registers to the specified architected

registers.

[0074] One example of a Reload Multiple instruction is described with reference to FIG. 7B. In one example,
aReload Multiple (Reloadm) instruction 750 includes at least one operation code field 752 that includes an
operation code (opcode) indicating a reload multiple operation; a first register (R1) field 754; a second register (Rs)
field 756; a base field (B2) 758; and a displacement field (D,) 760 (e.g., a 12-bit unsigned binary integer). In another
embodiment, the displacement field may include multiple fields (e.g., DL and DH,) and may be, e.g., a 20-bit
unsigned binary integer (other sizes are possible). Each of the fields is separate from one another, in one example.
However, in other examples, one or more of the fields may be combined. Further, in one example, the subscript
number associated with the field designates the operand to which that field corresponds. For instance, a field
having a subscript number 1 corresponds to a first operand; a field having a subscript number 2 corresponds to a

second operand; and so on.

[0075] In operation, in accordance with an aspect of the present invention, bit positions of the set of general
registers starting with general register Ry and ending with general register R3 are restored from the most recent
snapshot, removing the most recent snapshot and making its preceding snapshot available as most recent
snapshot for subsequent Reload Multiple instructions. In one example, bit positions 32-63 of the general registers
are reloaded from a previously stored value, and bits 0-31 remain unchanged. In another embodiment, bit positions
0-63 of the general registers are restored from a previously stored value. The general registers are loaded in the
ascending order of their register numbers, starting with general register Ry and continuing up to and including

general register Rs, with general register 0 following general register 15.

[0076] If a snapshot is unavailable, then the registers are loaded from storage beginning at the location
designated by the second operand address (e.g., provided by the contents of the register designated by B plus the

contents of Dz (or DL plus DHy).

[0077] The result of this operation can be undefined for a variety of reasons, including: a preceding Spill
Multiple instruction did not specify the same register range to be prepared for restore. (In another embodiment, the
result is undefined when a previous Spill Multiple instruction did not specify a superset of the register range to be

prepared for restore); the Reload Multiple Instruction does not specify the same buffer (In one embodiment, this is

WO 2018/193321 PCT/IB2018/051646

17

to be the same address. In another embodiment, this is to be an adjusted address when a subset of registers are

restored); or the buffer has been maodified by intervening instructions.

[0078] With the use of Reloadm, in one embodiment, the snapshot is not verified (as in FIG. 4B), since in
accordance with the architectural definition of Reloadm, the user is not to modify the stored data corresponding to

those registers. Thus, as shown in FIG. 8A, there is no verify shapshot after the restore snapshot.

[0079] For instance, as described with reference to FIG. 8A, a bulk restore request (e.g., a Reloadm
instruction) is obtained (e.g., received, determined, provided, have, retrieved, etc.), STEP 800. A determination is
made as to whether a corresponding snapshot is available, INQUIRY 802. This determination may be made using
the techniques described above, such as remembering the last snapshot id, using a snapshot stack, and/or other

techniques.

[0080] If a corresponding snapshot is unavailable, then the values are reloaded from memory, using for
instance, a Load Multiple or similar instruction, STEP 804. However, if a corresponding snapshot is available, then
a further determination is made as to whether the bulk restore matches the bulk save (e.g., performed by Spilim),
INQUIRY 806. That is, are the registers to be restored the same registers that were saved. If they are, then the
snapshot is restored, STEP 808. For instance, the mapping of the physical registers to the architected registers is
changed to reflect the last snapshot. Since Reloadm was used in the restoration, the shapshot is not verified, as is

when a Load Multiple is used.

[0081] Further, in one example, since a Reloadm instruction is architecturally guaranteed to match a previous
Spillm instruction, the match verification may also be suppressed, as shown in FIG. 8B. More specifically, it is the
programmer’s responsibility to match corresponding pairs of Spillm and Reloadm, at the penalty of an undefined
result when such a match is not guaranteed by the programmer. In this embodiment, a bulk restore request (e.g.,
Reloadm) is obtained (e.g., received, determined, provided, have, retrieved, etc.), STEP 820, and a determination is
made as to whether a corresponding snapshot is available, INQUIRY 822. If a corresponding snapshot is
unavailable, then the values are reloaded from memory (e.g., using Load Multiple), STEP 824. Otherwise, the

snapshot is restored, STEP 826 (an inquiry corresponding to INQUIRY 806 is not performed).

[0082] In one embodiment, support for bulk saves/restores in accordance with conventional store multiple
and load multiple bulk requests (e.g., using the STMG and LMG instructions in accordance with the z/Architecture,
or using the STM and LM — or STMW and LMW and STMD and LMD instructions, respectively, in the Power ISA, in
example embodiments) may be combined with the new Spillm/Reloadm facility in at least one embodiment. In
accordance with such an embodiment, code in accordance with conventional ISA (instruction set architecture)

definitions may be accelerated, but use additional checking to ensure adherence to the architectural compliance

WO 2018/193321 PCT/IB2018/051646

18

with the conventional instruction definition, whereas providing even higher performance due to reduced checking for

the code using the new Spillm/Reloadm instructions in accordance with aspects of the present invention.

[0083] In accordance with another aspect of the present invention, snapshots may be shared between
adjacent register restoration points. These snapshots are taken of at least a portion of a register rename map, of

other register restoration information, or of the full register state, as examples.

[0084] A function call is often associated with two sets of matched register spill and register reload pairs
(e.g., STMG and LMG, or Spillm and Reloadm)--one associated with the saving of caller-saved registers at the call
site, and another one associated with the saving of callee-saved registers in the called function. The spills (i.e., the
saving of multiple architected registers) usually execute in close dynamic proximity, and similarly, the restores or
reloads of the registers are usually dynamically close, as well. Further, the registers are mutually exclusive, and the
registers to be saved by the second spill operation are commonly not modified by code between the first and
second spill. Example code, in pseudocode notation, is below:
caller_function()
{
various computation
spillm r10-r15, offset1(sp) /1 Spillm is one example
jsr called_function
reloadm r10-r15, offset1(sp) I Reload is one example
various computation

}

called_function()
{
sub sp, sp, framesize /I allocate framesize
spillm r16-r20, offset2(sp)
various computation
reloadm r16-r20, offest2(sp)

ret

[0085] Based on the foregoing, in accordance with an aspect of the present invention, at least part of a
register restoration snapshot may be shared between dynamically adjacent instances of spill operations (e.g.,
Spillm instructions). In one example, a processor may create a restoration snapshot that includes a single snapshot
of the register state used for restoring both r10-r15 of the caller function and r16-r20 of the callee function. It should

be noted that the ranges of saved registers do not have to be adjacent.

WO 2018/193321 PCT/IB2018/051646

19

[0086] To accomplish this, in one embodiment, a restoration snapshot includes two separate records: an
address to which a spill has occurred and a register snapshot to be used in restoration. The register snapshot is

shared, but separate address values are maintained for each Spillm/Reloadm pair. <address, shapshot-ID>.

[0087] The processor maintains, in accordance with an aspect of the present invention, a reference to the
last restoration shapshot taken (which includes registers that may be referenced by a plurality of spill operations), in
conjunction with a bitmap of register values that have not been written to since the last restoration snapshot. Thus,
when a new restoration snapshot is to be taken, if the register range to be snapshot has not been modified since
the last restoration snapshot, the present spill operation can reuse the previous restoration snapshot. Otherwise, a

new restoration snapshot may be created.

[0088] One example of instruction decode and snapshot logic for sharing snapshots is provided below:
last_snapshot = null;
unmodifiedregs = {};
Repeat Indefinitely {
ni = obtain instruction
if ni is a spill instruction {
if spill_range(ni) not in unmodifiedregs {
last_snapshot = take_snapshot()
unmodifiedregs = {r0...rmax}; // all registers are unmodified
}
rr = create_restoration_record (spill_to_address, last_snapshot);
push_restoration_record(rr);
emit spill iops();
}else if ni is a reload instruction {
rr = pop_restoration_record();
emit reload iops(m);
}else {
unmodifiedregs := unmodifiedregs and not (target(ni));

handle other instructions

[0089] As shown in FIG. 9, since would-be snapshot 4 is the same as snapshot 3, in one embodiment,
snapshot 4 is not taken and snapshot 3 is reused. This is shown by a dotted line around shapshot 4 and an

indication of the last snapshot taken, bulk save snapshot 900, being set to 3.

WO 2018/193321 PCT/IB2018/051646

20

[0090] Further details regarding managing restoration snapshots, in accordance with one or more aspects of
the present invention, are described with reference to FIGS. 10A-10E. In FIGS. 10A-10E, snhapshot refers to a
restoration snapshot; i.e., a snapshot taken based on execution of one or more bulk saves (e.g., Spillm and/or Store
Multiple). Initially, one embodiment of sharing a restoration snapshot is described with reference to FIG. 10A. In
this embodiment, snapshot_regs is set to those registers that are to be included in a restoration snapshot, STEP
1000. For instance, a determination is made of the registers to be included, such as those to be included in one or

more Spillm or Store Multiple instructions, and an indication of those registers is provided in snapshot_regs.

[0091] A check is made as to whether a previous snapshot is usable, STEP 1002. This includes determining
whether the registers specified for the present snapshot include only unmodified registers from the previous
snapshot since that shapshot was taken. Unmodified_regs is used to track which registers have not been modified
since the last snapshot. In one example, prev_snapshot_usable is set to an indication of whether the intersection of
the snapshot registers for the present snapshot and the unmodified registers, i.e., (snapshot_regs &
unmodified_regs), contains all registers for the present snapshot, i.e., is the same as (i.e., ==) snapshot_regs. If
there are no modified registers included in snapshot_regs, then the previous shapshot is usable. If the previous
shapshot is usable, INQUIRY 1004, then this_shapshot_ID is set equal to the identifier of the previous shapshot
identifier, prev_snapshot_ID, STEP 1006.

[0092] If, however, the previous snapshot is not usable, INQUIRY 1004, then another snapshot is taken, and
this_snapshot_ID is updated (e.g., incremented by 1), STEP 1010. Further, unmodified_regs is set to include all of
the registers, since it is initialized with no registers having been modified, STEP 1012. Additionally,
prev_snapshot_|D is set equal to this_snapshot_ID, such that this snapshot is remembered for further use, STEP
1014.

[0093] In a further embodiment, referring to FIG. 10B, the registers that are modified by an instruction are
tracked. In one example, a determination is made as to whether an instruction changes the contents of one or
more registers, INQUIRY 1020. If one or more registers are modified by the instruction, then those registers are
tracked, STEP 1022. For instance, unmodified_regs is set to exclude those one or more registers that were
modified (e.g., unmodified_regs := unmodified_regs AND NOT regs_changed_by instruction). Subsequent to
updating unmodified_regs or if the instruction has not changed any registers, INQUIRY 1020, this processing is
complete, STEP 1024,

[0094] In addition to the above, in a further embodiment, if the instruction pipeline rewinds to a previous point
due to an event (e.g., flush, branch misprediction, exception, etc.), then a new snapshot is forced. One example of
processing associated with forcing a snapshot due to a flush/branch misprediction/exception is described with

reference to FIG. 10C. In this example, prev_snapshot_id is set to NONE indicating there is no previous snapshot

WO 2018/193321 PCT/IB2018/051646

21

that may be shared, STEP 1030, and unmodified_regs is set to no_regs, STEP 1032. That is, there is no indication

of a usable previous snapshot, and there are no registers considered unmodified.

[0095] Further, in one example, if the instruction rewinds to a previous point due to an event (e.g., flush,
branch misprediction, exception, etc.), rollback to a previous snapshot may be performed, as described with
reference to FIG. 10D. Initially, a determination is made as to whether processing should roll back to a shapshot,
INQUIRY 1040. Thatis, has an event occurred that suggests rollback and is there an appropriate snapshot to
which to roll back. If there is to be arollback to a snapshot, then prev_snapshot_ID is set equal to
rollback_snapshot_ID, which is the snapshot to which processing is rolled back, STEP 1042. Additionally,

unmodified_regs is set to all of the registers, since at this point, no registers have been modified, STEP 1044,

[0096] Returning to INQUIRY 1040, if there is no rollback to a snapshot, then prev_snapshot_ID is set to
NONE, STEP 1046, and unmodified registers is set to no registers, STEP 1048,

[0097] A further example of processing associated with rolling back to a snapshot due to an event, such as a
flush, branch migprediction, exception, is described with reference to FIG. 10E. Initially, a determination is made as
to whether processing is to roll back to or beyond the last snapshot, INQUIRY 1050. If not, this processing is
complete and the last snapshot may be used, STEP 1052. In one embodiment, with processing of rolled back
instructions, the set of unmodified registers may contain a subset of the truly unmodified registers, as processing of
rolled back instructions in accordance with the technique of FIG. 10B may have removed registers from the
unmodified register set. However, this is a conservative definition of the subset, i.e., in the worst case there may be
more shapshots taken than necessary, thereby preserving correctness. At the same time, the set of snapshots that
may be taken is fewer than those in accordance with FIGS. 10C or FIG. 10D, in which each shapshot request
triggers a snapshot being taken in accordance with the technique of FIG. 10C, and in accordance with choosing
STEPS 1046 and 1048 of FIG. 10D.

[0098] Otherwise, a determination is made as to whether processing is to roll back to a snapshot, INQUIRY
1054. If there is to be arollback to a snapshot, then prev_snapshot_ID is set equal to rollback_snapshot_ID, which
is the snapshot to which processing is rolled back, STEP 1056. Additionally, unmodified_regs is set to all of the

registers, since at this point, no registers have been modified, STEP 1058.

[0099] Returning to INQUIRY 1054, if there is no rollback to a snapshot, then prev_snapshot_ID is set to
NONE, STEP 1060, and unmodified registers is set to no registers, STEP 1062.

[0100] Although various embodiments are provided above, other embodiments may be used to manage

which snapshot to be used in particular circumstances.

WO 2018/193321 PCT/IB2018/051646

22

[0101] In afurther aspect of the invention, in addition to using shared snapshots for restoration, shared
snapshots may be used in recovery. As used herein, snapshots for restoration are those snapshots taken based on
abulk save (e.g., Store Multiple, Spillm, etc.); and snapshots for recovery are those snapshots taken based on a

change to execution flow, such as a branch or a situation where an address may be mispredicted, as examples.

[0102] Consider the following example function:

caller_function()

{
various computation
bcond <cond> skip: Il snapshot for branch misprediction/exceptions
spillm r10-r15, offset1(sp) /1 snapshot for spill multiple
jsr called_function Il snapshot—address may be mispredicted
reloadm r10-r15, offset1(sp)
various computation

skip:

}

[0103] In the above example, recovery snapshots are taken for the branch conditional (bcond) instruction and
the jump (jsr) instruction, and restoration snapshots are taken for the Spillm instruction. In this example, the
recovery snapshots (e.g., for the branch conditional and the jump) may be shared, similar to the sharing of the

snapshots for restoration (e.g., multiple spill operations). This is described further with reference to FIG. 10F.

[0104] One example of sharing a recovery snapshot is described with reference to FIG. 10F. In one example,
the processing of FIG. 10F is performed when a recovery snapshot is to be made, e.g., to create a rollback point for
branch misprediction recovery implementing precise exceptions, handling pipeline flushes, or other such events.
Initially, the set of registers to be snapshot for a recovery snapshot, snapshot_regs, is set equal to all of the
registers (all_regs()), e.g., all of the registers to be saved for recovery in the event of a precise exception, branch
misprediction, or other such event (e.g., the registers associated with the conditional branch bcond and subroutine
call jsr, in this example), STEP 1070. A check is made as to whether a previous snapshot is usable, STEP 1072.
This includes determining whether the registers to be used for the present snapshot (which corresponds to all
registers, in accordance with STEP 1070, in one example) includes only unmodified registers since the previous
snapshot was taken. |n one example, the indicator, prev_snapshot_usable, is set equal to an indication of whether
unmodified_regs == all_regs. If there are no modified registers in snapshot_regs, then the previous snapshot is
usable. If the previous snapshot is usable, INQURIY 1074, then this_snapshot_ID is set equal to
prev_snapshot_ID, STEP 1076, (i.e., the previous snapshot is usable for providing a snapshot for the present

snapshot request). Otherwise, if a previous snapshot is not usable, then a snapshot is made, and this_snapshot_ID

WO 2018/193321 PCT/IB2018/051646

23

is updated (e.g., incremented by one), STEP 1078. Further, unmodified_regs is set equal to all registers, STEP
1080, and prev_snapshot_ID is set equal to this_snapshot_ID, STEP 1082, such that the present snapshot may be
reused for future snapshot requests, e.g., at least with one or more of a recovery and a restoration snapshot

request in accordance with embodiments of aspects of the present invention.

[0105] In one embodiment, the processing of FIG. 10F implemented for sharing recovery shapshots may
operate in conjunction with the processing of one or more of FIGS. 10A-10E implemented for sharing restoration
snapshots. In one aspect, snapshots may be shared for recovery, for restoration or for a combination of recovery

and restoration. The technique of FIG. 10F, as one example, can be used for sharing snapshots, regardless of the

type.

[0106] While FIGS. 10A-10F have been described with respect to a single snapshot for a register file, in
accordance with embodiments of aspects of the present invention, the register snapshot techniques described
herein may be performed for a variety of register types, including but not limited to general registers, integer
registers, address registers, data registers, fixed point registers, floating point registers, vector registers, vector-
scalar registers, condition registers, predicate register, control registers, special purpose registers, etc. In
accordance with one embodiment, multiple register types may be supported in a single implementation, so as to
provide, for example, snapshots for general purpose and vector registers (or other combinations of register types).
Further, a plurality of register types may share a snapshot mechanism, in accordance with one or more
embodiments. In one example embodiment, shapshots for floating point and vector registers may be shared, e.g.,
with an implementation in accordance with the z/Architecture providing for shared vector and floating point
registers. In another example embodiment, shapshots for floating point, vector registers and vector-scalar registers
may be shared, e.g., with an implementation in accordance with the Power ISA providing for shared vector-scalar,

vector, and floating point registers. Other examples are also possible.

[0107] In afurther aspect of the present invention, changes to memory are tracked in order to determine, if
desired, whether restored registers are correct (i.e., does the shapshot used to recover the registers have the most
current information). For instance, in one embodiment in which Store Multiple and Load Multiple instructions (or
other such instructions) are used, changes to memory that occur between the load and store are captured to be
able to determine correctness, if desired, of the restored registers in accordance with the values previously stored
by a store multiple request and to be reloaded by a load multiple instruction, when the registers are restored from a
register restoration snapshot rather than from memory. (Using Spillm/Reloadm provides a benefit here in which the
correctness of a register restoration snapshot with respect to an in-memory buffer is not a concern of this
processing, since by architectural definition, memory changes are not to be made by a programmer and represent a
programming error resulting in undefined behavior. Thus, if memory changes are made between Spillm and

Reloadm to a memory buffer used by these instructions, by architectural definition, such a change is considered a

WO 2018/193321 PCT/IB2018/051646

24

programming error, and the programmer is responsible for handling such an error, not this processing associated

with the Spillm/Reloadm instructions.)

[0108] One example of code including save and restore operations is depicted below:

called function()

{
sub sp, sp framesize I allocate framesize
STM r16-r20, offset2(sp) // Store Multiple; create shapshot
various computation
LM r16-r20, offset2(sp) // Load Multiple; restore shapshot
ret

}

[0109] The restore recovers the value of the callee-saved registers at the point where the function was

entered and the callee-saved registers were saved. However, instructions between STM and LM may change
memory which affects the callee-saved registers when restored. This is demonstrated in the example below:
Example 1.
called function()
{
sub sp, sp, framesize I/ allocate framesize; sp is stack pointer

STM r16-r20, offset2(sp) // save registers 16-20 to memory at offset from sp

...various computation...
LIr1, 99 /l'load 99 into register 1
ST r1, offset2(sp) /1 store value of register 1 to memory at offset from gp

LM r16-r20, offset2(sp) // restore registers 16-20 from memory -- value 99

il stored
/I at offset from stack pointer being loaded into r16;
ret
}
[0110] Restoring the registers, based on receiving the Load Multiple, from a snapshot, instead of loading the

registers from memory would restore the value originally in the register at the snapshot point corresponding to the
values at the STM instruction, not the modified value 99 stored into the in-memory register restoration buffer
location corresponding to register r16. Therefore, one or more aspects are provided to determine whether the

memory has changed compromising the integrity of the snapshot.

