07/016094 A2 | V0 00 0 O AR

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O 0

International Bureau

(43) International Publication Date
8 February 2007 (08.02.2007)

(10) International Publication Number

WO 2007/016094 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2006/028852

(22) International Filing Date: 25 July 2006 (25.07.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/192,303 28 July 2005 (28.07.2005) US
(71) Applicant (for all designated States except US): CAS-
SATT CORPORATION [US/US]; 1740 Technology

Drive, San Jose, CA 95110 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LINDLEY, Craig,
A. [US/US]; 17925 Black Squirrel Road, Colorado Springs,
CO 80908 (US). ANDREASEN, Clayton, D. [US/US];
12800 Shannon Parkway, Rosemount, MN 55068 (US).
CHURCH, Dann, M. [US/US]; 7119 Winthrop Ct., Castle
Rock, CO 80104 (US). ENGQUIST, James, D. [US/US];
7140 Oak Hills Lane, Colorado Springs, CO 80919 (US).

(74) Agent: SIEFFERT, Kent, J.; Shumaker & Sieffert, P.A.,
8425 Seasons Parkway, Suite 105, St. Paul, MN 55125
(US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,

LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,

NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,

SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,

UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: UNIVERSAL POWER CONTROL SYSTEM FOR AN AUTONOMICALLY CONTROLLED DISTRIBUTED COM-

PUTING SYSTEM

CONTROL NODE

VENDOR-SPECIFIC
POWER CONTROL
MODULE

362A

Y |

VENDOR-SPECIFIC
POWER CONTROL

1

SERVICE LEVEL

MONITORING AUTOMATION

4

MODULE

BUSINESS LOGIC 362B

SUBSYSTEM

202 204

INFRASTRUCTURE [

TIER
206

\ J

UNIVERSAL

POWER CONTROL

t t

l MODULE

360

I

STATUS DATA

N

3 JF

FABRIC ACTIONS

(57) Abstract: A distributed computing system contains one or more application nodes. One or more control nodes provide for the
& efficient and automated allocation and management of computing functions and resources within the distributed computing system.
The control node includes an automation subsystem that provides autonomic power control for the application nodes, regardless of
which vendor manufactured the application nodes. For power controllers not specifically supported by the distributed computing
system, a universal power controller responds to power down instructions by causing a targeted application node to execute an idle
software image and reports that the application node has been successfully powered down.



WO 2007/016094 A2 |00 0T 0000 AR 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.



WO 2007/016094 PCT/US2006/028852

UNIVERSAL POWER CONTROL SYSTEM FOR AN AUTONOMICALLY
CONTROLLED DISTRIBUTED COMPUTING SYSTEM

TECHNICAL FIELD
[0001] The invention relates to computing environments and, more specifically, to

distributed computing systems.

BACKGROUND

[0002] Distributed computing systems are increasingly being utilized to support
business as well as technical applications. Typically, distributed computing
systems are constructed from a collection of computing nodes that combine to
provide a set of processing services to implement distributed computing
applications. Each of the computing nodes in the distributed computing system is
typically a separate, independent computing device interconnected with each of the
other computing nodes via a communications medium, e.g., a network.

[0003] One challenge with distributed computing systems is the programmatic
control of power to the computing nodes. With programmatic power control, a
control node of the distributed computing system can, for example, power-up,
power-down, and power cycle computing nodes without an administrator having to
physically interact with the controlled computing nodes. An administrator of the
distributed computing environment may need programmatic power control
functions for a variety of purposes. For instance, the administrator may want the
distributed computing system to power-down a computing node in which an
application has become non-responsive.

[0004] Differing specifications and communications protocols complicate the task
of programmatic power control. A distributed computing system may be
composed of computing nodes manufactured by various vendors. Vendors equip
some of the computing nodes with special power control hardware units. The
power control hardware units facilitate remote power control over the managed
nodes. However, power control hardware units supplied by one vendor are

frequently incompatible with power control hardware units supplied by a second



WO 2007/016094 PCT/US2006/028852

vendor. This is because each vendor may use a different protocol to facilitate
communication with power control hardware unit or a different instruction set
within the power control hardware unit. For instance, the power control hardware
units manufactured by a first vendor may use secure shell (“SSH”) commands to
communicate with a control node while a second vendor may use telnet.

[0005] Traditionally, administrators of distributed computing systems have
overcome these differences in vendor specifications by creating custom software
modules for each type of power control hardware unit. This approach has
numerous disadvantages. For instance, writing and debugging multiple software
modules is time consuming and expensive. The fact that vendors frequently
upgrade the firmware installed on power control hardware units further magnifies
expenses. With each upgrade of the power control firmware, the administrators of
the distributed computing system must test the power control hardware units to
guarantee that the custom software modules written to support the power control

hardware units work with the latest revision of the power control firmware.

SUMMARY

[0006] In general, the invention is directed to a distributed computing system that
conforms to a multi-level, hierarchical organizational model. One or more control
nodes provide for the efficient and automated allocation and management of
computing functions and resources within the distributed computing system in
accordance with the organization model. Programmatic power control is one
aspect of managing computing resources in the distributed computing system. As
described herein, the control nodes may implement programmatic power control in
a way that is not vendor-specific.

[0007] In one embodiment, the invention is directed to a distributed computing
system comprising an application node coupled to a communications network; a
control node to provide autonomic control of the application node; and a universal
power control module. In response to a power down instruction from the control

node, the universal power control module causes an idle image to execute on the



WO 2007/016094 PCT/US2006/028852

application node and indicates to the control node that the application node
executing the idle image is in powered down state.

[0008] In another embodiment, the invention is directed a method that comprises
receiving a power down instruction from a control node of a distributed computing
system. The power down instruction requests that an application node of a
distributed computing system be transitioned to a powered down state. In response
to the power down instruction, the method also includes causing an idle software
image to execute on the application node.

[0009] In another embodiment, a computer-readable medium contains instructions
that cause a programmable processor to receive status data from a distributed
computing system regarding an actual state of application nodes in the distributed
computing system; determine whether to perform a power down operation on a
target application node in the distributed computing system based on the status
data; and perform the power down operation by executing an idle software image
on the target application node and emulating a powered down state.

[0010] The details of one or more embodiments of the invention are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the invention will be apparent from the description and drawings,

and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0011] FIG. 1 is a block diagram illustrating a distributed computing system
constructed from a collection of computing nodes.

[0012] FIG. 2 is a schematic diagram illustrating an example of a model of an
enterprise that logically defines an enterprise fabric.

[0013] FIG. 3 is a flow diagram that provides a high-level overview of the
operation of a control node when configuring the distributed computing system.
[0014] FIG. 4 is a flow diagram illustrating exemplary operation of the control
node when assigning computing nodes to node slots of tiers.

[0015] FIG. 5 is a flow diagram illustrating exemplary operation of a control node
when adding an additional computing node to a tier to meet additional processing

demands.



WO 2007/016094 PCT/US2006/028852

[0016] FIG. 6 is a flow diagram illustrating exemplary operation of a control node
harvesting excess node capacity from one of the tiers and returning the harvested
computing node to the free pool.

[0017] FIG. 7 is a screen illustration of an exemplary user interface for defining
tiers in a particular domain.

[0018] FIG. 8 is a screen illustration of an exemplary user interface for defining
properties of the tiers.

[0019] FIG. 9 is a screen illustration of an exemplary user interface for viewing
and identify properties of a computing node.

[0020] FIG. 10 is a screen illustration of an exemplary user interface for viewing
software images.

[0021] FIG. 11 is a screen illustration of an exemplary user interface for viewing a
hardware inventory report.

[0022] FIG. 12 is a screen illustration of an exemplary user interface for viewing
discovered nodes that are located in the free pool.

[0023] FIG. 13 is a screen illustration of an exemplary user interface for viewing
users of a distributed computing system.

[0024] FIG. 14 is a screen illustration of an exemplary user interface for viewing
alerts for the distributed computing system.

[0025] FIG. 15 is a block diagram illustrating one embodiment of control node that
includes a monitoring subsystem, a service level automation infrastructure (SLAI),
and a business logic tier (BLT).

[0026] FIG. 16 is a block diagram illustrating one embodiment of the monitoring
subsystem.

[0027] FIG. 17 is a block diagram illustrating one eml:_)odiment of the SLAI in
further detail.

[0028] FIG. 18 is a block diagram of an example working memory associated with
rule engines of the SLAL

[0029] FIG. 19 is a block diagram illustrating an example embodiment for the BLT
of the control node.

[0030] FIG. 20 is a block diagram illustrating one embodiment of a rule engine in
further detail.



WO 2007/016094 PCT/US2006/028852

[0031] FIG. 21 is a block diagram illustrating another example embodiment of the
control node.
[0032] FIG. 22 is a flowchart illustrating an exemplary mode of operation for a

universal power control module executing on the control node.

DETAILED DESCRIPTION

[0033] FIG. 1 is a block diagram illustrating a distributed computing system 10
constructed from a collection of computing nodes. Distributed computing system
10 may be viewed as a collection of computing nodes operating in cooperation
with each other to provide distributed processing.

[0034] In the illustrated example, the collection of computing nodes forming
distributed computing system 10 are logically grouped within a discovered pool
11, a free pool 13, an allocated tiers 15 and a maintenance pool 17. In addition,
distributed computing system 10 includes at least one control node 12.

[0035] Within distributed computing system 10, a computing node refers to the
physical computing device. The number of computing nodes needed within
distributed computing system 10 is dependent on the processing requirements. For
example, distributed computing system 10 may include 8 to 512 computing nodes
or more. Each computing node includes one or more programmable processors for
executing software instructions stored on one or more computer-readable media.
[0036] Discovered pool 11 includes a set of discovered nodes that have been
automatically “discovered” within distributed computing system 10 by control
node 12. For example, control node 12 may monitor dynamic host communication
protocol (DHCP) leases to discover the connection of a node to network 18. Once
detected, control node 12 automatically inventories the attributes for the discovered
node and reassigns the discovered node to free pool 13. The node attributes
identified during the inventory process may include a CPU count, a CPU speed, an
amount of memory (e.g., RAM), local disk characteristics or other computing
resources. Control node 12 may also receive input identifying node attributes not
detectable via the automatic inventory, such as whether the node includes I/O, such
as HBA. Further details with respect to the automated discovery and inventory

processes are described in U.S. Patent Application No. 11/070,851, having attorney

5



WO 2007/016094 PCT/US2006/028852

docket no. 1072-009US01, entitled “AUTOMATED DISCOVERY AND
INVENTORY OF NODES WITHIN AN AUTONOMIC DISTRIBUTED
COMPUTING SYSTEM,” filed March 2, 20035, the entire content of which is
hereby incorporated by reference.

[0037] Free pool 13 includes a set of unallocated nodes that are available for use
within distributed computing system 10. Control node 12 may dynamically
reallocate an unallocated node from free pool 13 to allocated tiers 15 as an
application node 14. For example, control node 12 may use unallocated nodes
from free pool 13 to replace a failed application node 14 or to add an application
node to allocated tiers 15 to increase processing capacity of distributed computing
system 10.

[0038] In general, allocated tiers 15 include one or more tiers of application nodes
14 that are currently providing a computing environment for execution of user
software applications. In addition, although not illustrated separately, application
nodes 14 may include one or more input/output (I/O) nodes. Application nodes 14
typically have more substantial I/O capabilities than control node 12, and are
typically configured with more computing resources (e.g., processors and
memory). Maintenance pool 17 includes a set of nodes that either could not be
inventoried or that failed and have been taken out of service from allocated tiers
15.

