实用新型名称
一种有棉雾化器及电子烟

摘要
本实用新型公开了一种有棉雾化器及电子烟，该有棉雾化器包括雾化组件，雾化组件包括一通气管和波纹芯，在通气管的管壁上设置一卡位，波纹芯架设于所述卡位内。本实用新型不仅可有效提高生产效率，而且可降低操作人员的随意性和熟练度要求，改善了产品质量的稳定性和可靠性。
1. 一种有机物氧化器，包括氧化套，位于氧化套内的储油腔，分别安装于氧化套上下两端的吸垢组件和氧化组件，储油腔内填充有弧状球状材料，氧化组件包括通氧管和储油芯，依附于储油芯上的发热丝、螺纹套及插设于螺纹套内并与螺纹套绝缘隔离的电极环，所述多孔网状材料包覆于通氧管和储油芯外部，所述发热丝设置有两个电极连接端，分别与所述螺纹套和电极环电连接，其特征在于：所述通氧管的管壁上设置一卡位，所述储油芯架设于所述卡位内。

2. 如权利要求1所述的有机物氧化器，其特征在于：所述卡位包括贯穿所述通氧管管壁的通孔和自所述管壁外侧向所述通孔切割的适于将所述卡位打开的切口。

3. 如权利要求2所述的有机物氧化器，其特征在于：所述通孔的中轴线与所述通氧管的中轴线垂直。

4. 如权利要求1所述的有机物氧化器，其特征在于：所述两个电极连接端分别通过一导线与所述螺纹套和电极环连接，且所述导线与电极连接端之间通过端接固定连接。

5. 如权利要求1~4任一项中所述的有机物氧化器，其特征在于：所述氧化组件还包括一固定套，所述固定套的下端设置有一凸台，上端设置有一短柱，所述凸台内设置有适于与电极环配合的内孔。

6. 如权利要求5所述的有机物氧化器，其特征在于：所述凸台的外侧面与所述螺纹套过盈配合，所述凸台的内孔与所述电极环过盈配合。

7. 如权利要求6所述的有机物氧化器，其特征在于：所述凸台上还设置有两个小孔，两个所述电极连接端分别经两个所述小孔穿出，并分别向所述凸台的内孔和外侧面弯曲。

8. 如权利要求7所述的有机物氧化器，其特征在于：所述固定套由硅胶或塑胶制成。

9. 如权利要求1所述的有机物氧化器，其特征在于：所述螺纹套上制有内螺纹或外螺纹。

10. 一种电子烟，包括电池杆，其特征在于：还包括权利要求1~9中任一项所述的有机物氧化器，所述电池杆与所述螺纹套连接，为所述发热丝供电。
说明书

一种有棉雾化器及电子烟

技术领域
[0001] 本实用新型涉及电子烟产品技术领域，特别涉及一种有棉雾化器及电子烟。

背景技术
[0002] 在电子烟产品中，雾化器是其中一个重要组成部分，雾化器的质量直接影响电子烟的出烟量和可靠性。现有的雾化器主要有无棉雾化器和有棉雾化器，无棉雾化器主将烟油直接容置在雾化器的一个储油腔内，而有棉雾化器则是在储油腔内增加纤维棉，用于吸附烟油，从而避免出现烟油漏出的现象，而且生产成本较低。

[0003] 目前的有棉雾化器主要包括位于雾化套内的储油腔和分别安装于雾化套两端的吸嘴组件和雾化组件，其中，雾化组件包括通气管、玻纤芯、发热丝、电极环和螺纹套，电极环插于螺纹套内并与螺纹套绝缘隔离，发热丝缠绕在玻纤芯上，引出两个连接端，一端与电极环连接，另一端与螺纹套连接，将玻纤芯悬空设置于螺纹套的上方。电极环为中空结构，通气管位于储油腔内部，将吸嘴组件与电极环连通，形成适于吸气的通道。通气管的下端分为两瓣并张开成V字形，并且与螺纹套粘结，以便于固定玻纤芯。通气管外表面为有纤维棉，使玻纤芯的两端与纤维棉保持良好接触，以便于吸附在纤维棉中的烟油能及时进入玻纤芯中雾化。