WO 2018/193321 PCT/IB2018/051646

25

[0111] In accordance with aspects of the present invention, various embodiments are provided to address
possible memory changes between save and restore operations, including for instance: (1) restoring, checking and
recovering, if necessary; (2) using Spillm/Reloadm, wherein by definition, the memory is not modified in-between
the save and restore; and (3) tracking any changes without explicit checking. Each of these aspects is described

further below.

[0112] As indicated above, one embodiment to address the scenario in which a register value is changed in
memory between a store and aload is to use a restore, check and recover technique in accordance with an aspect
of the present invention. In accordance with this aspect, a register snapshot is restored based on recsiving a
register restoration request. Further, based on the request and restoring registers from a snapshot, each of the
registers restored from a register snapshot is checked by loading the corresponding register value from the memory
buffer corresponding to the register save/restore pair, and comparing the value restored from the register snapshot
to the value loaded from the memory buffer. If a mismatch is detected, the restored registers are recovered from
the in-memory buffer. Otherwise, the restored registers from the shapshot are used. Advantageously, the checking
of the registers can be performed in parallel to performing computation using the restored values, thereby enabling

the application program to proceed with computation even if the checking has not completed.

[0113] As described herein, in one example, if a check fails, then all of the registers are recovered using the

memory values. This is described further with reference to FIG. 11A.

[0114] Initially, a restore operation is obtained (e.g., received, provided, determined, retrieved, have, etc.),
STEP 1100. For instance, a Load Multiple instruction is received. A determination is made as to whether the
restore operation matches the previous save operation (e.g., do the registers of the Load Multiple match the
registers of the Store Multiple paired with the Load Multiple; are the addresses the same; is a subset of the registers
or addresses the same; etc.), INQUIRY 1102. If the registers to be restored correspond to those that were saved,

then the last snapshot is obtained and used to restore the registers, STEP 1104,

[0115] Subsequent checking is performed to determine correctness of the restored values. Serialization for
the subsequent checking is provided to ensure that checking commences after a snapshot has been restored,
STEP 1106, and an indicator indicating whether a mismatch in which recovery of values from memory is to be
performed, referred to as mismatch, is initialized to FALSE, STEP 1108. A stored value corresponding to a
selected register is loaded from memory using, e.g., a micro-operation, STEP 1110. That loaded value is compared
to the restored value of the selected register being checked, STEP 1112. If the compare fails, i.e., the loaded value
does not match the restored value, mismatch is set to TRUE. The processor checks the mismatch indicator and if it

indicates a failed compare, INQUIRY 1114, then the pipeline is flushed and a restart is performed after the restore

WO 2018/193321 PCT/IB2018/051646

26

operation, STEP 1116. Additionally, the values for the registers being restored are reloaded from memory, STEP
1118.

[0116] In one example, the flush is performed in order to cause all instructions that may have executed
speculatively using the values from the restored snapshot to be re-executed with the values obtained from memory
when a mismatch was detected. In at least one embodiment, the flush can be more selective, causing, e.g., only a

flush and re-execution of instructions depending on the restored registers.

[0117] Returning to INQUIRY 1114, if, however, mismatch indicates a successful compare, then a
determination is made as to whether there are more restored registers to be checked, INQUIRY 1120. If there are
more restored registers to be checked, then processing continues to STEP 1110. Otherwise, processing is

complete.

[0118] Returning to INQUIRY 1102, if the restore request does not match the store request, then the values

of the registers are reloaded from memory, STEP 1118.

[0119] In one embodiment, one or more steps of FIG. 11A are implemented by expanding a restore operation
into one or more multiple internal operations (iops) corresponding to one or more of the steps of FIG. 11A that may
be executed out-of-order with respect to other instructions and/or internal operations corresponding to other
instructions. In another aspect of the present invention, iops generated corresponding to the present instruction
may be executed out-of-order relative to each other. In accordance with this implementation, out-of-order execution
logic provides suitable interlocks so as to ensure that subsequent operations are only executed when a snapshot
has been restored, and further any speculative executed instructions that have been executed based on a restored

value are invalidated, flushed and re-executed when a mismatch is detected.

[0120] In another embodiment, the steps of FIG. 11A are implemented as steps of dedicated circuitry for
register restoration and validation. In at least one embodiment, the logic corresponding to FIG. 11A is performed in
parallel to executing subsequent instructions using restored values while the circuitry implementing the technique
herein continues to verify the restored registers. Furthermore, there is provided suitable interlocks so as to ensure
that subsequent operations are only executed when a shapshot has been restored, and further any speculatively
executed instructions that have been executed based on a restored value are invalidated, flushed and re-executed

when a mismatch is detected.

[0121] Another embodiment of the restore, check and recover technique is described with reference to FIG.
11B. In this embodiment, it is possible that one or more registers are restored from a snapshot, but one or more

other registers are restored from memory. Referring to FIG. 11B, a restore operation, such as a Load Multiple, is

WO 2018/193321 PCT/IB2018/051646

27

obtained (e.g., received, provided, retrieved, determined, have, etc.), STEP 1130. A determination is made as to
whether the restore operation matches the previous save operation (e.g., do the registers of the Load Multiple
match the registers of the Store Multiple paired to the Load Multiple; are the addresses the same; is a subset of the
registers or addresses the same; etc.), INQUIRY 1132. If the registers to be restored correspond to those that were

saved, then the last snapshot is obtained and used to restore the registers, STEP 1136.

[0122] Thereafter, subsequent checking is performed to determine correctness of the restored values.
Serialization for the subsequent checking is provided to ensure that checking commences after a snapshot has
been restored, STEP 1138, and first_mismatch is set to NONE, STEP 1140. A stored value corresponding to a
selected register is loaded from memory using, e.g., a micro-operation, STEP 1142, That loaded value is compared
to the restored value of the selected register being checked, STEP 1144, If the compare fails, i.e., the loaded value
does not match the restored value, first_mismatch is set to the register that failed the compare. If first_mismatch is
no longer equal to NONE, the processor determines there is a mismatch. INQUIRY 1148, and the pipeline is
flushed and a restart is performed after the restore operation, STEP 1150. Additionally, the values in the register of

the failed compare and subsequent registers are reloaded from memory, STEP 1152,

[0123] In one example, the flush is performed in order to cause all instructions that may have executed
speculatively using the values from the restored snapshot to be re-executed with the values obtained from memory
when a mismatch was detected. In at least one embodiment, the flush can be more selective, causing, e.g., only a
flush and re-execution of instructions depending on the restored registers, or depending on the restored registers

that are recovered from memory, starting with the first_mismatch register.

[0124] Returning to INQUIRY 1146, if, however, the compare is successful, then a determination is made as
to whether there are more restored registers to be checked, INQUIRY 1148. If there are more restored registers to

be checked, then processing continues to STEP 1142, Otherwise, processing is complete.

[0125] Returning to INQUIRY 1132, if the restore request does not match the store request, then the values

of the registers are reloaded from memory, STEP 1134.

[0126] In one embodiment, one or more steps of FIG. 11B are implemented by expanding a restore operation
into one or more multiple internal operations (iops) corresponding to one or more of the steps of FIG. 11B that may
be executed out-of-order with respect to other instructions and/or internal operations corresponding to other
instructions. In another aspect of the present invention, iops generated corresponding to the present instruction
may be executed out-of-order relative to each other. In accordance with this implementation, out-of-order execution

logic provides suitable interlocks so as to ensure that subsequent operations are only executed when a snapshot

WO 2018/193321 PCT/IB2018/051646

28

has been restored, and further any speculative executed instructions that have been executed based on a restored

value are invalidated, flushed and re-executed when a mismatch is detected.

[0127] In another embodiment, the steps of FIG. 11B are implemented as steps of dedicated circuitry for
register restoration and validation. In at least one embodiment, the logic corresponding to FIG. 11B is performed in
parallel to executing subsequent instructions using restored values while the circuitry implementing the technique
herein continues to verify the restored registers. Furthermore, there is provided suitable interlocks so as to ensure
that subsequent operations are only executed when a shapshot has been restored, and further any speculatively
executed instructions that have been executed based on a restored value are invalidated, flushed and re-executed

when a mismatch is detected.

[0128] Another embodiment of restoring, checking and recovering is described with reference to FIG. 11C.
In this example, individual registers are tracked and may be restored using the snapshot, while others may be

restored from memory.

[0129] Referring to FIG. 11C, initially, a restore operation (e.g., a Load Multiple) is obtained (e.g., received,
provided, determined, retrieved, have, etc.), STEP 1160. A determination is made as to whether the restore
operation matches the previous save operation (e.g., do the registers of the Load Multiple match the registers of the
Store Multiple paired to the Load Multiple; are the addresses the same; is a subset of the registers or addresses the
same; etc.), INQUIRY 1162. If the registers to be restored correspond to those that were saved, then the last
snapshot is obtained and used to restore the registers, STEP 1166. Thereafter, subsequent checking is performed
to determine correctness of the restored values. Serialization for the subsequent checking is provided to ensure
that checking commences after a snapshot has been restored, STEP 1168, and a mismatch set is set to an empty
set, STEP 1170.

[0130] A stored value corresponding to a selected register is loaded from memory using, e.g., a micro-
operation, STEP 1172, That loaded value is compared to a restored value of the selected register being checked,
STEP 1174. If the compare falils, i.e., loaded value does not match the restored value, INQUIRY 1176, then the

miscompared register is added to the mismatch set, STEP 1178,

[0131] Thereafter, or if the compare is successful, INQUIRY 1176, then a determination is made as to
whether there are more restored registers to be checked, INQUIRY 1180. If there are more restored registers to be
checked, then processing continues to STEP 1172. Otherwise, a determination is made as to whether the
mismatch set is empty, INQUIRY 1182. If the mismatch set is empty, processing is complete. Otherwise, the

registers in the mismatch set are reloaded with the values from memory, STEP 1184,

WO 2018/193321 PCT/IB2018/051646

29

[0132] In one example, reload in accordance with STEP 1184 may cause re-execution of some or all of the
instructions either following the restore instruction, or depending on one of the restored values. In one embodiment,
this is achieved by causing a full or partial flush in order to cause all instructions that may have executed
speculatively using the values from the restored snapshot to be re-executed with the values obtained from memory
when a mismatch was detected. In at least one embodiment, the flush is selective, causing, e.g., only a flush and
re-execution of instructions depending on the restored registers of the instruction, or depending on the restored

registers that are recovered from memory, as represented by the registers in the mismatch set.

[0133] Returning to INQUIRY 1162, if the restore request does not match the store request, then the values

of the registers are reloaded from memory, STEP 1164.

[0134] In one embodiment, one or more steps of FIG. 11C are implemented by expanding a restore
operation into one or more multiple internal operations (iops) corresponding to one or more of the steps of FIG. 11C
that may be executed out-of-order with respect to other instructions and/or internal operations corresponding to
other instructions. In another aspect of the present invention, iops generated corresponding to the present
instruction may be executed out-of-order relative to each other. In accordance with this implementation, out-of-
order execution logic provides suitable interlocks so as to ensure that subsequent operations are only executed
when a snapshot has been restored, and further any speculative executed instructions that have been executed

based on a restored value are invalidated, flushed and re-executed when a mismatch is detected.

[0135] In another embodiment, the steps of FIG. 11C are implemented as steps of dedicated circuitry for
register restoration and validation. In at least one embodiment, the logic corresponding to FIG. 11C is performed in
parallel to executing subsequent instructions using restored values while the circuitry implementing the technique
herein continues to verify the restored registers. Furthermore, there is provided suitable interlocks so as to ensure
that subsequent operations are only executed when a snapshot has been restored, and further any speculatively
executed instructions that have been executed based on a restored value are invalidated, flushed and re-executed

when a mismatch is detected.

[0136] Although various techniques are described above, variations to those techniques may be made

without departing from the spirit of aspects of the invention.

[0137] In accordance with another aspect, the checking for memory changes is not performed, since the
saving and restoring are performed using Spillm and Reloadm instructions (or similar instructions), which are
architecturally defined to not allow, between the spillm and reloadm, memory changes to the register values stored
in memory. In this approach, the instruction definition indicates that the restored register values are undefined if the
memory is modified. |n accordance with the definition of the instructions, the user is not to modify the

WO 2018/193321 PCT/IB2018/051646

30

corresponding stored area. If the user does modify the area, this is considered a programming error and
correctness is not guaranteed.

[0138] Example definitions of the Spillm and Reloadm instructions are described above. However, further
details are provided herein. In one embodiment, Spillm saves the register values to memory so that they can be
used as, for instance, a fallback in case of snapshot invalidation. Snapshot invalidation may occur, for example, if
the processor runs out of physical registers, the processor runs out of storage for snapshots, there is a context
switch, efc.

[0139] In one embodiment, when using Spillm and Reloadm, it is architecturally defined that the verify
snapshot of FIG. 4B is not needed. Therefore, as shown in FIG. 8A, there is no snapshot verification performed.
Similarly, in accordance with another aspect, the bulk restore may be performed without using the matching inquiry
(e.g., INQUIRY 806), since it may be architecturally defined that the Reloadm is to match the Spillm. One example
of this is described above with reference to FIG. 8B, in which no matching inquiry is performed.

[0140] Although the architectural definitions of Spillm/Reloadm allow the skipping of the matching inquiry,
there may be situations in which Spillm and Reloadm become unmatched. For instance, the pairs may become
unmatched based on setjump/longjump functions in a program in accordance with the C/C++ and POSIX definitions
of the setjump and longjump functions and/or responsive to structured exception handling, e.g., such as used in
accordance with exception handling as represented in C++and Java, as examples. One example of exception
handling and resulting unmatched Spillm/Reloadm instructions is shown below:
Caller()
{
Spillm
try {
callee() Il See Callee() below
} catch (Exception e)... // Stack unwind is performed;
I/ Reloadm in callee not executed, so

Reloadm /I This Reloadm is matched with callee’s Spillm
}
Callee()
{

Spillm

if (condition)

throw exception; /I The callee’s Reloadm is not executed
Reloadm

WO 2018/193321 PCT/IB2018/051646

31

[0141] Based on the example herein, when an exception is thrown in the callee function calles(), the
Reloadm instruction of the callee function’s prologue may not be executed, causing the subsequent Reloadm in the

caller to mismatch with the most recent Spillm of the callee.

[0142] Similarly, a mismatch may occur with Setjump/Longjump, as indicated below:
Caller()
{
Spillm
if (buf=Setjump()) {
callee() I/ See Callee() below
}else {
alt code;
} /I Reloadm in callee not executed, so
Reloadm /I This Reloadm is matched with callee’s Spillm
}
Callee()
{
Spillm

if (condition)
Longjump(buf) /1 Stack unwind performed; Reloadm is not executed

Reloadm

[0143] Since certain programming may lead to mismatched Spillm/Reloadm instructions, in one aspect, a
capability is provided to ensure that a particular Reloadm matches a particular Spillm. The capability includes
invalidating, if need be, a snapshot to be used for recovery and/or ensuring that the caller's Reloadm is not satisfied
using the callee’s Spillm snapshot. To invalidate a snapshot, a number of techniques may be used, in accordance
with aspects of the present invention, including performing a Reloadm into, for example, one single register simply
to remove a snapshot; unstacking a Spillm snapshot using, for instance, an invalidate snapshot, Invsnap,

instruction; or otherwise, removing a snapshot from the snapshot stack or ighoring a snapshot.

[0144] In one example, the number of Reloadm instructions that are skipped is determined by scanning the
code of the function, and then that number of snapshots is invalidated. In one embodiment, code analysis for
invalidated snapshots and snapshot invalidation may be performed in conjunction with conventional unwind
processing, e.g., to restore registers in the presence of structured exception handling. This is shown in the below

code provided in pseudocode notation:

WO 2018/193321 PCT/IB2018/051646

32

Unwind_and_invalidate ()
{
Repeat {
Scan to end of this function and determine number of Reloadm instructions
skipped and invalidate that many snapshots
Do other processing associated with unwind: recovery of registers etc
Unwind this (“prev”) function’s stack
Set next processing point to caller (“next’ function) at the point where it
had called “prev” function
} until target function reached;
Scan in target function until target point and determine number of Reloadm

instructions skipped and invalidate that many snapshots

[0145] Referring to FIG. 12, and as described with reference to the pseudocode notation, the processor
scans the code of the function looking for Spillm/Reloadm pairs, STEP 1200. The number of skipped Reloadm

instructions is counted, STEP 1202, and a corresponding humber of snapshots is invalidated, STEP 1204,

[0146] Although one example of managing mismatched pairs is provided, other techniques may be used.

[0147] In accordance with another aspect of the present invention, changes are tracked as they occur,
instead of performing the recovery and checking as described with reference to FIGS. 11A-11C. In this aspect,
each time a processor updates memory, a check is made to determine if the update impacts the validity of a

snapshot. If it does, then the requested values are obtained from memory, instead of the snapshot registers.

[0148] In one example, cache lines subject to a store multiple are marked as being in a write-set. When
interference from another processor is diagnosed, then a store has occurred to a memory buffer that is subject to
register restoration. In one embodiment, the interference is used to invalidate in-flight forwarding opportunities. In
another embodiment, the cache lines of the write-set may be associated with a corresponding identifier to indicate
which storefload pair is to be excluded from register restoration. In at least one embodiment, the write-set
indication is not cleared until all intervening store memory operations (or other synchronizing operations) have
completed. In another embodiment, the write-set for a buffer is not cleared until the corresponding load has
completed. In at least one weak memory ordering embodiment, the write-set reservation is cleared immediately

when the load has completed.

WO 2018/193321 PCT/IB2018/051646

33

[0149] In one embodiment, such as in strong memory ordering which may delay the ability to complete the
first savelrestore sequence, two register restoration sequences may be in-flight for the same memory location. For
instance, a function is called, a store multiple is performed for callee-saved registers, the callee-saved registers are
reloaded using load multiple, the function returns, the function is immediately called again, and another store

multiple and load multiple occur to the same address.

[0150] In one example, the second pair is held until the first one completes. In one embodiment, write-set
cache lines can be associated with multiple pairs. In another embodiment, when multiple cache lines are
associated, a single bit is used to force the clearance of all storefload register restoration pairs. Various examples

exist.

[0151] Further, in another aspect, interference with stored register in-memory buffers from local accesses are
to be considered. This may be accomplished by obtaining a base address and arange (either as a length or as an
end address) for a memory buffer associated with a snapshot, and comparing the address of subsequent store
operations against the range of the memory buffer to detect an interference. In one embodiment, this interference
test is performed for instructions such as store-multiple bulk save, whereas interference for individual stores is
tracked using an indicator associated with a cache line, or cache subline. In one embodiment, a single shapshot
and associated in-memory buffer range for the most recent store/load pair is maintained. In other embodiments,
additional snapshots and associated in-memory buffer ranges are supported to allow the maintenance of more

pairs.