[0039] Control node 12 provides the system support functions for managing
distributed computing system 10. More specifically, control node 12 manages the
roles of each computing node within distributed computing system 10 and the
execution of software applications within the distributed computing system. In
general, distributed computing system 10 includes at least one control node 12, but
may utilize additional control nodes to assist with the management functions.
[0040] Other control nodes 12 (not shown in FIG. 1) are optional and may be
associated with a different subset of the computing nodes within distributed
computing system 10. Moreover, control node 12 may be replicated to provide
primary and backup administration functions, thereby allowing for graceful

handling a failover in the event control node 12 fails.



WO 2007/016094 PCT/US2006/028852

[0041] Network 18 provides a communications interconnect for control node 12
and application nodes 14, as well as discovered nodes, unallocated nodes and‘
failed nodes. Communications network 18 permits internode communications
among the computing nodes as the nodes perform interrelated operations and
functions. Communications network 18 may comprise, for example, direct
connections between one or more of the computing nodes, one or more customer
networks maintained by an enterprise, local area networks (LANSs), wide area
networks (WANS) or a combination thereof. Communications network 18 may
include a number of switches, routers, firewalls, load balancers, and the like.
[0042] In one embodiment, each of the computing nodes within distributed
computing system 10 executes a common general-purpose operating system. One
example of a general-purpose operating system is the Windows™ operating system
provided by Microsoft Corporation. In some embodiments, the general-purpose
operating system such as the Linux kernel may be used.

[0043] In the example of FIG. 1, control node 12 is responsible for software image
management. The term “software image” refers to a complete set of software
loaded on an individual computing node, including the operating system and all
boot code, middleware and application files. System administrator 20 may interact
with control node 12 and identify the particular types of software images to be
associated with application nodes 14. Alternatively, administration software
executing on control node 12 may automatically identify the appropriate software
images to be deployed to application nodes 14 based on the input received from
system administrator 20. For example, control node 12 may determine the type of
software image to load onto an application node 14 based on the functions assigned
to the node by system administrator 20. Application nodes14 may be divided into
a number of groups based on their assigned functionality. As one example,
application nodes 14 may be divided into a first group to provide web server
functions, a second group to provide business application functions and a third
group to provide database functions. The application nodes 14 of each group may
be associated with different software images.

[0044] Control node 12 provides for the efficient allocation and management of

the various software images within distributed computing system 10. In some



WO 2007/016094 PCT/US2006/028852

embodiments, control node 12 generates a “golden image™ for each type of
software image that may be deployed on one or more of application nodes 14. As
described herein, the term “golden image” refers to a reference copy of a complete
software stack.

[0045] System administrator 20 may create a golden image by installing an
operating system, middleware and software applications on a computing node and
then making a complete copy of the installed software. In this manner, 2 golden
image may be viewed as a “master copy” of the software image for a particular
computing function. Control node 12 maintains a software image repository 26
that stores the golden images associated with distributed computing system 10.
[0046] Control node 12 may create a copy of a golden image, referred to as an
“image instance,” for each possible image instance that may be deployed within
distributed computing system 10 for a similar computing function. In other words,
control node 12 pre-generates a set of K image instances for a golden image, where
K represents the maximum number of image instances for which distributed
computing system 10 is configured for the particular type of computing function.
For a given computing function, control node 12 may create the complete set of
image instance even if not all of the image instances will be initially deployed.
Control node 12 creates different sets of image instances for different computing
functions, and each set may have a different number of image instances depending
on the maximum number of image instances that may be deployed for each set.
Control node 12 stores the image instances within software image repository 26.
Each image instance represents a collection of bits that may be deployed on an
application node.

[0047] Further details of software image management are described in co-pending
U.S. patent application Ser. No. 11/046,133, entitled “MANAGEMENT OF
SOFTWARE IMAGES FOR COMPUTING NODES OF A DISTRIBUTED
COMPUTING SYSTEM,” filed January 28, 2005 and co-pending U.S. patent
application Ser. No. 11/046,152, entitled “UPDATING SOFTWARE IMAGES
ASSOCIATED WITH A DISTRIBUTED COMPUTING SYSTEM,” filed January

28, 2005, each of which is incorporated herein by reference in its entirety.



WO 2007/016094 PCT/US2006/028852

[0048] In general, distributed computing system 10 conforms to a multi-level,
hierarchical organizational model that includes four distinct levels: fabric,
domains, tiers and nodes. Control node 12 is responsible for all levels of
management, including fabric management, domain creation, tier creation and
node allocation and deployment.

[0049] As used herein, the “fabric” level generally refers to the logical constructs
that allow for definition, deployment, partitioning and management of distinct
enterprise applications. In other words, fabric refers to the integrated set of
hardware, system software and application software that can be “knitted” together
to form a complete enterprise system. In general, the fabric level consists of two
elements: fabric components or fabric payload. Control node 12 provides fabric
management and fabric services as described herein.

[0050] In contrast, a “domain” is a logical abstraction for containment and
management within the fabric. The domain provides a logical unit of fabric
allocation that enables the fabric to be partitioned amongst multiple uses, e.g.
different business services.

[0051] Domains are comprised of tiers, such as a 4-tier application model (web
server, application server, business logic, persistence layer) or a single tier
monolithic application. Fabric domains contain the free pool of devices available
for assignment to tiers.

[0052] A tier is a logically associated group of fabric components within a domain
that share a set of attributes: usage, availability model or business service mission.
Tiers are used to define structure within a domain e.g. N-tier application, and each
tier represents a different computing function. A user, such as administrator 20,
typically defines the tier structure within a domain. The hierarchical architecture
may provide a high degree of flexibility in mapping customer applications to
logical models which run within the fabric environment. The tier is one construct
in this modeling process and is the logical container of application resources.
[0053] The lowest level, the node level, includes the physical components of the
fabric. This includes computing nodes that, as described above, provide operating
environments for system applications and enterprise software applications. In

addition, the node level may include network devices (e.g., Ethernet switches, load



WO 2007/016094 PCT/US2006/028852

balancers and firewalls) used in creating the infrastructure of network 18. The
node level may further include network storage nodes that are network connected
to the fabric.

[0054] System administrator 20 accesses administration software executing on
control node 12 to logically define the hierarchical organization of distributed
computing system 10. For example, system administrator 20 may provide
organizational data 21 to develop a model for the enterprise and logically define
the enterprise fabric. System administrator 20 may, for instance, develop a model
for the enterprise that includes a number of domains, tiers, and node slots
hierarchically arranged within a single enterprise fabric.

[0055] More specifically, system administrator 20 defines one or more domains
that each correspond to a single enterprise application or service, such as a
customer relation management (CRM) service. System administrator 20 further
defines one or more tiers within each domain that represent the functional
subcomponents of applications and services provided by the domain. As an
example, system administrator 20 may define a storefront domain within the
enterprise fabric that includes a web tier, an application tier and a database tier. In
this manner, distributed computing system 10 may be configured to automatically
provide web server functions, business application functions and database
functions.

[0056] For each of the tiers, control node 12 creates a number of “node slots”
equal to the maximum number of application nodes 14 that may be deployed. In
general, each node slot represents a data set that describes specific information for
a corresponding node, such as software resources for a physical node that is
assigned to the node slot. The node slots may, for instance, identify a particular
software image instance associated with an application node 14 as well as a
network address associated with that particular image instance.

[0057] In this manner, each of the tiers include one or more node slots that
reference particular software image instances to boot on the application nodes 14
to which each software image instance is assigned. The application nodes 14 to
which control node 12A assigns the image instances temporarily inherit the

network address assigned to the image instance for as long as the image instance is

10



WO 2007/016094 PCT/US2006/028852

deployed on that particular application node. If for some reason the image instance
is moved to a different application node 14, control node 12A moves the network
address to that new application node.

[0058] System administrator 20 may further define specific node requirements for
each tier of the fabric. For example, the node requirements specified by system
administrator 20 may include a central processing unit (CPU) count, a CPU speed,
an amount of memory (e.g., RAM), local disk characteristics and other hardware
characteristics that may be detected on the individual computing nodes. System
administrator 20 may also specify user-defined hardware attributes of the
computing nodes, such as whether I/O (like HBA) is required. The user-defined
hardware attributes are typically not capable of detection during an automatic
inventory. In this manner, system administrator 20 creates a list of attributes that
the tier requires of its candidate computing nodes. In addition, particular node
requirements may be defined for software image instances.

[0059] In addition to the node requirements described above, system administrator
20 may further define policies that are used when re—provisionfng computing nodes
within the fabric. System administrator 20 may define policies regarding tier
characteristics, such as a minimum number of nodes a tier requires, an indication
of whether or not a failed node is dynamically replaced by a node from free pool
13, a priority for each tier relative to other tiers, an indication of whether or not a
tier allows nodes to be re-provisioned to other tiers to satisfy processing
requirements by other tiers of a higher priority or other policies. Control node 12
uses the policy information input by system administrator 20 to re-provision
computing nodes to meet tier processing capacity demands.

[0060] After receiving input from system administrator 20 defining the
architecture and policy of the enterprise fabric, control node 12 identifies
unallocated nodes within free pool 13 that satisfy required node attributes. Control
node 12 automatically assigns unallocated nodes from free pool 13 to respective
tier node slots of a tier. As will be described in detail herein, ih one embodiment,
control node 12 may assign computing nodes to the tiers in a “best fit” fashion.
Particularly, control node 12 assigns computing nodes to the tier whose node

attributes most closely match the node requirements of the tier as defined by

11



WO 2007/016094 PCT/US2006/028852

administrator 20. The assignment of the computing nodes may occur on a tier-by-
tier basis beginning with a tier with the highest priority and ending with a tier with
the lowest priority. Alternatively, or in addition, assignment of computing nodes
may be based on dependencies defined between tiers.

[0061] As will be described in detail below, control node 12 may automatically
add unallocated nodes from free pool 13 to a tier when more processing capacity is
needed within the tier, remove nodes from a tier to the free pool when the tier has
excess capacity, transfer nodes from tier to tier to meet processing demands, or
replace failed nodes with nodes from the free pool. Thus, computing resources,
i.e., computing nodes, may be automatically shared between tiers and domains
within the fabric based on user-defined policies to dynamically address high-
processing demands, failures and other events.

[0062] FIG. 2 is a schematic diagram illustrating an example embodiment of
organizational data 21 that defines a model logically representing an enterprise
fabric in accordance with the invention. In the example illustrated in FIG. 2,
control node 12 (FIG. 1) maintains organizational data 21 to define a simple e-
commerce fabric 32.

[0063] In this example, e-commerce fabric 32 includes a storefront domain 34A
and a financial planning domain 34B. Storefront domain 34A corresponds to the
enterprise storefront domain and allows customers to find and purchase products
over a network, such as the Internet. Financial planning domain 34B allows one or
more employees to perform financial planning tasks for the enterprise.

[0064] Tier level 31C includes one or more tiers within each domain that represent
the functional subcomponents of applications and services provided by the domain.
For example, storefront domain 34A includes a web server tier (labeled “web tier”)
36A, a business application tier (labeled “app tier”’) 36B, and a database tier
(1abeled “DB tier”) 36C. Web server tier 36A, business application tier 36B and
database tier 36C interact with one another to present a customer with an online
storefront application and services. For example, the customer may interact with
web server tier 36A via a web browser. When the customer searches for a product,
web server tier 36A may interacts with business application tier 36B, which may in

turn access a database tier 36C. Similarly, financial planning domain 34B includes

12



WO 2007/016094 PCT/US2006/028852

a financial planning tier 36D that provides subcomponents of applications and
services of the financial planning domain 34B. Thus, in this example, a domain
may include a single tier.