[0004] 上述结构中，存在以下不足：
[0005] 1、发热丝悬空，仅靠两个连接端的支撑力支撑，在雾化器跌落时，容易出现玻纤芯与纤维棉接触不佳或者玻纤芯脱落的现象，造成吸烟时无烟或者口数少等问题。
[0006] 2、在组装时，需要将通气管与螺纹套用胶水粘结，在胶水干化后才能进入下一道组装工序，造成生产效率下降，同时可能因点胶操作不当造成通气管的粘结失效或部分失效，从而影响产品质量的稳定性或者使下一道工序的不能正常进行。
[0007] 3、由于玻纤芯靠近螺纹套，因此，在通气管外包裹纤维棉时，操作难度大，对包棉工位的操作人员的熟练度要求较高，容易出现纤维棉未包住玻纤芯而产生糊味异味，甚至无烟的情况。

实用新型内容

[0008] 本实用新型的主要目的在于，提供一种有棉雾化器及电子烟，不仅可有效提高生产效率，而且可降低操作人员的随意性和熟练度要求，改善产品质量的稳定性和可靠性。

[0009] 为实现上述发明目的，本实用新型采用以下技术方案。

[0010] 本实用新型提供一种有棉雾化器，包括雾化套、位于雾化套内的储油腔，分别安装于雾化套上下两端的吸嘴组件和雾化组件，储油腔内填充有多孔网状材料；雾化组件包括通气管、玻纤芯，依附于玻纤芯上的发热丝、螺纹套及插设于螺纹套内并与螺纹套绝缘隔离的电极环，所述多孔网状材料包覆于通气管和玻纤芯外部，所述发热丝设置有两个电极连接端，分别与所述螺纹套和电极环电连接，所述电极环的管壁上设置一卡位，所述玻纤芯架设于所述卡位内。
优选地，所述卡位包括贯穿所述通气管管壁的通孔和从所述管壁外侧向所述通孔切割的适于将所述卡位打开的切口。

优选地，所述通孔的中轴线与所述通气管的中轴线垂直。

优选地，所述两个电极连接端分别通过一导线与所述螺纹套和电极环连接，且所述导线与电极连接端之间通过铆接固定连接。

优选地，所述锁紧组件还包括一固定套，所述固定套的下端设置有一凸台，上端设置有一短柱，所述凸台内设置有适于与电极环配合的内孔。

优选地，所述凸台的外侧面上与所述螺纹套过盈配合，所述凸台的内孔与所述电极环过盈配合。

优选地，所述凸台上还设置有三个小孔，两个所述电极连接端分别经三个所述小孔穿出，并分别向所述凸台的内孔和外侧面弯曲。

优选地，所述固定套由软质的硅胶或塑胶制成。

优选地，所述螺纹套上制有内螺纹或外螺纹。

本实用新型还提供一种电子烟，包括电池杆，还包括上述有棉雾化器，所述电池杆与所述螺纹套连接，为所述发热丝供电。

相比于上述现有技术，本实用新型的有棉雾化器和电子烟将缠绕有发热丝的玻纤芯卡设在通气管上所设置的卡位上，从而可以有效固定发热丝和玻纤芯，使提升了雾化器的防摔抗震性能；此外，通气管被固定后，离螺纹套有较大的距离，从而降低了包棉工位对操作人员的熟悉度要求，可有效提高组装效率，降低不良品率；同时，由于通气管与螺纹套之间采用插接方式代替传统的粘结固定方式，不仅省去了涂胶工艺和干燥周期，大大节省了组装时间，而且对操作人员的依赖性大大降低，有利于实现出厂化生产，全面提升产品质量和性能稳定性。