[0152] As local and remote accesses are to be checked, in one embodiment, against the buffer address
range for each active register restoration snapshot to detect buffer modifications, address checking can incur
significant area, power and/or delay costs either by implementing concurrent checking logic or by forcing serial
checking of interference at the risk of incurring queuing delays as requests are processed. To reduce these costs,
a variety of approaches may be used in conjunction with embodiments of aspects of the present invention. In one
embodiment, only remote accesses that hit in the first level data cache are compared against tracked memory
ranges, when the L1 cache is inclusive. In another embodiment, additional filtering is provided by tracking the
presence of buffers in specific cache lines, e.g., using marker bits. In yet another embodiment, marker bits may be
used to indicate active buffers and buffers may be deactivated responsive to writes to cache lines and subcache
lines responsive to a plurality of access types without comparing to tracked address ranges corresponding to
snapshots, thereby invalidating snapshots without incurring the overhead of comparing tracked ranges
corresponding to all snapshots. In yet another embodiment, snapshots corresponding to a cache line may be
identified by the cache directory or a separate table, further reducing the number of comparisons that are to be

performed.

WO 2018/193321 PCT/IB2018/051646

34

[0153] In yet one or more other embodiments, memory addresses may be filtered using a memory address
filter to reduce the number of memory accesses that are to be compared. A variety of address filters (e.g., address
range filters, Bloom filters, and so forth) may be used for address filtering in conjunction with one or more aspects of
the present invention. By using address filtering, more address ranges may be tracked without a commensurate
cost in area, power and delay for memory checking. Thus, for example, more shapshots, e.g., corresponding to
multiple ranges for deeper levels of a call hierarchy may be tracked using a variety of filters and digests to give a
conservative answer. In one embodiment, this is achieved by tracking the address of the first buffer to the last
buffer. This range may, for example, correspond to a number of stack frames holding memory buffers for register
save and restore in function calls, while filtering out memory requests corresponding to heap, static variables, file
buffers, and so forth. |In another embodiment, the filter may capture additional information to differentiate buffer
accesses from local variable accesses, and filter local variable accesses to further reduce the number of accesses
that are compared against tracked memory buffer ranges corresponding to in-memory register spill buffers. In at
least one embodiment, one or more filters may be periodically reset, in conjunction with invalidating pending
register restoration snapshots, or when no register restoration snapshots are active. In another embodiment, a

range filter is employed in accordance with one or more known snoop filter architectures.

[0154] In one embodiment, the interference determination of transactional write sets to detect modifications
of buffer memory for store/load instructions is used as a filter, and offending remote accesses are then compared

against the exact buffer boundaries used in the core to check against interference from stores of the thread itself.

[0155] In one particular example, as shown in FIG. 13A, a data cache 1300 includes a plurality of cache lines
1302, and each cache line 1302 (or in another embodiment, selected portions of cache lines) is marked. For
instance, each cache line or a portion of a cache line in those embodiments that mark cache line portions has an
address tag 1304 indicating the memory address to which the cache line or cache line portion corresponds; a
validity (V) indicator 1306 indicating whether the cache line or portion is valid; a dirty (D) indicator 1308 indicating
whether the data from the cache line or portion is to be written back to memory; and a marking (M) indicator 1310,
in accordance with an aspect of the present invention, used to indicate whether the snapshot is valid for the cache

line or cache line portion. Further, the cache line or cache line portion includes the data 1312,

[0156] The various indicators, including valid indicator 1308, dirty indicator 1308 and marking indicator 1310

are set or reset, as described with the example techniques described with reference to FIGS. 13B-13D.

[0157] For instance, one example of updating the indicators during cache reload is described with reference
to FIG. 13B. Initially, a request is obtained (e.g., received, provided, retrieved, have, determined, etc.) to fetch data
from memory into a data cache, STEP 1320. Based on the request, data is obtained from memory and stored into

acache line, STEP 1322. An address tag is computed for the data obtained from memory and stored in the

WO 2018/193321 PCT/IB2018/051646

35

corresponding address tag field 1304, STEP 1324. Additionally, valid indicator 1306 is set to one, since the cache
line is now valid; dirty indicator 1308 is set to zero, since the data was just loaded, and thus, not dirty; and marking

indicator 1310 is set to zero, since registers have not been stored that have a corresponding snapshot, STEP 1326.

[0158] In addition to updating the indicators during a cache reload, the indicators are also updated during a
store into the cache, as described with reference to FIG. 13C. Initially, data and an address are obtained (e.g.,
received, provided, retrieved, have, determined, etc.), STEP 1330. A determination is made as to whether the store
corresponds to an existing cache line within the cache, INQUIRY 1332. If not, then the cache reload procedure of
FIG. 13B is performed, STEP 1334. However, if the store does correspond to a cache line, then the data is stored,
STEP 1336, and the corresponding dirty indicator is set to one, STEP 1338, Further, if this is a bulk save, e.g., a
STMG instruction to spill a plurality of caller-saved or callee-saved registers to a stack frame, INQUIRY 1340, then

the marking indicator is set to one, STEP 1342. Otherwiss, it is zero.

[0159] Moreover, one or more of the indicators may be updated based on receiving an update request from
another processor, as described with reference to FIG. 13D. Initially, data and a memory address are obtained
(e.g., received, provided, retrieved, have, determined, etc.), STEP 1350. A determination is made as to whether the
store corresponds to an existing cache line within the cache, INQUIRY 1352. If not, then the cache reload
procedure of FIG. 13B is performed, STEP 1354. However, if the store does correspond to a cache line, then the
data is stored, STEP 1356, and the marking indicator is set to zero, STEP 1358, The marking indicator is set to
zero, since a write access from a remote processor may have modified the in-memory register buffer, thereby

making the register snapshot stale with respect to the in-memory buffer.

[0160] In another embodiment, when a marker indicating the presence of a buffer in a cache line or a portion
of a cache line is detected during a store into the cache, the request range may be compared against the tracked
addresses for snapshots to determine whether a specific access interferes with a snapshot. In at least one
embodiment, this reduces the humber of snaphost invalidations when an update corresponds to a portion of a
memory buffer's cache line that does not correspond to the memory buffer. In yet another embodiment, the cache
directory or logic associated therewith may be used to identify specific snapshots of the plurality of active snapshots
which correspond to a cache line to reduce the number of interference checks to be performed. In yet another
embodiment, using marker bits as a filter to reduce the humber of interference checks is used to filter updates from

the local processor. Other possibilities also exist.

[0161] One or more of the above cache techniques work in conjunction with register restoration. One
example of a register restoration technique is described with reference to FIG. 14A. Initially, a Load Multiple (LM)
instruction (or similar instruction) is obtained (e.g., received, determined, retrieved, provided, have, etc.), STEP

1400. A determination is made as to whether the Load Multiple instruction corresponds to a restoration request,

WO 2018/193321 PCT/IB2018/051646

36

INQUIRY 1402. This may be determined by checking, for instance, the additional fields of the snapshot stack (e.g.,
the address field) to determine if registers that were previously stored are being restored. If the Load Multiple
instruction does not correspond to a restoration request, then the load multiple operation is performed, STEP 1404,
If the Load Multiple instruction does correspond to a restoration request, then one or more register mappings are
recovered, STEP 1406. For instance, one or more snapshots are used to recover the specified registers.
Thereafter, or in parallel, the marking indicator (M) is obtained from the cache line (or cache line portion)
corresponding to the registers indicated by the load multiple, STEP 1408, and a determination is made as to
whether the cache line is marked as unmodified, INQUIRY 1410. Ifit is marked as unmodified, then a further
determination is made as to whether there are more cache lines or cache portions are to be processed, INQUIRY

1412. If so, processing continues to STEP 1408. Otherwise, the register restoration processing is complete.

[0162] Returning to INQUIRY 1410, if the marking indicator is marked as modified (e.g., M is set to 0), then
recovery steps are performed (e.g., reload from the cache), STEP 1414, That is, the values are loaded from

memory, replacing the values of a snapshot.

[0163] Another example of register restoration is described with reference to FIG. 14B. In this example, a
check is made as to the validity of the shapshot to be used for restoration. For instance, a Store Multiple may have
overwritten another Store Multiple. When this occurs, the first Store Multiple is no longer a valid restoration
candidate for a Store Multiple/Load Multiple used for register restoration. To determine this, the snapshot stack
may be traversed to determine if the current snapshot overlaps a previous shapshot in response to a store multiple
request. In other embodiments, this check is performed for other memory update operations, or for other memory
update operations when one or more filter criteria indicate that a check is to be performed. If a match is found, the
entry in the stack of the previous snapshot is invalidated. Thus, in one embodiment, for each entry on the stack, if
stack addresses on the snapshot overlap the current store request, the valid indicator for that snapshot stack entry
is set to invalid. This indicator is then checked during restoration processing. One example of this processing is
described with reference to FIG. 14B.

[0164] Initially, a Load Multiple instruction (or similar instruction) is obtained (e.g., received, retrieved,
determined, provided, have, etc.), STEP 1420. A determination is made as to whether the Load Multiple instruction
corresponds to a restoration request, INQUIRY 1422. This may be determined by checking, for instance, the
additional fields of the snapshot stack (e.g., the address field) to determine if registers that were previously stored
are being restored. If the Load Multiple instruction does not correspond to a restoration request, then the load
multiple operation is performed by loading the plurality of registers to be loaded by the Load Multiple instruction
from memory, STEP 1424, If the Load Multiple instruction does correspond to a restoration request, then a
determination is made as to whether one or more restoration snapshots to be used are valid (i.e., to confirm that the

in-memory buffer has not been overwritten), INQUIRY 1426. If the one or more valid indicators indicate that the

WO 2018/193321 PCT/IB2018/051646

37

one or more restoration snapshots are valid, then one or more register mappings are recovered, STEP 1428, For
instance, one or more snapshots are used to recover the specified registers. Thereafter, or in parallel, the marking
indicator (M) is obtained from the cache line (or cache line portion) corresponding to the registers of load multiple,
STEP 1430, and a determination is made as to whether the cache line is marked as unmodified, INQUIRY 1432. If
it is marked as unmodified, then a further determination is made as to whether there are more cache lines or cache
portions are to be processed, INQUIRY 1434. If so, processing continues to STEP 1430. Otherwise, the register

restoration processing is complete.

[0165] Returning to INQUIRY 1432, if the marking indicator is marked as modified (e.g., M is set to 0), then
recovery steps are performed (e.g., reload from the cache), STEP 1436. That is, the values are loaded from

memory, replacing the values of a snapshot.

[0166] In accordance with a further aspect, another mechanism for tracking modifications to memory includes
using transactional memory hardware to track changes to memory. Transactional memory has the capability to
track interference, to track access to a range of memory locations that correspond to transactional state, and that
capability may be used to track whether the buffer corresponding to the in-memory image of the saved registers is
being modified. The transactional memory facility may track whether an in-memory change affects a register

included in a particular snapshot.

[0167] A capability is provided, in one aspect, for saving registers for transactional memory rollback recovery
and function call register preservation using a shared register restore capability. The facility is initiated by a bulk-
save indicating event, e.g. receiving a bulk-save indicating instruction. In one embodiment, a TBegin (begin
transactional execution instruction) is a first indicating instruction, and a Store Multiple or Spill Multiple instruction is

a second indicating instruction.

[0168] If a store multiple is received, in one embodiment, stores are immediately performed, but incremental
register checkpointing is also performed. For Spill Multiple, only in-core checkpointing may be performed, in one

example.

[0169] Based on receiving an indicating event, a test is made as to whether the present request is compatible
with pre-existing requests. When compatibility is determined, processing proceeds. Otherwise, if the initial request
corresponds to a transactional memory rollback request, a bulk save is directly performed, and in-core register

preservation is used exclusively for transactional memory. If the first request is a register save request, then in-core

register preservation for a function call bulk restore is terminated, and transactional memory saving is initiated.

WO 2018/193321 PCT/IB2018/051646

38

[0170] When a restore event occurs, the subset of tracked registers which have been saved are restored. In

one embodiment, only modified registers are saved. In another embodiment, all tracked registers are saved.

[0171] In accordance with one embodiment, register restoration is implemented as a modified transactional
execution register rollback operation. For instance, when a bulk store is identified, a snapshot is made of the
registers to be spilled into transactional memory (TM) register restoration state. Further, in one example, when a
bulk restore is identified, the register snapshot is restored in a manner otherwise restored during a transaction

abort.

[0172] In one example, when multiple register snapshots are not supported, a previous TM register snapshot
is discarded when a new bulk store is identified, and the most recent bulk store can be received using the TM
register restoration. In another embodiment, e.g., an embodiment supporting nested transactions, multiple spill

snapshots are stored in register restoration snapshots corresponding to multiple nested transactions.

[0173] When a transaction is encountered, and storage for another register recovery state is available (e.g.,
when nested transactions are supported), a next register recovery level is used. Otherwise, a previous register
snapshot corresponding to a bulk store (e.g., either a most or least recent snapshot) is invalidated, to save a TM
register restoration state instead. In another embodiment, a nested transaction may be flattened, into an outer

transaction to avoid deallocating a bulk store snapshot.

[0174] In one embodiment, when the TM fagility is enabled, using the TM register recovery mechanism for

spill register restoration is disabled. Other variations are possible.

[0175] In one embodiment, a transaction rollback, transaction failure, transaction interference, transaction
abort, or other operation terminating and invalidating an operation triggers a restore event, when the initiating event
is a TBegin. Further, a Load Multiple or Reload multiple is considered a restore event, when the initiating event is a

Store Multiple, Spill Multiple request, or similar request.

[0176] Tracking of state modification ends, and a state preservation operation is terminated either when a
transaction fails (a transaction rollback, transaction failure, transaction interference, transaction abort, or other
operation terminating and invalidating an operation) or succeeds (Tend—transaction end occurs), when bulk saving
has been initiated by TBegin. A register bulk reload is performed when the register bulk save has been initiated by

a Store Multiple, Spill Multiple, or similar request.

[0177] In at least one instance, the saving of registers occurs incrementally, and the incrementally saved

registers may be restored.

WO 2018/193321 PCT/IB2018/051646

39

[0178] Further details relating to transactional memory and register restoration are described with reference
to FIGS. 15A-15E.

[0179] Referring initially to FIG. 15A, processing associated with initiating a snapshot based on a TBegin
instruction is described. In one embodiment, a TBegin instruction is obtained (e.g., received, provided, determined,
retrieved, have, etc.), STEP 1500. The TBegin instruction initiates a transaction, and, in one example, as shown in
FIG. 15B, includes, for instance, an operation code (opcode) field 1510 that includes an opcode specifying a

transaction begin operation; a base field (B1) 1512; a displacement field (D1) 1514; and an immediate field (|2) 1516.

[0180] When the By field is nonzero, the contents of the general register specified by By 1512 are added to D,

1514 to obtain afirst operand address.

[0181] When the B; field is nonzero, the following applies, in one example:
o When the transaction nesting depth is initially zero (transactions may be nested), the first operand
address designates the location of a 256 byte transaction diagnostic block, called a TBEGIN-specified TDB into

which various diagnostic information may be stored if the transaction is aborted.

[0182] The bits of |, field 1516 are defined as follows, in one example:

[0183] General Register Save Mask (GRSM): Bits 0-7 of the I, field contain the general register save mask
(GRSM). Each bit of the GRSM represents an even-odd pair of general registers, where bit 0 represents registers 0
and 1, bit 1 represents registers 2 and 3, and so forth. When a bit in the GRSM of the outermost TBegin instruction
is zero, the corresponding register pair is not saved. When a bit in the GRSM of the outermost TBegin instruction is
one, the corresponding register pair is saved in a model dependent location that is not directly accessible by the

program.
[0184] If the transaction aborts, saved register pairs are restored to their contents when the outermost
TBegin instruction was executed. The contents of all other (unsaved) general registers are not restored when a
transaction aborts.

[0185] The general register save mask is ignored on all TBegins except for the outermost one.

[0186] Allow AR Modification (A): The A control, bit 12 of the I, field, controls whether the transaction is

allowed to modify an access register.

WO 2018/193321 PCT/IB2018/051646

40

[0187] Allow Floating Point Operation (F): The F control, bit 13 of the I, field, controls whether the

transaction is allowed to execute specified floating point instructions.

[0188] Program Interruption Filtering Control (PIFC): Bits 14-15 of the I, field are the program interruption
filtering control (PIFC). The PIFC controls whether certain classes of program exception conditions (e.g.,
addressing exception, data exception, operation exception, protection exception, etc.) that occur while the CPU isin

the transactional execution mode result in an interruption.

[0189] The I, field may include more, fewer or different controls than described herein.

[0190] Returning to FIG. 15A, based on obtaining the TBegin instruction, a determination is made as to
whether a register restoration facility, e.g., the register restoration snapshot facility, is in active use, INQUIRY 1502,
This may be determined based on, for instance, a facility indication being set to a particular value (e.g., 1) or by
checking whether such snapshots are in use, etc. If the facility is in active use, register restoration is deactivated
and in-memory register restoration buffer tracking is disabled, STEP 1504. This is because the TBegin takes
priority, in this example. Thereafter, or if the register restoration facility is not active, a transactional rollback
snapshot is created, STEP 1506. For instance, a snapshot of the registers to be saved as indicated by the TBegin
instruction (e.g., specified by GRSM) is taken. Further, the tracking of transactional state interference is initiated,

STEP 1508. For instancs, transactional state buffer and TBegins are tracked.

[0191] In afurther aspect, a snapshot may be taken based on a register save request, as described with
reference to FIG. 15C. A register save indication (e.g., Store Multiple) is obtained (e.g., received, provided, have,
retrieved, determined, etc.), STEP 1520. A determination is made as to whether the register restoration facility is in
use for transactional execution (e.g., by checking an indicator), INQUIRY 1522, Ifit is in use for fransactional
execution, then the register state is stored in memory, STEP 1530. However, if the register restoration facility is not
in use for transactional execution, then a further determination is made as to whether the register restoration facility
is in use for register restoration of incompatible requests (e.g., of different registers), INQUIRY 1524. If itis in use

for incompatible requests, then processing continues to STEP 1530, in which the register state is stored in memory.

[0192] However, if the register restoration facility is not in use for transactional execution or for register
restoration for incompatible requests, a register restoration snapshot is created (e.g., a snapshot of the registers
specified by the Store Multiple), STEP 1526, and interference tracking for in-memory register restoration buffers is
initiated using, for instance, logic of the transactional facility adapted to identify interference with a transaction’s

transactional state in memory, STEP 1528. Further, the register state is stored in memory, STEP 1530.

WO 2018/193321 PCT/IB2018/051646

41

[0193] In accordance with the use of the transactional state interference tracking logic for tracking changes to
amemory buffer in accordance with an aspect of the present invention, the in-memory register buffer of STEP 1530
is tracked for interference by the interference checking logic. Consequently, when a remote access to the in-
memory buffer containing a copy of the saved registers is received, interference is registered. In accordance with
one aspect of the present invention, when interference is registered, no rollback occurs when the interference
tracking logic is used to determine modification of register save buffers. In accordance with this aspect of the
present invention, when interference is detected, the in-processor register snapshot is not used when the registers
are being restored, and the registers are instead retrieved from the in-memory register save buffer. In accordance
with at least one embodiment, additional tracking is performed to track in-memory register save buffer modification
by processor-local memory write instructions, e.g., by comparing writes to the address range of one or more

memory buffers in accordance with one aspect of the present invention.

[0194] Additionally, in one aspect, a snapshot is recovered based on a transactional rollback, as described
with reference to FIG. 15D. A rollback request (e.g., responsive to interference with a transaction’s transactional
state or execution of a Transaction Abort (TAbort) instruction) is obtained (e.g., received, have, provided, retrieved,
determined, etc.), STEP 1540. The state is rolled back to the starting point of the transaction, STEP 1542, In
accordance with this rollback of the transaction, the register state is restored to the state at the beginning of the
transaction (i.e., where the TBegin was executed to create the rollback snapshot for transactional execution in
accordance with FIG. 15A). Performing a transactional rollback includes, for instance, restoring a program counter
and canceling the in-memory effects of an aborted transaction in accordance with the known implementation of
transactional memory. Transactional rollback is indicated as inactive, STEP 1544, and transactional memory

interference tracking is deactivated, STEP 1546.