[0065] Tier level 31D includes one or more logical node slots 38A-38H (“node
slots 38”) within each of the tiers. Each of node slots 38 include node specific
information, such as software resources for an application node 14 that is assigned
to a respective one of the node slots 38. Node slots 38 may, for instance, identify
particular software image instances within image repository 26 and map the
identified software image instances to respective application nodes 14. As an
example, node slots 38A and 38B belonging to web server tier 36A may reference
particular software image instances used to boot two application nodes 14 to
provide web server functions. Similarly, the other node slots 38 may reference
software image instances to provide business application functions, database
functions, or financial application functions depending upon the tier to which the
node slots are logically associated.

[0066] Although in the example of FIG. 2, there are two node slots 38
corresponding to each tier, the tiers may include any number of node slots
depending on the processing capacity needed on the tier. Furthermore, not all of
node slots 38 may be currently assigned to an application node 14. For example,
node slot 28B may be associated with an inactive software image instance and,
when needed, may be assigned to an application node 14 for deployment of the
software image instance.

[0067] In this example, organizational data 21 associates free node pool 13 with
the highest-level of the model, i.e., e-commerce fabric 32. As described above,
control node 12 may automatically assign unallocated nodes from free node pool
13 to at least a portion of tier node slots 38 of tiers 36 as needed using the “best fit”
algorithm described above or another algorithm. Additionally, control node 12
may also add nodes from free pool 13 to a tier when more processing capacity is
needed within the tier, remove nodes from a tier to free pool 13 when a tier has
excess capacity, transfer nodes from tier to tier to meet processing demands, and

replace failed nodes with nodes from the free tier.

13



WO 2007/016094 PCT/US2006/028852

[0068] Although not illustrated, the model for the enterprise fabric may include
multiple free node pools. For example, the model may associate free node pools
with individual domains at the domain level or with individual tier levels. In this
manner, administrator 20 may define policies for the model such that unallocated
computing nodes of free node pools associated with domains or tiers may only be
used within the domain or tier to which they are assigned. In this manner, a
portion of the computing nodes may be shared between domains of the entire
fabric while other computing nodes may be restricted to particular domains or tiers.
[0069] FIG. 3 is a flow diagram that provides a high-level overview of the
operation of control node 12 when configuring distributed computing system 10.
Initially, control node 12 receives input from a system administrator defining the
hierarchical organization of distributed computing system 10 (50). In one
example, control node 12 receives input that defines a model that specifies a
number of hierarchically arranged nodes as described in detail in FIG. 2.
Particularly, the defined architecture of distributed computing system 10 includes
an overall fabric having a number of hierarchically arranged domains, tiers and
node slots.

[0070] During this process, control node 12 may receive input specifying node
requirements of each of the tiers of the hierarchical model (52). As described
above, administrator 20 may specify a list of attributes, e.g., a central processing
unit (CPU) count, a CPU speed, an amount of memory (e.g., RAM), or local disk
characteristics, that the tiers require of their candidate computing nodes. In
addition, control node 12 may further receive user-defined custom attributes, such
as requiring the node to have I/0, such as HBA connectivity. The node
requirements or attributes defined by system administrator 20 may each include a
name used to identify the characteristic, a data type (e.g., integer, long, float or
string), and a weight to define the importance of the requirement.

[0071] Control node 12 identifies the attributes for all candidate computing nodes
within free pool 13 or a lower priority tier (54). As described above, control node
12 may have already discovered the computing nodes and inventoried the
candidate computing nodes to identify hardware characteristics of all candidate

computing nodes. Additionally, control node 12 may receive input from system

14



WO 2007/016094 PCT/US2006/028852

administrator 20 identifying specialized capabilities of one or more computing
nodes that are not detectable by the inventory process.

[0072] Control node 12 dynamically assigns computing nodes to the node slots of
each tier based on the node requirements specified for the tiers and the identified
node attributes (56). Population of the node slots of the tier may be performed on a
tier-by-tier basis beginning with the tier with the highest priority, i.e., the tier with
the highest weight assigned to it. As will be described in detail, in one
embodiment, control node 12 may populate the node slots of the tiers with the
computing nodes that have attributes that most closely match the node
requirements of the particular tiers. Thus, the computing nodes may be assigned
using a “best fit” algorithm.

[0073] FIG. 4 is a flow diagram illustrating exemplary operation of control node
12 when assigning computing nodes to node slots of tiers. Initially, control node
12 selects a tier to enable (60). As described above, control node 12 may select the
tier based on a weight or priority assigned to the tier by administrator 20. Control
node 12 may, for example, initially select the tier with the highest priority and
successively enable the tiers based on priority.

[0074] Next, control node 12 retrieves the node requirements associated with the
selected tier (62). Control node 12 may, for example, maintain a database having
entries for each node slot, where the entries identify the node requirements for each
of the tiers. Control node 12 retrieves the node requirements for the selected tier
from the database.

[0075] In addition, control node 12 accesses the database and retrieves the
computing node attributes of one of the unallocated computing nodes of free pool
13. Control node 12 compares the node requirements of the tier to the node
attributes of the selected computing node (64).

[0076] Based on the comparison, control node 12 determines whether the node
attributes of the computing node meets the minimum node requirements of the tier
(66). If the node attributes of the selected computing node do not meet the
minimum node requirements of the tier, then the computing node is removed from
the list of candidate nodes for this particular tier (68). Control node 12 repeats the

process by retrieving the node attributes of another of the computing nodes of the

15



WO 2007/016094 PCT/US2006/028852

free pool and compares the node requirements of the tier to the node attributes of
the computing node.

[0077] If the node attributes of the selected computing node meet the minimum
node requirements of the tier (YES of 66), control node 12 determines whether the
node attributes are an exact match to the node requirements of the tier (70). If the
node attributes of the selected computing node and the node requirements of the
tier are a perfect match (YES of 70), the computing node is immediately assigned
from the free pool to a node slot of the tier and the image instance for the slot is
associated with the computing node for deployment (72).

[0078] Control node 12 then determines whether the node count for the tier is met
(74). Control node 12 may, for example, determine whether the tier is assigned the
minimum number of nodes necessary to provide adequate processing capabilities.
In another example, control node 12 may determine whether the tier is assigned the
ideal number of nodes defined by system administrator 20. When the node count
for the tier is met, control node 12 selects the next tier to enable, e.g., the tier with
the next largest priority, and repeats the process until all defined tiers are ena‘bled,
i.e., populated with application nodes (60).

[0079] If the node attributes of the selected computing node and the node
requirements of the tier are not a perfect match control node 12 calculates and
records a “processing energy” of the node (76). As used herein, the term
“processing energy” refers to a numerical representation of the difference between
the node attributes of a selected node and the node requirements of the tier. A
positive processing energy indicates the node attributes more than satisfy the node
requirements of the tier. The magnitude of the processing energy represents the
degree to which the node requirements exceed the tier requirements.

[0080] After computing and recording the processing energy of the nodes, control
node 12 determines whether there are more candidate nodes in free pool 13 (78).
If there are additional candidate nodes, control node 12 repeats the process by
retrieving the computing node attributes of another one of the computing nodes of
the free pool of computing nodes and comparing the node requirements of the tier

to the node attributes of the computing node (64).

16



WO 2007/016094 PCT/US2006/028852

[0081] When all of the candidate computing nodes in the free pool have been
examined, control node 12 selects the candidate computing node having the
minimum positive processing energy and assigns the selected computing node to a
node slot of the tier (80). Control node 12 determines whether the minimum node
count for the tier is met (82). If the minimum node count for the tier has not been
met, control node 12 assigns the computing node with the next lowest calculated
processing energy to the tier (80). Control node 12 repeats this process until the
node count is met. At this point, control node 12 selects the next tier to enable,
e.g., the tier with the next largest priority (60).

[0082] In the event there are an insufficient number of computing nodes in free
pool 13, or an insufficient number of computing nodes that meet the tier
requirements, control node 12 notifies system administrator 20. System
administrator 20 may add more nodes to free pool 13, add more capable nodes to
the free pool, reduce the node requirements of the tier so more of the unallocated
nodes meet the requirements, or reduce the configured minimum node counts for
the tiers.

[0083] FIG. 5 is a flow diagram illustrating exemplary operation of control node
12 when adding an additional computing node to a tier to meet increased
processing demands. Initially, control node 12 or system administrator 20
identifies a need for additional processing capacity on one of the tiers (90).
Control node 12 may, for example, identify a high processing load on the tier or
receive input from a system administrator identifying the need for additional
processing capacity on the tier.

[0084] Control node 12 then determines whether there are any computing nodes in
the free pool of nodes that meet the minimum node requirements of the tier (92).
When there are one or more nodes that meet the minimum node requirements of
the tier, control node 12 selects the node from the free pool based the node
requirements of the tier, as described above, (94) and assigns the node to the tier
(95). As described in detail with respect to FIG. 4, control node 12 may determine
whether there are any nodes that have node attributes that are an exact match to the
node requirements of the tier. If an exact match is found, the corresponding

computing node is assigned to a node slot of the tier. If no exact match is found,

17



WO 2007/016094 PCT/US2006/028852

control node 12 computes the processing energy for each node and assigns the
computing node with the minimum positive processing energy to the tier. Control
node 12 remotely powers on the assigned node and remotely boots the node with
the image instance associated with the node slot. Additionally, the booted
computing node inherits the network address associated with the node slot.

[0085] If there are no adequate computing nodes in the free pool, i.e., no nodes at
all or no nodes that match the minimal node requirements of the tier, control node
12 identifies the tiers with a lower priority than the tier needing more processing
capacity (96).

[0086] Control node 12 determines which of the nodes of the lower priority tiers
meet the minimum requirements of the tier in need of processing capacity (98).
Control node 12 may, for example, compare the attributes of each of the nodes
assigned to node slots of the lower priority tiers to the node requirements of the tier
in need of processing capacity. Lower priority tiers that have the minimum
number of computing nodes may be removed from possible tiers from which to
harvest an application node. If, however, all the lower priority tiers have the
minimum number of computing nodes defined for the respective tier, the lowest
priority tier is selected from which to harvest the one or more nodes.

[0087] Control node 12 calculates the processing energy of each of the nodes of
the lower priority tiers that meet the minimum requirements (100). The energies of
the nodes are calculated using the differences between the node attributes and the
node requirements of the tier needing additional capacity. Control node 12 selects
the computing node with the lowest processing energy that meets the minimum
requirements, and assigns the selected computing node to the tier in need of
processing capacity (102, 95).

[0088] FIG. 6 is a flow diagram illustrating exemplary operation of control node
12 when harvesting excess node capacity from one of the tiers and returning the
harvested computing node to free pool 13. Initially, control node 12 identifies a
tier having excess node capacity (110). Control node 12 may, for example,
periodically check the node capacity of the tiers to identify any tiers having excess

node capacity. Performing a periodic check and removal of excess nodes increases

18



WO 2007/016094 PCT/US2006/028852

the likelihood that a capable computing node will be in free pool 13 in the event
one of the tiers needs additional node capacity.

[0089] When harvesting a node, control node 12 calculates the processing energy
of all the nodes in the tier as described above with reference to FIG. 4 (112).
Control node 12 identifies the node within the tier with the highest processing
energy and returns the identified node to the free pool of nodes (114, 116). As
described above, the node with the highest processing energy corresponds to the
node whose node attributes are the most in excess of the node requirements of the
tier.

[0090] Returning the node to the free pool may involve remotely powering off the
computing node and updating the database to associate the harvested node with
free pool 13. In addition, control node 12 updates the database to disassociate the
returned node with the node slot to which it was assigned. At this point, the node
no longer uses the network address associated with the image instance mapped to
the node slot. Control node 12 may, therefore, assign a temporary network address
to the node while the node is assigned to free pool 13.

