wo 2011/075572 A1 I 0K 00 OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN0 VAN A 00 0N O 0RO OO 1
International Bureau W U
3\ 10) International Publication Number
(43) International Publication Date \'{_5___,/ (10)
23 June 2011 (23.06.2011) PCT WO 2011/075572 Al
(51) International Patent Classification: (74) Agents: CLEVELAND, MlIchael, G. et al.; 505 Mont-
G11C 11/56 (2006.01) gomery Street, Suite 800, San Francisco, California
4111 .
(21) International Application Number: ’ (US)
PCT/US2010/060751 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, I{T, AU, Ai BA, BB, BG, BP{, BR, BW, BY, BZ,
16 December 2010 (16.12.2010) CA. CH. CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L.) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/642,584 18 December 2009 (18.12.2009) US NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(71) Applicant (for all designated States except US): SAN- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
DISK CORPORATION [US/US]; 601 McCarthy Blvd., . o
Milpitas, California 95035 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(75) Inventors/Applicants (for US only): GOROBETS, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Sergey Anatolievich [RU/GB]; 1F1, 92 Blackford Av- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
enue, Edinburgh Midlothian EH9 3ES (GB). WU, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
William S. [US/US]; 877 E. Estates Dr., Cupettino, Cali- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
fornia 95014 (US). TRAISTER, Shai [IL/US]; 1454 Teal SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Drive, Sunnyvale, California 94087 (US). LYASHUK, GW, ML, MR, NE, SN, TD, TG).
Alexander [BY/BY]; 46-65 Leshchinskogo Street, Min- Published:

sk, 220140 (BY). SPROUSE, Steven, T. [US/US]; 5285
Hoyet Drive, San Jose, California 95129 (US).

with international search report (Art. 21(3))

(54) Title: MAINTAINING UPDATES OF MULTI-LEVEL NON-VOLATILE MEMORY IN BINARY NON-VOLATILE
MEMORY

VUB-
Virtual
Update

Block

FOLD
BLOCK/
NEWINTACT
D3 Block

411
LG X uB
UB }’ ’g'f_;\—‘—
Uol) 15
LG X+1 (ob))
a
49
'
LG X+2 yA
D1 Dt D1 401/ D3
LG Update Update of
Triplet Blocks Update (UoU)

Block

FIG.

18

(57) Abstract: A method of operating a memory system is presented. The memory system includes a controller and a non-volatile
memory circuit, where the non-volatile memory circuit has a first portion, where data is stored in a binary format, and a second
portion, where data is stored in a multi-state format. The controller manages the transfer of data to and from the memory system
and the storage of data on the non-volatile memory circuit. The method includes receiving a first set of data and storing this first
set of data in a first location in the second portion of the non-volatile memory circuit. The memory system subsequently receives
updated data for a first subset of the first data set. The updated data is stored in a second location in the first portion of the non-
volatile memory circuit, where the controller maintains a logical correspondence between the second location and the first subset
of the first set of data.

WO 2011/075572 PCT/US2010/060751

MAINTAINING UPDATES OF MULTI-LEVEL NON-VOLATILE MEMORY
IN BINARY NON-VOLATILE MEMORY

BACKGROUND

[0001] This application relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory, and, more specifically, to the

management of the interface between a host device and the memory.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card is ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold

voltage characteristic of the transistor is controlled by the amount of charge that is

S 1-

WO 2011/075572 PCT/US2010/060751

retained on the floating gate. That is, for a given level of charge on the floating gate,
there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0006] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is crasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum

crasable blocks at a time, where a minimum erasable block may consist of one or

.

WO 2011/075572 PCT/US2010/060751
more sectors and each sector may store 512 bytes or more of data.

[0007] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0008] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO dielectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping diclectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0009] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

-3-

WO 2011/075572 PCT/US2010/060751

[0010] In flash memory systems, erase operation may take as much as an order of
magnitude longer than read and program operations. Thus, it is desirable to have the
erase block of substantial size. In this way, the erase time is amortized over a large

aggregate of memory cells.

[0011] The nature of flash memory predicates that data must be written to an erased
memory location. If data of a certain logical address from a host is to be updated, one
way is rewrite the update data in the same physical memory location. That is, the
logical to physical address mapping is unchanged. However, this will mean the entire
erase block contain that physical location will have to be first erased and then
rewritten with the updated data. This method of update is inefficient, as it requires an
entire erase block to be erased and rewritten, especially if the data to be updated only
occupies a small portion of the erase block. It will also result in a higher frequency of
erase recycling of the memory block, which is undesirable in view of the limited

endurance of this type of memory device.

[0012] Data communicated through external interfaces of host systems, memory
systems and other electronic systems are addressed and mapped into the physical
locations of a flash memory system. Typically, addresses of data files generated or
received by the system are mapped into distinct ranges of a continuous logical address
space established for the system in terms of logical blocks of data (hereinafter the
“LBA interface”). The extent of the address space is typically sufficient to cover the
full range of addresses that the system is capable of handling. In one example,
magnetic disk storage drives communicate with computers or other host systems
through such a logical address space. This address space has an extent sufficient to

address the entire data storage capacity of the disk drive.

[0013] Flash memory systems are most commonly provided in the form of a memory
card or flash drive that is removably connected with a variety of hosts such as a
personal computer, a camera or the like, but may also be embedded within such host
systems. When writing data to the memory, the host typically assigns unique logical
addresses to sectors, clusters or other units of data within a continuous virtual address
space of the memory system. Like a disk operating system (DOS), the host writes

data to, and reads data from, addresses within the logical address space of the memory

-4 -

WO 2011/075572 PCT/US2010/060751

system. A controller within the memory system translates logical addresses received
from the host into physical addresses within the memory array, where the data are
actually stored, and then keeps track of these address translations. The data storage
capacity of the memory system is at least as large as the amount of data that is

addressable over the entire logical address space defined for the memory system.

[0014] In current commercial flash memory systems, the size of the erase unit has
been increased to a block of enough memory cells to store multiple sectors of data.
Indeed, many pages of data are stored in one block, and a page may store multiple
sectors of data. Further, two or more blocks are often operated together as
metablocks, and the pages of such blocks logically linked together as metapages. A
page or metapage of data are written and read together, which can include many
sectors of data, thus increasing the parallelism of the operation. Along with such

large capacity operating units the challenge is to operate them efficiently.

[0015] For ecase of explanation, unless otherwise specified, it is intended that the term
“block” as used herein refer to either the block unit of erase or a multiple block
“metablock,” depending upon whether metablocks are being used in a specific
system. Similarly, reference to a “page” herein may refer to a unit of programming
within a single block or a “metapage” within a metablock, depending upon the system

configuration.

[0016] When the currently prevalent LBA interface to the memory system is used,
files generated by a host to which the memory is connected are assigned unique
addresses within the logical address space of the interface. The memory system then
commonly maps data between the logical address space and pages of the physical
blocks of memory. The memory system keeps track of how the logical address space
is mapped into the physical memory but the host is unaware of this. The host keeps
track of the addresses of its data files within the logical address space but the memory

system operates with little or no knowledge of this mapping.

[0017] Another problem with managing flash memory system has to do with system
control and directory data. The data is produced and accessed during the course of
various memory operations. Thus, its efficient handling and ready access will directly

impact performance. It would be desirable to maintain this type of data in flash

-5-

WO 2011/075572 PCT/US2010/060751

memory because flash memory is meant for storage and is nonvolatile. However,
with an intervening file management system between the controller and the flash
memory, the data can not be accessed as directly. Also, system control and directory
data tends to be active and fragmented, which is not conducive to storing in a system
with large size block erase. Conventionally, this type of data is set up in the controller
RAM, thereby allowing direct access by the controller. After the memory device is
powered up, a process of initialization enables the flash memory to be scanned in
order to compile the necessary system control and directory information to be placed
in the controller RAM. This process takes time and requires controller RAM

capacity, all the more so with ever increasing flash memory capacity.

[0018] US 6,567,307 discloses a method of dealing with sector updates among large
erase block including recording the update data in multiple erase blocks acting as
scratch pad and eventually consolidating the valid sectors among the various blocks
and rewriting the sectors after rearranging them in logically sequential order. In this

way, a block needs not be erased and rewritten at every slightest update.

[0019] WO 03/027828 and W0 00/49488 both disclose a memory system dealing with
updates among large erase block including partitioning the logical sector addresses in
zones. A small zone of logical address range is reserved for active system control
data separate from another zone for user data. In this way, manipulation of the system
control data in its own zone will not interact with the associated user data in another
zone. Updates are at the logical sector level and a write pointer points to the
corresponding physical sectors in a block to be written. The mapping information is
buffered in RAM and eventually stored in a sector allocation table in the main
memory. The latest version of a logical sector will obsolete all previous versions
among existing blocks, which become partially obsolete. Garbage collection is

performed to keep partially obsolete blocks to an acceptable number.

[0020] Prior art systems tend to have the update data distributed over many blocks or
the update data may render many existing blocks partially obsolete. The result often
is a large amount of garbage collection necessary for the partially obsolete blocks,
which is inefficient and causes premature aging of the memory. Also, there is no

systematic and efficient way of dealing with sequential update as compared to non-

-6 -

WO 2011/075572 PCT/US2010/060751
sequential update.

[0021] Flash memory with a block management system employing a mixture of
sequential and chaotic update blocks is disclosed in United States Patent Publication

No. US-2005-0144365-A1 dated June 30, 2005, the entire disclosure of which is

incorporated herein by reference.

[0022] Prior art has disclosed flash memory systems operating with a cache and
operating in mixed MLC (multi-level cell) and SLC (single-level cell) modes and with
the SLC memory operating as a dedicated cache. However, the cache disclosed is
mainly to buffer the data between a fast host and a slower MLC memory and for
accumulation to write to a block. These systems mostly treat the cache memory at a
high level as storage and ignoring the underlying low level operating considerations
of the block structure and its update scheme. The following publications are

examples of these prior art.

[0023] Using RAM in a write cache operating with a flash memory has been
disclosed in US Patent No. 5,936,971 to Harari et al.

[0024] Partitioning the memory into two portions one operating in binary and the
other in MLC has been disclosed in US Patent No. 5,930,167 to Lee et al and US
Patent No. 6,456,528 to Chen, the entire disclosure of which is incorporated therein

by reference.

[0025] United States Patent Publication Number: Publication Number: US-2007-
0061502-A1 on March 15, 2007 and US-2007-0283081-A1 dated December 6, 2007
by Lasser both disclose a flash memory operating in mixed MLC and SLC modes. A
specific portion of the memory is always allocated to operate in SLC mode and to

serve as a dedicated cache.

[0026] Therefore there is a general need for high capacity and high performance non-
volatile memory. In particular, there is a need to have a high capacity nonvolatile
memory able to conduct memory operations in large blocks without the

aforementioned problems.

WO 2011/075572 PCT/US2010/060751

SUMMARY OF THE INVENTION

[0027] According to a general aspect of the invention, a method of operating a
memory system is presented. The memory system includes a controller and a non-
volatile memory circuit, where the non-volatile memory circuit has a first portion,
where data is stored in a binary format, and a second portion, where data is stored in a
multi-state format. The controller manages the transfer of data to and from the
memory system and the storage of data on the non-volatile memory circuit. The
method includes receiving a first set of data and storing this first set of data in a first
location in the second portion of the non-volatile memory circuit. The memory
system subsequently receives updated data for a first subset of the first data set. The
updated data is stored in a second location in the first portion of the non-volatile
memory circuit, where the controller maintains a logical correspondence between the

second location and the first subset of the first set of data.