[0195] Further, in one aspect, a snapshot is recovered based on a register restoration restore request, as
described with reference to FIG. 15E. A register restoration restore request (e.g., Load Multiple) is obtained (e.g.,
received, provided, have, etc.), STEP 1550, and a determination is made as to whether an in-core register
restoration facility is active, INQUIRY 1552. Ifit is not active, then recovery is performed from memory state, STEP
1554, However, if in-core register restoration is active, then a further determination is made as to whether there is
or has been interference with an in-memory register restoration buffer, INQUIRY 1556. If there is interference, then

register restoration in-memory tracking is deactivated, STEP 1558, and processing continues to STEP 1554,

[0196] Should there be no interference with the in-memory register restoration buffer, the indicated registers
are recovered from in-core state (e.g., a snapshot), STEP 1560. In one example, the program counter and in-

memory effect rollback are excluded. Register restoration in-memory tracking is deactivated, STEP 1562,

WO 2018/193321 PCT/IB2018/051646

42

[0197] As described above, the transactional memory facility may be used to track changes. In one aspect,
transactional state is re-used by mirroring the actions used for transactional execution to achieve the goals of
register restoration; however, transactional rollback processing and register restoration are triggered by different
instructions; they are mutually exclusive in that when one is active for restoration, the other is not; and register
restoration (e.g., based on a LM) does not recover the program counter or undo in-memory changes, as does

transactional rollback processing, as examples.

[0198] In one or more further aspects, tracking of memory changes is performed in conjunction with a
snapshot stack. As described above, a snapshot stack provides a list of buffers since each entry includes an
address or address range of its buffer. Thus, each time there is a write, the address or address range of the write is
compared against the address or address range of the buffers in the stack. In accordance with at least one
embodiment, the snapshot stack used for tracking memory save changes corresponds to and is shared with a
snapshot stack in accordance with FIG. 6 used for storing snapshot IDs created by register save operations for
corresponding register restore operations in accordance with aspects of the present invention. Examples of various

techniques used to track memory changes are described with reference to FIGS. 16A-16D.

[0199] Afirst technique described with reference to FIG. 16A relates to taking a new shapshot. For instancs,
in one embodiment, a Store Multiple (STM) instruction (or similar instruction) is obtained (e.g., received, provided,
have, retrieved, determined, etc.) by the processor, STEP 1600, and a determination is made as to whether there is
an available entry in the snapshot stack, INQUIRY 1602. If there is no available entry, then a snapshot stack
overflow is performed, STEP 1604. For example, an error is indicated. If there is an available entry, the top-of-

stack pointer is updated (e.g., incremented by 1), STEP 1606.

[0200] Further, a snapshot is created, STEP 1608, and a shapshot identifier is stored in the entry, STEP
1610. Additionally, the contents of the registers specified by the Store Multiple are stored in memory, STEP 1612,
and the memory address range of where the contents are stored is included in the entry (e.g., address), STEP
1614, Further, the valid indicator is set (e.g., to 1) in the entry, STEP 1616, and other fields, if any, are also
updated, STEP 1618.

[0201] In addition to the above, a technique for tracking changes if executing an individual store request, is
described with reference to FIG. 16B. In this embodiment, for each store of this processor, a check of the stack is
performed to determine whether there is any overlap. Initially, a memory write request with a store address is
obtained (e.g., received, is provided, have, determined, retrieved, etc.) by this processor, STEP 1620. Then, for
each entry in the shapshot stack, STEP 1622, a determination is made as to whether the address range for this
entry matches the store address, INQUIRY 1624. If so, then the valid bit for the current entry is reset (e.g., to zero),

STEP 1626. Thereafter, or if the address range for this entry does not match the store address, a check is made as

WO 2018/193321 PCT/IB2018/051646

43

to whether there are more entries in the snapshot stack to be processed, INQUIRY 1628. If there are more entries,

then processing continues to STEP 1622, Otherwise, processing ends.

[0202] Similarly, referring to FIG. 16C, checks are performed for write requests received from other
processors. Initially, a processor obtains (e.g., received, provided, retrieved, determined, have, etc.) a remote
memory write request with a store address from another processor requesting exclusive access or a data update,
STEP 1640. Then, for each entry in the snapshot stack, STEP 1642, a determination is made as to whether the
address range for this entry matches the address of the store request, INQUIRY 1644. If so, then the valid bit for
the current entry is reset (e.g., to zero), STEP 1646. Thereafter, or if the address range for this entry does not
match the address of the store request, a check is made as to whether there are more entries in the snapshot stack
to be processed, INQUIRY 1648. If there are more entries, then processing continues to STEP 1642. Otherwise,

processing ends.

[0203] While the techniques of FIGS. 16B and 16C are described with respect to checking the addresses of
all entries in a snapshot stack, in optimized embodiments, the humber of writes to be compared and entries on the
snapshot stack may be reduced to reduce the cost of performing the test for snapshot invalidation. For example, a
variety of filtering techniques, such as shoop filters, are to be compared against the snapshot stack entries. Some
example filters may be range filters, filtering by way of mark bits associated with a data cache, e.g., in conjunction
with a cache in accordance with FIG. 13A, and so forth. |n another optimized embodiment, a subset of stack
entries may be identified, e.g., by determining which entries are to be tested based on an address received. In one
such embodiment, snapshot entries may have entry indicators associated to cache lines containing a corresponding

memory buffer.

[0204] In a further embodiment, a technique for performing register restoration based on receipt of a bulk
restore is described with reference to FIG. 16D. Initially, a Load Multiple (LM) instruction or similar instruction is
obtained (e.g., received, provided, retrieved, have, determined, etc.) by the processor, STEP 1660. The processor
obtaining the request determines whether the load multiple operation corresponds to a restoration request,
INQUIRY 1662. If it does not correspond to a restoration request, then the load multiple operation is performed,
STEP 1664. However, if the load multiple operation corresponds to a restoration request, then a determination is
made as to whether the corresponding restoration snapshot is valid, INQUIRY 1666. If it is valid, then one or more
register mappings are recovered using the snapshot, STEP 1668. Ifit is not valid, the recovery is performed using
another technique, such as loading the values from a memory buffer, either from a cache or system memory, STEP
1670.

WO 2018/193321 PCT/IB2018/051646

44

[0205] Although various embodiments and techniques are provided herein for tracking memory changes,
other variations, embodiments and/or techniques may be provided without departing from a spirit of aspects of the

present invention,

[0206] In accordance with another aspect of the present invention, a capability is provided to manage the
losing of a portion of a snapshot. Register restoration from in-core values represents a technique to recover values
from in-core data stores. In one example, these data stores are shared with micro-architectural structures used to
implement other processor mechanisms (e.g., branch misprediction recovery and precise exceptions). Examples of
the in-core data stores are recovery files and register rename maps (e.g., shapshots). However, in one
embodiment, not all values can be restored. For example, some registers may no longer be available to recover
from, because they have been reallocated to hold new architected values. In one embodiment, values that have

been overwritten are tracked, e.g., by allocation time tracking or tracking liveness.

[0207] In one example, for the last allocation (or in another embodiment, write time) time tracking, each
physical register is associated with a time when it was last allocated (written) to hold an architected value. Then, if

that allocated time (tag) is later than the time (tag) of the created restore point, the value is not available.

[0208] In a further embodiment, a bitmap of all (or a subset of) values is created, or a register rename map is
updated. Each time a register becomes unavailable, it is removed from a bit map, or a register rename map, so
that during recovery, the unrestorable registers are known. In one embodiment, the bit map or register rename map

corresponds to a register restoration snapshot.

[0209] In accordance with an aspect of the present invention, there is provided a hybrid technique for register
restoration. Register restoration from in-core values is provided when in-core values can be determined to be
available, in accordance with a liveness/availability tracking mechanism. The remaining values are loaded from

memory.

[0210] One embodiment of handling a restoration request, in accordance with an aspect of the present
invention, is described with reference to FIG. 17. Initially, a restoration request (e.g., a Load Multiple instruction) is
obtained (e.g., received, provided, retrieved, determined, have, etc.), STEP 1700, and based thereon, the
processor determines whether the snapshot corresponding to the registers to be restored is valid, INQUIRY 1702.
If the shapshot is invalid, then the values are restored from memory, STEP 1704. However, if the snapshot is valid,
for each register to be restored, STEP 1706, a determination is made, e.g., via time tracking, a bit map, etc., as to
whether the particular register can be restored from the snapshot, INQUIRY 1708. If the register can be restored
from the snapshot, then it is restored from the snapshot, by, for instance, updating a rename map, STEP 1710.

However, if the register cannot be restored from the snhapshot, then the register is restored from memory, e.g., by

WO 2018/193321 PCT/IB2018/051646

45

allocating a new rename register to the corresponding architected register and loading its value from memory,
STEP 1712,

[0211] In one embodiment, a determination is made as to whether there are more registers to be restored,

INQUIRY 1714. If there are one or more registers to be restored, processing continues to STEP 1706.

[0212] As described above, in this aspect of restoring registers, if an in-core value exists, the in-core value is

retrieved, and if the in-core value does not exist, the value is loaded from memory.

[0213] Register rename restoration captures processor state for later restoration based on explicit or inferred
restoration point indicators (e.g., Spillm instruction, Store Multiple instruction, Store Multiple instructions using one
of a well-defined base register, such as a frame pointer or stack pointer, etc.). Further, register restoration is
performed upon an explicit or an inferred restoration request (e.g., Reloadm instruction, Load Multiple instruction,

Load Multiple instructions using one of a well-defined base register, such as a frame pointer or stack pointer, etc.).

[0214] A restore point used by one application, however, may be incorrectly used by another application after
a context switch. In particular, this may even occur when the identification of snapshot locations identify a particular
binary, e.g., even using detailed fingerprints of binaries, as multiple instances of the same binary or library may be
executing, or a fingerprint may be matching, and a restoration point from a function in one context may be used to
perform restoration in the function of another process of the same binary or library matching the fingerprint. Thus,
in accordance with an aspect of the present invention, an explicit and/or an inferred context switch (e.g., switch from
one application or function to another application or function, etc.) cognizance is included within a processor.

Based on detection of a possible context switch, all or a subset of restoration points are invalidated, in one

embodiment.

[0215] In one example, an invalidation instruction is provided that is used to invalidate one or more
restoration points, e.g., as part of a context switch routine. In one embodiment, this instruction is executed by an
operating system’s context switch code. In another embodiment, based on a permission level changing indicating a
switch to another application module (e.g., the kernel), and thus, the possible future switch to another application, at
least one restoration point is invalidated. In a further embodiment, this does not occur so as to allow register
restoration points to be used in the presence of functions which make system calls, when such system calls may be

short, e.g., the POSIX getpid system call).

[0216] In yet a further embodiment, a change of a value in a register indicative of a process (e.g., one or both
of LPID (logical partition id) and PID (process id)) is used to identify a task switch. In another embodiment, register

snapshots may be associated to indicia values indicative of a particular process, and an indicia match between the

WO 2018/193321 PCT/IB2018/051646

46

indica associated with a snapshot ID and the indicia of a current process requesting register restoration is to be
confirmed before restoring registers using a register restoration snapshot. A variety of indicia may be used in

embodiments, such as the LPID and PID in one example embodiment.

[0217] Moreover, in one embodiment, the invalidation instruction may also be used for non-traditional control
flow in programs, e.g., for setjump/longjump handling, or C++Java structured exception processing. Other

examples also exist.

[0218] Further details regarding example techniques for recognizing a context switch and invalidating one or

more shapshots (or portions thereof) are described below with reference to FIGS. 18A-18C.

[0219] In the example of FIG. 18A, an invalidate restoration snapshot instruction is used. This instruction is,
for instance, an architected instruction having an operation code indicating it is an invalidate restoration snapshot
instruction, and one or more fields used to indicate or determine one or more snapshots to be invalidated. Since

this is a new instruction, the operating system, in one example, is modified to recognize and use the instruction.

[0220] Referring to FIG. 18A, the processor obtains (e.g., received, provided, retrieved, determined, have,
etc.) an invalidate restoration snapshot instruction, STEP 1800. This instruction may be initiated based on
determining a context switch, as described herein. Based on obtaining the instruction, the processor clears at least
one entry on the snapshot stack based on an indication by the instruction of the one or more snapshots to be
invalidated, STEP 1802. Additionally, in one example, one or more of the marking bits in the cache entries
corresponding to the addresses indicated in the one or more shapshots that are invalidated are cleared (e.g., set to
zero), STEP 1804,

[0221] In FIG. 18B, instead of using an architected instruction that requires an update of the operating
system, heuristics are used to determine whether there is a context switch, and therefore, one or more shapshots
are to be invalidated. Referring to FIG. 18B, initially, a determination is made as to whether the processor detects
changes in the processor state that are indicative of a context switch, INQUIRY 1820. For instance, has a program
status word (PSW) changed or has the pointer to address translation tables changed, both of which may be
indicating a context switch. If a context switch is indicated by one of these mechanisms or another mechanism, the
processor clears at least one entry on the snapshot stack of the one or more snapshots to be invalidated, STEP
1822. Additionally, in one example, one or more of the marking bits in the cache entries corresponding to the
addresses indicated in the one or more snapshots that are invalidated are cleared (e.g., set to zero), STEP 1824,

Otherwise, if a context switch is not indicated, this processing ends.

WO 2018/193321 PCT/IB2018/051646

47

[0222] In yet a further embodiment, the use of the invalidation instruction or heuristics may be dynamically
selected by the processor. Referring to FIG. 18C, the processor dynamically selects either the invalidate
restoration snapshot instruction or the heuristic technique for determining whether there has been a context switch,
STEP 1830. For instancs, if the operating system is at a version level that does not recognize such an instruction,
then the heuristic approach is selected. However, if the operating system does recognize the instruction, then it
may wait for issuance of the instruction or use heuristics to determine if a snapshot is to be invalidated. Ifitis
determined that invalidation is to be performed, either by receiving the instruction or heuristically, INQUIRY 1832,
then the processor clears at least one entry on the snapshot stack to be invalidated, STEP 1834. Additionally, in
one example, one or more of the marking bits in the cache entries corresponding to the addresses indicated in the
one or more shapshots that are invalidated are cleared (e.g., set to zero), STEP 1836. Otherwise, if a context

switch is not indicated, this processing ends.

[0223] In one aspect, register preservation occurs incrementally for function call bulk state preservation, and
registers are not saved to memory immediately upon receiving, for instance, a register Spill Multiple instruction.
Correspondingly, registers are saved when in-core preservation is terminated due to, e.g., a switch to transactional

memory preservation. This may be implemented, for instance, using a state machine of transitions.

[0224] In another aspect, when incremental state preservation is performed for a Store Multiple, as an
example, a memory range of Store Multiples is watched by, e.g., marking it as being a part of a write-set even if it

has not been written.

[0225] In one or more aspects, multiple bulk save requests may be received, and therefore, it is to be
determined if a given request is compatible with processing that is being performed. For instance, if no pre-existing
bulk save request is present, a new request that is received is compatible. If a pre-existing bulk save request is
present, and a bulk save request is received, a further determination is made: If the registers are mutually
exclusive, they may be considered compatible. If they refer to one or more registers, and an intervening
modification has occurred, they may be considered compatible. If hardware supports multiple bulk savefrestores,

they may be considered compatible.

[0226] If a pre-existing transactional memory rollback request exists, and a transactional memory rollback
request is received, a further determination is made: If nested transactions are implemented as flattened
transactions, they are compatible. If nested transactions are true nested transactions, and a context (e.g., snapshot
or other saving of state) is available, they are compatible. If no more storage to save additional state remains,

flattening of nested transactions may be selected to achieve compatibility.

WO 2018/193321 PCT/IB2018/051646

48

[0227] If a pre-existing transactional memory rollback request is present, and a register save request is
received, further tests are performed: If multiple bulk requests are supported, and storage is available for additional
state, they may be considered compatible. If no intervening maodifications have occurred to registers that are

shared between transactional memory rollback set and Store Multiple set, they are compatible.

[0228] If a pre-existing bulk save request is present, and a transactional memory rollback request is received,
further tests are performed. If multiple bulk saves are supported, and storage is available for additional state, they
may be considered compatible. If ho intervening modifications have occurred to registers that are shared between

transactional memory rollback set and Store Multiple set, they are compatible.

[0229] One example of processing associated with managing one or more snapshots based on receiving a
TBegin instruction is described with reference to FIG. 19A. A TBegin instruction is obtained (e.g., received,
provided, have, retrieved, determined), STEP 1900. A determination is made as to whether a register restoration
facility is in active use, INQUIRY 1902. If a register restoration facility is not in active use, then a transactional
rollback snapshot is created (e.g., a snapshot is taken of the registers indicated to be saved by the TBegin
instruction), STEP 1912, and tracking of transactional state interference is initiated (e.g., tracking whether an in-

memory write corresponds to one of the registers of the snapshot), STEP 1914,

[0230] Returning to INQUIRY 1902, if a register restoration facility is in active use, then a determination is
made as to whether a snapshot compatible with the transactional request exists (e.g., are the registers the same),
INQUIRY 1904. If the snhapshot is compatible with the request, then the register restoration snapshot is used for
transactional execution, STEP 1906. However, if the snapshot is not compatible with the request, then a further
check is made as to whether more snapshots may be made (e.g., is there room in the snapshot stack), INQUIRY
1908. If more snapshots can be made, then processing continues to STEP 1912, Otherwise, the register
restoration snapshot is deactivated, STEP 1910, and optionally, the snapshot is stored in memory if, for instance, it
is not previously stored. In another embodiment, there are separate stacks for recovery snapshots and restoration

snapshots.

[0231] Another example of processing associated with managing one or more shapshots is described with
reference to FIG. 19B. In this example, a register save indication request (e.g., a Store Multiple) is obtained (e.g.,
received, provided, determined, retrieved, have, etc.), STEP 1920. A determination is made as to whether the
register restoration facility is in use for incompatible requests, INQUIRY 1922. If the facility is in use for such
requests, a further determination is made as to whether storage is available for additional snapshots (referred to
herein as snapshot contexts), INQUIRY 1924. If not, then the register state is stored in memory, STEP 1932.
However, if there are more snapshot contexts available or the register restoration facility is not in use for

incompatible requests, then a register restoration snapshot is created, STEP 1926. Further, interference tracking

WO 2018/193321 PCT/IB2018/051646

49

for an in-memory register restoration buffer is initiated, STEP 1928. Optionally, the register state is stored in
memory, STEP 1932,

[0232] In afurther aspect, a capability is provided to coalesce a plurality of load and store instructions to
determine a range of registers to be restored. For example, the processor is adapted to recognize a sequence of
individual load and store operations which may be coalesced into a single restore and save operation, respectively.

Coalescing may be performed using a variety of techniques.

[0233] In accordance with one or more embodiments of aspects of the present invention, coalescing
sequences of loads and stores is used to enable the use of the register restoration techniques described herein in
conjunction with legacy code sequences without bulk save and restore instructions, such as STMG and LMG for
z/Architecture general purpose registers, or STMW and LMW for Power |SA fixed point registers. In particular, this
includes the bulk save of some register types in the z/Architecture and Power ISA, such as, inter alia, floating point
registers in z/Architecture and Power |SA, and vector registers in Power ISA for which no store multiple and load
multiple floating point instructions exist. Furthermore, some architectures do not provide store multiple and load

multiple instructions for any register types

[0234] In one embodiment, each store request may start a store multiple coalescing sequence that may be
recognized. |n another embodiment, only certain store requests trigger a coalescing sequence that may be
recognized. This is to, for instance, avoid power and other overhead associated with operating additional logic. In
one or more embodiments, a coalescing sequence is started only by store requests that use a certain register, e.g.,
aframe point, stack pointer, or other distinguished register as a base register. In another embodiment, at least a
first and second instruction with adjacent addresses (based on the instruction image, i.e., same base and

displacement difference corresponding to data size) start a sequence. Other examples are also possible.