[0091] FIG. 7 is a screen illustration of an exemplary user interface 120 presehted
by control node 12 with which administrator 20 interacts to define tiers for a
particular domain. In the example illustrated in FIG. 7, system administrator 20
has selected the “Collage Domain.” User interface 120 presents the tiers that are
currently in the selected domain. In the example illustrated, the Collage Domain
includes three tiers, “test tier 1,” “test tier 2,” and “test tier 3.” As shown in FIG.
7, in this example, each of the tiers includes two nodes. In addition, user interface
120 lists the type of software image currently deployed to application nodes for
each of the tiers. In the example illustrated, image “applone (1.0.0)” is deployed to
the nodes of test tier 1 and image “appltwo (1.0.0)” is deployed to the nodes of test
tier 2. System administrator 20 may add one or more tiers to the domain by
clicking on new tier button 122.

[0092] FIG. 8 is a screen illustration of an exemplary user interface 130 for
defining properties of the tiers. In particular, user interface 130 allows system
administrator 20 to input a name for the tier, a description of the tier,v and an image

associated with the tier. The image associated with the tier refers to a master

19



WO 2007/016094 PCT/US2006/028852

image from which image instances are generated and deployed to the nodes
assigned to the tier.

[0093] When configuring a tier, system administrator 20 may elect to activate
email alerts. For example, system administrator 20 may activate the email alerts
feature in order to receive email alerts providing system administrator 20 with
critical and/or non-critical tier information, such as a notification that a tier has
been upgraded, a node of the tier has failed or the like. Furthermore, system
administrator 20 may input various policies, such node failure rules. For example,
system administrator 20 may identify whether control node 12 should reboot a
node in case of failure or whether the failed node should automatically be moved
to maintenance pool 17. Similarly, system administrator 20 may identify whether
nodes assigned to the tier may be harvested by other tiers.

[0094] User interface 130 may also allow system administrator 20 to input node
requirements of a tier. In order to input node requirements of a tier, system
administrator 20 may click on the “Requirements” tab 132, causing user interface
130 to present an input area to particular node requirements of the tier.

[0095] FIG. 9 is a screen illustration of an exemplary user interface 140 for
viewing and identifying properties of a computing node. User interface 140 allows
system administrator 20 to define a name, description, and location (including a
rack and slot) of a computing node. In addition user interface 140 may specify
user-defined properties of a node, such as whether the computing node has I/O
HBA capabilities.

[0096] User interface 140 also displays properties that control node 12 has
identified during the computing node inventory process. In this example, user
interface 140 presents system administrator 20 with the a CPU node count, a CPU
speed, the amount of RAM, the disk size and other characteristics that are
identifiable during the automated node inventory. User interface 140 additionally
presents interface information to system administrator 20. Specifically, user
interface 140 provides system administrator 20 with a list of cdmponents and their
associated IP and MAC addresses.

[0097] User interface 140 also allows system administrator 20 to define other

custom requirements. For example, system administrator 20 may define one or

20



WO 2007/016094 PCT/US2006/028852

more attributes and add those attributes to the list of node attributes presented to
system administrator 20.

[0098] FIG. 10 is a screen illustration of an exemplary user interface 150 for
viewing software images. User interface 150 presents to a system administrator or
another user a list of images maintained by control node 12 within image
repository 26. The image list further includes the status of each image (i.e., either
active or inactive), the version of the image, the operating system on which the
image should be run, the operating system version on which the image should be
run and a brief description of the image.

[0099] System administrator 20 or another user may select an image by clicking on
the box in front of the image identifier/name and perform one or more actions on
the image. Actions that system administrator 20 may perform on an image include
deleting the image, updating the image, and the like. System administrator 20 may
select one of the image actions via dropdown menu 152. In some embodiments,
user interface 150 may further display other details about the images such as the
node to which the images are assigned (if the node status is “active”), the network
address associated with the images and the like.

[0100] FIG. 11 is a screen illustration of an exemplary user interface 160 for
viewing a hardware inventory report. User interface 160 presents to system
administrator 20 or another user a list of the nodes that are currently assigned to a
domain. System administrator 20 may elect to view the nodes for the entire
domain, for a single tier within the domain or for a single rack within a tier.

[0101] For each node, usér interface 160 presents a node ID, a status of the node,
the tier to which the node belongs, a hostname associated with the node, a NIC IP
address, a rack location, a slot location, the number of CPU’s of the node, the
amount of RAM on the node, the number of disks on the node, whether the node
has I/0 HBA, and the number of NICs of the node.

[0102] System administrator 20 or other user may select a node by clicking on the
box in front of the node identifier/name and perform one or more actions on the
node. Actions that system administrator 20 may perform on the node include

deleting the node, updating the node attributes or other properties of the node, and

21



WO 2007/016094 PCT/US2006/028852

the like. System administrator 20 may select one of the node actions via dropdown
menu 162,

[0103] FIG. 12 is a screen illustration of an exemplary user interface 170 for
viewing discovered nodes that are located in discovered pool 11. For each node,
user interface 170 presents a node ID, a state of the node, a NIC IP address, a rack
location, a slot location, the number of CPU’s of the node, the amount of RAM on
the node, the number of disks on the node, whether the node has I/O HBA, and the
number of NICs of the node.

[0104] FIG. 13 is a screen illustration of an exemplary user interface 180 for
viewing users of distributed computing system 10. User interface 180 presents a
list of users as well as the role assigned to each of the users and the status of each
of the users. Thus, system administrator 20 may define different roles to each of
the users. For example, a user may be either an operator (i.e., general user) or an
administrator. System administrator 20 may add a new user to the list of users by
clicking on the “New User” button 182.

[0105] FIG. 14 is a screen illustration of an exemplary user interface 190 for
viewing alerts for distributed computing system 10. For each of the alerts, user
interface 190 identifies the severity of the alert, whether the alert has been
acknowledged, an object associated with the alert, an event associated with the
alert, a state of the alert, a user associated with the alert and a date associated with
the alert.

[0106] System administrator 20 or other user may select an alert by clicking on the
box in front of the logged alert and perform one or more actions on the logged
alert. Actions that system administrator 20 may perform include deleting the alert,
changing the status of the alert, or the like. System administrator 20 may specify
the log actions via dropdown menu 192.

[0107] FIG. 15 is a block diagram illustrating one embodiment of control node 12
in further detail. In the illustrated example, control node 12 includes a monitoring
subsystem 202, a service level automation infrastructure (SLAI) 204, and a
business logic tier (BLT) 206.

[0108] Monitoring subsystem 202 provides real-time monitoring of the distributed

computing system 10. In particular, monitoring subsystem 202 dynamically

22



WO 2007/016094 PCT/US2006/028852

collects status data 203 from the hardware and software operating within
distributed computing system 10, and feeds the status data in the form of monitor
inputs 208 to SLAI 204. Monitoring inputs 208 may be viewed as representing the
actual state of the fabric defined for the organizational model implemented by
distributed computing system 10. Monitoring subsystem 202 may utilize well
defined interfaces, e.g., the Simple Network Management Protocol (SNMP) and
the Java Management Extensions (JMX), to collect and export real-time
monitoring information to SLAI 204.

[0109] SLAI 204 may be viewed as an automation subsystem that provides support
for autonomic computing and acts as a central nervous system for the controlled
fabric. In general, SLAI 204 receives monitoring inputs 208 from monitoring
subsystem 202, analyzes the inputs and outputs appropriate action requests 212 to
BLT 206. In one embodiment, SLAI 204 is a cybernetic system that controls the
defined fabric via feedback loops. More specifically, administrator 20 may interact
with BLT 206 to define an expected state 210 for the fabric. BLT 206
communicates expected state 210 to SLAI 204. SLAI 204 receives the monitoring
inputs from monitoring subsystem 202 and applies rules to determine the most
effective way of reducing the differences between the expected and actual states
for the fabric.

[0110] For example, SLAI 204 may apply a rule to determine that a node within a
high priority tier has failed and that the node should be replaced by harvesting a
node from a lower priority tier. In this example, SLAI 204 outputs an action
request 212 to invoke BLT 206 to move a node from one tier to the other.

[0111] In general, BLT 206 implements high-level business operations on fabrics,
domains and tiers. SLAI 204 invokes BLT 206 to bring the actual state of the
fabric into accordance with the expected state. In particular, BLT 206 outputs
fabric actions 207 to perform the physical fabric changes. In addition, BLT 206
outputs an initial expected state 210 to SLAI 204 and initial monitoring
information 214 to SLAI 204 and monitoring subsystem 202, respectively. In
addition, BLT 206 outputs notifications 211 to SLAI 204 and monitoring
subsystem 202 to indicate the state and monitoring changes to distributed

computing system 10. As one example, BLT 206 may provide control operations

23



WO 2007/016094 PCT/US2006/028852

that can be used to replace failed nodes. For example, BLT 206 may output an
action request indicating that a node having address 10.10.10.10 has been removed
from tier ABC and a node having address 10.10.10.11 has been added to tier XYZ.
In response, monitoring subsystem 202 stops attempting to collect status data 203
from node 10.10.10.10 and starts monitoring for status data from node 10.10.10.11.
In addition, SLAI 204 updates an internal model to automatically associate
monitoring inputs from node 10.10.10.11 with tier XYZ.

[0112] FIG. 16 is a block diagram illustrating one embodiment of monitoring
subsystem 202. In general, monitoring subsystem 202 dynamically detects and
monitors a variety of hardware and software components within the fabric. For
example, monitoring subsystem 202 identifies, in a timely and efficient manner,
any computing nodes that have failed, i.e., any node that does not respond to a
request to a known service. More generally, monitoring subsystem 202 provides a
concise, consistent and constantly updating view of the components of the fabric.
[0113] As described further below, monitoring subsystem 202 employs a modular
architecture that allows new detection and monitoring collectors 224 to be
“plugged-in” for existing and new protocols and for existing and new hardware
and software. As illustrated in FIG. 16, monitoring subsystem 202 provides a
plug-in architecture that allows different information collectors 224 to be installed.
In general, collectors 224 are responsible for protocol-specific collection of
monitoring information. The plug-in architecture allows for new protocols to be
added by simply adhering to a collector plug-in signature. In this example,
monitoring subsystem 202 includes collectors 224 A and 224B for collecting
information from operating systems and applications executing on nodes within
tier A and tier B, respectively.

[0114] In one embodiment, collectors 224 are loaded at startup of control node 12
and are configured with information retrieved from BLT 206. Monitoring engine
222 receives collection requests from SLAI 204, sorts and prioritizes the requests,
and invokes the appropriate one of collectors 224 based on the protocol specified
in the collection requests. The invoked collector is responsible for collecting the

required status data and returning the status data to monitoring engine 222. If the

24



WO 2007/016094 PCT/US2006/028852

collector is unable to collect the requested status data, the collector returns an error
code.

[0115] In one embodiment, collectors 224 are Java code compiled into a jar file
and loaded with a class loader at run time. Each of collectors 224 has an
associated configuration file written in a data description language, such as the
extensible markup language (XML). In addition, a user may interact with BLT
206 to add run-time configuration to dynamically configure collectors 224 for
specific computing environments. Each of collectors 224 expose an application
programming interface (API) to monitoring engine 222 for communication and
data exchange.

[0116] A user, such as a system administrator, specifies the protocol or protocols
to be used for monitoring a software image when the image is created. In addition,
the users may specify the protocols to be used for monitoring the nodes and each
service executing on the nodes. Example protocols supported by the collectors 224
include Secure Shell (SSH), Simple Network Management Protocol (SNMP),
Internet Control Message Protocol (ICMP) ping, Java Management Extensions
(JMX) and the Hypertext Transfer Protocol (HTTP).