附图说明

图 1 是本实用新型实施例中有棉雾化器的剖视结构示意图。

图 2 是本实用新型实施例中有棉雾化器的结构分解示意图。

图 3 是本实用新型实施例中通气管的结构示意图。

图 4 是本实用新型实施例中玻纤芯组装到通气管内后的结构示意图。

图 5 是本实用新型实施例中固定套的结构示意图。

图 6 是本实用新型实施例中电子烟的结构示意图。

具体实施方式

以下将结合附图及具体实施例详细说明本实用新型的技术方案，以便更直观地理解本实用新型的发明实质。

实施例一：

参照图 1 和图 2 所示，本实施例提供一种有棉雾化器 100，包括雾化套 1，位于雾化套 1 内的储油腔 2，安装于雾化套 1 上端的吸嘴组件 3 和安装于雾化套 1 下端的雾化组件 4。其中，储油腔 2 用于储存烟油，其内填充有多孔网状材料 5，用于吸附烟油，该多孔网状材料 5 可以是纤维棉或其它类似材料。雾化组件 4 包括通气管 41，玻纤芯 42，依附于玻纤
芯 42 上的发热丝 43，固定于雾化套 1 下端的螺纹套 44 以及插设于螺纹套 44 内并与螺纹套 44 通过一绝缘环 47 隔离的电极环 45。发热丝 43 绑绕于玻纤芯 42 上，设置有两个电极连接端 431、432，其中一个连接端 431 与电极环 45 电连接，另一个连接端 432 与螺纹套 44 电连接。多孔网状材料 5 包覆于通气管 41 和玻纤芯 42 外部，通过玻纤芯 42 的吸附作用将烟油吸取到玻纤芯 42 上，然后由发热丝 43 加热雾化。通气管 41 穿过储油腔 2，一端连接吸嘴组件 3，另一端连接螺纹套 44，雾化后的烟油经通气管 41 和吸嘴组件 3 进入吸烟者的口腔内。

具体地，所述通气管 41 的管壁上设置有一卡位 411，玻纤芯 42 架设于该卡位 411 内，并由玻纤芯 42 支承固定，使玻纤芯 42 的两端和位于该两端的两个电极连接端 431、432 处于通气管 41 外部，这两个电极连接端 431、432 分列于通气管 41 的两侧，并分别与电极环 45 和螺纹套 44 进行电连接。

玻纤芯 42 和通气管 41 组装完成后，可在通气管 41 外包裹一层棉布 6，该棉布 6 与玻纤芯 42 的两端保持良好接触。再将多孔网状材料 5 卷绕在上述棉布 6 上，使吸附在多孔网状材料 5 中的烟油被棉布 6 吸收，并最终进入玻纤芯 42 内，为玻纤芯 42 提供源源不断的烟油。上述棉布 6 的作用是导流和储油，将扩散在多孔网状材料 5 中的烟油尽可能地吸附在棉布 6 上，然后再由玻纤芯 42 吸收，以达到提高烟油利用率和快速吸取烟油的效果。

本实施例中，吸嘴组件 3 包括吸嘴盖 31，吸嘴盖 31 安装于雾化套 1 的上端。在吸嘴盖 31 与多孔网状材料 5 之间还可设置有一阻油环 32，该阻油环 32 与雾化套 1 密封配合，用于防止烟油进入吸嘴盖 1 从而进入消费者口腔，影响消脂体验。

本实施例的螺纹套 44 的外表面制有内螺纹或外螺纹，可用于与烟杆等部件组装成电子烟产品，而且组装和拆卸非常方便快捷。

本实施例的有棉雾化器 100 中，玻纤芯 42 架设在上述卡位 411 内，由通气管 41 固定，不仅可以方便地组装玻纤芯 42 和发热丝 43，提高组装效率，而且在雾化器 100 跌落时，玻纤芯 42 与多孔网状材料 5 也不会出现接触不佳或者玻纤芯 42 脱落的现象，有效地提高了产品的可靠性。而相比于现有雾化器的组装过程中需手工将发热丝 43 拉离螺纹套 1～1.5mm 的操作方式，本实施例在组装过程中不依赖于操作人员的技术水平和操作熟练度，使产品质量的稳定性和一致性得到有效改善。

实施例二：

参照图 3 和图 4 所示，本实施例基于实施例一，并且所述通气管 41 的卡位 411 包括贯穿通气管 41 管壁的通孔 4111 和自管壁外侧向该通孔 4111 切割而成的切口 4112，以便于将卡位 411 打开，从而将玻纤芯 42 连同发热丝 43 安装在卡位 411 上。在将玻纤芯 42 安装到卡位 411 上时，只需在卡位 411 处将通气管 41 折弯，使切口 4112 打开，即可方便地将玻纤芯 42 放入。调整发热丝 43 在卡位 411 中的位置，使发热丝 43 的两个电极连接端 431、432 分别置于通气管 41 的两侧，以避免接触发生短路。调整完成后，通气管 41 在自身弹力作用下恢复原状，该卡位 411 便将玻纤芯 42 夹持固定。