[0235] In one embodiment, when a first store of a coalescing sequence occurs, the state of the register file
(e.g., the register file map, etc.) is snapshot. A bit mask is initialized, in one example, reflecting which registers may
be restored from a snapshot. Subsequent writers to registers indicate in the bit mask that a particular register no
longer corresponds to the value in the snapshot. Thus, when a subsequent store refers to such a register, it may
either be separately performed independent of the coalescing sequence, start a new coalescing sequence, or both,
Similarly, one embodiment may require that a store be at an offset commensurate with contiguous storage (e.g., if
the first store occurred at displacement d1 for register r1, then register r2 is to be stored at displacement
d2=d1+(word size)*(r2-r1) using the same base). In other embodiments, a strict order may be imposed on the
instruction sequence, e.g., each store is to store the register R(N+1) if the previous instruction stored register R(N),
enabling a single counter to track the embodiment. Other variations are possible. In one embodiment, heuristics

are used to limit the stores which may trigger the creation of a snapshot.

WO 2018/193321 PCT/IB2018/051646

50

[0236] In another embodiment, coalescing of individual stores and loads into groups of stores and loads
which may then trigger state snapshotting and register restoration in accordance with an aspect of the present
invention is performed in conjunction with group formation. In accordance with one aspect, instructions are grouped
to keep adjacent stores without intervening maodifications of registers in the store range. As one example, control
logic ensures that stores occur in a contiguous manner, e.g., at d2=d1+word size)*(r2-r1) for displacements d1 and

d2 associated to a common (unmodified) base (and in one example, no index, or the same unmadified index).

[0237] In one embodiment, loads are coalesced in a similar manner as stores. In another embodiment, loads
are executed singly wherein for each load a corresponding rename register is retrieved from a register snapshot
individually because in at least one embodiment, the overhead of register restoration is primarily associated with

storing and maintaining a mechanism to retrieve stored values for in-core restoration.

[0238] The recognizing is performed in one of a pre-decode, a group formation and a decode stage. |n other
embodiments with a trace cache, a loop cache or other such cache, it may operatively be coupled to logic adapted

to creating and/or optimizing a loop, trace or iop (internal operation) cache.

[0239] In one aspect, a technique for restoring registers from an in-core value pool includes recognizing a
sequence of adjacent individual store instructions of adjacent registers, creating and maintaining a single shapshot

for restoration, and using a single snapshot to bypass registers from the single snapshot.

[0240] One embodiment of coalescing individual register store requests for creation of a snapshot is
described with reference to FIG. 20A. A single store request is obtained (e.g., received, have, provided, retrieved,
determined, etc.), STEP 2000. A determination is made as to whether this is a possible start of a store sequence
(e.g., a multi-store/register spill sequence), INQUIRY 2002. This may include checking for a subset of registers,
addressing modes, addressing ranges, or another indication of a register spill sequence. [f it is determined that it is
not the start of a possible store sequence, then one or more stores are performed, STEP 2004, However, ifitis a
possible start of a store sequence, then a prospective register restoration snapshot request with the present store
request is tracked, STEP 2006.

[0241] A determination is made as to whether a next instruction is a continuation of the store request,
INQUIRY 2008. If the next instruction is a continuation of a store request, then the next instruction is added to the
store request, STEP 2010. A check is made as to whether there are more instructions to be processed, INQUIRY
2012. If so, processing continues to INQUIRY 2008,

[0242] If the next instruction is not a continuation of a store request, INQUIRY 2008, then a determination is

made as to whether a register restoration snapshot is desirable, INQUIRY 2014. That is, does the prospective

WO 2018/193321 PCT/IB2018/051646

51

snapshot have enough registers to make the snapshot worthwhile? If a snapshot is desirable, then a register
restoration snapshot technique is performed to create a snapshot, STEP 2016. However, if a snapshot is not
desirable, then one or more stores are performed, STEP 2018. In accordance with at least one embodiment,
snapshots saving a certain minimum number of registers are desirable, so as to amortize the cost of creating and
managing a shapshot. Thus, in at least one embodiment, when a prospective snapshot has more than a set
threshold of registers, it is considered desirable. In another embodiment, desirability of a snapshot is estimated
based on possible runtime improvement. In at least one embodiment, when a prospective snapshot offers more

than a set threshold of runtime improvement, it is considered desirable. Other possibilities also exist.

[0243] One embodiment of coalescing individual register restore requests is described with reference to FIG.
20B. Asingle load request is obtained (e.g., received, have, retrieved, determined, provided, etc.), STEP 2040. A
determination is made as to whether this is a possible start of a register restore sequence, INQUIRY 2042. This
may include checking for a subset of registers, addressing modes, addressing ranges, or another indication of a
register reload. In at least one embodiment, INQUIRY 2042 includes a test whether the load request corresponds
to the most recent register snapshot with respect to the register being restored and the specified in-memory storage
location. If it is determined that it is not the start of a possible restore sequence, then one or more loads are
performed, STEP 2044. However, if it is a possible start of a restore sequence, then a prospective register

restoration request with the present load request is tracked, STEP 2046.

[0244] A determination is made as to whether a next instruction is a continuation of the restore request,
INQUIRY 2048. If the next instruction is a continuation of the restore request, then the next instruction is added to
the restore request, STEP 2050. A check is made as to whether there are more instructions to be processed,
INQUIRY 2052. If so, processing continues to INQUIRY 2048,

[0245] If the next instruction is not a continuation of the restore request, INQUIRY 2048, then a determination
is made as to whether the restore request(s) match the register restoration snapshot, INQUIRY 2054. If so, then a
register restoration snapshot restore technique is performed, STEP 2056. Otherwise, one or more loads are
performed, STEP 2058.

[0246] In one or more aspects, when a Spillm instruction is encountered, an in-core register restoration
snapshot is made. Additionally, spilled registers are stored to a temporary location (commonly the stack frame of
the current function) in case the in-core register restoration snapshot is invalidated. Contents of the Spillm registers

are placed on a store queue and written to memory.

WO 2018/193321 PCT/IB2018/051646

52

[0247] The registers are restored from the in-core register restoration snapshot by, for instance, the Reloadm
instruction, if the register snapshot is valid. Otherwise, Reloadm reloads the values from memory (e.g., the

temporary storage area in the current function’s stack frame).

[0248] In one aspect, when the Reloadm instruction completes, values to be stored based on a Spillm
instruction may still be queued in the store queue to be written to caches and eventually system memory. Once the
Reloadm has completed, no further reads to the buffer will occur. Consequently, these values use up valuable
space in the store queue and cause time delay for subsequent stores in the store queue as well as energy
consumption while processing stores that are known to be useless. Thus, in one example, when the Reloadm
instruction completes, store queue entries corresponding to the Spillm/Reloadm save/restore sequence are
invalidated. Forinstancs, they are removed from the store queue, or when they come to the head of the store

queue to be committed to the memory hierarchy, they are not written. Other examples also exist.

[0249] In yet another embodiment, when a remote cross-invalidate (XI) is received, store queue entries
identified with Spillm are not provided. Further, in another embodiment, when a remote Xl is received, store queue

entries identified with a Spillm for which the Reloadm has completed are not provided.

[0250] Aspects of managing the store queue are controlled by store queue write back logic, which is
augmented in accordance with one or more aspects of the present invention. As shown in FIG. 21A, in one
example, a store request (SRQ) write back logic 2100 is located in a store queue 2102 that further includes address
information 2104 and data 2106 for each store queue entry. Store queue 2102 receives store requests 2108 from a
load/store unit (LSU) 2110 of a central processing unit (CPU) 2112. CPU 2112 further includes, for instance, an
instruction fetch unit (IFU) 2114 that fetches instructions, which are decoded using an instruction decode unit 2116.

The decoded instructions may be executed via one or more execution units 2118.

[0251] As indicated, the load/store unit places store requests 2108 on store queue 2102. Store request write
back logic 2100 performs a write back to a memory subsystem 2122, which may include one or more caches 2124
and memory 2126. In accordance with an aspect of the present invention, and with reference to FIG. 21B the write
back logic includes the following:
REPEAT
if store queue not empty (2150)
If cache bus available for write (2152)
Select oldest SRQ element (2154)
IF (ELEMENT Corresponds to RR restoration request
&& element address smaller than stack pointer) (2156)

remove element from store queue without writing (2158)

WO 2018/193321 PCT/IB2018/051646

53

ELSE
write element to memory (2160)

Remove element from store queue (2162)

[0252] While the logic shown hereinabove and in FIG. 21B is described with reference to a processor stack
growing downwards, i.e., wherein addresses smaller than the value of the stack pointer are not part of the stack
(INQUIRY 2156), those skilled in the art will understand that the teachings herein may be adapted to architectures
wherein the processor stack grows upwards, i.e., wherein addresses larger than a stack pointer are not a part of the
stack, e.g., by replacing the test for “smaller” with a test for “greater’ in the example write back logic pseudocode

hereinabove and in INQUIRY 2156 of FIG. 21B.

[0253] In another embodiment, with reference to FIG. 21C, the write back logic includes:
REPEAT
if store queue not empty (2180)
If cache bus available for write (2182)
Select oldest SRQ element (2184)
IF (ELEMENT Corresponds to RR restoration request
&& corresponding register restore has completed) (2186)
remove element from store queue without writing (2188)
ELSE
write element to memory (2190)

Remove element from store queue (2192)

[0254] In one embodiment, the processing of FIGS. 21B-21C is performed in conjunction with the
Spillm/Reloadm instructions, since those instructions indicate that the buffer is not programmer accessible for writes
at a particular point in time (e.g., between store and load). In another embodiment, one or more instructions or
other mechanisms are used to indicate that the storage buffer will no longer be accessed after a load multiple state

restore or after another selected point in time.

[0255] In yet other embodiments, data stored in the stack region (i.e., those pages in the address space
allocated for holding the stack) below the stack pointer are considered to be no longer used, and are suppressed
during write back from the store queue, and/or in responding to Xl cross-interrogate requests. In such an
embodiment, optimizations wherein data is allocated below the stack pointer are not permissible. In another
embodiment supporting optimizations wherein data may be allocated below the stack pointer (e.g., in aregion
defined by an ABI such as the Power ELFv2 ABI, or the AMD Red Zone specification for Linux), the write back of

data is suppressed when the data is written beyond the defined region wherein data may be allocated and

WO 2018/193321 PCT/IB2018/051646

54

accessed beyond the stack pointer, e.g., write back from a store queue may be suppressed for addresses more

than 512 bytes below the stack pointer, in accordance with, e.g., the Power ELFv2 ABI.

[0256] In a further aspect of the present invention, an alternative to the register restoration snapshot may be
used. This alternative is a recovery buffer, also referred to as a recovery file. In the case of a misprediction or an
exception, the register values may be recovered from the recovery buffer rather than a snapshot. Each time a
register is overwritten, the old values are stored in a recovery file queue in case they are needed for recovery. One
example of such arecovery file is depicted in FIG. 22A. In one example, a recovery file 2200 is implemented as a
queus, and includes one or more register recovery values corresponding to executed instructions 2202. As an
example, recovery buffer 2200 includes a plurality of registers 2204 having a register number to be recovered, Rn,
Rk, Rm, and so forth, and a register value 2206 to be recovered. An instruction tag 2208 is assigned to each
register 2204. The queue has a tail pointer 2209 pointing to the recovery register corresponding to the oldest
instruction that may be rolled back by recovering the value overwritten by the instruction, and a head pointer 2210
pointing to the recovery value corresponding to the youngest instruction and indicating the position where additional

recovery values will be inserted responsive to instructions being executed.

[0257] In one aspect, a stored recovery value is associated with an instruction to restore. The stored value is
overwritten by an instruction and recovery is performed when the instruction is flushed. A state machine may be
provided in which for each flushed instruction, the value is recovered from recovery buffer 2200 reading recovery

values 2206 corresponding to instructions. The state machine may have a forward or backward scan.

[0258] Further details regarding the recovery buffer are described with reference to FIG. 22B. In one
example, an instruction is fetched from an instruction cache 2220 by an instruction fetch unit 2222 and decoded by
an instruction decode unit 2224. Operands are obtained from one or more register files 2226. If a value from a
register file is modified, it is stored in recovery buffer 2228 at the head of the recovery buffer. One or more
execution units 2230 execute the instructions, and completion and recovery unit 2232 completes the instruction or if
there is a migprediction or exception, processing proceeds to the recovery buffer 2228 that walks backwards, in one
example, copying each value to be restored from recovery buffer 2228 to register files 2226 until the in-order

register state at the migprediction or exception point is restored.

[0259] In accordance with one aspect of the present invention, the recovery values stored in fast processor
memory are used to restore values responsive to a register restoration request corresponding to aload multiple, a

coalesced load multiple sequence or Reloadm instructions.

[0260] In one example, when a register is overwritten, the old values are stored in the recovery buffer.

During recovery, the values in the recovery buffer are copied back to the register file. In one example, the

WO 2018/193321 PCT/IB2018/051646

55

processor steps through the recovery buffer to retrieve the values present at entry to the store multiple. As
examples, the step through the recovery buffer to restore register values is performed via a backward scan or a
forward scan. (In one particular example, the oldest recovery entry successive to a save request for a specified
register is restored.) One example of the logic for a forward scan is indicated below:

Retore [0...31] <=false

Restore [LM range] <= true

If NOT (STM tag in recovery file)

... special handling

Fori=STMtag to LM tag

{

Rec <= ReckFile[i]

If Restore[Rec.reg]

{

Reg[Rec.reg] <= Rec.value

Restore[rec.reg] <= false

}
}

[0261] In accordance with the example hereinabove, Restore tracks for each register whether a register is
still to be restored. Itis initialized to restore all registers corresponding to the registers specified by the Load
Multiple (or Reloadm) instruction. If the tag of a corresponding Store Multiple (STM) from which the Load Multiple
(LM) is to restore the state cannot be located, special handling is performed. In at least one embodiment, the
special handling corresponds to loading values from the memory location specified in the Load Multiple or Reloadm

instruction.

[0262] The pseudocode then scans forward through the recovery buffer starting at the recovery buffer entry
corresponding to the tag of the register save instruction (e.g., a STM Store Multiple or Spillm) up to the instruction

restoring registers (e.g., the Load Multiple or Reloadm).

[0263] For each entry, the recovery buffer entry is read (i.e., represented by the value RecFile[]), consisting
of at least the fields Rec.reg indicating the register number (2204 of FIG. 22A) contained in the particular recovery
buffer entry and the value to be restored to the register, Rec.value (field 2206 of FIG. 22A). If the register
corresponds to one of the registers of the Load Multiple or Reloadm, the first (oldest) value overwritten after the
STM Store Multiple (Spillm) is restored.

WO 2018/193321 PCT/IB2018/051646

56
[0264] Any remaining registers in Restore[] that have not been restored from the recovery buffer are restored
from memory.
[0265] Similarly, for a backward scan, the logic includes:

Restore [0...31] <=false

Restore [LM range] <= truelf NOT (STM tag in recovery file)
... special handling

Fori=LM tag to STM tag

{
If Rec.reg in LM range

{
Reg[Rec.reg] <= Rec.value

Restore[rec.reg] <= false

}
}

[0266] In a further aspect, values beyond the recovery file tail may be recovered. This may be performed if
the value has not been overwritten, which can be determined by comparing against a highwater mark of the
head/second tail that moves in response to the head overwriting the tail entries. If head is greater than or equal to

the second tail, then the second tail is equal to the head.

[0267] As described herein, the actual state restored by exception and branch misprediction recovery, as well
as register restoration, is contained, in one example, in physical registers. To write to a new register, a physical
register is allocated, an architected register to be written to is mapped to the allocated physical register, and the
physical register is written. |In accordance with an aspect of the present invention, physical registers are allocated
responsive to register write requests so as to maximize the utility of physical registers as a source for restoring
registers responsive to a register restoration request. For instance, the allocation technique for new registers from
the physical register file is modified to give preference to selecting registers not associated with a register
restoration snapshot. Further, if a register is to be obtained from a register restoration snapshot, in at least one
embodiment, a selection is made so as to minimize the performance impact by selecting a physical register which
may not be a part of the registers to be restored from a snapshot, or from a snapshot with the least performance
impact. In at least one embodiment, a snapshot corresponding to the least performance impact is the oldest
snapshot. This processing, in accordance with one or more aspects of the present invention, is further described
with reference to FIGS. 23A-23B.

WO 2018/193321 PCT/IB2018/051646

57

[0268] Referring to FIG. 23A, in one example, a determination is made as to whether an unused physical
register is available, INQUIRY 2300. If an unused physical register is available, an unused register is selected and
allocated, STEP 2302. However, if an unused physical register is not available, then a register is selected, in
accordance with an aspect of the present invention, STEP 2304. For instance, a register is selected that is not in
an active snapshot for recovery (e.g., branch misprediction, exception, etc.); i.e., a register used in register
restoration snapshots, but not recovery snapshots. In one example, a register is selected from the oldest shapshot,
since, for instance, the oldest snapshot may be more likely to have a register ready to be freed and it may be less
costly to take a register from an older snapshot, since it may not be used as soon as a register in a younger
snapshot. In another embodiment, a register from a register restoration snapshot is chosen that does not
correspond to a register to be restored, i.e., a register outside the range of registers specified to be saved by the

STM or Spillm instruction.

[0269] Further, the register may be marked as invalid in the snapshot, STEP 2306, or the register restoration
snapshot may be deallocated, STEP 2308. When a register restoration snapshot is deallocated, the physical
registers associated with that snapshot become available when they do not correspond to registers also used in

another shapshot.

[0270] The selected register is then allocated, STEP 2310.

[0271] Another embodiment for allocating a register is described with reference to FIG. 23B. In one example,
a determination is made as to whether an unused physical register is available, INQUIRY 2330. If an unused
physical register is available, an unused register is selected and allocated, STEP 2332, However, if an unused
physical register is not available, then an oldest snapshot is selected, STEP 2334, and a determination is made as
to whether the selected snapshot is a register restoration snapshot, INQUIRY 2336. If it is a register restoration
snapshot, it is deallocated enabling the registers associated therewith to become available if they are not in another
snapshot, STEP 2340. Processing continues to INQUIRY 2330.

[0272] Returning to INQUIRY 2336, if the selected snapshot is not a register restoration snapshot,
processing waits for the oldest snapshot to become inactive, STEP 2338. Processing returns to INQUIRY 2330.

[0273] In other embodiments, instead of waiting for the oldest snapshot to become inactive, other snapshots
may be checked. Further, a snapshot other than the oldest may initially be selected, in other embodiments. Many

variations are possible.

[0274] As described herein, rename registers and rename maps (e.g., snapshots) may be used for

implementing branch misprediction recovery and precise exceptions. When an exception or a branch misprediction

WO 2018/193321 PCT/IB2018/051646

58

is discovered the in-order program state can be recovered from the register rename map and the physical registers,
and by flushing speculatively stored state in store queues (and possibly caches, e.g., for an embodiment using
transactional memory). When an exception or branch misprediction can no longer occur, because an instruction

has committed, the register rename maps and physical registers may be deallocated and reused.

[0275] In accordance with at least one embodiment, rename registers and rename maps used for
implementing branch misprediction recovery and precise exceptions are also used to implement register restoration
for saving and restoring program state, e.g., in the context of function calls, for recovering caller and callee-saved

registers in the caller and a calles, respectively.

[0276] Further, in accordance with one embodiment, register snapshots are created in order to implement
branch misprediction recovery, and implement precise exceptions in the presence of out-of-order execution. In one
embodiment, additional snapshots are made for recovering architected state using register restoration. However,
holding such register snapshots for register restoration may cause an insufficient number of free registers to
become available, stopping processors from making progress during execution when no new target registers can

be executed.

