(54) 发明名称
偏振元件及其制作方法

(57) 摘要
本发明提供一种偏振元件的制作方法，包括下列步骤：提供一支撑板；涂布一光阻于所述支撑板上；提供一碳纳米管膜于所述光阻上；所述的所述碳纳米管膜浸润于所述光阻中；沉积金属粒子或半金属粒子于所述碳纳米管膜与所述光阻上；去除所述光阻；及黏接所述附着于所述金属粒子或所述半金属粒子的所述碳纳米管膜于一基底形成所述偏振元件。

【图】
1. 一种偏振元件的制作方法，包括下列步骤：
   提供一支撑板；
   涂布一光阻于所述支撑板上；
   提供一碳纳米管膜于所述光阻上，部分的所述碳纳米管膜浸润于所述光阻中，其中所述碳纳米管实质上排列形成多个相互平行的碳纳米管丝，相邻的所述碳纳米管丝之间是由多个碳纳米管连接；
   沉积金属粒子或半金属粒子于所述碳纳米管膜与所述光阻上；
   去除所述光阻；
   去除搭接在不同的所述碳纳米管丝之间的所述碳纳米管；以及
   黏接所述附着有所述金属粒子或所述半金属粒子的所述碳纳米管膜于基板形成所述偏振元件。

2. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述碳纳米管膜包括多个碳纳米管，所述碳纳米管的端部沿一方向相互连接。

3. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述碳纳米管是使用激光去除。

4. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述碳纳米管丝实质上等间距排列。

5. 如权利要求1所述的偏振元件的制作方法，其特征在于，黏接所述附着有所述金属粒子或所述半金属粒子的所述碳纳米管膜于所述基板的步骤包括：
   涂布一紫外光固化胶于所述碳纳米管膜上；
   固化所述紫外光固化胶，所述碳纳米管膜固着于所述紫外光固化胶中；以及
   去除所述支撑板。

6. 如权利要求1所述的偏振元件的制作方法，其特征在于，黏接所述附着有所述金属粒子或所述半金属粒子的所述碳纳米管膜于所述基板的步骤包括：
   黏接所述附着有所述金属粒子或所述半金属粒子的所述碳纳米管膜于一支撑板；以及
   去除所述支撑板。

7. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述支撑板为一硅基板。

8. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述光阻的材料为一正向光阻。

9. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述金属粒子以蒸发或溅镀方式沉积于所述碳纳米管膜与所述光阻上。

10. 如权利要求1所述的偏振元件的制作方法，其特征在于，设置有所述光阻与所述碳纳米管膜的所述支撑板浸置于一金属溶液中，使所述半金属粒子沉积于所述碳纳米管膜与所述光阻上。

11. 如权利要求10所述的偏振元件的制作方法，其特征在于，所述半金属溶液为碘溶液。

12. 如权利要求1所述的偏振元件的制作方法，其特征在于，所述金属粒子为金、银或铁。
偏振元件及其制作方法

技术领域

[0001] 本发明涉及一种光学元件，尤其涉及一种偏振元件及其制作方法。

背景技术

[0002] 偏光元件的一种重要的光学元件，被广泛应用于照相机、液晶显示器等光学装置中。目前普遍使用的偏光元件为一种吸收性偏光元件，其是藉由吸收一种偏振态的光，而让另一偏振态的光通过所述偏光元件，来达到让通过的光线仅具有单一偏振态。

[0003] 具体来说，所述偏光元件通常由一般色性分子溶于或吸收于高分子物质中（例如聚乙烯醇）形成一薄膜，并将所述薄膜以同一个方向拉伸以配列二向色性分子。此时，二向色性分子就会沿拉伸方向有规则排列起来，形成一条条长链。在入射光波中，光波的振动方向平行于长链方向的光会被吸收，而垂直于长链方向的光则能透过所述薄膜，从而使得透过所述薄膜的透射光成为线偏振光。

[0004] 然而，由于此种将二向色性分子结合高分子聚合物作为偏光元件的制备过程较为复杂，且应用高分子聚合物作为材料的偏光元件于 50℃以上使用一段时间后，偏光率会随的减小，甚至失去偏光作用。而且此类偏光元件对温湿度要求也较高，一旦工作环境恶劣，湿度过大，偏光元件将失去偏光作用。