上述通孔 4111 的中轴线布置为与通气管 41 的中轴线垂直或接近垂直，这样，玻纤芯 42 放置在卡位 411 内时与通气管 41 呈垂直状态，不仅便于玻纤芯 42 的安装，而且在发生跌落时，可有效避免玻纤芯 42 移位造成吸不到烟油而出现的无烟或口感少等现象。

结合图 1 和图 5 所示，为了提高发热丝 43 的电极连接端 431、432 之间的绝缘可靠
性，也为了更方便地实现电极连接端 431 与电极环 45 和螺纹套 44 连接，本实施例还设置有一固定套 46，该固定套 46 位于储油腔 2 与螺纹套 44 之间，其下端设置有插接于螺纹套 44 内的凸台 461，上端设置有插入到通气管 41 内的短柱 462。凸台 461 内部设置有用于与电极环 45 配合连接的内孔。在固定套 46 上还设置有用于隔离上述两个电极连接端 431、432 的小孔 463，两个电极连接端 431、432 分别经穿过两个小孔 463 穿出，并分别向凸台 461 的内孔和外侧面弯曲。

【0039】当电极环 45 插接于短柱 462 内时，电极环 45 与位于凸台 461 内孔中的电极连接端 431 接触，形成电性连接；当凸台 461 插接于螺纹套 44 内时，螺纹套 44 的内侧面与位于凸台 461 外侧面的电极连接端 432 接触，形成电性连接。由于电极环 45 插设于螺纹套 44 内，电极环 45 形成发热丝 43 的正极，螺纹套 44 形成发热丝 43 的负极，因此，本实施例在电极环 45 与螺纹套 44 之间设置有上述绝缘环 47，将电极环 45 与螺纹套 44 绝缘隔绝。

【0040】通气管 41 的下端与固定套 46 的短柱 462 插接，实现对储气管 41 下端的固定，保持电极环 45、通气管 41 和吸嘴组件 3 之间的气路的畅通，可有效防止雾化器跌落时发生电路堵塞的情况发生，提高了产品的质量稳定性和可靠性。

【0041】此外，为了节省电能，本实施例的电极连接端 431、432 分别通过一导线与螺纹套 44 和电极环 45 连接，该导线可由铜等电阻率小的导电材质制成，采用与发热丝焊接的方式代替焊接，避免焊锡加热时产生异味，影响电子烟的口感。

【0042】实施例三：

【0043】参照图 6 所示，本实施例提供一种电子烟，该电子烟采用实施例一或实施例二中所述的有棉雾化器 100，还包括电池杆 200，该电池杆 200 与螺纹套 44 之间形成可拆卸式连接，由电池杆 200 为雾化器 100 供电，将烟油雾化，继而体验吸烟效果。

【0044】本实施例的电子烟的特点与实施例一或二中有棉雾化器 100 的特点一样，不仅能提高日毛的产生效率，而且可提高电子烟产品的质量稳定性和可靠性。

【0045】综上所述，本实用新型的有棉雾化器和电子烟将缠绕有发热丝的玻纤芯卡设在通气管上所设置的卡位上，从而可以有效固定发热丝和玻纤芯，使提升了雾化器的防摔抗震性能；此外，通气管被固定后，离螺纹套有较大的距离，从而降低了包棉工位（即纤维棉或棉布）对操作人员的熟练度要求，可有效提高组装效率，降低不良品率；同时，由于通气管与螺纹套之间采用插接方式代替传统的粘结固定方式，不仅省去了涂胶工艺和干胶时间，大大节省了组装时间，而且对操作人员的依赖性大大降低，有利于实现自动化生产，全面提升产品质量和性能稳定性。

【0046】以上仅为本说明书为便于理解发明内容所列举的部分实施方式，并非对本实用新型的技术方案进行的任何限定，也非所有可实施方案的穷举，故凡是对本实用新型的形状、结构或构造所做出的任何微小改进或等效替代，均应包含在其保护范围之内。
图 1
图 4
图 5