[0028] According to another aspect of the invention, a method of operating a memory
system is presented. The memory system includes a controller and a non-volatile
memory circuit, where the non-volatile memory circuit has a first portion and a
second portion, where the first and second portion differ qualitatively. The controller
manages the transfer of data to and from the memory system and the storage of data
on the non-volatile memory circuit. The method includes receiving a first set of data
and storing this first set of data in a first location in the second portion of the non-
volatile memory circuit. The memory system subsequently receives updated data for
a first subset of the first data set. The updated data is stored in a second location in
the first portion of the non-volatile memory circuit, where the controller maintains a
logical correspondence between the second location and the first subset of the first set

of data.

[0029] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for

all purposes. To the extent of any inconsistency or conflict in the definition or use of

-8 -

WO 2011/075572 PCT/US2010/060751

terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 illustrates schematically the main hardware components of a memory

system suitable for implementing the present invention.
[0031] FIG. 2 illustrates schematically a non-volatile memory cell.

[0032] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage V¢ for four different charges Q1-Q4 that the floating gate may

be selectively storing at any one time.

[0033] FIG. 4A illustrates schematically a string of memory cells organized into an

NAND string.

[0034] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A.

[0035] FIG. 5 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0036] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state

memory cells.

[0037] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory

encoded with a given 2-bit code.

[0038] FIG. 7F illustrates a foggy-fine programming for an 8-state memory encoded

with a given 3-bit code.

[0039] FIG. 8 illustrates the memory being managed by a memory manager with is a

software component that resides in the controller.
[0040] FIG. 9 illustrates the software modules of the back-end system.

[0041] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical

WO 2011/075572 PCT/US2010/060751

group and a metablock. FIG. 10B illustrates schematically the mapping between

logical groups and metablocks.

[0042] FIG. 11 illustrates a host operating with the flash memory device through a

series of caches at different levels of the system.

[0043] FIG. 12 outlines the on-memory folding process where the data from multiple

word lines written in a binary format are rewritten into a multi-state format.
[0044] FIG. 13 illustrates aspects of the folding process in more detail.

[0045] FIG. 14 shows another example of a non-volatile memory that includes both

binary and multi-state memory portions.
[0046] FIGs. 15-18 illustrate the use of a virtual update block.

[0047] FIG. 19 shows a further example of a non-volatile memory that includes both

binary and multi-state memory portions.

[0048] FIG. 20 is a simplified depiction of a memory system to illustrate a data

transfer flow for on-chip folding.
[0049] FIG. 21 shows timing for an exemplary single die data transfer flow.

[0050] FIGs. 22A and 22B shows timing for an exemplary multi-die data transfer

flow.

[0051] FIGs. 23-27 give examples how to combine data folding operation with writes
to the binary portion of the memory

[0052] FIG. 28 is a schematic illustration of transitioning between modes of memory

operation that include on-chip data folding operations.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0053] FIG. 1 to FIG. 7 provide example memory systems in which the various

aspects of the present invention may be implemented or illustrated.

-10-

WO 2011/075572 PCT/US2010/060751

[0054] FIG. 8 to FIG. 13 illustrate one memory and block architecture for

implementing the various aspects of the present invention.

[0055] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card or an embedded memory system. The
memory system 90 includes a memory 200 whose operations are controlled by a
controller 100. The memory 200 comprises of one or more array of non-volatile
memory cells distributed over one or more integrated circuit chip. The controller 100
includes an interface 110, a processor 120, an optional coprocessor 121, ROM 122
(read-only-memory), RAM 130 (random access memory) and optionally
programmable nonvolatile memory 124. The interface 110 has one component
interfacing the controller to a host and another component interfacing to the memory
200. Firmware stored in nonvolatile ROM 122 and/or the optional nonvolatile
memory 124 provides codes for the processor 120 to implement the functions of the
controller 100. Error correction codes may be processed by the processor 120 or the
optional coprocessor 121. In an alternative embodiment, the controller 100 is
implemented by a state machine (not shown.) In yet another embodiment, the

controller 100 is implemented within the host.

Physical Memory Structure

[0056] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a diclectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0057] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0058] Typical non-volatile memory cells include EEPROM and flash EEPROM.
Examples of EEPROM cells and methods of manufacturing them are given in United

States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory

-11 -

WO 2011/075572 PCT/US2010/060751

systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In
particular, examples of memory devices with NAND cell structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage element have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0059] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0060] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0061] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V.
Seven possible memory states “07, “17, “27, “37, “4” “5” “6”, respectively
representing one erased and six programmed states may be demarcated by partitioning
the threshold window into five regions in interval of 0.5V each. For example, if a

reference current, IREF of 2 pA is used as shown, then the cell programmed with Q1

-12-

WO 2011/075572 PCT/US2010/060751

may be considered to be in a memory state “1” since its curve intersects with Iggr in
the region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly,

Q4 is in a memory state “5”.

[0062] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0063] FIG. 4A illustrates schematically a string of memory cells organized into an
NAND string. An NAND string 50 comprises of a series of memory transistors M1,
M2, ... Mn (e.g., n=4, 8, 16 or higher) daisy-chained by their sources and drains. A
pair of select transistors S1, S2 controls the memory transistors chain’s connection to
the external via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 4B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0064] When an addressed memory transistor 10 within an NAND string is read or is
verified during programming, its control gate 30 is supplied with an appropriate

voltage. At the same time, the rest of the non-addressed memory transistors in the

-13 -

WO 2011/075572 PCT/US2010/060751

NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effective created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and
likewise for the drain of the individual memory transistor to the drain terminal 56 of
the cell. Memory devices with such NAND string structures are described in United
States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0065] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A. Along each
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of cach NAND string. Along each bank of NAND strings, a source line such as
source line 34 is couple to the source terminals 54 of ecach NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected
to a word line such as word line 42. The control gates along a row of select
transistors in a bank of NAND strings are connected to a select line such as select line
44. An entire row of memory cells in a bank of NAND strings can be addressed by
appropriate voltages on the word lines and select lines of the bank of NAND strings.
When a memory transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their associated word lines so
that the current flowing through the string is essentially dependent upon the level of

charge stored in the cell being read.

[0066] FIG. 5 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 5 essentially
shows a bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the
detail of each NAND string is shown explicitly as in FIG. 4A. A “page” such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This is accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latches in a corresponding set of latches 214. Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible
by a sense amplifier accessible via a bit line 36. As an example, when respectively
sensing or programming the page of cells 60, a sensing voltage or a programming

voltage is respectively applied to the common word line WL3 together with

-14 -

WO 2011/075572 PCT/US2010/060751

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0067] One important difference between flash memory and of type of memory is that
a cell must be programmed from the erased state. That is the floating gate must first
be emptied of charge. Programming then adds a desired amount of charge back to the
floating gate. It does not support removing a portion of the charge from the floating
to go from a more programmed state to a lesser one. This means that update data

cannot overwrite existing one and must be written to a previous unwritten location.

[0068] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the
minimum number of memory cells that are erased together. While aggregating a large
number of cells in a block to be erased in parallel will improve erase performance, a
large size block also entails dealing with a larger number of update and obsolete data.
Just before the block is erased, a garbage collection is required to salvage the non-

obsolete data in the block.

[0069] Each block is typically divided into a number of pages. A page is a unit of
programming or reading. In one embodiment, the individual pages may be divided
into segments and the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or more pages of data are
typically stored in one row of memory cells. A page can store one or more sectors. A
sector includes user data and overhead data. Multiple blocks and pages distributed
across multiple arrays can also be operated together as metablocks and metapages. If
they are distributed over multiple chips, they can be operated together as megablocks

and megapage.

Examples of Multi-level Cell (“MLC”) Memory Partitioning

[0070] A nonvolatile memory in which the memory cells each stores multiple bits of

-15-

WO 2011/075572 PCT/US2010/060751

data has already been described in connection with FIG. 3. A particular example is a
memory formed from an array of field-effect transistors, each having a charge storage
layer between its channel region and its control gate. The charge storage layer or unit
can store a range of charges, giving rise to a range of threshold voltages for each
field-effect transistor. The range of possible threshold voltages spans a threshold
window. When the threshold window is partitioned into multiple sub-ranges or
zones of threshold voltages, each resolvable zone is used to represent a different
memory states for a memory cell. The multiple memory states can be coded by one
or more binary bits. For example, a memory cell partitioned into four zones can
support four states which can be coded as 2-bit data. Similarly, a memory cell
partitioned into eight zones can support eight memory states which can be coded as 3-

bit data, etc.

All-bit, Full-Sequence MLC Programming

[0071] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
memory cells. FIG. 6(0) illustrates the population of memory cells programmable
into four distinct distributions of threshold voltages respectively representing memory
states “07, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vVy, vV, and vVi;. In
this way, each memory cell can be programmed to one of the three programmed state
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0072] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states arc
respectively represented by “117, “017, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed
together by sensing relative to the read demarcation threshold values rV,, rV, and rV;

in three sub-passes respectively.

-16 -

WO 2011/075572 PCT/US2010/060751

Bit-by-Bit MLC Programming and Reading

[0073] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code. FIG. 7A illustrates threshold voltage distributions
of the 4-state memory array when each memory cell stores two bits of data using the
2-bit code. Such a 2-bit code has been disclosed in US Patent Application No.
10/830,824 filed April 24, 2004 by Li et al., entitled “NON-VOLATILE MEMORY
AND CONTROL WITH IMPROVED PARTIAL PAGE PROGRAM
CAPABILITY”.

[0074] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by

3

programming the “unprogrammed” memory state “0” to the “intermediate” state
designated by (x, 0) with a programmed threshold voltage greater than Da but less

than Dc.

[0075] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0076] FIG. 7D illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit code. A readB operation is first
performed to determine if the LM flag can be read. If so, the upper page has been
programmed and the readB operation will yield the lower page data correctly. On the
other hand, if the upper page has not yet been programmed, the lower page data will

be read by a readA operation.

-17 -

WO 2011/075572 PCT/US2010/060751

[0077] FIG. 7E illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit code. As is clear from the figure, the
upper page read will require a 3-pass read of readA, readB and readC, respectively

relative to the demarcation threshold voltages Da, Dy and De.

[0078] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and

an upper data page corresponding to the upper bit.

Foggvy-Fine Programming

[0079] Another wvariation on multi-state programming employs a foggy-fine
algorithm, as is illustrated in FIG. 7F for a 3-bit memory example. As shown there,
this another multi-phase programming operation. A first programming operation is
performed as shown in the top line, followed the foggy programming stage. The
foggy phase is a full 3-bit programming operation from the first phase using all eight
of the final states. At the end of the foggy, though, the data in these states is not yet
fully resolved into well defined distributions for each of the 8 states (hence, the

“foggy” name) and is not readily extractable.