发明内容

[0005] 有鉴于此，如何提供一种制程简单且可靠度高的偏光元件及其制作方法，实为现今的重要课题的一。

[0006] 一种偏振元件的制作方法，其中包括下列步骤：提供一支撑板；涂布一光阻于所述支撑板上；提供一碳纳米管膜于所述光阻上，部分的所述碳纳米管膜湿润于所述光阻中，其中所述碳纳米管实质上排列形成多个相互平行的碳纳米管束，相邻的所述碳纳米管束之间是由多个碳纳米管连接；沉积金属粒子或半金属粒子于所述碳纳米管膜与所述光阻上；去除所述光阻；去除搭接在不同的所述碳纳米管束之间的所述碳纳米管；及黏接所述附若有所述金属粒子或所述半金属粒子的所述碳纳米管膜于一基底形成所述偏振元件。

[0007] 承上所述，因依偏光元件及其制作方法是利用碳纳米管膜的多个碳纳米管规则性排列，来达到偏光元件的偏光作用，且金属粒子或半金属粒子的附着，更进而强化偏光效果，由于使用碳纳米管膜来制作偏光元件，可利用简单的半导体制程以及沉积方法来制作所述偏光元件，相较于习知技术，达到制程简单更进而降低了制作成本。

附图说明

[0008] 图 1 是本技术方案较佳实施例的偏光元件的示意图。
[0009] 图 2 是本技术方案较佳实施例的偏光元件的制作方法的流程图。
[0010] 图 3 是本技术方案较佳实施例的偏光元件的制作方法的流程示意图。
[0011] 图 4 是图 3 中去除相邻碳纳米管束之间所述碳纳米管的示意图。
具体实施方式
[0012] 以下将结合附图详细说明本发明实施例的偏光元件及其制作方法。
[0013] 请参照图 1 所示，依据较佳实施例的一种偏光元件 1 包括一基底 11、一碳纳米管膜 12 以及金属粒子 13 或半金属(semi-metal)粒子 13’。所述碳纳米管膜 12 设置于所述基底 11 上，所述金属粒子 13 或所述半金属粒子 13’附着于所述碳纳米管膜 12 上。
[0014] 在本实施例中，所述基底 11 是构成一光学元件的基板，其可为一塑料板，或由一光固化胶如紫外光固化胶制成。
[0015] 所述碳纳米管膜 12 包括多根碳纳米管，所述碳纳米管的端部是沿一方向相互连结，且所述碳纳米管的实体上排列形成多个相互平行的碳纳米管丝 121，在本实施例中，所述碳纳米管丝 121 实质上等间距排列。即，所述碳纳米管是连续地以端部接合形成一定长度的碳纳米管丝 121，多个碳纳米管丝 121 再相互平行排列形成一定宽度的碳纳米管膜 12。藉由规则性排列的所述碳纳米管排列设置于所述基底 11 上，当一光线入射时，所述碳纳米管膜 12 对于特定波长的光线会有不同的透射率，而达到偏光的效果。
[0016] 金属粒子 13 或半金属粒子 13’以沉积方式黏着于所述碳纳米管膜 12 的所述碳纳米管，依据所述粒子 13、13’ 材料的选择以及沉积的厚度，对不同波长入射光的偏振度也会不同。在本实施例中，所述金属粒子 13 可为金、银或铁，而所述半金属粒子 13’则可为碘。
[0017] 另，请参照图 2 至图 3 所示，依据较佳实施例的一种偏振元件 2 的制作方法包括以下步骤：提供一支撑板 20，S1；涂布一光阻 21 于所述支撑板 20 上，S2；提供一碳纳米管膜 23 于所述光阻 21 上，部位的所述碳纳米管膜 23 浸润于所述光阻 21 中，S3；沉积金属粒子 24 或半金属粒子 24’于所述碳纳米管膜 23 于所述光阻 21 上，S4；去除所述光阻 21，S5，及，黏接所述附着有所述金属粒子 24 或半金属粒子 24’的所述碳纳米管膜 23 于一基底 30 形成所述偏振元件 2，S6。
[0018] 于步骤 S1，所述支撑板 20 为一具有平滑表面的基板，在本实施例中，所述支撑板 20 为一硅基板，并经过抛光处理而形成具有一光滑面 201。
[0019] 于步骤 S2，所述光阻 21 为一涂布方式形成于所述支撑板 20 的光滑面 201 上，在本实施例中，所述光阻 21 为一正向光阻（positive resist），于硅基板的表面形成约 100 微米的厚度，再经过适当强度的紫外光固化所述正向光阻之定型，但控制光照强度使所述光阻 21 保持未完全固化状态，并保持一定弹性。
[0020] 于步骤 S3，所述碳纳米管膜 23 接设于所述光阻 21 上，由于所述碳纳米管膜 23 在所述光阻 21 并未完全固化时接设，部位的所述碳纳米管膜 23 浸润于所述光阻 21 中。在本实施例中，所述碳纳米管膜 23 由一碳纳米管阵列中拉取而获得，具体来说，所述碳纳米管膜 23 包括多根碳纳米管丝 231 基本相互平行排列，且大致平行于所述碳纳米管膜 23 表面（如图 4 所示），而所述碳纳米管丝 231 其中之一是由多个碳纳米管通过凡德瓦尔力首尾相连且基本沿同一方向择优取向排列构成。其中，相邻的所述碳纳米管丝 231 之间是由多个碳纳米管连接，即部份的多个碳纳米管搭接着相邻的碳纳米管丝 231。
[0021] 步骤 S4，金属粒子 24 以蒸镀或溅镀方式沉积于所述碳纳米管膜 23 与所述光阻 21 上，可以理解的，所述碳纳米管膜 23 中，实质上平行排列的所述碳纳米管丝 231 之间是具有间隙，因此，于微观上，所述金属粒子 24 是可透过所述间隙沉积于所述碳纳米管膜 23 中所
述碳纳米管的至少部分表面上，且所述金属粒子 24 亦会藉由所述间隙沉积于所述光阻 21 上。在本实施例中，所述金属粒子 24 是选自金、银或铁。