[0277] Also, register restoration snapshots may be allocated, but recovery may never occur. For example,
structured C++Java exception handling may cause a function to abort without ever restoring its state, or
setjump/longjump may similarly prevent a register restore to be encountered that may deallocate a register

snapshot allocated for register restoration.

[0278] In accordance with one embodiment, register snapshots are maintained in a separate queus, rename
registers referenced in snapshots are prevented from being deallocated, and register snapshots may be recycled
based on ensuring a suitable supply of free registers. Thus, when the register freelist, i.e., the register rename pool
used to satisfy new register allocation requests, falls below a certain number of registers, register snapshots may
be deallocated until the freelist reaches the target size. The target size may be a fixed threshold, or based on an
estimate of the number of new rename registers allocated by a current workload, possibly weighted by the number
of cycles needed to deallocate snapshots and make available additional registers. (In one embodiment, that
threshold may be 0, and shapshots would only be deallocated to satisfy rename register allocation requests.
However, that policy may lead to resource stalls while instructions are waiting for rename registers to become

available.)

[0279] In one embodiment, register rename shapshots and their associated registers are deallocated and
recycled into the rename freelist in the FIFO (first in, first out) policy, where the snapshot having been allocated the

earliest is also deallocated first. In another embodiment, register snapshots that have been used by register

WO 2018/193321 PCT/IB2018/051646

59

restoration are also immediately deallocated — this may take particular advantage of the stack model used for
function calls, where the most recently entered function is exited first, and so its register restoration state may

become available for deallocation first).

[0280] In another embodiment, only a single snapshot (or the last n, where n is a small integer, such as 2)
corresponding to the most recent bulk save request is stored for register restoration. While this supports only
register restoration for a single function call, this offers the best benefit in terms of the relationship of gains achieved
per design complexity, given that these are both dynamically the most frequent (in many workloads, over 50% of
function calls are leaf functions), and have the biggest negative impact in terms of load/hit/store interlocks resulting

in performance-degrading stall cycles.

[0281] In at least one embodiment, register snapshots for register restoration are captured under mask
control, so that a snapshot may only contain the registers listed by the Spill/'STM request, in order to prevent

rename registers from being unnecessarily prevented from reallocation.

[0282] In another embodiment, registers corresponding to register save/restore sequences that may be listed
in register rename map snapshots made for register restoration are not independently retained. Instead, rename
registers are deallocated based on their use for implementing branch misprediction recovery and precise
exceptions. When registers are no longer needed, they are returned to the freelist pool (e.g., in accordance with an

implementation, such as that of Buti et al.)

[0283] In one embodiment, the freelist selection algorithm is modified to select registers from the freelist
which are not referenced by a register restoration snapshot. In another embodiment, the freelist selection algorithm
is modified to select registers from the freelist which were allocated to a register rename snapshot earlier than other
rename registers. In yet another embodiment, the freelist selection algorithm is modified to select registers from the
freelist which are not referenced by an active register rename snapshot (i.e., for example excluding most recently
allocated snapshots that have already been used to restore the register state, e.g., for a corresponding function). In
yet another embodiment, a combination of any of these three criteria and additional criteria may be used. In yet
another embodiment, a combination of all of these three criteria and additional criteria may be used. Other

possibilities also exist.

[0284] Described herein are various aspects and embodiments of register restoration processing. Although a
number of examples and techniques are provided, variations and/or additions may be made without departing from

a spirit of aspects of the present invention.

WO 2018/193321 PCT/IB2018/051646

60

[0285] One or more aspects of the present invention are inextricably tied to computer technology and
facilitate processing within a computer, improving performance thereof. Further details of one embodiment of
facilitating processing within a computing environment, as it relates to one or more aspects of the present invention,
are described with reference to FIGS. 24A-24B.

[0286] Referring to FIG. 24A, in one embodiment, a load request to restore a plurality of architected registers
is obtained by a processor (2400). Based on obtaining the load request, one or more architected registers of the
plurality of architected registers are restored (2402). The restoring includes, e.g., using a snapshot that maps
architected registers to physical registers to replace one or more physical registers currently assigned to the one or
more architected registers with one or more physical registers of the snapshot corresponding to the one or more
architected registers (2404). In one example, the one or more architected registers are restored without a copying

of values for the one or more architected registers from memory (2406).

[0287] In one embodiment, based on obtaining the load request, a determination is made as to whether a
snapshot corresponding to the one or more architected registers is available (2408). Based on the determining

indicating the snapshot is available, the restoring is performed using the snapshot (2410).

[0288] Further, in one example, based on the determining indicating a snapshot corresponding to the one or
more architected registers is unavailable, the one or more architected registers are restored by loading values from

memory into the one or more architected registers (2412).

[0289] Referring to FIG. 24B, in one embodiment, the determining whether a snapshot is available includes
using a shapshot stack to determine whether a snapshot corresponding to the one or more architected registers is
available (2420). In one example, the snapshot stack includes a plurality of entries (2422), and an entry of the
snapshot stack includes a snapshot identifier identifying the snapshot (2424). In further examples, the entry of the
snapshot stack may include additional information including at least one of an address in memory of contents of the
one or more architected registers, an indication of the one or more architected registers associated with the

snapshot, and/or a validity indicator indicating whether the snapshot is valid (2426).

[0290] In a further aspect, the shapshot is created to save a mapping of the one or more physical registers to
the one or more architected registers (2428). The creating the snapshot is performed, e.g., based on obtaining a

save request requesting a saving of the one or more architected registers (2430).

[0291] In examples, the load request includes a load multiple instruction, and the save request includes a

store multiple instruction (2432).

WO 2018/193321 PCT/IB2018/051646

61

[0292] Many variations are possible without departing from a spirit of aspects of the present invention. It
should be noted that numerous aspects and features are described herein, and unless otherwise inconsistent, each

aspect or feature may be combinable with any other aspect or feature.

[0293] Other types of computing environments may also incorporate and use one or more aspects of the
present invention, including, but not limited to, emulation environments, an example of which is described with
reference to FIG. 25A. In this example, a computing environment 2500 includes, for instance, a native central
processing unit (CPU) 2502, a memory 2504, and one or more input/output devices and/or interfaces 2506 coupled
to one another via, for example, one or more buses 2508 and/or other connections. As examples, computing
environment 2500 may include a PowerPC processor or a pSeries server offered by International Business
Machines Corporation, Armonk, New York; and/or other machines based on architectures offered by International

Business Machines Corporation, Intel, or other companies.

[0294] Native central processing unit 2502 includes one or more native registers 2510, such as one or more
general purpose registers and/or one or more special purpose registers used during processing within the
environment. These registers include information that represents the state of the environment at any particular

pointin time.

[0295] Moreover, native central processing unit 2502 executes instructions and code that are stored in
memory 2504. |n one particular example, the central processing unit executes emulator code 2512 stored in
memory 2504. This code enables the computing environment configured in one architecture to emulate another
architecture. For instance, emulator code 2512 allows machines based on architectures other than the
z/Architecture, such as PowerPC processors, pSeries servers, or other servers or processors, to emulate the

z/Architecture and to execute software and instructions developed based on the z/Architecture.

[0296] Further details relating to emulator code 2512 are described with reference to FIG. 25B. Guest
instructions 2550 stored in memory 2504 comprise software instructions (e.g., correlating to machine instructions)
that were developed to be executed in an architecture other than that of native CPU 2502. For example, guest
instructions 2550 may have been designed to execute on a z/Architecture processor, but instead, are being
emulated on native CPU 2502, which may be, for example, an Intel processor. In one example, emulator code
2512 includes an instruction fetching routine 2552 to obtain one or more guest instructions 2550 from memory
2504, and to optionally provide local buffering for the instructions obtained. It also includes an instruction
translation routine 2554 to determine the type of guest instruction that has been obtained and to translate the guest
instruction into one or more corresponding native instructions 2556. This translation includes, for instance,
identifying the function to be performed by the guest instruction and choosing the native instruction(s) to perform

that function.

WO 2018/193321 PCT/IB2018/051646

62

[0297] Further, emulator code 2512 includes an emulation control routine 2560 to cause the native
instructions to be executed. Emulation control routine 2560 may cause native CPU 2502 to execute a routine of
native instructions that emulate one or more previously obtained guest instructions and, at the conclusion of such
execution, return control to the instruction fetch routine to emulate the obtaining of the next guest instruction or a
group of guest instructions. Execution of native instructions 2556 may include loading data into a register from
memory 2504; storing data back to memory from a register; or performing some type of arithmetic or logic

operation, as determined by the translation routine.

[0298] Each routine is, for instance, implemented in software, which is stored in memory and executed by
native central processing unit 2502. In other examples, one or more of the routines or operations are implemented
in firmware, hardware, software or some combination thereof. The registers of the emulated processor may be
emulated using registers 2510 of the native CPU or by using locations in memory 2504. In embodiments, guest
instructions 2550, native instructions 2556 and emulator code 2512 may reside in the same memory or may be

disbursed among different memory devices.

[0299] As used herein, firmware includes, e.g., the microcode or Millicode of the processor. It includes, for
instance, the hardware-level instructions and/or data structures used in implementation of higher level machine
code. In one embodiment, it includes, for instance, proprietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the underlying hardware and controls operating system access to

the system hardware.

[0300] A guest instruction 2550 that is obtained, translated and executed is, for instance, one of the
instructions described herein. The instruction, which is of one architecture (e.g., the z/Architecture), is fetched from
memory, translated and represented as a sequence of native instructions 2556 of another architecture (e.g.,

PowerPC, pSeries, Intel, etc.). These native instructions are then executed.

[0301] One or more aspects may relate to cloud computing.

[0302] It is understood in advance that although this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type

of computing environment now known or later developed.

[0303] Cloud computing is a model of service delivery for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g. networks, network bandwidth, servers, processing,

memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with

WO 2018/193321 PCT/IB2018/051646

63

minimal management effort or interaction with a provider of the service. This cloud model may include at least five

characteristics, at least three service models, and at least four deployment models.

[0304] Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without requiring human interaction with the service's
provider.

Broad network access: capabilities are available over a network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and
PDAs).

Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that the consumer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported providing

transparency for both the provider and consumer of the utilized service.

[0305] Service Models are as follows:

Software as a Service (SaaS): the capability provided to the consumer is to use the provider's
applications running on a cloud infrastructure. The applications are accessible from various client devices through
a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific application configuration settings.

Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using programming languages and tools
supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including
networks, servers, operating systems, or storage, but has control over the deployed applications and possibly
application hosting environment configurations.

Infrastructure as a Service (1aaS). the capability provided to the consumer is to provision processing,

storage, networks, and other fundamental computing resources where the consumer is able to deploy and run

WO 2018/193321 PCT/IB2018/051646

64

arbitrary software, which can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications,

and possibly limited control of select networking components (e.g., host firewalls).

[0306] Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by
the organization or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).
It may be managed by the organizations or a third party and may exist on-premises or off-premises.

Public cloud: the cloud infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for loadbalancing between clouds).

[0307] A cloud computing environment is service oriented with a focus on statelessness, low coupling,
modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure comprising a network

of interconnected nodes.

[0308] Referring now to FIG. 26, illustrative cloud computing environment 50 is depicted. As shown, cloud
computing environment 50 comprises one or more cloud computing nodes 10 with which local computing devices
used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop
computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 10 may
communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 26 are intended to be illustrative only and that computing nodes 10 and
cloud computing environment 50 can communicate with any type of computerized device over any type of hetwork

and/or network addressable connection (e.g., using a web browser).

[0309] Referring now to FIG. 27, a set of functional abstraction layers provided by cloud computing
environment 50 (FIG. 26) is shown. It should be understood in advance that the components, layers, and functions
shown in FIG. 27 are intended to be illustrative only and embodiments of the invention are not limited thereto. As

depicted, the following layers and corresponding functions are provided:

WO 2018/193321 PCT/IB2018/051646

65

[0310] Hardware and software layer 60 includes hardware and software components. Examples of hardware
components include mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62;
servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some

embodiments, software components include network application server software 67 and database software 68.

[0311] Virtualization layer 70 provides an abstraction layer from which the following examples of virtual
entities may be provided:; virtual servers 71; virtual storage 72; virtual networks 73, including virtual private

networks; virtual applications and operating systems 74; and virtual clients 75.

[0312] In one example, management layer 80 may provide the functions described below. Resource
provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to
perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources
are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In
one example, these resources may comprise application software licenses. Security provides identity verification
for cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access
to the cloud computing environment for consumers and system administrators. Service level management 84
provides cloud computing resource allocation and management such that required service levels are met. Service
Level Agresment (SLA) planning and fulfillment 85 provides pre-arrangement for, and procurement of, cloud

computing resources for which a future requirement is anticipated in accordance with an SLA.

[0313] Workloads layer 90 provides examples of functionality for which the cloud computing environment
may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and
navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data

analytics processing 94; transaction processing 95; and register restoration and associated processing 96.

[0314] The present invention may be a system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer program product may include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0315] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a

portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable

WO 2018/193321 PCT/IB2018/051646

66

programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0316] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0317] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the "C" programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[0318] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the

invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and

WO 2018/193321 PCT/IB2018/051646

67

combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0319] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises
an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0320] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0321] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[0322] In addition to the above, one or more aspects may be provided, offered, deployed, managed,
serviced, etc. by a service provider who offers management of customer environments. For instance, the service
provider can create, maintain, support, etc. computer code and/or a computer infrastructure that performs one or

more aspects for one or more customers. In return, the service provider may receive payment from the customer

WO 2018/193321 PCT/IB2018/051646

68

under a subscription and/or fee agreement, as examples. Additionally or alternatively, the service provider may

receive payment from the sale of advertising content to one or more third parties.

[0323] In one aspect, an application may be deployed for performing one or more embodiments. As one
example, the deploying of an application comprises providing computer infrastructure operable to perform one or

more embodiments.

[0324] As a further aspect, a computing infrastructure may be deployed comprising integrating computer
readable code into a computing system, in which the code in combination with the computing system is capable of

performing one or more embodiments.

[0325] As yet a further aspect, a process for integrating computing infrastructure comprising integrating
computer readable code into a computer system may be provided. The computer system comprises a computer
readable medium, in which the computer medium comprises one or more embodiments. The code in combination

with the computer system is capable of performing one or more embodiments.

[0326] Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can be used to incorporate and use one or more embodiments.
Further, different instructions, instruction formats, instruction fields and/or instruction values may be used. Many

variations are possible.

[0327] Further, other types of computing environments can benefit and be used. As an example, a data
processing system suitable for storing and/or executing program code is usable that includes at least two
processors coupled directly or indirectly to memory elements through a system bus. The memory elements include,
for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory
which provide temporary storage of at least some program code in order to reduce the number of times code must

be retrieved from bulk storage during execution.

[0328] Input/Output or I/0 devices (including, but not limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or
through intervening /O controllers. Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the

available types of network adapters.

WO 2018/193321 PCT/IB2018/051646

69

[0329] The terminology used herein is for the purpose of describing particular embodiments only and is not
intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises’
and/or “comprising’, when used in this specification, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components and/or groups thereof.

[0330] The corresponding structures, materials, acts, and equivalents of all means or step plus function
elements in the claims below, if any, are intended to include any structure, material, or act for performing the
function in combination with other claimed elements as specifically claimed. The description of one or more
embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive
or limited to in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain various aspects and the practical
application, and to enable others of ordinary skill in the art to understand various embodiments with various

modifications as are suited to the particular use contemplated.

WO 2018/193321 PCT/IB2018/051646

70

CLAIMS

1. A computer program product for facilitating processing within a computing environment, the computer
program product comprising:

a computer readable storage medium readable by a processing circuit and storing instructions for
performing a method comprising:

obtaining a load request to restore a plurality of architected registers; and

restoring, based on obtaining the load request, one or more architected registers of the plurality of
architected registers, wherein the restoring uses a snapshot that maps architected registers to physical registers to
replace one or more physical registers currently assigned to the one or more architected registers with one or more

physical registers of the snapshot corresponding to the one or more architected registers.

2. The computer program product of claim 1, wherein the method further comprises:
determining, based on obtaining the load request, whether a snapshot corresponding to the one or more architected
registers is available; and

performing the restoring using the snapshot, based on the determining indicating the shapshot is available.

3. The computer program product of claim 2, wherein the method further comprises:
restoring the one or more architected registers by loading values from memory into the one or more
architected registers, based on the determining indicating a snapshot corresponding to the one or more architected

registers is unavailable.

4, The computer program product of claim 2, wherein the determining comprises using a snapshot stack to

determine whether a snapshot corresponding to the one or more architected registers is available.

5. The computer program product of claim 4, wherein the shapshot stack includes a plurality of entries, and

wherein an entry of the snapshot stack includes a shapshot identifier identifying the snapshot.

6. The computer program product of claim 5, wherein the entry of the snapshot stack includes additional
information including at least one selected from a group consisting of. an address in memory of contents of the one
or more architected registers, an indication of the one or more architected registers associated with the snapshot,

and a validity indicator indicating whether the snapshot is valid.

7. The computer program product of claim 1, wherein the method further comprises creating the snapshot to

save a mapping of the one or more physical registers to the one or more architected registers.

WO 2018/193321 PCT/IB2018/051646

71

8. The computer program product of claim 7, wherein the creating the snapshot is performed based on

obtaining a save request requesting a saving of the one or more architected registers.

9. The computer program product of claim 8, wherein the load request comprises a load multiple instruction,

and the save request comprises a store multiple instruction.

10. The computer program product of claim 1, wherein the one or more architected registers are restored

without a copying of values for the one or more architected registers from memory.

1. A computer system for facilitating processing within a computing environment, the computer system
comprising:

amemory; and

a processor in communication with the memory, wherein the computer system is configured to perform a
method, said method comprising:

obtaining a load request to restore a plurality of architected registers; and

restoring, based on obtaining the load request, one or more architected registers of the plurality of
architected registers, wherein the restoring uses a snapshot that maps architected registers to physical registers to
replace one or more physical registers currently assigned to the one or more architected registers with one or more

physical registers of the snapshot corresponding to the one or more architected registers.

12. The computer system of claim 11, wherein the method further comprises:
determining, based on obtaining the load request, whether a snapshot corresponding to the one or more
architected registers is available; and

performing the restoring using the snapshot, based on the determining indicating the shapshot is available.

13. The computer system of claim 12, wherein the method further comprises:
restoring the one or more architected registers by loading values from memory into the one or more
architected registers, based on the determining indicating a snapshot corresponding to the one or more architected

registers is unavailable.

14, The computer system of claim 12, wherein the determining comprises using a snapshot stack to determine

whether a shapshot corresponding to the one or more architected registers is available.

15. The computer system of claim 11, wherein the one or more architected registers are restored without a

copying of values for the one or more architected registers from memory.

WO 2018/193321 PCT/IB2018/051646

72

16. A computer-implemented method of facilitating processing within a computing environment, the computer-
implemented method comprising:
obtaining, by a processor, a load request to restore a plurality of architected registers; and
restoring, based on obtaining the load request, one or more architected registers of the plurality of
architected registers, wherein the restoring uses a snapshot that maps architected registers to physical registers to
replace one or more physical registers currently assigned to the one or more architected registers with one or more

physical registers of the snapshot corresponding to the one or more architected registers.

17. The computer-implemented method of claim 16, further comprising:
determining, based on obtaining the load request, whether a snapshot corresponding to the one or more
architected registers is available; and
performing the restoring using the snapshot, based on the determining indicating the snapshot is

available.

18. The computer-implemented method of claim 17, further comprising:
restoring the one or more architected registers by loading values from memory into the one or more
architected registers, based on the determining indicating a snapshot corresponding to the one or more architected

registers is unavailable.

19. The computer-implemented method of claim 17, wherein the determining comprises using a snapshot

stack to determine whether a snapshot corresponding to the one or more architected registers is available.