[0080] As cach cell is, however, programmed to near its eventual target state, the sort
of neighboring cell to cell couplings, or “Yupin” effect, described in US patent
number 6,870,768 are presenting most of their effect. Because of this, when the fine
program phase (shown on the bottom line) is executed, these couplings have largely
been factored in to this final phase so the cell distributions are more accurately
resolved to their target ranges. More detail on these subjects is given in US patents
numbers 6,870,768 and 6,657,891 and in the US patent application entitled “Atomic
Program Sequence and Write Abort Detection” by Gorobets et al. having attorney
docket number 0084567-667US0O and which is being filed concurrently herewith, and

which presents a “diagonal” first-foggy-fine method.

Binary and MLC Memory Partitioning

[0081] FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also referred to as “D2”)

memory. As can be seen, a D2 memory has its threshold range or window partitioned

- 18 -

WO 2011/075572 PCT/US2010/060751

into 4 regions, designating 4 states. Similarly, in D3, each cell stores 3 bits (low,
middle and upper bits) and there are 8 regions. In D4, there are 4 bits and 16 regions,
etc. As the memory’s finite threshold window is partitioned into more regions, the
resolution and for programming and reading will necessarily become finer. Two

issues arise as the memory cell is configured to store more bits.

[0082] First, programming or reading will be slower when the threshold of a cell must
be more accurately programmed or read. In fact in practice the sensing time (needed
in programming and reading) tends to increase as the square of the number of

partitioning levels.

[0083] Secondly, flash memory has an endurance problem as it ages with use. When
a cell is repeatedly programmed and erased, charges is shuttled in and out of the
floating gate 20 (see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modify the threshold of the
cell. In fact over use, the threshold window will progressively narrow. Thus, MLC
memory generally is designed with tradeoffs between capacity, performance and

reliability.

[0084] Conversely, it will be seen for a binary memory, the memory’s threshold
window is only partitioned into two regions. This will allow a maximum margin of
errors. Thus, binary partitioning while diminished in storage capacity will provide

maximum performance and reliability.

[0085] The multi-pass, bit-by-bit programming and reading technique described in
connection with FIG. 7 provides a smooth transition between MLC and binary
partitioning. In this case, if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach does not fully optimize
the range of the threshold window as in the case of a single-level cell (“SLC”)
memory, it has the advantage of using the same demarcation or sensing level as in the
operations of the lower bit of the MLC memory. As will be described later, this
approach allows a MLC memory to be “expropriated” for use as a binary memory, or
vice versa. How it should be understood that MLC memory tends to have more

stringent specification for usage.

-19-

WO 2011/075572 PCT/US2010/060751

Binary Memory and Partial Page Programming

[0086] The charge programmed into the charge storage element of one memory cell
produces an electric field that perturbs the electric field of a neighboring memory cell.
This will affect the characteristics of the neighboring memory cell which essentially is
a field-effect transistor with a charge storage element. In particular, when sensed the
memory cell will appear to have a higher threshold level (or more programmed) than

when it is less perturbed.

[0087] In general, if a memory cell is program-verified under a first field environment
and later is read again under a different field environment due to neighboring cells
subsequently being programmed with different charges, the read accuracy may be
affected due to coupling between neighboring floating gates in what is referred to as
the “Yupin Effect”. With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells

(Yupin effect) becomes increasing appreciable as the inter-cellular spacing shrinks.

[0088] The Bit-by-Bit MLC Programming technique described in connection with
FIG. 7 above is designed to minimize program disturb from cells along the same
word line. As can be seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the threshold window. The
effect of the first pass is overtaken by the final pass. In the final pass, the thresholds
are only moved a quarter of the way. In other words, for D2, the charge difference
among neighboring cells is limited to a quarter of its maximum. For D3, with three

passes, the final pass will limit the charge difference to one-eighth of its maximum.

[0089] However, the bit-by-bit multi-pass programming technique will be
compromised by partial-page programming. A page is a group of memory cells,
typically along a row or word line, that is programmed together as a unit. It is
possible to program non overlapping portions of a page individually over multiple
programming passes. However, owning to not all the cells of the page are
programmed in a final pass together, it could create large difference in charges
programmed among the cells after the page is done. Thus partial-page programming
would result in more program disturb and would require a larger margin for sensing

accuracy.

-20 -

WO 2011/075572 PCT/US2010/060751

[0090] In the case the memory is configured as binary memory, the margin of
operation is wider than that of MLC. In the preferred embodiment, the binary
memory is configured to support partial-page programming in which non-overlapping
portions of a page may be programmed individually in one of the multiple
programming passes on the page. The programming and reading performance can be
improved by operating with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte sector), its usage will be
inefficient. Operating with finer granularity than a page allows more efficient usage

of such a page.

[0091] The example given has been between binary versus MLC. It should be
understood that in general the same principles apply between a first memory with a
first number of levels and a second memory with a second number of levels more than

the first memory.

LOGICAL AND PHYSICAL BLOCK STRUCTURES

[0092] FIG. 8 illustrates the memory being managed by a memory manager with is a
software component that resides in the controller. The memory 200 is organized into
blocks, each block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even large units of erase
formed by an aggregate of blocks into “metablocks” and also “megablocks”. For
convenience the description will refer to a unit of erase as a metablock although it will
be understood that some systems operate with even larger unit of erase such as a

“megablock” formed by an aggregate of metablocks.

[0093] The host 80 accesses the memory 200 when running an application under a
file system or operating system. Typically, the host system addresses data in units of
logical sectors where, for example, each sector may contain 512 bytes of data. Also,
it is usual for the host to read or write to the memory system in unit of logical clusters,
cach consisting of one or more logical sectors. In some host systems, an optional
host-side memory manager may exist to perform lower level memory management at
the host. In most cases during read or write operations, the host 80 essentially issues a
command to the memory system 90 to read or write a segment containing a string of

logical sectors of data with contiguous addresses.

221 -

WO 2011/075572 PCT/US2010/060751

[0094] A memory-side memory manager 300 is implemented in the controller 100 of
the memory system 90 to manage the storage and retrieval of the data of host logical
sectors among metablocks of the flash memory 200. The memory manager comprises
a front-end system 310 and a back-end system 320. The front-end system 310
includes a host interface 312. The back-end system 320 includes a number of
software modules for managing erase, read and write operations of the metablocks.
The memory manager also maintains system control data and directory data
associated with its operations among the flash memory 200 and the controller RAM

130.

[0095] FIG. 9 illustrates the software modules of the back-end system. The Back-
End System mainly comprises two functional modules: a Media Management Layer

330 and a Dataflow and Sequencing Layer 340.

[0096] The media management layer 330 is responsible for the organization of logical
data storage within a flash memory meta-block structure. More details will be

provided later in the section on “Media management Layer”.

[0097] The dataflow and sequencing layer 340 is responsible for the sequencing and
transfer of sectors of data between a front-end system and a flash memory. This layer
includes a command sequencer 342, a low-level sequencer 344 and a flash Control
layer 346. More details will be provided later in the section on “Low Level System

Spec”.

[0098] The memory manager 300 is preferably implemented in the controller 100. It
translates logical addresses received from the host into physical addresses within the
memory array, where the data are actually stored, and then keeps track of these

address translations.

[0100] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
group and a metablock. The metablock of the physical memory has N physical
sectors for storing N logical sectors of data of a logical group. FIG. 10A(i) shows the
data from a logical group LG;, where the logical sectors are in contiguous logical

order 0, I, ..., N-1. FIG. 10A(ii) shows the same data being stored in the metablock

-2

WO 2011/075572 PCT/US2010/060751

in the same logical order. The metablock when stored in this manner is said to be
“sequential.” In general, the metablock may have data stored in a different order, in

which case the metablock is said to be “non-sequential” or “chaotic.”

[0101] There may be an offset between the lowest address of a logical group and the
lowest address of the metablock to which it is mapped. In this case, logical sector
address wraps round as a loop from bottom back to top of the logical group within the
metablock. For example, in FIG. 10A(iii), the metablock stores in its first location
beginning with the data of logical sector £&. When the last logical sector N-/ is
reached, it wraps around to sector 0 and finally storing data associated with logical
sector k-1 in its last physical sector. In the preferred embodiment, a page tag is used
to identify any offset, such as identifying the starting logical sector address of the data
stored in the first physical sector of the metablock. Two blocks will be considered to

have their logical sectors stored in similar order when they only differ by a page tag.

[0102] FIG. 10B illustrates schematically the mapping between logical groups and
metablocks. Each logical group 380 is mapped to a unique metablock 370, except for
a small number of logical groups in which data is currently being updated. After a
logical group has been updated, it may be mapped to a different metablock. The
mapping information is maintained in a set of logical to physical directories, which

will be described in more detail later.

MEMORIES HAVING MULTI-LEVEL AND BINARY PORTIONS

Memory Partitioned into Main and Binary Cache Portions

[0103] A number of memory system arrangements where the non-volatile memory
includes both binary and multi-level sections will now be described. In a first of
these, in a flash memory having an array of memory cells that are organized into a
plurality of blocks, the cells in each block being erased together, the flash memory is
partitioned into at least two portions. A first portion forms the main memory for
storing mainly user data. Individual memory cells in the main memory being
configured to store one or more bits of data in each cell. A second portion forms a
cache for data to be written to the main memory. The memory cells in the cache

portion are configured to store less bits of data in each cell than that of the main

_23.

WO 2011/075572 PCT/US2010/060751

memory. Both the cache portion and the main memory portion operate under a block
management system for which cache operation is optimized. A more detailed
presentation of this material is developed in the following US patent application or
provisional application numbers: 12/348,819; 12/348,825; 12/348,891; 12/348,895;
12/348,899; and 61/142,620, all filed on January 5, 2009

[0104] In the preferred embodiment, individual cells in the cache portion are each
configured to store one bit of data while the cells in the main memory portion each
stores more than one bit of data. The cache portion then operates as a binary cache

with faster and more robust write and read performances.

[0105] In the preferred embodiment, the cache portion is configured to allow finer
granularity of writes than that for the main memory portion. The finer granularity is
more compatible with the granularity of logical data units from a host write. Due to
requirement to store sequentially the logical data units in the blocks of the main
memory, smaller and chaotic fragments of logical units from a series of host writes
can be buffered in the cache portion and later reassembly in sequential order to the

blocks in the main memory portion.

[0106] In one aspect of the invention, the decision for the block management system
to write data directly to the main portion or to the cache portion depends on a number
of predefined conditions. The predefined conditions include the attributes and
characteristics of the data to be written, the state of the blocks in the main memory

portion and the state of the blocks in the cache portion.

[0107] The Binary Cache of the present system has the follows features and
advantages: a) it increases burst write speed to the device; b) it allows data that is not
aligned to pages or meta-pages to be efficiently written; c) it accumulates data for a
logical group, to minimize the amount of data that must be relocated during garbage
collection of a meta-block after the data has been archived to the meta-block; d) it
stores data for a logical group in which frequent repeated writes occur, to avoid
writing data for this logical group to the meta-block; and e) it buffers host data, to
allow garbage collection of the meta-block to be distributed amongst multiple host

busy periods.

-4 -

WO 2011/075572 PCT/US2010/060751

[0108] FIG. 11 illustrates a host operating with the flash memory device through a
series of caches at different levels of the system. A Cache is high-speed storage for
temporarily storing data being passed between a high-speed and a slower-speed
component of the system. Typically high-speed volatile RAM are employed as cache
as in a host cache 82 and/or in a controller cache 102 of the memory controller. The
non-volatile memory 200 is partitioned into two portions. The first portion 202 has
the memory cells operating as a main memory for user data in either MLC or binary
mode. The second portion 204 has the memory cells operating as a cache in a binary
mode. Thus, the memory 200 is partitioned into a main memory 202 and a binary

cache.