[0117] Some protocols require special privileges, e.g., root privileges, to perform
the required data collection. In this case, the corresponding collectors 224
communicate with a separate process that executes as the root. Moreover, some
protocols may require deployment and/or configuration of data providers within
the fabric. Software agents may, for example, be installed and configured on
nodes and configured on other hardware. If needed, custom in-fabric components
may be deployed.

[0118] In this example, the modular architecture of monitoring subsystem 202 also
supports one or more plug-in interfaces 220 for data collection from a wide range
of third-party monitoring systems 228. Third-party monitoring systems 228
monitor portions of the fabric and may be vendor-specific.

[0119] FIG. 17 is a block diagram illustrating one embodiment of SLAI 204 in
further detail. In the illustrated embodiment, SLAI 204 is composed of three
subsystems: a sensor subsystem 240, an analysis subsystem 244 and an effector

subsystem 248.

25



WO 2007/016094 PCT/US2006/028852

[0120] In general, sensor subsystem 240 receives actual state data from monitoring
subsystem 202 in the form of monitoring inputs 208 and supplies ongoing,
dynamic input data to analysis subsystem 244. For example, sensor subsystem 240
is notified of physical changes to distributed computing system 10 by monitoring
subsystem 202. Sensor subsystem 240 uses the state data received from
monitoring subsystem 202 to maintain ongoing, calculated values that can be sent
to analysis subsystem 244 in accordance with scheduler 242.

[0121] In one embodiment, sensor subsystem 240 performs time-based
hierarchical data aggregation of the actual state data in accordance with the defined
organization model. Sensor subsystem 240 maintains organizational data in a tree-
like structure that reflects the current configuration of the hierarchical organization
model. Sensor subsystem 240 uses the organizational data to perform the real-time
data aggregation and map tiers and domains to specific nodes. Sensor subsystem
240 maintains the organizational data based on notifications 211 received from
BLT 206.

[0122] Sensor subsystem 240 sends inputs to analysis subsystem 244 to
communicate the aggregated data on a periodic or event-driven basis. Analysis
subsystem 244 may register an interest in a particular aggregated data value with
sensor subsystem 240 and request updates at a specified frequency. In response,
sensor subsystem 240 interacts with monitoring subsystem 202 and scheduler 242
to generate the aggregated data required by analysis subsystem 244.

[0123] Sensor subsystem 240 performs arbitrary data aggregations via instances of
plug-in classes (referred to as “triggers™) that define the aggregations. Each trigger
is registered under a compound name based on the entity being monitored and the
type of data being gathered. For example, a trigger may be defined to aggregate
and compute an average computing load for a tier every five minutes. Analysis
subsystem 244 requests the aggregated data based on the registered names. In
some embodiments, analysis subsystem 244 may define calculations directly and
pass them to sensor subsystem 240 dynamically.

[0124] Analysis subsystem 244 is composed of a plurality of forward chaining rule
engines 246A-246N. In general, rule engines 246 match patterns in a combination

of configuration data and monitoring data, which is presented by extraction agent

26



WO 2007/016094 PCT/US2006/028852

251 in the form of events. Events contain the aggregated data values that are sent
to rule engines 246 in accordance with scheduler 242.

[0125] Sensor subsystem 240 may interact with analysis subsystem 244 via trigger
listeners 247 that receives updates from a trigger within sensor subsystem 240
when specified events occur. An event may be based on system state (e.g., a node
transitioning to an up or down state) or may be time based.

[0126] Analysis subsystem 244 allows rule sets to be loaded in source form and
compiled at load time into discrimination networks. Each rule set specifies trigger-
delivered attributes. Upon loading the rule sets, analysis subsystem 244 establishes
trigger listeners 247 to receive sensor notifications and update respective working
memories of rule engines 246. As illustrated in FIG. 17, each of rule engines 246
may serve a different tier defined within the fabric. Alternatively, multiple rule
engines 246 may serve a single tier or a single rule engine may serve multiple tiers.
[0127] Rule engines 246 process the events and invoke action requests via calls to
effector subsystem 248. In addition, rule engines 246 provide a call-back interface
so that effector subsystem 248 can inform a rule engine when an action has
completed. Rule engines 246 prevent a particular rule from re-firing as long as any
action invoked by the rule has not finished. In general, rules contain notification
calls and service invocations though either may be disabled by configuration of
effector subsystem 248. BLT 206 supplies initial system configuration
descriptions to seed each of rule engines 246.

[0128] In general, rule engines 246 analyze the events and discover discrepancies
between an expected state of the fabric and an actual state. Each of rule engines
246 may be viewed as software that performs logical reasoning using knowledge
encoded in high-level condition-action rules. Each of rule engines 246 applies
automated reasoning that works forward from preconditions to goals defined by
system administrator 20. For example, rule engines 246 may apply modus ponens
inferences rules.

[0129] Rule engines 246 output requests to effector subsystem 248 which produce
actions requests 212 for BLT 206 to resolve the discrepancies. Effector subsystem
248 performs all operations on behalf of analysis subsystem 244. For example,

event generator 250, task invocation module 252 and logger 254 of effector

27



WO 2007/016094 PCT/US2006/028852

subsystem 248 perform event generation, BLT action invocation and rule logging,
respectively. More specifically, task invocation module 252 invokes asynchronous
operations within BLT 206. In response, BLT 206 creates a new thread of control
for each task which is tracked by a unique task identifier (task id). Rules engine
246 uses the task id to determine when a task completes and, if needed, to re-fire
any rules that were pended until completion of the task. These tasks may take
arbitrary amounts of time, and rules engine 246 tracks the progress of individual
task via change notifications 211 produced by BLT 206.

[0130] Event generator 250 creates persistent event records of the state of
processing of SLAI 204 and stores the event records within a database. Clients
uses these event records to track progress and determine the current state of the
SLAI 204.

[0131] Logger 254 generates detailed trace information about system activities for
use in rule development and debugging. The logging level can be raised or
lowered as needed without changing operation of SLAI 204.

[0132] FIG. 18 is a block diagram of an example working memory 270 associated
with rule engines 246. In this example, working memory 270 includes a read-only
first data region 272 that stores the expected state received from BLT 206. Data
region 272 is read-only in the sense that it cannot be modified in response to a
trigger from sensor subsystem 240 or by rule engines 246 without notification from
BLT 206.

[0133] In addition, working memory 270 includes a second data region 274 that is
modifiable (i.e., read/write) and may be updated by monitoring subsystem 202 or
used internally by rule engines 246. In general, data region 274 stores aggregated
data representing the actual state of the fabric and can be updated by sensor
subsystem 240 or by rule engines 246. The actual state may consist of a set of
property annotations that can be attached to objects received from BLT 206 or to
objects locally defined within a rule engine, such as local object 276.

[0134] FIG. 19 is a block diagram illustrating an example embodiment for BLT
206. In this example, BLT 206 includes a set of one or more web service
definition language (WSDL) interfaces 300, a report generator 302, a fabric

administration interface service 304, a fabric view service 306, a user

28



WO 2007/016094 PCT/US2006/028852

administration service 308, a task interface 311, a task manager 312 and an event
subsystem 315.

[0135] As described, BLT 206 provides the facilities necessary to create and
administer the organizational model (e.g., fabric, domains, tiers and nodes)
implemented by distributed computing system 10. In general, BLT 206 abstracts
access to the persisted configuration state of the fabric, and controls the
interactions with interfaces to fabric hardware services. As such, BLT 206
provides fabric management capabilities, such as the ability to create a tier and
replace a failed node. WSDL interfaces 300 provide web service interfaces to the
functionality of BLT 206 that may be invoked by web service clients 313. Many
of WSDL interfaces 300 offered by BLT 206 allow administrator 20 to define
goals, such as specifying a goal of the expected state of the fabric. As further
described below, rule engines 246 within SLAT 204, in turn, invoke task manger
312 to initiate one or more BLT tasks to achieve the specified goal. In general,
web service clients 313 may be presentation layer applications, command line
applications, or other clients.

[0136] BLT 206 abstracts all interaction with physical hardware for web service
clients 313. BLT 206 is an enabling component for autonomic management
behavior, but does not respond to real-time events that either prevent a goal from
being achieved or produce a set of deviations between the expected state and the
actual state of the system. In contrast, BLT 206 originates goals for autonomic
reactions to changing configuration and state. SLAI 204 analyzes and acts upon
these goals along with real-time state changes. BLT 206 sets the goals to which
SIAI 204 strives to achieve, and provides functionality used by the SLAI in order
to achieve the goals.

[0137] In general, BLT 206 does not dictate the steps taken in pursuit of a goal
since these are likely to change based on the current state of distributed computing
system 10 and changes to configurable policy. SLAI 204 makes these decisions
based on the configured rule sets for the fabric and by evaluating monitoring data
received from monitoring subsystem 202.

[0138] Fabric administration service 304 implements a set of methods for

managing all aspects of the fabric. Example methods include methods for adding,

29



WO 2007/016094 PCT/US2006/028852

viewing, updating and removing domains, tiers, nodes, notifications, assets,
applications, software images, connectors, and monitors. Other example methods
include controlling power at a node, and cloning, capturing, importing, exporting
or upgrading software images. Rule engines 246 of SLAI 204 may, for example,
invoke these methods by issuing action requests 212.

[0139] Task manager 312 receives action requests 212 via task interface 311. In
general, task interface 311 provides an interface for receiving action requests 212
from SLAI 204 or other internal subsystem. In response, task manager 312
manages asynchronous and long running actions and are invoked by SLAI 204 to
satisfy a goal or perform an action requested by a client.

[0140] Task manager 312 generates task data 310 that represents identification and
status for each task. Task manager 312 returns a task identifier to the calling web
service clients 313 or the internal subsystem, e.g., SLAI 204, that initiated the task.
Rule engines 246 and web service clients 313 use the task identifiers to track
progress and retrieve output, results, and errors associated with achieving the goal.
[0141] In one embodiment, there are no WSDL interfaces 300 for initiating
specific tasks. Rather, administrator 20 interacts with BLT 206'though goal
interfaces presented by WSDL interfaces 300 to define the goals for the fabric. In
contrast, the term task is used to refer to internal system constructs that require no
user interaction. Tasks are distinct, low-level units of work that affect the state of
the fabric. SLAI 204 may combine tasks to achieve or maintain a goal state.
[0142] For example, administrator 20 can request configuration changes by either
adding new goals to an object or by modifying the attributes on existing goals.
Scheduled goals apply a configuration at a designated time. For example, the goals
for a particular tier may specify the minimum, maximum, and target node counts
for that tier. As a result, the tier can increase or decrease current node capacity by
scheduling goals with different configuration values.

[0143] This may be useful, for example, in scheduling a software image upgrade.
As another example, entire domains may transition online and offline per a defined
grid schedule. Administrator 20 may mix and match goals on a component to

achieve configurations specific to the application and environment. For example, a

30



WO 2007/016094 PCT/US2006/028852

tier that does not support autonomic node replacement would not be configured
with a harvesting goal.

[0144] In some embodiments, goals are either “in force” or “out of force.” SLAI
204 only works to achieve and maintain those goals that are cutrently in force.
SLAI 204 may applies a concept of “gravity” as the goals transition from in force
to out of force. For example, SLAI 204 may transition a tier offline when an
online goal is marked out of force. Some goal types may have prerequisite goals.
For example, an image upgrade goal may require as a prerequisite that a tier be
transitioned to offline before the image upgrade can be performed. In other
embodiments, goals are always in force until modified.