20. The computer-implemented method of claim 16, wherein the one or more architected registers are

restored without a copying of values for the one or more architected registers from memory.

PCT/IB2018/051646

WO 2018/193321

1745

Vi old

Pl

. H
! {SINOLLONELSN
GLt AYHOOHd
TEYOYIY ¥ILODNOT |
{SINOILOMLISNI
AWYHDONd SWYHOO0Hd ™
F18vav3y R T Gl
¥ HELMdNGD A\\.@mﬁw 030
(ndo) | 3HOYD el ~ JOVHOLS Vivd
MOBRID0Nd | YO0 < S
w0l &gl oy WILSAS {3AMA FdvL 93
ONILYHA0 PR i, ADIATO TNHILXT
_ Ty
Zel oLl Gl
_ e
{ndo} IHOYD : v
¥0SE3008d | WIOT 1o (STNSONd YNINYEL 8380 93
701 2L gy NOILYONTddY B 0G0 TYNEEIXE
)) ovt
THOYD SIOYANILN
s - 2OV LHILNG
HtvHS AHONIN A PR EDY
74 901 “0i 7L
Y
oLl 201 WILSAS H3LNdNOD
00l

WO 2018/193321 PCT/IB2018/051646

2/45

PROCESSOR 104

INSTRUCTION FETCH |~150

+ 166

INSTRUCTION DECODE | _ 150 {
OPERAND FETCH INSTRUCTIONS
+ 154
— s INSTRUCTION EXECUTE 168
156 :
+ - REGISTER(S)
MEMORY ACCESS |et——
+ 160

WRITE BACK |t———

FIG. 1B

PCT/IB2018/051646

WO 2018/193321

3/45

—

88l

S3HSN14 ANV S1dNHd3LINI

XA
mxm%\, a1 X9 I8/

w HONvYd
o8l

31N353X4 _|

¥81l

SH41S193d
av3d

)
Z8l

_
_
ONINYNIY _
¢61~1 yalsoay _
|
Inss| %_\/__.zo%m_\w_MS 300030 |- _
)))
08t 8l @NF vl |
@«
NOILOIaTdd TEa
HONYYE NOILONNLSNI [q— |_
))
¢l 0Ll _
_
||| |

WO 2018/193321 PCT/IB2018/051646
E | L15 RELOAD DATA
L15 REQUEST
104 —— ~ ADDRESS
| [NEXT SEQ
ADDRESS
UINE ~111 | RELOAD FROM TLB | WORD
PAGE [ERAT EADIR ICACHE
ICACHE DIRECTORY S ADDRESS 2X37 ENTRIES 2X256 SECTORS
ASSOC HINCREMENTER (128B LINES VA ASBOGATIVE
(128B LINES X 2) 16KB 6 S (IFAR+32B) X 2) 16KB 8 INSTRUCTIONS WIDE
1
S — s \ ! L SWAVSELECTMUXZ153
H 157 > 1]
— OVE
{CACHEHIT[E] ERATHIT] 8 0 Ot
[>GLOBAL HISTORY VECTOR] [n_/
155
0 .
115 DFETCH BUF
e o] s % 185
8 BRANCH TARGET
KX 16} A1KX16 KX 16 UPDSATE TS /
INSTRUCTION
105a | 105b | 105¢ 197 8 BUFFERS
K 4 416 (1ITHREAD)
- - - !
153
~____/— N\ BRANCH SELECT MUXES / \THREADISELECTL\1 53
416 2 BRANCHéS PERCYCLE [GROUP FORMATION]
REDIRECT LOGIC
BRANGH INFORMATION
% 1PN qeuepia) |l [DECODE
125 UCODE
119
121
FROMISU
BRANCH | USED TO UPDATE
EXECUTION| BHT'S AND GLOBAL DISPATCH
SELECTOR FLUSH 113
117b ISU
- FROM FROM FROM
LINK COUNT ISU ISU SU ISSUE
1 17a\/~ 1 1 1 1 1
STACK STACK CR CRL MOVE TO/
(1/THREAD)| |(256X62B) FiLE | [ExecuTion| [FRom spR|| FXY || LSU || FPU
p— | L T(149/ N\ 2 12
. », 151 143
123 147 TQ.GP
D IFAR TQ SP
APAR 107 BUS 141 V@
145

FIG. 1D

WO 2018/193321

5/45

CALLER-SAVED

BULK SAVE OF CALLER-SAVED REGS

PCT/IB2018/051646

'

OPTIONAL, LOAD FUNCTION PARAMS

!

FUNCTION CALL

#

~ 204

BULK RESTORE OF CALLER-SAVED REGS

FIG. 2A

CALLEE-SAVED

BULK SAVE OF CALLEE-SAVED REGS

~ 220

!

FUNCTION BODY

#

~ 222

BULK RESTORE OF CALLEE-SAVED REGS

FIG. 2B

WO 2018/193321 PCT/IB2018/051646

6/45
_____________ -
| 3?0 302 |
| |
| ARCHITECTED PHYSICAL |
| REGISTER REGISTER |
| |
I r0 p123 I
| . |
| |
| |
: :
: 111 023 :
: 12 p58 :
: 13 p67 :
: r14 0245 :
: 15 p14 :
L e _|

WO 2018/193321

PCT/IB2018/051646

7145

RECEIVE REQUEST FOR BULK SAVE |~400

!

PERFORM BULK SAVE |~402

!

CREATE SNAPSHOT |~404

FIG.

4A

RECEIVE REQUEST FOR BULK RESTORE |~-450

CORRESPONDING

SNAPSHOT AVAILABLE?

RESTORE MATCHES BULK

454

452 (

RELOAD VALUES
FROM MEMORY

RESTORE SNAPSHOT

i~ 458

'

VERIFY SNAPSHOT

FIG. 4B

PCT/IB2018/051646

WO 2018/193321

8/45

¥ :LOHSAVYNS JAVS M1N4

145
€l
¢l
L

|

0
Gl
68

V

G0og

3714 ¥31SI193d VOISAHd ~~906

8td
19d
96d
88d

ord
Gvd
¢cd
4%

V

¢0g

|| ._
LOHSVYNS INVYIN wmm |
|
4 ¢ ¥ dl LOHSAVNS |
_
zzd zzd zzd zzd Gl _
ged ged ged ged p1 _
/9d ,9d ,9d ,9d gl _
96d 96d 96d 96d 4N “
ggd ggd ggd ggd L1 “
) |
|
' |
: _
11d Gyd Gid Gid o “
- / |

H31SI93Y H31SI93Y
d3d10 B00S qy0ISAHd Q3LOALIHOYY “

_\\ {

0LS / _
¥0S |
S1OHSAYNS Mov4g110d BZ0S _
379v.L INYNIY H3LSIOFY |
|| |_

PCT/IB2018/051646
9/45

WO 2018/193321

66 yld
% sed zd || zd || wd yld Gl
66 85d
66 £7d ged ged ged Gyed 1
,9d ,9d ,9d ,9d el
pl 8ed
£l 19d 96d 96d 96d gcd 71
Zl 96d ; ; - - L
o oy 88 88 88 e 1l
| ovd .
0 Svd .
5 d || svd || s azog—=—| €z o
68 lid -
¥3LSI93Y NETISRE
d3d10 WOISAHd Q3LoO3LIHOYY

3714 ¥31S1934 TVOISAHd SLOHSVNS MOvETIOY 378V.L INVYNTH H3LSIOFH

PCT/IB2018/051646
10/45

WO 2018/193321

025~ LOHSAYNS 43N0
66 ¥ld _1 ||||||||||||||||||| -
% Ared z2d z2d z2d z2d 1.
66 85d
66 czd ged ged ged ged an
19d 19d 19d 19d el
pl 8ed
£l 19d 96d 96d 96d 96d 71
7l 96d
ggd ggd ggd ggd L
1] 88d
| 9vd .
0 Shd .
s ud 11d Gyd Gyd 0eG—=—| Gpd o
68 lid -
¥3LSI9TY ¥3LSI9TY
d3d10 WOISAHd Q3LOILIHONY

3714 ¥31S1934 TVOISAHd SLOHSVNS MOvETIOY 378V.L INVYNTH H3LSIOFH

PCT/IB2018/051646

WO 2018/193321

11/45

as 9l4
66 rid ;T =
66 85d
66 czd ged ged ged ged an
Jod Jod Jod Jod el
pl 8¢d
£l 19d 96d 96d 96d 96d 71
o 20 88 88 88 88 L
! 9%d .
0 Shd .
Sl ¢cd L1d Gyd Gyd ¢eld 04
69 Lid -
NEIRYOEN NEITSREN
d3d10 WOISAHd Q3LOIALIHOYY
J714 ¥3LSIDFY WIISAH SLOHSJVNS MOvaT10Y Wmm
I18vL INYNTY H3LSIOTY

PCT/IB2018/051646

12/45

WO 2018/193321

9/ 9|4 09. 8G. 9SG, vG. ¢Sl

S B B

T T T T

‘a | @ | % | | 3000d0
J1dILINN QY013

V. 9|4 0L 80.L 90. 0. ¢0.

R B B

T T T T

‘a | @ | % | | 3000d0

007 JFIdILTNA TTIdS
9 9|4

|

dinvAa 01 934 NOYH4d 934 SS3yaay dl LOHSdVYNS _
|

dinvAa 01 934 NOYH4d 934 SS3yaay dl LOHSdVYNS _
|

|

dinvAa 01 934 NOYH4d 934 SS3yaay dl LOHSdVYNS _
! ! 7 7 ! ~
¢l9 0L9 809 909 ¢09 |

WO 2018/193321

13/45

RECEIVE REQUEST FOR BULK RESTORE

PCT/IB2018/051646

~ 800

802

CORRESPONDING
SNAPSHOT AVAILABLE?

RESTORE MATCHES BULK

RESTORE SNAPSHOT |~808

FIG. 8A

RECEIVE REQUEST FOR BULK RESTORE

804
§

RELOAD VALUES
FROM MEMORY

~ 820

822

CORRESPONDING
SNAPSHOT AVAILABLE?

RESTORE SNAPSHOT |~826

FIG. 8B

824
§

RELOAD VALUES
FROM MEMORY

PCT/IB2018/051646
14/45

WO 2018/193321

||| |_

LOHSAYNS 3SN3Y _

¢ ;oIm%zw IAVS MING / LOHSAYNS IV _

- _

006 4 € 4 dl LOHSAVNS |

r— — — - 7 _

zzd zzd _ 2zd _ 2zd Gl _

ged ged _ ged _ ged pld _

d d _ d |! d] |

" ac 19 19 L ed | 19 el |

el 19d 96d 96d _ 96d _ 96d qr “
4 96d | |

L esd 88 8sd | | 88d |, 88 g |

L od | | . |

0 Ghd | _ . _

s pd [ad | [e | Gy o]

68 Ld L _

- NETISRE YASIOR

¥3dT0 WOISAHd QALOALIHOWY |

_

T4 ¥3LSI9FY WIISAHd SLOHSAVNS MOvVET10Y J19vL INYNTY ¥ALSIOTY |

WO 2018/193321 PCT/IB2018/051646

15/45

Snapshot_regs:= obtain_regs() }~1000

!

Prev_snapshot_usable := (snapshot_regs 1002
& unmodified_regs) == snapshot_regs

1004 1 0306

this_snapshot_ID :

Prev_snapshot_usable? prev_snapshot_ID

Make snapshot; Update this_snapshot_ID ~~1010

!

Unmodified_regs := all_regs }~1012

!

prev_snapshot_ID := this_snapshot_ID |_1014

END

FIG. 10A

WO 2018/193321

16/45

INSTRUCTION CHANGES
REGISTER?

1022
{

unmodified_regs := unmodified_regs
AND NOT regs_changed_by_instruction

END 1024

FIG. 10B

ROLLBACK TO
SNAPSHOT?

Prev_snapshot_ID =
rollback_snapshot_ID ~1042

!

unmodified_regs := all_regs j~1044

PCT/IB2018/051646

BEGIN
1030
!

Prev_snapshot_ID = NONE
¢ 1032
{

unmodified_regs := no_regs

END

FIG. 10C

Prev_snapshot_ID = NONE |~1046

!

unmodified_regs := no_regs p~1048

END

FIG. 10D

PCT/IB2018/051646

WO 2018/193321

17/45

401 Old

and

2801~ gl oysdeusTsiy =: g Joysdeus Asid

!

0801 ™

sbai7||e =: shas payipowun

!

8701~ qioysdeusTsiyy ajepdn Joysdeus axep

401 9Ol

and

8GO0 L~ sbeiT||e =: sbais payipowun

!

_1 aroysdeus™yoeqjjol
9501 = g Joysdeus Asld

al 1oysdeus™aaud
=: gl loysdeusTsIy}

)
9101

¢9|qesnTjoysdeus™Asid

.01

sbaJs ou =: shas"paljipowun

~Z901 S3A

!

¢(1OHSdVNS

3JNON = D_IHOSQO:mI>®‘_n_ Ol Movga110y

¢L01™

sbai™||e == shas paiyipowun
=: 9|qesnjoysdeus™Asid

!

0401~

()sbau™||e =:sbaijoysdeug

(_Ni93g)

)
0901 $S01

¢(1OHSdVNS
1SVYTANOAIE 4O OL
NOVAT10Y

¢G0l

060!

(038)

WO 2018/193321 PCT/IB2018/051646

18/45

BEGIN CHECK AND RECOVER - 1

RECEIVE RESTORE OP |~1100

1102

NO

MATCHES REGISTER
SAVE OP?

OBTAIN LAST SNAPSHOT ~1104

¢

ENSURE SERIALIZATION OF 1106
SUBSEQUENT CHECKING |~

+

MISMATCH := FALSE ~1108

>¢

PERFORM OR CREATE I0P TO PERFORM:
LOAD STORED VALUE FROM MEMORY

'

PERFORM OR CREATE |OP TO
PERFORM: COMPARE LOADED VALUE }~1112
TO RESTORED VALUE FOR REGISTER

~1110

1116
§

FLUSH & RESTART
AFTER RESTORE OP

r—

RELOAD FROM
mEmory [~1118

FAILED COMPARE?

MORE REGISTERS
RESTORED?

FIG. 11A

WO 2018/193321 PCT/IB2018/051646

19/45

BEGIN CHECK AND RECOVER - 11

RECEIVE RESTORE OP |~1130

1134
{
RELOAD FROM
MATCHES REGISTER
SAVE OP? MEMORY

OBTAIN LAST SNAPSHOT ~1136

'

ENSURE SERIALIZATION OF SUBSEQUENT CHECKING |~-1138

!

FIRST_MISMATCH = NONE 1140

>¢

PERFORM OR CREATE IOP TO PERFORM:
LOAD STORED VALUE FROM MEMORY

!

PERFORM OR CREATE |OP TO
PERFORM: COMPARE LOADED VALUE |~1144
TO RESTORED VALUE FOR REGISTER

~1142

FLUSH 8 RESTART |_4150
AFTER RESTORE OP

'

RELOADREGSWITH | 4455
18t FAILED COMPARE

L

FAILED COMPARE?

MORE REGISTERS
RESTORED?

FIG. 11B

WO 2018/193321 PCT/IB2018/051646

20/45

BEGIN CHECK AND RECOVER - I1I

RECEIVE RESTORE OP |~1160

1164
§

RELOAD FROM

MATCHES REGISTER MEMORY

OBTAIN LAST SNAPSHOT [~1166

Y

ENSURE SERIALIZATION OF SUBSEQUENT CHECKING 1168

'

MISMATCH SET :=EMPTY SET |~1170

»‘

PERFORM OR CREATE IOP TO PERFORM: 1172
LOAD STORED VALUE FROMMEMORY [~

'

PERFORM OR CREATE IOP TO
PERFORM: COMPARE LOADED VALUE (1174
TO RESTORED VALUE FOR REGISTER

1176

FAILED COMPARE? NO

1178
§

ADD MISCOMPARED REG TO MISMATCH SET

YES

1184
§

RELOAD ALL REGS IN MISMATCH SET

FIG. 11C

WO 2018/193321

21/45

SCAN CODE OF FUNCTION

'

DETERMINE NUMBER OF SKIPPED
RELOADM INSTRUCTIONS

!

~1

PCT/IB2018/051646

200

~1202

INVALIDATE NUMBER OF SNAPSHOTS

EQUAL TO NUMBER OF SKIPPED RELOADM

~1204

END
FIG. 12

1300

DATA CACHE

r-----=--------"--"-"---""-""-""-""-"""-"""-""-""—-"""-""-"—-"\—-"="-"=-"=-= =

1304 1306 1308 1310 1312 I

S | S | S :

ADDRESS TAG V|D|M DATA :

|

0x0001 T }

|

|

OXEXMPL 1o0 || .. :

|

|

|

|

OXEXMPL 1o0 || .. |

|

|

OXBEEF im0 |l I

©- |

FIG. 13A

WO 2018/193321 PCT/IB2018/051646

22/45

CACHE RELOAD

OBTAIN REQUEST TO FETCH INTO CACHE |~1320

'

OBTAIN DATA AND STORE INTO CACHE LINE |~1322

!

COMPUTE TAG AND STORE INTO CACHE ADDRESS TAGS |~1324

!

UPDATE CACHE DIRECTORY: V=1, D=0, M=0 |~~1326

FIG. 13B

STORE INTO CACHE

RECEIVE DATA AND ADDRESS [~1330

1332 1 3534

STORE
CORRESPOND TO A PERFORM CACHE
CACHE LINE? RELOAD

STORE DATA |~1336

'

SETD=1 |~1338

SETM=1 |~1342

FIG. 13C

PCT/IB2018/051646

WO 2018/193321

23/45

Vvl Old

vivl
)

(3IHOVYO NOYS
avol3y “o3)
SdaLS AYIN0DIY
WYO443d

¢SANMANS

JHOVO JHON 0 SANI

S3A

8011~ W10OLONIANOdSIHH0D INIT IHOVO NOH4 119 N NIYLHO

act 9ld

8GEL~ O=W

!

9G€ 1~ VLvdJd0l1S

I

90% 1 ~ SONIddVIN d3LSI193d 40N JO INO §3dA0I3Y

WTWNHO4d3d

)
1104

¢1S3N03Y
NOILVHO1S3d OL
SANOJSIHH0

404

00v 1~

NOILONHLSNI T JAIF03d

(V1S)

avyo13y ¢&ANITIHOVO
JHOYO WHO4Y3d YV OL ANOdS3HH0D
7 34018
) ¢Gel

0G€ |~ SS34aAV aNV v.1vd JAIF03d

d0SS300dd H3IHLO WOH4 3Lvddn

WO 2018/193321 PCT/IB2018/051646

24/45

RECEIVE LM INSTRUCTION |~1420

1424
8

PERFORMLM

TO RESTORATION
REQUEST?

1426

RESTORATION
SNAPSHOT
VALID?

NO

RECOVER ONE OR MORE REGISTER MAPPINGS {~-1428

>¢

OBTAIN MBIT FROM CACHE LINE CORRESPONDING TOLM (1430

1436
1432 :
MARKED AS %EEE%REA cF; Eggﬁ’gfg
UNMODIFIED? (Lo
FROM CACHE)

YES

MORE CACHE
LINES?

FIG. 14B

PCT/IB2018/051646

WO 2018/193321

25/45

oGl Old

0£G |1~ AJONIN NIFLVLS 431SI193d F401S

X

(ALITIOV4 XL ONISN “9'3)
Q7G| ~ ¥344N9 NOILYHOLSTY HILSIDTY AHONIN-NI
HO4 ONINOVHL IONIHISHTLINI LVILINI

!