On-Memory Folding of Data into Multi-State Format

[0109] The various sorts of non-volatile memories described above can be operated in
both binary forms and multi-state (or multi-level) forms. Some memory systems store
data in both binary and multi-state formats; for example, as data can typically be
written more quickly and with less critical tolerances in binary form, a memory may
initial write data in binary form as it is received from a host and later rewrite this data
in a multi-state format for greater storage density. In such memories, some cells may
be used in binary format with others used in multi-state format, or the same cells may
be operated to store differing numbers of bits. Examples of such systems are
discussed in more detail in US patent number 6,456,528; US patent publication
number 2009/0089481; and the following US patent application numbers: 61/142,620;
12/348,819; 12/348,825; 12/348,891; 12/348,895; and 12/348,899. The techniques
described in this section relate to rewriting data from a binary format into a multi-state
format in a “folding” process executed on the memory device itself, without the
requirement of transferring the data back to the controller for reformatting. The on-
memory folding process can also be used in a special way to manage error correction
code (ECC) where the relative state of the data in the memory cell, when stored in
multi-state form, is taken into account when considering that the most probable errors
are transitions between the neighboring states. (So called “Strong ECC” or “SECC”,
where additional background detail on these subjects can be found in the following
US patents, patent publications, and patent application numbers: 2009/0094482;
7,502,254; 2007/0268745; 2007/0283081; 7,310,347, 7,493,457, 7,426,623,

-25.-

WO 2011/075572 PCT/US2010/060751

2007/0220197; 2007/0065119; 2007/0061502; 2007/0091677;, 2007/0180346;
2008/0181000; 2007/0260808; 2005/0213393; 6,510,488; 7,058,818; 2008/0244338;
2008/0244367; 2008/0250300; and 2008/0104312.) The system can also use ECC
management which does not consider state information and manages ECC based on

single page information.

[0110] More specifically, in one exemplary embodiment, as data is transferred from
the controller to the memory, it is written along word lines of the memory array in a
binary format. Subsequently, the data is then read into the registers associated with
the array, where it is rearranged so that it can be written back into array in a multi-
state form. To take the case of three bits per cell, for example, the content of three
word lines would be each be read into the register structures, rearranged to correspond
to the three bits that would be stored in each cell, and then rewritten back to a single
word line of the array in a 3-bit per cell format. In the arrangement described here,
the binary data content of a single word line is then end up on 1/Nth of a word line
store in an N-bit per cell format. For cases where the eventual N-bit storage of the
data uses an error correction code (ECC) that exploits the relation of the multi-states
with a cell, this ECC can be determined in the controller and transferred along with
the corresponding data and stored in the binary format prior to the data (and

corresponding ECC) being rewritten in the multi-state format.

[0111] The idea of folding data from a binary to a multi-state, or MLC, format can be
illustrated with FIG. 12 for one particular 3-bit per cell example. As shown by the
arrow, data is received from the controller (or host) and written in binary format in a
block 611 of the memory. Three of the written word lines (613, 615, 617) of the
block 611 are explicitly shown. The content of these three word lines are then
rewritten in a 3-bit per cell format along the single word line 623 of block 621, with
the “folding” process accomplished on the memory itself. (More generally, if the data
is written along 621 in an N-bit per cell format, the content of N-word lines of binary
content would be folded up in this manner. This block 611 may specifically assigned
to be operated in only binary mode or may be a block operable in a MLC mode by,
for example, just the lowest page of multiple logical pages storable on a physical
page. Similarly, block 621 may be assigned only for multi-state operation or may be

operable in binary mode as well..

-26 -

WO 2011/075572 PCT/US2010/060751

[0112] Some detail on how one exemplary embodiment folds the data from the
multiple binary format word lines into a single word line is shown in FIG. 13. At the
top of FIG. 13 are the three word lines 613, 615, and 617, which are each split into
three parts (a, b, ¢) of a third of the cells along a corresponding third of the bit lines
(here taken as contiguous). On word line 623, the three thirds of the first word line
(613a-c) are arranged onto to first third of the of the word line; similarly, the second
binary word line 615 is folded and written into the middle third of 623 and the third
word line from the binary block 617 is written into the last third of 623.

[0113] The process shown in FIG. 13 generalizes in a number of ways. A first of
these is in the number of states stored per cell in the multi-state format. Although
FIGs. 12 and 13 show the case where three pages of data are rewritten from three
physical pages into multi-state format on a single physical page, other numbers of
storage densities can be used. (For example, to simplify the following discussion,
particularly that related to the register structure, the 2-bit per cell case will often be
used as the exemplary embodiment.) Also, although full word lines (each here
corresponding to a page) are shown, in system that allow partial page operation,
partial pages may be used. Additionally, although FIG. 13 shows the case where
cells along the word line are split into groups along contiguous bit lines for folding,
other arrangements can be used. In the following sections, “folding” will generally
refer to the sort of process where data is read from several locations in the binary
section into the data read/write registers and then re-written into multi-state form in
the MLC memory section, most casily visualized for the example of reading out N
binary word lines and re-writing them on a single word line in N-bit per cell format;
and although the folding can involve the sort of on-chip transpositions illustrated with
respect to FIG. 13, more generally it may also be the more straight forward direct

copy type of folding.

[0114] As noted above, the folding process is performed on the memory itself, so that
once the data is transferred in from the controller (or host) and written in binary
format, it is rewritten into the array without transferring it off the memory. The
exemplary embodiments accomplish this by reading the data of the multiple binary
word lines (e.g., 613, 615, 617) into the corresponding registers (or latches) associated

with the array, rearranged within these registers into the form needed for multi-state

_27 -

WO 2011/075572 PCT/US2010/060751

programming, and then rewritten into a single word line (e.g., 623) of a multi-state
block. Thus, under the arrangement of FIG. 13, the binary content of several (here 3)
cells on the same word line, but along different bit lines, are read into the associated
data registers, and then rearranged to correspond to the multi-bits of a single cell on a

corresponding single bit line, from where it can be written.

[0115] Although this folding has here been described as folding N logical pages of
data from N physical pages of binary memory to one physical page of N-bit per cell
memory. (Here, the physical page is taken as a whole word line.) More generally, the
logical data can be scattered in any fashion between physical pages. In this sense, it is
not a direct 3-page to single page mapping, but is more of a mapping with 3-to-1 ratio.
More detail on on-chip data folding is given in U.S. Application No. 12/478,997 filed
on June 5, 2009. Further detail and structures useful for folding as also presented in

U.S. Application No. 12/478,997 filed on June 5, 2009.

Binary/Multi-State Memory Using Folding

[0116] FIG. 14 shows another example of a non-volatile memory that includes both
binary and multi-state memory portions. The binary part of the memory, D1 blocks
301, includes both control data, such as file access tables (FAT), in the resident binary
zone 311 and a binary cache area 313. For this discussion, these areas can be taken to
be similar to those described above in the Binary Cache section above and the
references cited therein. These areas are updated and compacted within themselves
and do not enter further into this section. The memory also includes the multi-state
(3-bit in this example) memory portion of D3 blocks 303. The D1 and D3 blocks 301
and 303 can be distributes across various semi-autonomous arrays (i.e., dies or planes
within a die). (More generally, the distinction between where the updates may be
stored in memory and the “bulk” storage need not be based on, or at least not
characterized in terms of, binary versus multi-level, but could also be slow versus fast,
relatively high endurance versus lower endurance, small block structure versus large

block, or other qualitative property.)

[0117] In the exemplary embodiment, data is first written to the binary block 301 and
then folded into D3 blocks. For example, once three 3 pages are written into the

binary memory, then can then be folded into a single page in D3 memory 303 or

-28 -

WO 2011/075572 PCT/US2010/060751

follow the sort of diagonal lower-foggy-fine programming method described in
“Atomic Program Sequence and Write Abort Detection” by Gorobets et al. having
attorney docket number 0084567-667USO and which is being filed concurrently
herewith. In the on-chip folding embodiment, the binary and MLC portions will be
from different blocks formed along the same bit lines. More generally, other rewrite
techniques can be used. Although in some embodiments data may written directly to
multi-state memory, under this arrangement discussed here user data is first written
from the volatile RAM into binary memory and then “triplets” (for the D3 example)
of pages, such as in 315 for the logical groups X, X+1 and X+2, that are then
combined and stored in a multi-state format as a “newly intact” physical page 331,
where it is stored along with other such previously written “original” pages 333.
When data of one of the pages stored in a D3 block is updated, rather than store the
updated data in a D3 block, this can, at least initially, stored in a binary block Update

Block, or UB, 317, as is described in the next section.

Virtual Update Blocks

[0118] When updating data for some data already stored in the D3 memory, if this
data is updated in the D3, this would require a multi-state rewrite using, for example,
the exemplary diagonal first-foggy-fine method.. Such a programming can require
the buffering of data for 3 or more word lines until the data is fully written, possibly
including the non-updated old data stored in MLC form on the same word line as the
date to be updated. In addition to speed considerations and the memory wear this can
introduce, in the case power loss or power cycle, all data for partially programmed
word-lines can be lost. In the aspects presented here, the updated data is initially
written to binary memory as an update block (UB) logically associated with the
corresponding page of data in the MLC memory section. The updated data can itself
be further updated in another binary block (an update of an update block, UoUB). If
needed, the updates can then be consolidated and folded into a D3 block. A “virtual
update block”, or “VUB”, will then consist of three full update blocks (or, more
generally, on large logical group according the structure used in the system). Such a
VUB will then be the update block for a D3 block, where the “virtual” referring to
that it consists of three update blocks.

-29.

WO 2011/075572 PCT/US2010/060751

[0119] In one set of preferred embodiments, the architecture features Update Blocks
that consist of three DI1/Binary blocks where a full image of all data to be
programmed to D3 block is created prior to a folding operation of copying data from
the D1 blocks to a D3 block using, for example, a foggy-fine programming operation.
Referring again to FIG. 14, this illustrates data flow in the system, with respect to

which an exemplary embodiment is now described in more detail.

[0120] D3 blocks are written by the operation of folding, or copying of the entire
Logical Group triplet, or set of 3 adjacent Logical Groups, from single, fully written
closed Virtual Update Block, or set of three D1 blocks containing data for the Logical
Group triplet, one each. In other words, all Logical Groups in the triplet will be fully
consolidated to Virtual Update Blocks in D1 memory 301 before folding to D3
memory 303. (In other embodiments, D3 blocks can be programmed with new data
without being written to a virtual update block in D1, but that is not preferred here as

it requires a large data buffer where data will be vulnerable in case of power loss.)

[0121] The Logical Group needs to be consolidated together into the last Update
block with ECC check upon read from flash sources and ECC correction if necessary.
The D1 Update blocks can be allocated and used in much the same way as Update
blocks are used in the references cited above in the “Memory Partitioned into Main
and Binary Cache Portions” section above, storing data for one Logical Group each.
FIG. 15 illustrates an update group with one update block. For one of the logical
groups in the D3 block 401, here the “middle” one, updated data comes in and is
stored in the D1 block 403. The shaded portion 405 corresponds to this updated data,
with 407 the unused portion. Prior to the updated data being stored in the update
block 403, this block 403 need not be previously associated with the D3 block 401,

but being assigned and logically associated as needed.