[0145] SLAI 204 may automatically formulate dependencies between goals or may
allow a user to specify the dependencies. For example, a user may request that a
newly created tier come online. As a result of this goal, SLAI 204 may
automatically direct task manager 312 to generate a task of harvesting a target
number of nodes to enable the tier. Generally, all goals remain in-force by SLAI
204 until modified by BLT 206. In one embodiment, each goal remains in-force in
one of three states: Satisfied, Warning, or Critical depending on how successful
SLAI 204 was in achieving the goal at the time the event record was generated and
stored.

[0146] In this manner, SLAI 204 controls the life cycle of a goal (i.e., the creation,
scheduling, update, deletion of the goal), and provides a common implementation
of these and other services such as timeout, event writing, goal conflicts,
management of intra-goal dependencies, and tracking tasks to achieving the goals.
[0147] Progress toward a goal is tracked though event subsystem 315. In
particular, event subsystem 315 tracks the progress of each in force goal based on
the goal identifiers. Tasks executed to achieve a particular goal produce events to
communicate result or errors. The events provide a convenient time-based view of
all actions and behaviors.

[0148] Examples of goal types that may be defined by administrator 20 include
software image management goals, node allocation goals, harvest goals, tier
capacity goals, asset requirement goals, tier online / offline goals, and data

gathering goals.

31



WO 2007/016094 PCT/US2006/028852

[0149] In one embodiment, BLT 206 presents a task interface to SLAI 204 for the
creation and management of specific tasks in order to achieve the currently in force
goals. In particular, rule engines 246 invoke the task interface based on evaluation
of the defined rule sets in view of the expected state and actual state for the fabric.
Example task interfaces include interfaces to: reserve node resources; query
resources for a node slot; associate or disassociate an image with a node in a tier
node slot; allocate, de-allocate, startup or shutdown a node; move a node to a tier;
apply, remove or cycle power of a node; create a golden image; create or delete an
image instance; and delete an activity, node or tier.

[0150] Report generator 302 provides an extensible mechanism for generating
reports 314. Typical reports include image utilization reports that contain
information with respect to the number of nodes running each software image,
inventory reports detailing both the logical and physical aspects of the fabric, and
system event reports showing all events that have occurred within the fabric.
Report generator 302 gathers, localizes, formats and displays data into report form
for presentation to the user. Report generator 302 may include one or more data
gathering modules (not shown) that gather events in accordance with a schedule
and update an events table to record the events. The data gathering modules may
write the events in XML format.

[0151] FIG. 20 is a block diagram illustrating one embodiment of a rule engine
246 (FIG. 17). In the illustrated embodiment, rule engine 246 includes a rule
compiler 344 and an execution engine 346. Each of rules 342 represents a unit of
code that conforms to a rule language and expresses a set of triggering conditions
and a set of implied actions. When the conditions are met, the actions are eligible

to occur. The following is one example of a configuration rule:

rule checkTierLoad {

Tier t where status != “overloaded”;
LoadParameter p where app == t.app && maxload <
t.load;

b o
modify t {

status: “overloaded”;

}i

32



WO 2007/016094 PCT/US2006/028852

When translated, this example rule marks a tier as overloaded if an application is
implemented by the tier and the maximum specified load for the application has
been exceeded. Another example rule for outputting a notification that a tier is

overloaded and automatically invoking a task within BLT 206 to add a node is:

rule tierOverloadNotify {

Tier t where status == “overloaded”;
b
notify “Tier: ” + t + “is overloaded.”;
BLT.addNode (f) ;
J
[0152] Rule compiler 344 compiles each of rules 344 and translates match

conditions of the rules into a discrimination network that avoids redundant tests
during rule execution. Execution engine 346 handles rule administration, object
insertion and retrieval, rule invocation and execution of rule actions. In general,
execution engine 346 first matches a current set of rules 342 against a current state
" of working memory 348 and local objects 350. Execution engine 346 then collects
all rules that match as well as the matched objects and selects a particular rule
instantiation to fire. Next, execution engine 346 fires (executes) the instantiated
rule and propagates any changes to working memory 348. Execution engine 346
repeats the process until no more matching rule instantiations can be found.
[0153] Firing of a rule typically produces a very small number of changes to
working memory 348. This allows sophisticated rule engines to scale by retaining
match state between cycles. Only the rules and rule instantiations affected by
changes are updated, thereby avoiding the bulk of the matching process. One
exemplary algorithm that may be used by execution engine 346 to handle the
matching process includes the RETE algorithm that creates a decision tree that
combines the patterns in all the rules and is intended to improve the speed of
forward-chained rule system by limiting the effort required to re-compute a
conflict set after a rule is fired. One example of a RETE algorithm is described in
Forgy, C.L.: 1982, RETE: a fast algorithm for the many pattern/many object
pattern match problem', Artificial Intelligence 19, 1737, hereby incorporated by
reference. Other alternatives include the TREAT algorithms, and LEAPS
algorithm, as described by Miranker, D.P.: "TREAT: A New and Efficient Match

Algorithm for AI Production Systems'. ISBN 0934613710 Daniel P. Miranker,
33



WO 2007/016094 PCT/US2006/028852

David A. Brant, Bernie Lofaso, David Gadbois: On the Performance of Lazy
Matching in Production Systems. AAAI 1990: 685692, each of which is hereby
incorporated by reference.

[0154] FIG. 21 is a block diagram illustrating an exemplary embodiment of control
unit 12 that incorporates a universal power control (“UPC”) module 360. In this
embodiment, UPC module 360 is one of several power control modules that
provide remote power control over application nodes within distributed computing
system 10. For example, vendor-specific power control (“VSPC”) modules 362
are associated with specific types of power control hardware units present in
distributed computing system 10. Using UPC module 360 and VSPC modules
362, BLT 206 performs programmatic power control over application nodes in
distributed computing system 10. For example, with programmatic power control,
control node 16 can power-on, power-down, and power cycle application nodes
without an administrator having to physically interact with the controlled
application nodes.

[0155] UPC module 360 implements virtual programmatic power control for
application nodes manufactured by different vendors. As described above, once
deployed, each application node in distributed computing environment 10 is
associated with an image contained in image repository 26. An image defines
what operating system and applications are loaded on an application node. By
manipulating which image is loaded on an application node, UPC module 360 can
make it appear to control node 16 that the application node is ina powered down
state even though the application node is still running. Thus, UPC module 360
manages the power of application nodes in a virtual way.

[0156] UPC module 360 utilizes a golden image in image repository 26 referred to
herein as the “idle” image. The idle image includes a simplified operating system
and a limited set of applications. Each instance of the idle image also contains a
network address. When BLT 206 instructs UPC module 360 to power down an
application node, UPC module 360 configures image repository 26 to associate an
instance of the idle image the application node. UPC module 360 then causes the
application node to load the instance of the idle image from image repository 26.

The application node may use pre-boot execution environment (“PXE”)

34



WO 2007/016094 PCT/US2006/028852

technology to facilitate network booting. Using the network address contained in
the instance of the idle image, UPC module 360 can communicate with the
application node while the application node is running the idle image.

[0157] After BLT 206 sends the command to UPC module 360, control node 16
may edit an entry in a database having entries for each tier node slot to reflect that
the application node is in a powered-down state. When the application node is
executing the idle image, control node 16 cannot communicate with the application
node because the application node no longer responds to requests sent to the
network address that control node 16 thinks is associated with the application node.
In other words, UPC module 360 has virtually powered-down the application node.
[0158] When BLT 206 instructs UPC module 360 to power up an application
node, UPC module 360 reverses the power down process. That is, UPC module
360 reconfigures image repository 26 to associate the application node with the
image instance associated with the application node prior to virtually powering-
down down the application node. UPC module 360 then causes the application
node to load the prior image. While the application node is loading is prior image,
the application node acquires a network address associated with the prior image
instance.

[0159] In addition to power-up and power-down operations, UPC module 360 can
perform other power control tasks. For instance, by sending a reboot instruction to
an application node, UPC module 360 can effectively cycle the power of the
application node.

[0160] VSPC modules 362 contain code allowing VSPC modules 362 to
communicate with power control hardware units manufactured by different
vendors. For example, VSPC module 362A may use SSH commands to interact
with power contro] hardware units manufactured by vendor A. Meanwhile VSPC
module 362B may use XML documents transmitted via file transfer protocol
(“FTP”) to convey information to and from power control hardware units
manufactured by vendor B.

[0161] When BLT 206 instructs VSPC module 362 to power down an application
node, VSPC modules 362 performs a different routine than UPC module 360.
VSPC modules 362 do not reconfigure image repository 26. Rather, VSPC

35



WO 2007/016094 PCT/US2006/028852

modules 362 then issue instruction to a power control hardware unit associated
with the application node to physically power down the application node. VSPC
modules 362 power up the application node by issuing instructions to the power
control hardware unit to power up the application node.

[0162] Despite the advantages presented by UPC module 360, there are several
reasons that administrator 20 may elect to include one or more VSPC modules 362
in control node 16. For instance, VSPC modules 362 may offer the ability to
actually power down a computing node. Powering down a computing node may
save electricity or prevent the computing node from overheating.

[0163] When administrator 20 elects to include a VSPC module, administrator 20
modifies a table that maps nodes to power control modules. When BLT 206
receives a request from SLAI 204 to perform a power control operation on an
application node, BLT 206 looks up the application node in the table and finds the
power control module responsible for handling power control operations for the
application node. BLT 206 then sends a command to the power control module to
perform the power control operation requested by SLAI 204. In this manner, UPC
module 360 is compatible with an arbitrary number of VSPC modules 362.

[0164] FIG. 22 is a flowchart illustrating an exemplary mode of operation of UPC
module 360. A power-down/power-up cycle begins when BLT 206 instructs UPC
module 360 to power down an application node (380). UPC module 360
accordingly configures image repository 26 to associate an instance of the idle
image with the application node (382). Next, UPC module 360 directs the
application node to reboot, e.g., by accessing the node using SSH (384). In
response, the application node performs a network reboot, causing the application
node to boot the instance of the idle image from image repository 26 (386). While
the application node is booting the instance of the idle image, the application node
acquires a network address from the instance of the idle image (388). As discussed
above, UPC module 360 can later use this address to communicate with the
application node while the application node is executing the idle image.

[0165] When BLT 206 instructs UPC module 360 to power up a node (390), UPC
module 360 performs a similar process. UPC module 360 first configures image

repository 26 to associate the application node with the image instance used prior

36



WO 2007/016094 PCT/US2006/028852

to loading the instance of the idle image (392). Next, UPC module 360 commands
the application node to reboot (394). This time, when the application node reboots,
the application node loads the prior image now associated in image repository 26
with the application node (396). At this point, the application node is ready to
perform work for distributed computing system 10.

[0166] Various embodiments of the invention have been described. These and

other embodiments are within the scope of the following claims.

37



WO 2007/016094 PCT/US2006/028852

CLAIMS:

1. A distributed computing system comprising:

an application node coupled to a communications network;

a control node to provide autonomic control of the application node; and

a universal power control module that, in response to a power down
instruction from the control node, causes an idle image to execute on the
application node and indicates to the control node that the application node

executing the idle image is in powered down state.

2. The system of claim 1, wherein the universal power control module
responds to the power down instruction by causing the idle image to execute on the
application node when the application node has an associated power controller of a

type not specifically supported by the distributed computing system.

3. The system of claim 1, wherein the idle image is stored remotely and the
control node directs the application node to remotely execute the idle image in

response to the power down instruction.

4, The system of claim 3, wherein the application node uses a pre-boot

execution environment (“PXE”) to boot the remotely stored idle image.