另外，若沉积的是所述半金属粒子 24’，则可藉由将步骤 S3 完成的所述支撑板 20，即将设置有所述光阻 21 以及所述碳纳米管膜 23 的所述支撑板 20 浸置于一复合金属溶液中来达成，所述半金属溶液例如为碳溶液，藉由浸置的过程中，俾使所述半金属粒子 24 附着于所述碳纳米管膜 23 与所述光阻 21 上。

所述金属粒子 24 或所述半金属粒子 24’可依据实际需求（例如选择不同电磁波的偏振程度）、选择不同的材料，以改善所述偏光元件 2 在各个波段电磁波的偏振性能。

于步骤 S4 后，在步骤 S5 利用显影液将所述光阻 21 去除，而留下附着所述金属粒子 24 或所述半金属粒子 24’的所述碳纳米管膜 23 于所述支撑板 20 上。

于步骤 S5 的后，所述制作方法更包括一步骤，将连接相邻所述碳纳米管丝 231 的所述碳纳米管去除，在本实施例中，利用激光或刀具等方式将搭接的所述碳纳米管去除，并控制使所述碳纳米管丝 231 实质上等间距平行排列（如图 4 所示），俾使所述碳纳米管膜 23 中的所述碳纳米管具有一规则性排列。举例来说，所述附着有所述金属粒子 24 或所述半金属粒子 24’的所述碳纳米管膜 23 在利用刀具执行步骤 S5 之前，可先外加一保护膜层来增加所述碳纳米管膜 23 的强度后，再利用刀具去除附着的所述碳纳米管。

于步骤 S6，将附着有所述金属粒子 24 的所述碳纳米管膜 23 转接于一基底 30 上，详细来说，步骤 S6 包括下列步骤：首先，涂布一紫外光固化胶于附着有所述金属粒子 24 的所述碳纳米管膜 23 上，即将所述紫外光固化胶散布于去除所述光阻 21 后的所述支撑板 20 上，而使所述紫外光固化胶浸润所述碳纳米管膜 23 ；之后，固化所述紫外光固化胶，使所述碳纳米管膜 23 固著于所述紫外光固化胶中，最后，去除所述支撑板 20 以成所述偏光元件 2，在此，所述紫外光固化胶即固化成为所述偏光元件 2 的所述基底 30。

另外，于步骤 S5 的后，支撑所述碳纳米管膜 23 的所述支撑板 20 亦可藉由将附着有所述金属粒子 24 或所述半金属粒子 24’的所述碳纳米管膜 23 贴附于一塑料板上，之后，再去除所述支撑板 20 来完成所述偏光元件 2 的制备。于此，所述塑料板是作为所述偏光元件 2 的所述基底 30。

综上所述，依据本发明的偏光元件及其制作方法是利用碳纳米管膜的多个碳纳米管规则性排列，来达到偏光元件的偏光作用，且金属粒子或半金属粒子的附着，更进而强化偏光效果；由于使用碳纳米管膜来制作偏光元件，可利用简单的半导体制程以及沉积方法来制作所述偏光元件，相较于知习技术，制程简单更进而降低了制作成本。

另外，本领域技术人员还可在本发明精神内做其它变化，当然，这些依据本发明精神所做之变化，都应包含在本发明所要求保护的范围的内。