[0122] In this way, D1 meta-blocks can be allocated to Update Groups (UGs).
Multiple D1 metablocks can be allocated to an UG as per the Update of Update
mechanism shown FIG. 16. Subsequent to the initial update of the data, which is
stored in D1 block 403, a further update of the data set comes in from the host.
Another D1 block 409 is then assigned for this update of the update (UoU), which can

-30 -

WO 2011/075572 PCT/US2010/060751

include updated data for the ecarlier update 405 as well as for parts of this logical
group that were not updated in the first update.

[0123] The three logical groups (here labelled as LG X, LG X+1, LG X+1) that will
be stored in a common D3 metablock such as 401 are here referred to as a Logical
Group Triplet. Prior to folding all related UG’s for a logical group triplet will be
consolidated to a single UB each, as shown in FIG. 17, where UB 403 and UB 409
are consolidated for LG X+1. The data from the original block 401 for LG X and LG
X+2 is then used to be folded into the new block 401"

[0124] More than one of the logically groups on a D3 block can be updated in this
way, as shown in FIG. 18. As shown there, all there on the logical blocks in the
physical D3 block have been updated, or an update of an update, with D1 block 409,
411, and 413 before eventually being folded back into a D3 block 401"

[0125] D1 Update Blocks can allocate dynamically, on demand. This helps to reduce
the amount of copy overhead required to support operations such physical scrambling
and allows for more efficient use of D1 blocks to support the update of update
mechanism. For embodiments, such as the exemplary embodiment, that use on-chip
data folding, all of the D1 blocks allocated to an update group for a Logical Group are
located in the same die. In a multi-die configuration, the block selection algorithm
preferably attempts to open virtual update blocks in all dies evenly. Once a open
virtual update block is created in die X, then all other die preferably have one open
virtual update block created before the next open virtual update block is created in die
X. A limitation to this rule can be when other dies run out of free blocks. In addition
to leveling erase/rewrite counts among all blocks, the wear leveling algorithm should

preferably attempt to balance the number of free blocks between all die.

[0126] FIG. 19 shows an alternate embodiment. As before, the virtual update block
(VUB) consists of three UBs, as it contains data for a whole D3 block before folding.
The alternate embodiment differs in that the VUB has data for one D3-block-sized
logical group (LG), whereas the main embodiment it has data for three D1-block-
seized logical groups. As the smaller logical groups are joined into a triplet, the
operation is similar: if folding is needed, the system will need to collect three D1

blocks to make full VUB before folding. The difference is that for the exemplary

-31 -

WO 2011/075572 PCT/US2010/060751

addressing scheme (one GAT entry per LG, where a GAT entry has meta-block
address and page tag value) is that with small LGs, the system can allow individual
LGs have their own page tag offset and minimise the amount of copy in the case if the
host update for two or three LGs in triplet and D1 update blocks have different Page
Tags. In this case, the system can combine those UBs into VUB without copy to

make the Page Tag the same.

[0127] This arrangement also can support the higher performance of a parallel folding
mode, such as is described in a US patent application entitled “Method and System
for Achieving Die Parallelism Through Block Interleaving”, having attorney docket
number 10519/1131 and being filed concurrently herewith, as it supports a virtual
update block consolidation in that is de-coupled from folding operations. Also, as
frequently updated Update blocks are in D1 blocks pool, with the D3 block pool being
preferably used only for intact blocks, the system should experience higher
endurance. By maintaining the update blocks in binary and only writing to MLC
memory for intact blocks, this further allows for an on-chip data folding that supports
physical data scrambling.

Data Transfer Flows for On-Chip Folding

[0128] The preceding sections have used the concept of on-chip data folding, where
data written into a binary section of the memory is repackaged and written into a
multi-state format. So far this process has only been considered in isolation, in the
sense that only the individual sets of data being folded are considered. The overall
flow of how data is written into binary and then on into multi-level and how relation
and timing of these subprocesses interrelate has not been considered. This is
considered in this and the next section. This section considers a sort of balanced flow
of data from the host into binary and then on into multi-level memory through a
folding operation, such as would occur when logically consecutive pages of data are
transferred. The next section will also consider the case non-sequential transfers, such

as the updates of the last section.

[0129] FIG. 20 can help illustrate this process, which shows many of the elements of
the memory system discussed above, but simplified for the purposes of this

discussion. Data is transferred from a host 501 onto the memory 503, where it is

-32.-

WO 2011/075572 PCT/US2010/060751

initially stored on the volatile buffer memory RAM 511, which is typically part of the
controller. From RAM 511 the data is then written into the non-volatile memory 513,
first into the binary section D1 515 and then on into the MLC section D3 517. In the
on-chip D1 to D3 folding operation, same read write registers and other peripheral
circuitry is used for both the initial D1 write operation and the folding operation.
Consequently, these operations cannot be done at the same time. For simplicity,
consider the example where the host is transferring a large amount of logically
consecutive data. As the volatile RAM 511 is relatively small, the data will need to
be regularly written into the binary D1 memory 515; and as the D1 will eventually
begin to fill up, the data will need to be folded into the D3 memory 517 in the
relatively slower multi-state write operation. To optimize performance requires a

balance between these operations.

[0130] In the following, the discussion will largely be presented in term of logical
pages of data being received from a host and which are then written into binary, or D1
memory, where each physical page can store a single logical page of data. In the
folding process, the MLC memory will be described as storing N logical pages per
physical page. More generally, however, there can also be partial page operations.
Also, logical data can be scattered in a more complicated fashion between physical
pages, so that the folding may not be a direct 3-page (for the D1 to D3 example) to
single page mapping, but more of a mapping with 3-to-1 ratio. Similarly, although a
physical page (the unit that can be written concurrently) will generally be associated

with a whole word line, other common arrangements can also be used.

[0131] In the following discussion will consider the data transfer flow, including the
write/folding operations, read operations, and copy operations, in the context of
foggy-fine method for the exemplary multi-state programming algorithm. As noted
above in the discussion with respect to FIG.7F, data content is not readily extractable
at the end of the foggy programming phase. As before, the exemplary embodiment
will again be based on a MLC memory storing 3-bits per cell, here referred to as D3

memory.

[0132] “Atomic write” will be used to refer to an internal folding operation that

combines the first, foggy and fine programming phases together. Referring still to

-33.-

WO 2011/075572 PCT/US2010/060751

FIG.7F, for a D3 write to a word line, if the first programmed is completed or only
first and foggy pages are programmed, the data cannot be properly read. It is only
once the associated fine page is programmed onto that word line that the three pages
can be read properly. Consequently, if there is a power cycle or program failure of
some sort after the first or foggy write phases, but before completing the fine phase,
the memory system may have corrupted data. This situation is considered further in

entitled “Atomic Program Sequence and Write Abort Detection” by Gorobets et al..

[0133] In a data transfer flow, where both binary writes and folding operations are
involved, the performance of grouping all of the programming phases (such as first,
foggy and fine) as a single operation, where there is no host data write to binary
block in between, is not as good as the programming operation is broken up, as will
now be described. The exemplary embodiment breaks the phases of the programming
sequence into two part: 1) first and foggy; 2) fine. New host data is then allowed to
come in between the two phases. This allows for an improvement in performance,
although it does have the drawback to this of the increasing the time during which the
data being written is still a “foggy” condition which can lead to a possible write abort

detection problem.

[0134] One way to avoid the write abort detection problem is that, when the host
sends a power down command, the memory system will detect the host command and
keeps the device busy until it finishes the fine stage. If the last write phase execute
was a fine phase, the memory system need not do anything special, while if the last
write is a foggy phase, the memory system can attach a fine programming and then

releases to the device as ready to the host once the fine phase completes.

[0135] Returning to FIG. 20 and considering a transfer flow of data from a host 501
to the D3 portion 517 of the non-volatile memory, the flow is transferred: (1) from the
host to RAM 511; (2) from the volatile RAM 511 to non-volatile D1 memory 515;
and (3) folded from D1 515 to D3 517. This set of transfers can be arranged, broadly

speaking, into three varieties of host data flows:

[0136] Steady state, where the amount of input to D1 is balanced to be more or less
the same as the amount of folding from D1 to D3. This arrangement gives the better

performance for extended transfers of sequential.

-34 -

WO 2011/075572 PCT/US2010/060751

[0137] More D1 write than D1 to D3 folding. As D1 writes are faster than folding
operations, this condition gives better performance at than the steady state case, but at
the expense of using DI memory blocks, which, at some point may become

unsustainable.

[0138] More D1 to D3 folding than D1 write. Performance at this condition is slower
than the steady state case, but, as discussed in the next section, this can be used to free

up more D1 blocks in an “urgent” mode.

[0139] To get sustained performance, the system will need to reach a sort of balance
between D1 host write and D1 to D3 folding. This section describes such a
“balanced” mode of data transfer where there is an interleaving of folding and binary
writes. The exemplary embodiment does this by interspersing writes to D1 memory
between the foggy and fine (and fine and foggy) phases of the multi-level

programming used in the folding process.

[0140] The transfer flow of FIG. 21 shows a first exemplary embodiment for a semi-
autonomous memory array (i.e., a single die or plane). For single logical group
folding in balanced mode, there are two basic scenarios. In a first, data is folded
using an atomic write of (first+foggy+fine), with host transfers of data to D1 executed
between these full multi-state program. FIG. 21 shows the case when D1 data writes
are inserted, so that the atomic write now is (first+foggy+D1write of host data, fine +

D1write of host data).

[0141] Referring to the bottom line of FIG. 21, this shows the stages of the D1 to D3
folding process. (Although FIG. 21 is not drawn exactly to scale, the sizes of the
various clements give a reasonable approximation of the relative time scales
involved.) In the exemplary embodiment, three D1 blocks are available for folding
into one D3 block, so that all of these D1 data pages are available for folding to D3.
For the first, foggy, and fine stages, the three word lines (call them x, y, z) from the
D1 blocks are used. In the folding process, the page x is read into the read/write data
latches (701) and then written into a D3 word line in a first programming step (703).
For the foggy step, the x, y, and z are needed and are read into latches (705) and the
memory executes a foggy write (707) to the D3 word line. The fine phase then

follows, again the word lines x, y, and z are loaded into the read/write latches (709)

-35-

WO 2011/075572 PCT/US2010/060751

and programmed into the D3 word line for the fine write (711). This completes the
first, foggy, fine stages and the data can then be read out. (The foggy-fine

programming algorithm is discussed in more detail above with respect to FIG. 7F.)

[0142] Rather than proceeding directly from the foggy phase to complete the
programming of the D3 word line in the fine phase, however, these phases are split
and a write to D1 is executed. The D1 write involves first transferring a data set from
the controller’s RAM into the memory circuit (RAM to NAND, at 721), where the
data is loaded into the data latches and then written into D1 memory (Host D1 Write,
at 723). A similar D1 write is then performed after the fine phase before beginning

the next folding operation.

[0143] This allows for a balance to be achieved between the D1 writes and D1 to D3
folding that is here preferred for sustained writing of sequential data from a host. (It
should be noted that the data being folded in 707, 711 is not the same set of data being
written to D1 at 723, but a set of data from an earlier write to D1.) As data has been
transferred out of RAM at 721, this has opened up the RAM, which is relatively
limited capacity, to receive more data form the host; and since the host to RAM
transfer does not involve the non-volatile memory circuit or use its latches, these host
to RAM transfers can be hidden behind the various phases of the multi-level memory
write, further improving performance. Thus, the transfers at 735 and 737 are
pipelined with the fine programming phase, as were the transfers at 731 and 733
hidden behind the initial phases (701-707), which provided the data subsequently
transferred out of RAM at 721. (Referring back to FIG. 20, the transfers indicated at
(1) can effectively be hidden behind those indicated at (2).) This process then

continues on in this way until the transfer is complete.

[0144] Considering the process of FIG. 21 in more detail for an particular
embodiment, the amount of data written to D1 memory between the phases of D1 to
D3 folding, after either of the fine or foggy phases, is related to the size of the RAM
memory. For exemplary embodiment whose values are shown in FIG. 21, the RAM
size for data transfer is set to 32KB, so that, as seen in FIG. 21 (and also FIGs. 22,
discussed next), there is a transfer of 16KB of D1 data. In theory, the RAM is filled
up with 32KB of host data during the folding process (2x16KB). Once 16KB is

-36 -

WO 2011/075572 PCT/US2010/060751

transferred into the D1 memory (at 721), but not necessarily programmed in yet (at
723), the portion of the RAM that was holding the 16KB data can be released to take

in new data.

[0145] For increased performance, this process can also be executed in parallel across
multiple dies. FIG. 22A shows a 3-die example. Here, all of the die execute the
phases of the folding operations in parallel. After both the foggy and fine phases, data
is again transferred from RAM to the non-volatile memory, where it is written into
D1. In this example, there is a transfer of 2x 16KB of D1 data together to maximize
the use of the RAM memory. The D1 transfers from RAM can be to any of the dies,
for example cycling through them in order, and then all three dies run their folding
phases in parallel. (More detail on such transfers is given in “Method and System for
Achieving Die Parallelism Through Block Interleaving”, having attorney docket

number 10519/1131.)

[0146] Similarly, FIG. 22B gives an example of 4-die parallelism. From the 4-die
operation example, 2x32KB of data is written to D1 in between folding phases,
thereby achieving better performance. For the sort of balanced folding presented
here, and also discussed further in the next section, it is preferable that the amount of
folding (output) is faster that amount of D1 write (input). The reason is to be able to
flush out the data in D1 to D3 faster than the system is taking in new host data to D1
in order to better prepare system D1 resources. If the host D1 write rate is more than
the D1 to D3 folding rate, the system could run into a recursive condition that needs
to more or less freeze for some time the D1 memory from taking in more host data.
This could violate the write time out limit for some applications. For this reason,
even in a balanced mode for the relative ratio of D1 writes to D1 to D3 folding, it is
usually desired for the amount to be more than that of D1 writes. These concerns are

considered further in the next section.

Multi-Gear Data Folding

[0147] The balanced mode of combine binary data writes with folding operation is
suitable for writing quantities of logically consecutive data as it largely equalizes the
rates are which host data is written into D1 memory with this data’s folding into D3

memory. For other situations, it can be preferable combine these operations in

-37-

WO 2011/075572 PCT/US2010/060751

different ratios. For example, if the amount of data to be transferred is relatively
small, in that it will not exceed the available capacity of the D1 memory, data be more
rapidly written if folding operations are suspended and all the data is written in binary
form. Conversely, if the supply of D1 blocks runs low, extra folding operations may

be needed to free up D1 memory.

[0148] For example, the host may send the memory a quantity of non-sequential data.
This could be updated data for a number of different blocks, as described above in the
Virtual Update Block section. There may updates for a large number of blocks, but
where each update is for a relatively small amount of data. This total amount of data
will be transferred from the host relatively quickly, but then written into a large
number of D1 memory blocks, resulting in the available number of D1 blocks being
used up faster than the folding operation of the balanced more releases new D1
blocks. To handle this situation, this section introduces an “urgent mode” where a
higher number of folding operations are executed. This urgent can also be invoked in
other circumstances, such as when a command is recognized as allowing time for
extra folding operations to added in. In addition to the balance and urgent modes, or

gears, the exemplary embodiment also allows for a background mode.

[0149] In the techniques described so far, there may be dead time in the memory
system as it waits for host transfers, so that the sequential write performance is not
optimized. Also, the basic on-chip folding method does not account for the amount of
data coming in and amount of data folded and lacks a mechanism to switch speed and
control of the relative rates of these operations. To address this, the present section
introduces multi-gear folding control which, in the exemplary embodiment, has three
modes: 1) the balanced folding mode that optimizes the interleave of folding and
host transfer for sequential performance; 2) an urgent mode, that can handle copy and
other internal handling operations; and 3) a background or idle time mode to handle
folding, copy, and other internal handling operations when the memory is not being
actively engaged by the host. In this way, the use of RAM is optimized. The system
performance is improved by increasing the amount of host-to-RAM transfer that can
be hidden behind the programming operations of balanced folding. By including the
background mode in addition to the urgent and folding modes, system performance is

further enhanced.

-38 -

WO 2011/075572 PCT/US2010/060751

[0150] Balanced mode folding uses a firmware or system algorithm to maintain
sustained sequential write performance. In the architecture described above, host data
must go to D1 blocks first, then get folded to D3 block. To keep sustained system
write performance, over a given period of time the amount of data written to D1
should be the essentially the same as the amount of data folded from D1 to D3. One
arrangement for this was presented in the last section. (More generally, balanced
mode can be with or without the insertion of D1 writes between the foggy and fine
phases of the folding, as described in the last section.) To maintain this balance, there
should be no garbage collection and the host data coming in is in sequential order,
being sent to D1 update blocks instead of binary cache. If the amount of D1 write and
D1 to D3 folding is out of balance, such as, for example, more D1 writes then folding,
then there will be higher burst performance for this time period. Conversely, if the
amount of D1 write is less than the amount of folding, the performance is lower than

sustained performance.

[0151] In urgent mode folding, the firmware/system algorithm increases the number
of folding operations relative to D1 writes. For example, the number of host transfers
can be reduced to the degree allowed by the host, with the extra used to concentrate
on folding. This can free up update resource or allow the system to do some internal
clean up operations or failure handling, such as read scrub, wear leveling, program
failure handling and so on. For urgent mode folding, the sequence could also involve
a preparation stage to set up the three virtual update blocks, such as shown in FIG.
18, prior to folding. In this case, there are only internal copy operations, such a (D3
read + D1 write) or (D1 read + D1 write). After the virtual update blocks are set up,
the urgent folding mode can be used with primarily D1 to D3 folding being executed.
Also, for cases that have a write timeout limit, the system can separate the copy
operations and the folding operations into phases, with each phase being allowed at

least one sector of host data write to the memory circuit meet the write time budget.

[0152] FIG. 23 shows an exemplary embodiment of a data transfer flow for a
sequential write case, assuming the controller has an exemplary RAM size of 32KB
for data transfer. FIG. 23 is notated similarly to FIG. 21 and also illustrates a
balanced mode folding and host data write on its left part, but for, this example, with a

D1 write inserted between phases of the multi-state write used in the folding

-39.

WO 2011/075572 PCT/US2010/060751

operation. (This is again for exemplary embodiment where the multi-state
programming operation is of the foggy-fine variety, but, as before, other multi-phase
programming operations could be used.) For a meta block write, there are two parts

of operations: 1) interleave of folding and host write; and 2) Host write to D1 only.

[0153] For the first of these parts, the system will fold one meta page through each of
first, foggy and fine phases of folding in series and the total data folded is 48KB. At
the same time 32KB of host data is transferred to RAM and the host transfer time is
totally hidden during the first/foggy/fine programming as host transfer is faster than
48KB folding. After the fine phase completes programming, the 32KB host data
which is stored in the RAM is transferred the memory, and is programmed to two D1
meta pages. Therefore, cach first+foggy+fine folding (48KB) is followed 2 binary
pages write (32KB). With such a speed and balance, when a binary block is 2/3
filled, an entire MLC block has completed from D1 to D3 folding. For the rest of the
1/3 binary block, there is continuous host write to D1 to complete the rest of the
binary block, which is described in right hand side of the FIG. 23. In terms of
performance, the interleave of folding and host write yields lower burst performance
than sustain performance; if the host writes to D1 only mode, this yields higher burst
performance than sustained performance, which is maintained on an MLC meta-block

basis.

[0154] FIGs. 24 and 25 shows two variations of the (balanced mode folding + host
transfer) that have different combinations of transfer sub-clements. FIGs. 24 and 25
again use single die, but now insert D1 writes between the foggy and fine phases of
the folding’s multi-state programming operation, much as described in the last
section. These figures differ on the amount of D1 write being executed during this

insertion.

[0155] There can be situations where the memory system needs to free up update
block resource or perform some internal data management operations, such as
program failure recovery, post-write read recovery (such as disclosed in the patent
application entitled “Non-Volatile Memory and Method with Post-Write Read and
Adaptive Re-Write to Manage Errors” by Dusija et al. having attorney docket number
0084567-640US1 that is being filed concurrently herewith, read scrub, or wear

- 40 -

WO 2011/075572 PCT/US2010/060751

leveling, among others. The system may go into urgent mode for garbage collection
which involves copy and folding. This is considered the second mode or gear of
folding control. For example, operations during the urgent mode could include D1 to
D1 copy, D3 to D1 copy, or DI to D3 urgent folding. According to product
application for which the memory system is used, meta-block copy and urgent folding
can be executed in series for a single host command, and there is no host transfer
during garbage collection. For applications that have timeout limit (such as SD cards,
where there is 250ms write timeout limit), the excess time can be used in the urgent
mode for operations such as scheduled phased garbage collection that may be
required; for example, there could be a single sector host write, then x amount of copy
steps preformed, or y amount of urgent D1 to D3 folding preformed, depending on the

specific algorithm.

[0156] For applications that have a relatively large amount of idle time with power on
from the usage model, and if these applications allow enough power budget for
memory system operations, the firmware use the time to do execute background
write/read/copy/folding operations to improve system performance. The firmware
can choose to free up update block resource to prepare for future write commands to
improve performance; or perform internal operations, such as wear leveling, read

scrub, program error handling or enhanced post-write operations.

[0157] To help balance programming times during folding operation, a folding step is
here defined as ecither 1) a first and a foggy programming operation, or 2) a fine
programming operation. In the balanced folding mode, the system’s firmware has
folding control parameters which control the number of folding steps and the number
of host writes for each task. The number of folding steps and number of host data
writes may vary based on product performance and power requirements. The system
firmware can dynamically increase the number of folding steps per work period if
there is an urgent need to free up update blocks by completing a fold, and this will fall

into the urgent mode folding control thread.

[0158] When controller’s firmware recognizes that it is approaching the end of a write
command, it can set a folding control flag which tell the folding task to continue so as

to end on a fine programming step, even if that exceeds the specified number of

-4] -

WO 2011/075572 PCT/US2010/060751

folding steps per work period. This will insure that the folding task ends on a fine
programming phase and that the folding process can resume from where it left off if

there is power cycle between commands.

[0159] For background/idle time operations, the controller’s firmware can choose to
maximum the amount of folding in order to free up resources or handle other house
keeping operations. When the firmware recognizes that there is a host command
being issued while engaging in background folding, it needs to exit the folding
quickly in order to respond to the host command. If the folding process is completed
to the end of a D3 block, the firmware can choose to exit the idle time folding with a
fine programming which insures the folding process can be resumed; alternately, the
firmware can choose to exit the idle time folding after a programming is completed,
regardless or whether it is a first, foggy or fine programming, and restart the folding

process of the same virtual update block to a new D3 block when needed.

[0160] The control mechanism with respect to switching mode is illustrated
schematically in FIG. 28. The balanced mode 801 can transition to, and transition
back from, the urgent mode 803. As described in the last section, either of these

modes can lapse into the back ground and transition back to either mode, as shown at

&15 and 817.

[0161] The balanced mode 803 is used for sequential writes and similar such
operations that have a largely steady flow of data. The controller can switch to this
mode from the urgent mode (813) or background (815) in response to determining the
arrival of sequential data. This mode can also be used as the initial mode used when

the system first interact with a host to receive data.

[0162] The transition 811 to urgent can be based on the various mechanisms
discussed above, such as receiving non-sequential data or other situations where the
amount of available D1 memory is low. To allow more time for the extra folding
operations, the memory may send an indication to the host to slow the rate of data
transfer: in some cases, the transfer could be suspended, while in other systems a
minimum transfer rate must be sustained. The transition also be a response to certain
commands or types of commands. For example, if a command is not performance

critical, in that it need not be done as quickly as reasonably possible, but only needs to

_42 -

WO 2011/075572 PCT/US2010/060751

be completed with some predetermined time allotment for the performance
requirement, any surplus time can be used in the urgent mode to free up D1 resources.
This could be the case for transfers of control or data management data, such as file
access table (FAT) updates. In other variations, writes addressed to specific
addresses, such as where system control data is maintained, could trigger the urgent
mode. Further examples include write or other failures, from whose recovery a

significant amount of data re-write could be involved.

[0163] This approach of “multi-gear” folding control can also be applied to different
degrees of parallelism. FIGs. 26 and 27 show 2-die parallel folding example for the
balanced mode to achieve better sequential write performance. As before, D1 writes

may be inserted between the foggy and fine phases, as shown in FIG. 27.
Conclusion

[0164] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

-43 -

WO 2011/075572 PCT/US2010/060751

IT IS CLAIMED:

1. A method of operating a memory system including a controller and a non-
volatile memory circuit, the non-volatile memory circuit having a first portion, where
data is stored in a binary format, and a second portion, where data is stored in a multi-
state format, and the controller managing the transfer of data to and from the memory
system and the storage of data on the non-volatile memory circuit, the method
comprising:

receiving a first set of data;

storing the first set of data in a first location in the second portion of the non-
volatile memory circuit;

subsequently receiving updated data for a first subset of the first data set; and

storing the updated data in a second location in the first portion of the non-
volatile memory circuit, wherein the controller maintains a logical correspondence

between the second location and the first subset of the first set of data.

2. The method of claim 1, wherein the second portion stores data in an N-bit
per cell format and the first set of data is N logical pages of data,

wherein said storing the first set of data includes storing the N logical pages of
data on a first physical page in the second portion,

wherein the updated data is for a first of the N logical pages of data stored on
the first physical page, and

wherein storing the updated data stores the updated data on a second physical
page in the first portion of the non-volatile memory circuit, the controller maintaining
a logical correspondence between the second physical page and the first of the N

logical pages.

3. The method of claim 1, further comprising:

subsequently receiving further updated data for the first set of data; and

storing the updated data in a third location in the first portion of the non-
volatile memory circuit, wherein the controller maintains a logical correspondence

between the third location and the first subset of the first set of data.

4. The method of claim 3, further comprising;:

_44 -

WO 2011/075572 PCT/US2010/060751

subsequently consolidating and storing in the first portion of the memory the

updated data and the further updated data for the first subset of the data.

5. The method of claim 4, further comprising:
concurrently rewriting the non-updated parts of the first set of data with the
consolidated updated and further updated data into the second portion of the non-

volatile memory

6. The method of claim 1, further comprising:

subsequently receiving one or more updates of data for the first set of data;
and

storing the updates data in a set of locations in the first portion of the non-
volatile memory circuit for which the controller maintains logical correspondences
between the set of locations and the first subset of the first set of data and maintains
said updates in the first portion of the non-volatile memory without subsequently

rewriting the updates into the second portion.

7. The method of claim 1, further comprising:

subsequently receiving updated data for a second subset of the first data set;
and

storing the updated data for the second portion in a third location in the first
portion of the non-volatile memory circuit, wherein the controller maintains a logical
correspondence between the third location and the second subset of the first set of

data.

8. The method of claim 7, further comprising:
concurrently rewriting the non-updated parts of the first set of data with the
updated data for the first and second subsets into the second portion of the non-

volatile memory

9. The method of claim 1, wherein storing the first set of data in the first

location in the second portion of the non-volatile memory circuit includes:

-45 -

WO 2011/075572 PCT/US2010/060751

writing the first set of data in the first portion of the non-volatile
memory:

reading the first set of data into data read/write registers of the non-
volatile memory circuit; and

performing a multi-state programming operation of the first set of data
from the read/write registers into the first location in the second portion of the

non-volatile memory circuit.

10. The method of claim 9, wherein the multi-state programming operation is

foggy-fine programming operation.

11. The method of claim 1, further comprising:
subsequently rewriting the first set of data in a third location in the second
portion of the non-voltage memory, wherein the updated data first replaces the

previous data for the first subset of the first data set.

12. The method of claim 11, wherein said subsequently rewriting the first set
of data in a third location in the second portion of the non-voltage memory is
performed in response to a determination by the controller based on the amount of

data stored in the first portion of the memory.

13. The method of claim 11, wherein the rewriting the N logical pages of data
on a third physical page includes:

reading the updated data for the first of the N logical pages from the
second physical page into data read/write registers of the non-volatile memory
circuit; and

reading the data of the N logical pages other than the first logical page
thereof from the first physical page into the data read/write registers of the
non-volatile memory circuit; and

performing a multi-state programming operation of the updated data of
the first of the N logical pages and the data of the N logical pages other that
the first logical page thercof from the read/write registers into the third
physical page.

- 46 -

WO 2011/075572 PCT/US2010/060751

14. The method of claim 1, wherein the non-volatile memory circuit
comprises a plurality of non-volatile memory cells formed along a plurality of bits
lines formed as plurality of erase blocks, and wherein the first and second portions

belong to differing erase blocks that share a common set of bit lines.

15. The method of claim 1, wherein the second location is one of a plurality
of N locations in the first portion of the non-volatile memory for which the controller
maintains a logical correspondence with the first location, wherein the second portion

of the memory stores data in an N-bit per cell format.

16. The method of claim 1, wherein, in response to read request for the first
set of data, the controller provides the updated data for that portion of the first set of
data in the first subset thereof.

17. A method of operating a memory system including a controller and a non-
volatile memory circuit, the non-volatile memory circuit having a first portion and a
second portion, where the first and second portion differ qualitatively, and the
controller managing the transfer of data to and from the memory system and the
storage of data on the non-volatile memory circuit, the method comprising:

receiving a first set of data;

storing the first set of data in a first location in the second portion of the non-
volatile memory circuit;

subsequently receiving updated data for a first subset of the first data set; and

storing the updated data in a second location in the first portion of the non-
volatile memory circuit, wherein the controller maintains a logical correspondence

between the second location and the first subset of the first set of data.
18. The method of claim 17, wherein data is stored in a binary format in the

first portion of the non-volatile memory and data is stored in a multi-state format in

the second portion of the non-volatile memory.

-47 -

WO 2011/075572 PCT/US2010/060751

19. The method of claim 17, wherein the first portion of the non-volatile

memory is of higher endurance than the second portion.

20. The method of claim 17, wherein the first portion of the non-volatile

memory is of higher speed than the second portion.

21. The method of claim 17, wherein the first portion of the non-volatile

memory is of formed of a small erase structure than the second portion.

- 48 -

WO 2011/075572 PCT/US2010/060751

1/30

HOST 80

MEMORY SYSTEM 90

Controller 7100

gl

interface 11

Processor 120

Optional CoProcessor

121 Flash Memory

200

ROM 122

Optional
Programmable
Non-Volatile Memory
124

RAM 130

FIG. 1

WO 2011/075572

ID IIOM

A

2130
Control
Gate f 70
l jBO
</20

Source

147—‘

H'1 ” (1'2)! ll3!7 (14)}

IRgrF

0.5

PCT/US2010/060751

1.0 15 20

WO 2011/075572

Drain
Select

Control Gate n

- e mm WY

Control Gate 2

Control Gate 1

Source Select

3/30
Drain
NAND STRING |~ 96
50~ !
S2
32J i
2o~\
% : Min /—10
30J '

30

3OJ

32J

-

-10

M1 _/*10

S1

FIG. 4A

™\ 54

Source

PCT/US2010/060751

WO 2011/075572 PCT/US2010/060751
4130
56 ~ /—21 0
44l
42
Word . 50 .o 50
Lines !
42
44] Source
Line
54
k34
: L I
. . .
® ® *
e 4 ¢
: 2 8 ¢
™\-36
Bit Lines

FIG. 4B

PCT/US2010/060751

WO 2011/075572

5/30

gd ¥lg € 14 114 014
sduy asusg jo abed jeoisAyd /th fohm
ssyoieT eje(] Jo abed |eosAud \pz

PCT/US2010/060751

WO 2011/075572

6 /30

Threshold Window

Erased I

(0)

“Erased”

(1

[— e ae

b o e e

T L)

|
Lower Bit

Upper Bi’[jl \L

(2)

Programming into Four States Represented by a 2-bit Code

FIG. 6

WO 2011/075572 PCT/US2010/060751

71730

Upper Bit\\ [— Lower Bit

g 5(1 1 3 “01 " L£1 O!l liDO”
@
&) D D D
H -
| | | ~ VT
. Threshold Voltage
Multistate Memory
uwu ll1 1 " HXD”
3 D
%5 m]A “Intermediate”
F -
| =V
Lower Page Programming (2-bit Code)
“Intermediate”
g 5(1 11! HO1 n “1 0!! HOOH
03]
O D D D
ETS
! ! | = V1

Upper Page Programming (2-bit Code)

FIG. 7C

WO 2011/075572 PCT/US2010/060751

8/30

Upper Bit -\ f- Lower Bit

[(1 1 " il01 1] "1 O” uoon
D
ANNARIANA
o VT
| Lower Bit = “0” .
Lower Page Read (2-bit Code)
Upper Bit ="¢" Upper Bit = “0°
Da Dg D¢
(iai 1 b HO1 n 111 O” HOOH

.._VT

—

Upper Page Read (2-bit Code)

FIG. 7E

WO 2011/075572 PCT/US2010/060751

9/30

First
> Program
m\ /m (1st Stage)
Foggy
Program

AF TBF TCF TDF TEF TFF TGF (2nd Stage)

li/! 1 1!1 5‘011” l‘001l! “101” H100” HOOO!! i6010l3 “11011

NN N NN N

" FIG. 7F

WO 2011/075572 PCT/US2010/060751

10/ 30

HOST 80

08/
File System

Application ot : -~

Clusters (Logical Sec’tors)l

Host-Side Memory Manager (Optional)

Logical Sectors

MEMORY SYSTEM 90

Memory Manager 300

Front-End System 310

(Host interface }/

A
Y

_ Flash Memory
= - 290

Back-End System
320

FIG. 8

WO 2011/075572

BACK-END SYSTEM 320

11730

PCT/US2010/060751

Host interface

A

Media Management
Layer
330

Dataflow &
Sequencing Layer
340

¥

Command
Sequencer
342

!

e

Low-Leve!
Sequencer
344

!