5. The system of claim 4, wherein after the application node has booted the
idle image, the universal power control module maintains communications with the

application node.
6. The system of claim 1, wherein the idle image comprises at least software

capable of receiving a reboot command and booting a software image other than

the idle image.

38



WO 2007/016094 PCT/US2006/028852

7. The system of claim 1, wherein in response to a power-up command the
universal power control module causes the application node to boot a second
software image other than the idle image and indicates to the control node that the

application node is in powered-up state.

8. The system of claim 7, wherein the second software image is a software

image executed by the application node prior to loading the idle image.

9. The system of claim 7, wherein in response to the power-up command the
universal power control module causes the application node to boot the second

software image as selected by the control node.

10. The system of claim 1, further comprising:

an image repository to associate an instance of a software image with the
application node; and

a network boot infrastructure to facilitate booting the instance of the

software image in the image repository associated with the application node.

11.  The system of claim 10, wherein the universal power control module
causes the instance of the idle image to execute on the application node by
configuring the image repository to associate an instance of the idle image with the

application node.

12. The system of claim 1, further comprising a vendor-specific power control
module to perform power control operations on a second application node that has
a power controller associated with a particular vendor supported by the distributed

computing system.
13. The system of claim 1, wherein the control unit further comprises an

automation subsystem having one or more rule engines that provide autonomic

control of the application node in accordance with a set of one or more rules.

39



WO 2007/016094 PCT/US2006/028852

14. The system of claim 13, wherein the rule engines are forward-chaining rule

engines.

15.  The system of claim 13, wherein the control node further comprises:

a monitoring subsystem that collects the status data from the application
node and communicates the status data to the automation subsystem, wherein the
status data represents an actual state for the application node;

a business logic tier that provides expected state data to the automation
subsystem, wherein the expected state data represents an expected state for the
application node; and

wherein the rule engines analyze the status data from the monitoring
subsystem and apply the set of rules to produce action requests to the business
logic tier to control the application nodes to reduce any difference between the

actual state and the expected state.

16. A method comprising:

receiving a power down instruction from a control node of a distributed
computing system, wherein the power down instruction requests that an application
node of a distributed computing system be transitioned to a powered down state;
and

in response to the power down instruction, causing an idle software image

to execute on the application node.
17.  The method of claim 16, further comprising issuing a response to report

that the application node is in a powered down state even though the application

node executes the idle software image.

40



WO 2007/016094 PCT/US2006/028852

18.  The method of claim of claim 16, further comprising:

determining whether the application node is associated with a power
controller of a vendor type specifically supported by the distributed computing
system; and

causing the idle software image to execute on the application node when
the power controller is not of a vendor type specifically supported by the

distributed computing system.

19.  The method of claim 16, further comprising:
processing status data on a control node to determine whether to power
down the application node;

issuing the instruction to a universal power control module..

20.  The method of claim 16, wherein causing an idle software image to execute
on the application node comprises directing the application node to reboot and load

an instance of the idle software image.

21.  The method of claim 16, further comprising, in response to a power-up
instruction, causing the target application node to reboot and load a software image

used prior to the power-down operation.

22.  The method of claim 16, causing an idle software image to execute on the
application node comprises:

configuring an image repository to associate an instance of the idle
software image with the application node; and

sending a reboot command to the application node causing the application
node to reboot and load the instance of the idle software image from the image

repository.

41



WO 2007/016094 PCT/US2006/028852

23.  The method of claim 16, further comprising, in response to a power-up
command, configuring the image repository to associate the application node with
an instance of an image executed by the target application node prior to executing

the idie image.

24.  The method of claim 16, further comprising assigning to the application
node a temporary network address associated with the idle software image for use
while emulating the powered down state, wherein the network address facilitates
communication between the application node and a universal power control

module.

25.  The method of claim 16, wherein causing an idle software image to execute
on the application node comprises sending a command to a power control

hardware unit associated with the application node.

26. A computer-readable medium comprising instructions for causing a
programmable processor to:

receive status data from a distributed computing system regarding an actual
state of application nodes in the distributed computing system;

determine whether to perform a power down operation on a target
application node in the distributed computing system based on the status data; and

perform the power down operation by executing an idle software image on

the target application node and emulating a powered down state.

27.  The computer-readable medium of claim 26, wherein the instructions
further cause the programmable processor to:

determine whether to perform a power-cycle operation; and

perform, subject to the determination, the power-cycle operation by issuing

a command to target application node to reboot.

42



ALLOCATED TIERS

WO 2007/016094

1/22
e 10
__________________ 11
"~ DISCOVERED POOL ~
s s
| | DISCOVERED |
| NODES |
| |
| |
I |
| |
| |

APPLICATION
NODES
14

NETWORK
18

PCT/US2006/028852

UNALLOCATED

NODES

b o e = — ———— —— —

Fr—————— = —

FAILED NODES

CONTROL NODE
12

ORGANIZATIONAL
DATA
21

FIG. 1

<——>@DM|NISTRAT®

IMAGE

REPOSITORY

26

MAINTENANCE POOL /:—
|
|
|
|
|
|
|
|
1
!
|



PCT/US2006/028852

2/22

WO 2007/016094

¢ 9Old

H8E 53¢ 48¢ 98¢ asc 08¢ a8¢ V8g
101S 101S 101S 1018 101S 1018 1018 1LO01S
\V 3dON 3AdON 3AON 3dON JAdON 3dON 3AON JdON
als
D9¢ a9¢ V9%
¥3IL ¥3IL ¥3lL
\v ad ddv g3aM
olLe

Ve
NIVINOQ
LNOu4d
“JHOLS

are
NIVINOQ
ONVNI

=14

k4 €l
\V ondav4d T 100d
EERE]

vie FOHININOD-T



WO 2007/016094 PCT/US2006/028852

3/22

RECEIVE INPUT DEFINING 50
HIERARCHY OF DISTRIBUTED |~
COMPUTING SYSTEM

y

y

RECEIVE INPUT IDENTIFYING |52
NODE REQUIREMENTS OF TIERS

y

SELECT NODES FROM FREE — 54
POOL OR LOWER PRIORITY TIER

\ 4

DYNAMICALLY ASSIGN NODES TO 56
NODE SLOTS OF THE DEFINED |~
TIERS

FIG. 3



WO 2007/016094

PCT/US2006/028852

4/22

SELECT A TIER TO ENABLE <

A 4

RETRIEVE TIER REQUIREMENTS

v

COMPARE CAPABILITIES OF A

NODE TO TIER REQUIREMENTS |

NODE MEETS
INIMUM REQ’'TS?

— 68

REMOVE NODE FROM LIST OF
CANDIDATES

-T2

NODE IS IMMEDIATELY ASSIGNED
TO THE TIER

CALCULATE AND RECORD THE
ENERGY OF THE NODE

MORE NODES IN

NODE COUNT
FOR TIER MET?

THE FREE POOL?_—

BOX 64

NO
—80

IDENTIFY AND ASSIGN NODE
WITH THE MINIMUM POSITIVE
ENERGY TO THE TIER

FIG. 4 ‘

NODE COUNT
FOR TIER MET?




WO 2007/016094

5/22

IDENTIFY NEED FOR MORE NODE
CAPACITY ON TIER

90

92

NODES IN THE
FREE POOL?

PCT/US2006/028852

SELECT NODE

IDENTIFY TIERS WITH A LOWER
PRIORITY

96

A

DETERMINE WHICH NODES OF
THE LOWER PRIORITY TIERS
MEET REQUIREMENTS

98

h 4

CALCULATE ENERGY OF NODES
THAT MEET REQUIREMENTS

100

A 4

SELECT NODE WITH THE LOWEST
ENERGY

102

A 4

ASSIGN THE SELECTED NODE TO
THE TIER IN NEED OF CAPACITY

- 95

dl.

FIG. 5



WO 2007/016094 PCT/US2006/028852

6/22

110~
IDENTIFY EXCESS NODE
CAPACITY ON TIER h
112"\ \ 4
CALCULATE ENERGY OF ALL THE
NODES IN THE TIER

114~ v

éELECT NODE WITH THE HIGHEST
ENERGY (FURTHEST MATCH
FROM TIER’S IDEAL NODE)

116~ ,

RETURN SELECTED NODE TO THE
FREE POOL

FIG. 6



PCT/US2006/028852

WO 2007/016094

7122

. w.vm,.mﬁh

QLo L ETEL..

Amani smRney

_ﬂou..wf i ing ]
EModBYy

§ .31 5% Al

im) Boraoy puusn
ot any
007 .

(raDosdda 3 o0 E AL 7 FIST ST

m_u._uaﬂuv_..o di= .1 -Raaey Aw A -

E 5] Eﬁ—.ﬂw\ﬁwwm_mwuﬁ >
: (Cpadesiy,
Cipmdimsasy &

_speog

() gaerpy 8
@} gy G
@ vz Q

. srery

NN—. 3 ML S Sl quse) anagdpsog

weewiy ] asrgsns
Sy SN,

o

wzwog g0 (MIELIDY

|z=n

secinad

T egeSig mos g owsd <ar sl 3w

WETSUR

WIERCHA 2201 CA DRSO/ RS

ST puResuns AER0T BESITY




PCT/US2006/028852

WO 2007/016094

8/22

8 "OId

3tag

HIRNTHRANFS

« I B SYPCURIOIE ARRE SR A0
HE o MOz syenay mupy
PR HS) UL UL el G4 @82 BUHLY JE B SR AL SEEOU jEB e Sials SLeHY 03 u:ﬂhm

Hlayzoniey spe

. wkvw wunacwﬁnqrm uﬁﬂ, véubﬁm‘.».&» w .f:;::!i.::.:,iz,.:i:E.;?i.‘,x
Aa P 1 & 10y OUBMORETEE £] D] SOEWaINY

H PEEIER 2R FROURAE) B 10N :
g &= Ll W DT MG JORYRY .

e Eon

HHpd

JE3gus B :.z,ﬂww v._uﬁ écwci ,:n..ﬁvmnn?_ u;_vuu&
[t SE R R TR

{EE3 Ja1) £TRL 030C EEYE. RIDR B UM UDIESINDL DALY
] [eaRu ey
A

‘BI0EINEN 31 *LEDA B 450 58 3NS5 SIEAT L 30 LD SUBIEINND) MREN {
; SR Y dun peas :

ISERIBRY
HEEY

#O- & LG 3 repompy prmg

Ay peusE

i TR T 22

pratiliag 5

¥l FY) 4G} USIRUIDIAE JFAT-E3 [ABS FUg ﬂ_uhm.un-ﬁ el

aﬁmm_:_._ &g‘
AL @W&Ew?

Aoy Lty |

‘ mfanum

Ca mﬁ ARGH] ENRIGD
0} SoT ey L
, , ; ﬁm.*,,mﬁum srmi] m@w w,

{Bliend $aid
INFSTCIE R o
m_ﬁuu.