976G 1~ LOHSAVNS NOILVHOL1S3d 43151034 41V34D

¢1S3N03Y
3191LVdNOONI
d04 ¥ J04 45N NI ALITIOVS
NOILVHO1S3d
44181934

veGl

¢XLH04 3ASN

NI ALITIOVA NOILVYHO1S3d
44181934

S3A

¢Sl

02G 1~ NOILVOIONI 3AVS 44151934 JAI303d

dsl 9ld
9lGL ¥IGL Z1G) 0LG1

v | | | 0

] Y v

2 q | ' | 300040
NI93aL

V&l 9ld

N JONIYIHYIINI LVLS
80G1™1 TWNOILOVSNYHL 40 ONINOVML JLVILINI

!

906 |~ LOHSdVNS XOVETIOH 1¥YNOILOVSNYYL 31V340

J

| ©oniyovaL ¥314ng ¥y AMOWIW-NI F1avsIa
70S 1™ aNy) NOILYHOLSIY ¥3LSIOFY ILVYAILOYIC

¢3ASN

JAILOV NI NOILVHOLS3d
44181934

ON

00G 1~ NI©391 3AI303d

WO 2018/193321

26/45

PCT/IB2018/051646

RECEIVE ROLLBACK REQUEST (E.G., INTERFERENCE
OR ABORT INSTRUCTION RECEIVED)

~1540

#

ROLLBACK STATE (AND INCLUDING
PC AND IN-MEMORY EFFECTS)

+

INDICATE TRANSACTIONAL ROLLBACK INACTIVE

~1542

~— 1544

'

DEACTIVATE TM INTERFERENCE TRACKING |~

FIG. 15D

RECEIVE RR RESTORE REQUEST

~—1550

1552
IN-CORE
RR ACTIVE?

YES

1556

INTERFERENCE
WITH IN-MEMORY RR
BUFFER?

YES

1546

RECOVER FROM
MEMORY STATE

~1554

DEACTIVATERR

IN-MEMORY TRACKING

~-1558

IN-MEMORY EFFECT ROLLBACK)

RECOVER INDICATED REGISTERS FROM
IN-CORE STATE (AND EXCLUDE PC AND

'

DEACTIVATE RR IN-MEMORY TRACKING

FIG. 15E

~1560

~1562

WO 2018/193321 PCT/IB2018/051646

27145

RECEIVE STMINSTRUCTION |~-1600

1602 1 6304

AVAILABLE
PERFORM SNAPSHOT
ENTRYEQ ASCNKA?PSHOT STACK OVERFLOW

UPDATE TOS |~1606

'

CREATE SNAPSHOT 1608

'

STORE SNAPSHOTID 1610

'

STORE REGS TO MEMORY ~1612

'

STORE MEMORY ADDRESS RANGE ON STACK 1614

'

SET SNAPSHOT STACK ENTRY VALID FIELD 1616

'

UPDATE OTHER FIELDS ~1618

END

FIG. 16A

PCT/IB2018/051646

WO 2018/193321

28/45

29l 9Old

¢SAILINT JHONW
8Y91

991~ AYLN3 INJFHdNO HO4 119 dNVA 1353y

$S534daav
1S3N03Y SIHL STHOLVYN

ON AdLINT d04 JONVY

S$634dAav

vrol

¢¥91~] AYLNd HOV3 HO4

dol 9ld

¢SAIHLINT 3HON
8291

9291 ™

AdLIN3 INJHHNO §04 119 dINMVA 13534

$S534daav
3401S SIHL S3HOLVN

L

31vaddn ¥1va ¥0 ‘SS30JV IAISNTOX
404 1S3NO3IY ILONTY IAIFO3Y

0v9 1~

(LLavis)

ON

AdLINT d04 JONVY
$534aav

v2ol

€291~ AYLIN3 HOVZ HOd

3

0291

$5340daV 3401S HLIM d0SS300dd
NOYS LM AJOWEIN JAIFO3H

(LLavis)

WO 2018/193321 PCT/IB2018/051646

29/45

RECEIVE LM INSTRUCTION [~1660

1 6564

TO RESTORATION PERFORMLIM |———»

REQUEST?

1670
1666 !
PERFORM RECOVERY
RESTORATION STEPS (E.G., RELOAD |— =]
VALID? FROM CACHE)

RECOVER ONE OR MORE REGISTER MAPPINGS |~ 1668

END

FIG. 16D

WO 2018/193321 PCT/IB2018/051646

30/45

RECEIVE RESTORATION REQUEST |~1700

1 7304
SNAPSHOT
VALID? RESTORE FROM MEMORY
FOR EACH REGISTER TO BE RESTORED 1706
1712
§

1708 RESTORE THIS REGISTER FROM

NO MEMORY (E.G., BY ALLOCATING A
NEW RENAME REGISTER AND
LOADING ITS VALUE FROM MEMORY)

REGISTER
CAN BE RESTORED FROM
SNAPSHOT?

RESTORE THIS REGISTERFROM | 1710
SNAPSHOT (E.G., BY UPDATING
RENAME MAP)

RESTORE MORE
REGISTERS?

FIG. 17

WO 2018/193321

31/45

INSTRUCTION TO INVALIDATE RESTORATION | 1500
SNAPSHOT ON CONTEXT SWITCH RECEIVED

'

CLEAR SNAPSHOT STACK OR 1802
SINGLE ENTRY ON STACK [~

'

CLEAR MARKING BITS IN CACHE |~1804

FIG. 18A

1820

DETECT
CHANGES IN PROCESSOR STATE
INDICATIVE OF CONTEXT
SWITCH?

!

CLEAR MARKING BITS IN CACHE |~1824

PCT/IB2018/051646

CLEAR SNAPSHOT STACK OR A SINGLE ENTRY |~1822

FIG. 18B
b =)
: DYNAMICALLY SELECT INVALIDATION INSTRUCTION OR HEURISTIC |
I e OPERATING SYSTEM RECOGNIZES INSTRUCTION 1830
| Y -> SELECT INSTRUCTION OR HEURISTIC |
| N - > USE HEURISTIC |
_____________ _|
CLEAR ONE OR MORE ENTRIES OF SNAPSHOT STACK |~1834

'

CLEAR MARKING BITS IN CACHE f~1836

FIG. 18C

WO 2018/193321

1906
§

CREATERR
SNAPSHOT FOR TX

32/45

RECEIVE TBEGIN

PCT/IB2018/051646

~—1900

REGISTER
RESTORATION IN
ACTIVE USE?

YES SNAPSHOT

REQUEST?

MORE
SNAPSHOTS CAN
BE MADE?

COMPATIBLE WITH TX SNAPSHOT

1902
NO

YES

DEACTIVATE RR SNAPSHOT
(OPTIONALLY STORE SNAPSHOT IN
MEMORY IF NOT PREV. STORED)

1910

r

CREATE TRANSACTIONAL ROLLBACK SNAPSHOT

Y

INITIATE TRACKING OF TRANSACTIONAL
STATE INTERFERENCE

FIG. 19A

~1912

1914

WO 2018/193321 PCT/IB2018/051646

33/45

RECEIVE REGISTER SAVE INDICATION |~1920

REGISTER
RESTORATION FACILITY IN
USE?

YES

1924

MORE
SNAPSHOT CONTEXTS
AVAILABLE?

YES

CREATE REGISTER ~1926 NO
RESTORATION SNAPSHOT

'

INITIATE INTERFERENCE TRACKINGFOR | _1928
IN-MEMORY REGISTER RESTORATION
BUFFER (E.G., USING TX FACILITY)

r

STORE REGISTER STATE IN MEMORY |~1932

FIG. 19B

WO 2018/193321

PCT/IB2018/051646

34/45

RECEIVE SINGLE STORE REQUEST

~ 2000

2002

POSSIBLE
START OF STORE
SEQUENCE?

TRACK PROSPECTIVE RR
SNAPSHOT REQUEST WITH
PRESENT STORE

20504

PERFORM STORE(S)

~2006

INSTRUCTION IS A
CONTINUATION OF STORE
REQUEST?

2010
§

ADD NEXT INSTRUCTION
TO STORE REQUEST

2012

MORE
INSTRUCTIONS?

NO

20318

PERFORM STORE(S)

PERFORMRR

sNAPsHoT [2016

FIG. 20A

WO 2018/193321

PCT/IB2018/051646

35/45

RECEIVE SINGLE LOAD REQUEST

~ 2040

2042

POSSIBLE
START OF RESTORE
SEQUENCE?

TRACK PROSPECTIVE RR
SNAPSHOT RESTORE REQUEST
WITH PRESENT LOAD

2%44

PERFORM LOAD(S) .

~ 2046

REQUEST?

2%58

PERFORMLOAD(S) |—m

ADD NEXT INSTRUCTION
TO RESTORE REQUEST

PERFORM RR SNAPSHOT
RESTORE METHOD

2052

MORE
INSTRUCTIONS?

NO

FIG. 20B

WO 2018/193321 PCT/IB2018/051646

36/45
2112
{
CPU
2110
2114~ 4+—IFU { 21508
A STORE REQUESTS
LSU 2102
9118 EXECUTION + S
UNITS STORE QUEUE
ADDRESS | | DATA 21500
SRQ
WRITE BACK
T | LOGIC
2104 2106
STORE REQUEST WRITE BACK
2122
{
MEMORY SUBSYSTEM
CACHES 1—2124
MEMORY 12126

FIG. 21A

WO 2018/193321 PCT/IB2018/051646

37/45

START

STORE QUEUE
EMPTY?

BUS
AVAILABLE
WRITE?

SELECT SRQ ELEMENT |~2154

2156

ELEMENT
CORRESPONDS TORR
RESTORATION REQUEST AND ELEMENT
ADDR SMALLER THAN STACK
POINTER?

WRITE ELEMENT |_2160
TO MEMORY

#

REMOVE ELEMENT | _2162
FROM STORE QUEUE

REMOVE ELEMENT FROM STORE L._2158
QUEUE WITHOUT WRITING

END

FIG. 21B

WO 2018/193321 PCT/IB2018/051646

38/45

START

STORE QUEUE
EMPTY?

BUS
AVAILABLE FOR
WRITE?

SELECT SRQ ELEMENT |~2184

2186

ELEMENT

CORRESPONDS TORR
RESTORATION REQUEST AND WRITE ELEMENT |_2190
CORRESPONDING REGISTER TO MEMORY
RESTORE COMPLETE? ‘
REMOVE ELEMENT | 2192
FROM STORE QUEUE

REMOVE ELEMENT FROM STORE L._2188
QUEUE WITHOUT WRITING

END

FIG. 21C

WO 2018/193321

39/45

PCT/IB2018/051646

2200
2209 RECOVERY FILE QUEUE
- 2204\ OLDEST INSTR 2200
-
INSTR.TAG ——— = Rn 0x0101BEEF
22308 2202

Rk OxBEEFBEEF
INSTR. TAG Rm 0x0000BEEF
INSTR.TAG —— =
HEAD Rn 0x0101BEEF

S -
2210 YOUNGEST INSTR
FIG. 22A
INSTRUCTION CACHE |~2220
2222 —~Fu
2224 —1~IDU
2226 REGISTERFILES 0
2232
2230 ¢ I l 22328
COMPLETION &

~{ EXECUTION UNITS |~a—mt 22000 o Sl [RECOVERY BUFFER

FIG. 22B

PCT/IB2018/051646

WO 2018/193321

40/45

ovec ™

and

dec 9Ol

LOHSJVNS 1530710 41v00T1v3ad

¢(1OHSAVNS
dd SI LOHSJVNS

JAILOVNI ANOO34
Ol LOHSdVNS
153070 d04 LIVM

LOHSVYNS 153010 19313S

el

44181934
18V 1IVAY
A1VOOTIV

¢A1aVIIVAY
d31S193d 1VOISAHd
d4snNn

0oeee

)
¢eed

)
8ced

vee 9ld

aNd

0l€C™

NI©34

44181934
F1aV1IVAY
A1VOOTIV

)
¢0ed

d41S193d d4.10313S LVOOT1V

80€¢™ 31yn0T1vad (TWNOILO)

90£Z~{ ¥3aLSIDFY YV (TYNOILLO)

Y0€C™

!

LOHSJVNS
NOILVHOLS3d 44181934

mo+

LOHSJVNS NI F18V1IVAVNN

!

S1OHSAVNS NOILVHOLS3Y
d41S1934 NI AINO
d3sn 4418193y L2314S

¢A1aVIIVAY
d31S193d TVOISAHd
d4snnNn

NI©34

WO 2018/193321 PCT/IB2018/051646

41/45

OBTAIN, BY A PROCESSOR, A LOAD REQUEST TO 2400
RESTORE A PLURALITY OF ARCHITECTED REGISTERS

RESTORE, BASED ON OBTAINING THE LOAD REQUEST, ONE OR
MORE ARCHITECTED REGISTERS OF THE PLURALITY OF
ARCHITECTED REGISTERS ~ 2402

THE RESTORING USES A SNAPSHOT THAT MAPS ARCHITECTED
REGISTERS TO PHYSICAL REGISTERS TO REPLACE ONE OR
MORE PHYSICAL REGISTERS CURRENTLY ASSIGNED TO THE
ONE OR MORE ARCHITECTED REGISTERS WITH ONE OR MORE
PHYSICAL REGISTERS OF THE SNAPSHOT CORRESPONDING TO
THE ONE OR MORE ARCHITECTED REGISTERS ~ 2404

THE ONE OR MORE ARCHITECTED REGISTERS ARE
RESTORED WITHOUT A COPYING OF VALUES FOR THE ~ 2406
ONE OR MORE ARCHITECTED REGISTERS FROM MEMORY

DETERMINE, BASED ON OBTAINING THE LOAD REQUEST,
WHETHER A SNAPSHOT CORRESPONDING TO THE ONE OR
MORE ARCHITECTED REGISTERS IS AVAILABLE ~ 2408

PERFORM THE RESTORING USING THE SNAPSHOT, BASED ON
THE DETERMINING INDICATING THE SNAPSHOT IS AVAILABLE ——2410

RESTORE THE ONE OR MORE ARCHITECTED REGISTERS BY |~ 2412
LOADING VALUES FROM MEMORY INTO THE ONE OR MORE
ARCHITECTED REGISTERS, BASED ON THE DETERMINING
INDICATING A SNAPSHOT CORRESPONDING TO THE ONE OR
MORE ARCHITECTED REGISTERS IS UNAVAILABLE

FIG. 24A

WO 2018/193321 PCT/IB2018/051646

42/45

DETERMINING INCLUDES USING A SNAPSHOT STACK TO ~— 2420
DETERMINE WHETHER A SNAPSHOT CORRESPONDING TO
THE ONE OR MORE ARCHITECTED REGISTERS IS AVAILABLE

THE SNAPSHOT STACK INCLUDES A PLURALITY OF ENTRIES —}— 2422

AN ENTRY OF THE SNAPSHOT STACK INCLUDES A SNAPSHOT
IDENTIFIER IDENTIFYING THE SNAPSHOT ~ 2424

THE ENTRY OF THE SNAPSHOT STACK MAY INCLUDE
ADDITIONAL INFORMATION INCLUDING, E.G., AN ADDRESS IN
MEMORY OF CONTENTS OF THE ONE OR MORE ARCHITECTED
REGISTERS, AN INDICATION OF THE ONE OR MORE
ARCHITECTED REGISTERS ASSOCIATED WITH THE SNAPSHOT,
AND/OR A VALIDITY INDICATOR INDICATING WHETHER THE
SNAPSHOT IS VALID ~ 2426

CREATE THE SNAPSHOT TO SAVE A MAPPING OF THE
ONE OR MORE PHYSICAL REGISTERS TO THE ONE OR
MORE ARCHITECTED REGISTERS ~ 2428

THE CREATING THE SNAPSHOT IS PERFORMED BASED
ON OBTAINING A SAVE REQUEST REQUESTING A SAVING
OF THE ONE OR MORE ARCHITECTED REGISTER~- 2430

THE LOAD REQUEST INCLUDES A LOAD MULTIPLE
INSTRUCTION, AND THE SAVE REQUEST ~— 2432
INCLUDES A STORE MULTIPLE INSTRUCTION

FIG. 24B

WO 2018/193321 PCT/IB2018/051646

43/45
2500
2502 2504 2506
NATIVE CPU MEMORY
INPUT / OUTPUT
2510—REGISTERS] _EM&%SEOR
2512f 2308
FIG. 25A
/,-2504
2512 MEMORY
Fr—t—_————— - 25?0
| [INSTRUCTION] ! ST
25521 FETCHNG |« INSTRUCTIONS
: ROUTINE :
2556
| | 2
| INSTRUCTION] !
2564 — " TRANSLATION|——# || STNRAJ'CVT%ONS
| |__ROUTINE |
| + |
' |
EMULATION
2560— " CONTROL | |
| |_ROUTINE |
L — = _

FIG. 25B

PCT/IB2018/051646

WO 2018/193321

44/45

| (P

_ﬁmﬁ

ars

\
4 - ==_= LA \
ol e \ v\ N 4 ! C
\ ! \ Ya
z . / N/ \ ; \
é - g \ / \

iii?\
~

\\

d

4
‘_

[—

/ \

0S e

=
-

& N¥G

7
d
!g i Vd
N\
\\
] \
/
e
”’

. /
P A
Sy

o~
~_/ ~
=) _ -~

~
s/ \:
==
/
/

\ ;
—
—_— \\

\

\

\
|=—]

9¢ 9ld

VS

10)4°

PCT/IB2018/051646
45/45

WO 2018/193321

/¢ 9ld

aIeM0S pUE SlempleH
\N@ b9 N~©
89 RS 99 o ~ SINeS 19
QJeMYoS uogealjddy mc_v__nw\éoz) m%m_mm €9 eswm__w_oz 8&&:_@
oseqeleq omjey U abelo)S m_o\mow U
® B @ = - - 0
SL—~ VL~ €L~ 2. L uonezienyip
SUBIN suoedy|ddy SYIONON m@em wHojzow
[Ny [ENHIA [eNpIA eNJIA lenuiA
5 (B 6 os
! /
Gé8 ¥8 €8 é8 18 Juswabeue|y

{ [!

! !
juswijjin pue EOE@@NCN_\/_ [eLod Jasn mc_o_._n_ pue mc_co_w_>0‘_n_
Bujuueld 1S [9A87 B0ISS BuLsjoly 30N0SaY 05
/

SPEOPLOA
5 INEN T
uISS990I1d mc_wwwoo‘_n_ Buissaso. uoneonpg
uoneIo)Say uonoesuel | S_K_ME Emma wooJsse|) Qccm
1g)sibay [enuIA Jswdorsg
AIRMYOS
(
]

w w w | w
96 G6 v6 €6 ¢6 16

Juswsbeuey
910423y uonebineN

pue Buiddepy

INTERNATIONAL SEARCH REPORT

International application No.

PCT/1B2018/051646

A.

CLASSIFICATION OF SUBJECT MATTER
GOG6F 9/38(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS,SIPOABS,DWPL CNKI: load, request, restore, architected, register, physical, snapshot, map, value

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X
1998 (1998-08-11)
the description,

US 5794024 A (INTERNATIONAL BUSINESS MACHINES CORPORATION) 11 August

column 2 line 34 to column 5 line 56

1-20

the whole document

US 2015227355 A1 (NETFLIX INC.) 13 August 2015 (2015-08-13)

1-20

the whole document

WO 2013026055 A1 (QUALCOMM INC.) 21 February 2013 (2013-02-21)

1-20

DFurther documents are listed in the continuation of Box C.

See patent family annex.

£

NG

“R

“p

“”

“pr

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date
document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

«Tr

ey

wy

“ &

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

100088
China

Facsimile No. (86-10)62019451

24 June 2018 03 July 2018
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing ZHANG.,Yan

Telephone No. 86-(10)-62089421

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2018/051646

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
usS 5794024 A 11 August 1998 None
us 2015227355 Al 13 August 2015 us 9430212 B2 30 August 2016
WO 2013026055 Al 21 February 2013 us 2011320790 Al 29 December 2011
us 8438372 B2 07 May 2013

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - wo-search-report
	Page 121 - wo-search-report