Flash Control

Layer st
346

FIG. 9

1)

WO 2011/075572 PCT/US2010/060751

12730
Logical Group (i) LG, | 0 1 k | k+1 N-1
(ii) MBJ. 0 1 k | k+1 N-1
Physical Group
(Metabiock)
(iii) MBJ,. k 1 k+1T J o} N=T O 1 e | k-1
Page Tag
-
FIG. 10A
Physical Group
Logical Group (Metablock)
380\ 370\ :
LG, L - MB,

LS e Logical to }—""" | MB,

Physical
LGZ -~ | Directories T MBz

LG e | MB,

FIG. 10B

WO 2011/075572 PCT/US2010/060751

13/ 30
FLASH MEMORY DEVICE
MLC Memo
HOST Controller v L 200
82 102 Main Memory
W \ —h\\—202
Host Cache @ Cache
(RAM) (RAM) Binary Cache |~
i I 204
Binary Block | 611
SECC 613
>) 615
Data from 4
Conirolier / Host 617
Program to
N State Block
623
! N=3Block | 4
/621

FIG. 12

PCT/US2010/060751

WO 2011/075572

14/ 30

£c9

€L "OId

PRI LIS
oG
T ATy

R i T

L19

PO

ELEER00 | QURERE L

GLa

Ty

e meiia b eI B
Sty Pl sady umﬁ..\?»mﬂ.\.}.,..&.m N B
SEra ON. L9 gy A /19

eyibevny - ot B M e N i

£19

3o0lg €=N Ul
ML

| Yooig Areuig ut
e

AE~

PCT/US2010/060751

WO 2011/075572

15730

Vi ‘Old

g0t syoolg €4 _ og syo0lg L4
[
" UONOIAT
Buipped "
| —
£€E~, LEE~ “ ann uoordwiod
<l an Z+X 91 u -
l o 2uo
| £ : ayoen Z
[eulbuo e <2 an X O £re~y e < feuig | e
MaN e 4 Aleuig JUopISaY
<« anon |« an | xo1 N
| s
I“ mwm\ | £4E 1 _ 3 _ A
a1epdn jegusnbag sjusuibely eie(] Lv4

|

1

SOl Ble(1S0H

PCT/US2010/060751

WO 2011/075572

16/ 30

GL "OId

3201g €4
JOVINI M3N
MOOTd
anod

%00|g
sjepdn
1d
dnoiy
an arepdn

jordut
97

X 91

L+X 91

X1

9L "9OId

PCT/US2010/060751

17/ 30

WO 2011/075572

20|
(nen) eyepdn so0[g
j0 ejepdn slepdn
eq [HOV La L
L0t
4 an
{(non)
....... =1 N A
7
60¥ J e,
¥00ig €0
1OVINI MIN
Moo
a1o4

Jojdul
97

C+X O

b+X O1

X 9O

PCT/US2010/060751

WO 2011/075572

18 /30

Ll "Old

%oo|g
(non) syepdn $300}¢ 19(di |
jo srepdn ajepdn)
cq /o La e Ld LOF~ ¢q
Z+X D1
o _ _
............................... dnoig
> dnoio
(non) uonepyosuon / Adoo | 2| erepdn I+X 91 mmwww:
N 5N [eaibor
....... L B A) S -ON7
f |
%wk mow\ Y
soolg €4 %09 ¢
LOVINIMAN LOVYINI X3
MooT1d MYNIDIHO
a104

PCT/US2010/060751

WO 2011/075572

19/30

8L "OId

¥oo|g
(non) erepdn
jo sjepdn

s300|9
arepdn

g

1 - - Foldin

+ — 4 -
i

30019 €4
1OVEINI M3N
MO01d
aiod

300jd
alepdn
[ENLIA
-d0n

19pdu |
97

X O

X OT

X971

PCT/US2010/060751

WO 2011/075572

20/ 30

JE IV ——————— e R

6} "Old

s}o0|g €U
Bulpped
EEE~ LEE~
joelUj
Bu
[euibLQ MON

s¥ooig id
uoloIng
e
] uonoedwion
4 4 . 1
wvwwm%b Plele]t= euoz
B T B T ayoe
fo < eepdn SUOED <« a;m:mm “
— ojepdn — — lenpiA freug v
m:uH [ENHIA LIEN] ELE] LLES
A 'y i {
A A
alepdn jequanbeg sjuawbel4 eleq 1v4

SSlLAA B1e(] 1SOH

WO 2011/075572

PCT/US2010/060751
2117130
(1) (2) (3)

Host = RAM w1

515/

\501
//‘ D3
517
513~/
203

PCT/US2010/060751

WO 2011/075572

22 /30

L¢ "OId
A

Bunesday

1SOH X8 § —

mom.j Wmd\:. L0/
d Abbo4 _m___o_i ca ol Ld

R Q1A 1.0 150H
£0L 5\%“ ANYN 01 v

mmmﬂ% INVY 01 1S0H
}SOH M8 L/

L{l 01 BJe(ISOH + 9Ul4 UsU) ‘L 0} ejed 31SOH + ABBO4 + 1114 JO SJM diwio}y ‘uoneladQ aip-ajbulg

Bunesday

PCT/US2010/060751

WO 2011/075572

23/30

vee ‘Old
A

e N
Bunneadoy
|
Bunesday -
d Butd g d ABboJ 4 Buipjo4 €0 03 LA
Mol d dul4 Cree-dg Mol d ABbo 71788 Buipod £a 04 1O
dg d 8ul 49/ ~dd o Abbo Y Buplod €0 01 10
sossse [0 ‘ : Zm_\t P o SHIM [(I1S0H
%%l%%. o Aol ONVN 0} NV
[| T _ N 011S0H
150 g4

1L ©1 Bled 3SOH + auid usy} ‘1.Q 0} ejeq 1soH + ABBo
+ 38414 JO SJIAN DIWOLY ‘(jojjered ul Buipjo dnoug [esifo ¢) uonesado sip-¢

PCT/US2010/060751

WO 2011/075572

24 /30

g¢¢ Ol
A

puneadoy Buneadey

ASL

V

.

FELE % 5
d 8ul 47 2
d 8ul-| 2% A
d ould 4 /]

ISOH xm%\

1Q 0} ejeq ISOH EMP9 + duld usyy ‘Lq 03 eje(1SOH ayv9 + AbBog
+ 18114 JO BJLIAA DIWOLY ‘(j8f[eied Ul Bulpjod dnoig [ea1boT) uonesadQ a1p-

Buipio4 €Q 01 1A
Buipjo4 £€Q o LA

d8 Bupjo4 eq o1 1@
Buipio4 £Q o} LA
Sl L 1SOH

(INVN ©OF Wy

NV 01 1SOH

PCT/US2010/060751

WO 2011/075572

25730

£¢ OId

™~

AjuQ 1.Q 0})M 1SOH (Zpsads

Buneaday
Mx@v
JSOH M8 § _
L] 0} BJLAA 1SOH puUe p|o4 jo aABaI] 1| pasdg
Buneaday

FENE] 747 . 1 Bupogegol L@
g4+~ SIM 10 1S0H
GNVYN 0} WYY
NV 0} 180H

SJLM 1O + Buipjo 81 ajbuig

PCT/US2010/060751

WO 2011/075572

26/ 30

ve "9Olid
A

Buneadsay
089S —1 d oul § d >mm0h_ § _m_ T
wg¥ 847 Ay

Buneaday

150H xw‘N\

(14 aanneUIR)|Y) BJIAA LG + BuIpjo4 81 9jbulg

SM LA 1SOH
ANWN 0} AWVH

VY 0} 1SOH

PCT/US2010/060751

WO 2011/075572

27 130

G¢ Ol

A

funesday

d aurJ 3 ABBoq

A1 1 Bupjod ¢d o1 1Q

(z# eAeUIS)|Y) S1A LA + Buipjog 81q sibulg

wg+2 J \ 9w LaisoH
n:\mm ANYN 0} WvH

@U VY 0} 1S0H
1SOH M8

PCT/US2010/060751

WO 2011/075572

28/ 30

9¢ Old
A

AUQ 1@ o1 sjupA 1SOH gp@ads

...l.lﬁlﬁ
d8d

Puneaday

1SCH X8

L(] 01 S1UAA 1SOH PUB P[O-4 JO SAESIBIU] (| poadg
Bunesday

yg
FENE] MW
d dul4 a7

ya+

9}LAA LA + Buipjod aip-Z

(1p wou 97 &) Bupjo4 £d ©3 LA
(op wos o7 &) Bupjo4 £a 03 LA
(1P Jo Op WoYy) SILAA LT ISOH
QNN 0} NvY

INVY 01 1SOH

PCT/US2010/060751

WO 2011/075572

29/ 30

A
'
Buneaday
ML
- - dd
ssseese % ﬁﬁ\v&@w
d4d .
| o1
JSOH M8 Y
Bupeaday
49 ~d (1p woly 7€) Buipjo4 €0 0} 1(
g _ (op woy 97 &) Buipjod £0 03 LA
ssesss [(1p 10 op woly) @WAA LQ 1SOH

(oAneUIS}Y) B3R LA + Buipjod aip-

aNWVN 01 Wvd
WYY 03 1S0H

WO 2011/075572

30730

Background
Mode

Balanced Mode \
801

(e.9., seq.)

\.805

813

\811

f

Urgent Mode N
803

(e.g., non-seq.)

FIG. 28

PCT/US2010/060751

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/060751

A. CLASSIFICATION OF SUBJECT MATTER

INV. GI11C11/56
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2006/136656 Al (CONLEY KEVIN M [US] ET 1-21
AL) 22 June 2006 (2006-06-22)
paragraph [0022]

paragraph [0056] - paragraph [0057]
paragraph [0065] - paragraph [0066];
figures 8, 11

X US 6 523 132 B1 (HARARI ELIYAHOU [US] ET 1-21
AL) 18 February 2003 (2003-02-18)
column 12, line 61 - column 14, Tine 6;
figure 8

A WO 2007/141783 Al (SANDISK IL LTD [IL]; 1,17,18
LASSER MENAHEM [IL])

13 December 2007 (2007-12-13)
page 7, line 16 - line 23

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international "X* document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but inthe art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
2 March 2011 11/03/2011
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Harms, Juergen

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/060751
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2008/159012 Al (KIM YOU SUNG [KR]) 1,17,18

3 July 2008 (2008-07-03)

paragraph [0012]

paragraph [0026] - paragraph [0035]
paragraph [0037]; figure 1

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/060751
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006136656 Al 22-06-2006 AT 469420 T 15-06-2010
EP 1829047 Al 05-09-2007
JP 2008524747 T 10-07-2008
KR 20070104529 A 26-10-2007
KR 20100022026 A 26-02-2010
WO 2006068916 Al 29-06-2006
US 6523132 Bl 18-02-2003 NONE
WO 2007141783 Al 13-12-2007 US 2007283081 Al 06-12-2007
US 2010205362 Al 12-08-2010
US 2008159012 Al 03-07-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - wo-search-report
	Page 81 - wo-search-report
	Page 82 - wo-search-report