{2 Eoe e M
t7) e 1eal B
s SR = IREYA R

SRS Eaid

FIRLE

ez et J
Hiewng |

& - %H&Eﬁﬁmg oy L&_.slw.é&mmﬁmﬁ hwmmmtww:ﬁu:aanw wm_ummmuut.. hwm_.ﬁww

%& .m

c«ka 23

Hy wVim

g wsfjnaadag 2Enyuy et u




PCT/US2006/028852

WO 2007/016094

9/22

oriL

[EEI BB R

| wyrquny ppy
. "R S JoRdls
_5%_553 vaw o B A 3 az:v A ETR E_m AB v__ LMae} L 125 55 BETRLY ARy
e e s AR A b
T ¥BIBL 95 LT BT OR R SN
; PO WBIEL 5 HE 1T 50T LT TIH
Bl YRIE G0 WTNTFTT N
mc:.,,mn.mhmm&m,.mu LLEOTEET 12¢0g
! SSMPEY JYH SEHPRY 4 pauedwo)
o o o Gﬁmmeuﬁ.ﬁnwﬁmtwwﬁ
£ =2IN
| vean

S5 DE7 R R
Y ¥TIT WY
LR 4 1% ]

ZHR 77 ipReE Ndg3
IREREY M3
wpFoulingn yvegey
R Juman]

mca_."aum_ LT
TUOIEDS| ey
o500 27100 Al wogduoseg

LB I m IR
T - 3pop IRRURE o

B S11-I0] SHUBUGIE 34 JUT

wmnna siEn

CAnosoy & wepe sy

;E.E wrﬁza ] 1S} :w«

s |,

 Swlewiy

wamznn efew |
AITUINN BENTEL [

miﬂn L

ufouum

:ﬁ. mu._ é«z piIn

ot suay |

131 [ty sEnspEIRLOny

{Udisssd sy
IR0 LRIBAIR
Hccu

i s Hs_ 4

(z: zis1sat 0¥

17y wrisay @

- T

. QKE w.& ﬁaa MEE

- = Py #@‘Eﬁwmﬁ&m? vﬂE&Mzm&azé_zszyim%E:_EWE&E Gsm‘ ,aE .,mwm BRI s
T i ) T : S ) SER[0T) 55T - -

uoa



PCT/US2006/028852

WO 2007/016094

10/22

0L "OId

sngEerIn s b
& AU ] SIRADIZH
Kispan vogTY

b lie s I o

anisEs 50

EE L
HWONFT
SLISUNDTIM
AAOIMENNT

Fintinl

T
LI )

{1

B

DALY

" anLog

DALY

. ptear sy b

CIBTRED

aoayndde

0

I PG BB
L R ZREET
{Ljwodraesmann € |
re.

{

2) faarsel B
) zuyear 8
(2} L par i
. LT

arunabwgng J

o

A0

Ly esy

oy B

T

41F SEL)

npeben | eds (o] GIOIL A Gyoad (0]

sdsysneleds]pe)fes0e ammm@sw

£ oy @

051

£ 9[[oIIeD FBRYO NSy L




PCT/US2006/028852

WO 2007/016094

11/22

O 12LT

O k2LT

0 PEET

O P2CT

0 ZVOEIG] 14000 SETRTTITT (S EmE s
0 TL93EI2] TIARETT] VETOTNLCE QRRWITRESH
AT LT ST EFTGITLLT JERWBsiy

0 EL93E3e] TS| ZETOTLET DZRBIISCH

3 Nrﬂ«au,w_ ._n._n_w_»n.n._ AUTOTARE | Gownageny

TR T A S RS i
) Rl _ :
SUGILIY 0pOM | al._,__ oo

” . hn) Bararey piuen |
THRL¥RL oy £ B Sy
A TECCTH mqu

DHodgosuetopimy ¢
) E0d et
Gy amdimierany &

T 42 L1EDL

|eogd
POSSAODEIQ

=

apuy

SO

ML

11V -~ 5A1EIE

2} LR ]

(z) pamrisas 3
@) Laae @

LISLOP 3L J] SREAL- 13 35 sAASIMDANT FITMEIEH

IR

upuag eEnpn 3
wRwIng

Vs s

Ceps

PVHNIOG3f1200) £ & DRISONRIG /T g

091

- s RpeEyeD Ee|ed RISIEY




PCT/US2006/028852

WO 2007/016094

12/22

(1742

¢l "Ol4

"AALOAERUL 10 DRIRACDITID USE 2ARY J2IUR FSDIH n:ﬂ._wn—.hmmﬂ
120 Basans|g 0od

=e U padn

T O equpyebuer iy ep eqeboy  ads ey

& 04 |<HUUTLES ST UIOL. 00 = DI S 151 1< TRIRAIUTEJGIT e 015G ea0 f dau Y

By

AL BRYIIZY

AOTLILHIW

T simeby

1) 57 Epaly prusy

il ot SLsy

(g parg wouvtaping

HEDd 358

 {t31eo g parmscasia :

sjoeg |-

(7} 5ampea) F

G2 7w way

iz} L Eay J

Srerg

spying Fspng 3

: b

aad 2oy

0'f 13{joRUoy SERAY ResT)




PCT/US2006/028852

WO 2007/016094

13/22

s

At | mENARN

AL Ry

T odon

Tz} Barazey piuon

o b sy

1034 mummnuﬁ.@a i

0[5
51 . Joje.ade . IEEAED] |

BUOTF I

Ripsici4 UL

Japrade Do | EEWER

{Qpad e |

I mmdimEea &

L

(e} gaprp F -

(2} Ty B

i L spoy :
i "TE iy -smesi [z -sowou |

28l

RETUE

(A RLIA L Mu
’ [T

upLiag nmﬂmuuﬁ il

welnnyg

T g aBopey

T

N

o)

ot sa3 . asond fomy

o < ; il sy o mx,wéﬁ;
7ot ‘ T T B =I0Ien d S Uy R0l AN ISoE0U T Hng 2

"E AR (U Uy RER T RESSEY -




PCT/US2006/028852

WO 2007/016094

14/22

¥l "Old

wogpz] SR
AN FIRADIEL
: Ainisit) boasy
4. Buu%w_

:xv Bayapep Euad- I°

.L L Euﬁ%mﬁ
‘ sbo-

2 1
@ oot |
R ) ) o a4 {0} e 9as

.:‘ uv%_w .l swaﬁsuwwﬂuz; E.:swm m!

5 (D ped kg &
= : ﬂ,nuu

. (o) Bormnyy| | BT
i G} Learee @8 5

SUONEIYAE] Javod BALEN 43 7550 IE) 2.eamIRY 'sRIDEsl] 12AB] 331MEE A PRS0 Risjy e sy

sy !

wpmmppubeprg

jetio |-

P R o -

o TR « B :.wcuum@wgg km?wg w mmhmaw zads frro] . Syt Sal e u_wuﬁ.w!

- oo E%Rwﬁ@a;ﬁéamauu;émnwu_haé%

£ Bt

v55v)

D&




PCT/US2006/028852

WO 2007/016094

15/22

gl 'Old

SNOILOV Dlyav4 V1Vd SNLVLS
hcmi €0¢
Lz’ v «
90¢ 0Lz i roe 802 20z
O19018SANISNE | 1o o2 qvini|l 19AT0 3oiuas | FLYLS TYRLOV ONINOLINOIN
) _

van\ S1S3ND3Y NOILLOV

.v_\N.\

NOILVINHOZNI ONIHMOLINOIN TVILINI

3AdON TOH1NOD

N_‘.\




PCT/US2006/028852

WO 2007/016094

16/22

91 "Old

7 ™\ g ™\
N IAON | IAON IN IAON L JAON
awn | aw [®*®®| am | aw aw | aw [®*®®| aw | amm
ddv | so ddv | so ddv | so ddv | so
9 N ogyaiL |\ D S /  vu3lL y
oMavA
1744 ez
g¥0L1937100 | V¥OLO3TIOD
1\ P
y1z— NOILVINHOSNI
ONINOLINOW TVILINI
22z
) INIONT ONIYOLINOW
11z—  SNOILVDIHILON
(144
(1744 SWILSAS
S3OV4YILNI NIFON1d ONINOLINOW
ALHVd que

202

INILSASENS ONIYOLINON




PCT/US2006/028852

WO 2007/016094

17/22

Ll 'Old

S183NDIY NOILIY SNOILVOIHILON
A ALVLS TVNLOV
ANt 1Lz
H 80z
Nove NI¥T V
$57 <7 ANIONI [« ¥INILSIT v
¥yaooo1 & MEETRE yIOONL —
A ° 152
k414 ps ® v IN3IOV
anaon || ® 7| | NolLov¥Lxa
NOILVOOANI aove anz | p
MSVL V N ANIONT [« ¥3aNalsi
555 4 31Ny Z ¥3IL HIOONL \ NELEASENS
moﬂmmw_mw T W] v vIve »\ YOSN3S
3A ANIONT [« ¥3N3LSI ovz—’
1Ny L y3IL HIOONL
W3LsAsSaNS
MOLo3443 ~ W3LSASENS SISATYNY ——
syg— vvz— cve
¥I1NAIHOS
JUNLONYLSVHLNI NOILYINOLNY TIATT IDIANIS

vowu\




WO 2007/016094 PCT/US2006/028852

18/22

WORKING MEMORY ’,270
EXPECTED STATE (READ ONLY) | —~272
MAX NODES: 5
<:: BLT
ACTUAL STATE (READ/WRITE) —274

SENSOR/
5 MINUTE LOAD AVERAGE: 2.4. 4 # RULE
. ENGINES

276

SENSOR/
< RULE
ENGINES

LOCAL OBJECT (READ/WRITE)

FIG. 18



PCT/US2006/028852

WO 2007/016094

19/22

61 "Old

m oI w 7%
V.1Va Ysvl =08 S180d3Y
H HOLVHINIO 130d43Y
— 1€ r4 XA
cle : JOVINILNI ) 567
YIOVNVIN SYSVL ey s1s3no3y 4
NOILOY V1S
80¢ S yoe (%3
90¢ GIE
30IAN3S JOIAN3S
NOILVHLSININGY Emm___w,_ww_%we. L, | NolLvuLsINmay s_mwmwmw:m
yasn oNav4
00S e
| SINTTO
SIOVILNI (1ASM) IDVNONVT NOILINIAZA IOIAYIS 3M JoIANTS S3M

d3lL 219071 SSANISNg




WO 2007/016094 PCT/US2006/028852

20/22

RULES
342

RULE ENGINE

Y

RULE COMPILER
344

EXECUTION ENGINE
346

WORKING MEMORY
348

LOCAL
OBJECTS
350

.,
-

FIG. 20




PCT/US2006/028852

WO 2007/016094

21/22

SNOILLOV O1iav4d

2N

1Z "Old

V1iva Snivis

|

s

09¢
3T1NAON
TOYLNOD ¥3IMOd
TVSHIAINN

gc9¢
J1NAOCIN
TOULNOD d3aMOd
O1d103dS-HOANIA

Ve9e
IT1NAOCN
TOYLNOD ¥3IMOd
O1dI103dS-HOANIA

€0¢

!

90¢
ydll
J19071 SSaANISNg

0T
FHNLONYLSVHANI
NOILVINOLNV
BELERERINY-E

—

[A114
W3LSASENS
ONIHOLINOIN

!

3dON TO¥ULNOD

N_‘\.




WO 2007/016094

22/22

PCT/US2006/028852

BLT INSTRUCTS UPC MODULE TO POWER DOWN
APPLICATION NODE

—380

Y

CONFIGURE IMAGE REPOSITORY TO REFLECT IDLE
IMAGE FOR APPLICATION NODE

382

]

UPC COMMANDS APPLICATION NODE TO REBOOT

— 384

Y

APPLICATION NODE BOOTS IDLE IMAGE

386

Y

ACQUIRE NETWORK ADDRESS FROM INSTANCE OF
IDLE IMAGE

388

v

BLT INSTRUCTS UPC MODULE TO POWER UP
APPLICATION NODE

390

Y

CONFIGURE IMAGE REPOSITORY TO REFLECT
PREVIOUS IMAGE ON APPLICATION NODE

392
(‘

v

UPC COMMANDS APPLICATION NODE TO REBOOT

394
(‘

v

APPLICATION NODE BOOTS IMAGE REFLECTED BY
IMAGE REPOSITORY

396

FIG. 22



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings

