wo 2015/191737 A1 [N 00O 0RO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/191737 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

17 December 2015 (17.12.2015) WIPO I PCT
International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/035138 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Fi]ing Date: HN, HR, HU, ID, IL, H\I, IR, IS, JP, KE, KG, KN, KP, KR,
10 June 2015 (10.06.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Priority Data: . L
62/012,127 13 June 2014 (13.06.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
Applicant: THE CHARLES STARK DRAPER GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
LABORATORY, INC. [US/US]; 555 Technology Square, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Cambridge, MA 02139 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Inventors: CARBACK, IIIL, Richard, T.; 43 Woodlawn DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
Street, Everett, MA 02149 (US). GAYNOR, Brad, D.; 15
. SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
Oakmont Road, Newton, MA 02459 (US). BROCK, Neil, GW, KM, ML, MR, NE, SN, TD, TG)
A.; 2 Candida Lane, Acton, MA 01720 (US). SHNID- ? ? i T T T ’
MAN, Nathan, R.; 6 Pitcairn Place, Lexington, MA 02421 Published:

(US).

Agents: WAKIMURA, Mary Lou et al; Hamilton,
Brook, Smith & Reynolds, P.C., 530 Virginia Rd, P.O. box
9133, Concord, MA 01742-9133 (US).

with international search report (Art. 21(3))

(54) Title: SYSTEMS AND METHODS FOR SOFTWARE ANALYSIS

205

210

FIG. 2

(57) Abstract: Systems, methods, and computer program products are provided for identifying software files, flaws in code, and pro-
gram fragments by obtaining a software file, determining a plurality of artifacts, accessing a database which stores a plurality of ref-
erence artifacts for reference software files, comparing at least one of the artifacts to at least one of the reference artifacts stored in
the database, and identifying the software file by identifying the reference software file having the reference artifacts that correspond
to the plurality of artifacts. Certain embodiments can also automatically provide updated versions of files, patches to be applied, or
repaired blocks of code to replace flawed blocks. Example embodiments can accept a wide variety of file types, including source
code and binary files and can analyze source code or convert files to an intermediate representation (IR) and analyze the IR.

WO 2015/191737 PCT/US2015/035138

SYSTEMS AND METHODS FOR SOFTWARE ANALYSIS

RELATED APPLICATION(S)

[0001] This application claims the benefit of U.S. Provisional Application No.
62/012,127, filed on June 13, 2014. The entire teachings of the above application are

incorporated herein by reference.

GOVERNMENT SUPPORT

[0002] This invention was made with government support under grant number FA8750-
14-C-0056 from the United States Air Force and grant number FA8750-15-C-0242 from the
Defense Advanced Research Projects Agency. The government has certain rights in the

invention.

BACKGROUND OF THE INVENTION

[0003] Today, software development, maintenance, and repair are manual processes.
Software vendors plan, implement, document, test, deploy, and maintain computer programs
over time. The initial plans, implementations, documentation, tests, and deployments are
often incomplete and invariably lack desired features or contain flaws. Many vendors have
lifecycle maintenance plans to address these shortcomings by pushing iterative bug fixes,
security patches, and feature enhancements as the software matures.

[0004] There is a large amount of software code deployed in the world, billions of lines,
and maintenance and bug fixes take large amounts of time and money to address.
Historically, software maintenance has been an ad-hoc and reactionary (i.e., responding to
bug reports, security vulnerability reports, and user requests for feature enhancements)

manual process.

SUMMARY OF THE INVENTION

[0005] Embodiments of the present invention automate key aspects of the software

development, maintenance, and repair lifecycle, including, for example, finding and repairing

WO 2015/191737 PCT/US2015/035138
-0

program flaws, such as bugs (errors in the code), security vulnerabilities, and protocol
deficiencies. Example embodiments of the present invention provide systems and methods
which can utilize large volumes of software files, including those that are publicly available
or proprietary software.

[0006] Certain of the example embodiments can automatically identify and provide the
newest versions or patches for software files. Additional embodiments can automatically
locate design patterns, such as software flaws (e.g., bugs, security vulnerabilities, protocol
deficiencies), that are known to exist in certain software files and provide repairs. Other
embodiments may make use of the known flaws by locating them in software files for which
it was previously unknown that the files contained the flaw. Additional embodiments can
automatically locate design patterns, such as identifying portions of source or binary code, to
identify files, programs, functions, or blocks of code.

[0007] When a software flaw is identified, for some embodiments, the corresponding
software repair pattern can be used to generate a repair specification. This repair
specification, for example, can be used to synthesize an appropriate software repair in the
form of a source or binary, also referred to as machine language, patch. Certain example
embodiments can support performing automatic software maintenance, such as flaw
identification and repair, on both binary code and source code allowing for broad automated
software maintenance for legacy systems.

[0008] According to one embodiment of the invention, a method for identifying software
includes obtaining a software file, determining a plurality of artifacts for the software file,
accessing a database which stores a plurality of reference artifacts for each of a plurality of
reference software files, comparing the plurality of artifacts to the plurality of reference
artifacts, and identifying the software file by identifying the reference software file having the
plurality of reference artifacts that match the plurality of artifacts.

[0009] According to additional embodiments, the plurality of artifacts for the software
file can include one or more of a call graph, control flow graph, use-def chain, def-use chain,
dominator tree, basic block, variable, constant, branch semantic, and protocol. For yet other
additional embodiments, the plurality of artifacts can include one or more of a system call
trace and execution trace. For another example embodiment, the plurality of artifacts can
include one or more of a loop invariant, type information, Z notation, and label transition

system representation. For certain example embodiments, the plurality of artifacts can

WO 2015/191737 PCT/US2015/035138
-3-

include one or more artifacts determined from any of an in-line code comment, commit
history, documentation file, and common vulnerabilities and exposure source entry. For
some example embodiments, the plurality of artifacts are each a graph artifact or a
developmental artifact. For additional embodiments, the plurality of artifacts are each static
artifacts, dynamic artifacts, derived artifacts, or meta data artifacts. For certain embodiments,
the plurality of reference artifacts match the plurality of artifacts when at least a fuzzy match
exists between the plurality of reference artifacts and the plurality of artifacts.

[0010] According to additional embodiments, the method can also determine whether a
newer version of the software file exists by analyzing at least one of the reference artifacts
stored in the database that is associated with the identified reference software file. For some
embodiments, the method can also automatically provide the newer version of the software
file.

[0011] According to other embodiments, the method can also include determining
whether a patch for the software file exists by analyzing at least one of the reference artifacts
associated with the identified reference software file. Certain embodiments can also
automatically apply the patch to the software file. Other embodiments can also analyze the
patch to determine a repair portion of the patch that corresponds to a repair of a flaw in the
software file, and apply only the repair portion of the patch to the software file. For certain
embodiments, analyzing the patch and the software file includes converting the patch, and the
software file also for some embodiments, into an intermediate representation and determining
at least one of the artifacts from the intermediate representation.

[0012] Certain embodiments of the present invention can determine the plurality of
artifacts for the software file by converting the software file into an intermediate
representation and determining at least one of the plurality of artifacts from the intermediate
representation. Additional embodiments may also run the software file in an instrumented
environment, such as a virtual machine, to determine the artifacts. Certain embodiments may
also determine some of the artifacts by extracting a string of characters from the software file,
including when the software file is in source code format or binary code format.

[0013] Additional embodiments of the example method can determine whether a flaw
exists in the software file by analyzing at least one of the reference artifacts associated with
the identified reference software file, and also at least one¢ of the artifacts associated with the

software file for certain embodiments. Additional embodiments can automatically repair the

WO 2015/191737 PCT/US2015/035138
_4.-

flaw in the software file. For certain of these embodiments, automatically repairing the flaw
includes replacing a block of source code with a repair block of source code. For certain of
these embodiments, automatically repairing the flaw includes replacing a block of binary
code with a repair block of binary code. For certain of these embodiments, automatically
repairing the flaw includes replacing a block of intermediate representation of the software
file with a repair block of intermediate representation. These blocks can be contiguous, but
do not have to be, and can include code spread throughout the file.

[0014] According to another embodiment of the present invention, a method for
identifying code includes obtaining one or more software files, determining a plurality of
artifacts for the software files, accessing a database which stores a plurality of reference
artifacts, and identifying a program fragment that is in the software file by matching the
plurality of artifacts that corresponds to the program fragment to the plurality of reference
artifacts that corresponds to the program fragment. The matching can also be based on fuzzy
matching wherein close matches are deemed as matches.

[0015] For some embodiments, determining the plurality of artifacts for the software files
includes converting the software files into an intermediate representation format and
determining at least one of the plurality of artifacts from the intermediate representation. For
some of the embodiments of the example method, the software files are each in a source code
format. For other embodiments, the software files are each in a binary code format. For
some embodiments, the program fragment corresponds to a flaw in the software file, such as
a bug, a security vulnerability, or a protocol deficiency. For certain example embodiments,
the plurality of artifacts include a graph artifact, and/or a developmental artifact, or are each
meta data artifacts. For certain example embodiments, the one or more software files can be
files within a software project.

[0016] For certain embodiments, the reference artifacts corresponding to the program
fragment have previously been identified in the database to correspond to a flaw. For some
embodiments, the method also includes automatically repairing the flaw in the software file,
offering one or more repair options to a user to repair the flaw, and/or ordering the one or
more repair options, including based on one or more previous repair options selected by the
user or based on a likelihood of success for each of the repair options. Repairing a flaw
automatically includes repairing a flaw without any input from a user for that file, including

by referencing a configuration file, setting, or flag, including those that can be previously set

WO 2015/191737 PCT/US2015/035138
-5-

by a user, such as an administrator, to determine whether repairing a flaw automatically is
desired or allowed.

[0017] For certain example embodiments, the program fragment has been identified in
the database to correspond to a feature. Certain embodiments can also automatically augment
the feature with a feature enhancement, including by applying a binary or source code patch.
[0018] Additional embodiments of the present invention provide a system for identifying
software, which includes an interface capable of communicating with a source having a
software file, a storage device which stores a plurality of reference artifacts for each of a
plurality of reference software files, a processor communicatively coupled to the interface
and the storage device, and configured to obtain the software file, determine a plurality of
artifacts for the software file, access the plurality of reference artifacts in the storage device,
compare the plurality of artifacts to the plurality of reference artifacts, and identify the
software file by identifying the reference software file having the plurality of reference
artifacts that match the plurality of artifacts.

[0019] Additional embodiments of the system can have the processor configured to
determine the plurality of artifacts for the software file by, among other things, converting the
software file into an intermediate representation and determining at least one of the plurality
of artifacts from the intermediate representation. Yet other embodiments have the processor
also being configured to determine whether a patch for the software file exists by analyzing at
least one of the reference artifacts associated with the identified reference software file.
Certain additional embodiments have the processor also being configured to automatically
apply the patch to the software file. Certain other embodiments have the processor also being
configured to analyze the patch and the software file to determine a repair portion of the
patch that corresponds to a repair of a flaw in the software file, and apply only the repair
portion of the patch to the software file.

[0020] Additional embodiments of the present invention provide a system for identifying
code, which includes an interface capable of communicating with a source having one or
more software files, a storage device for storing a plurality of reference artifacts, and a
processor communicatively coupled to the interface and the storage device, and configured
to: cause one or more software files to be obtained, determine a plurality of artifacts for the
one or more software files, access a database which stores a plurality of reference artifacts,

and identify a program fragment for the one or more software files by matching the plurality

WO 2015/191737 PCT/US2015/035138
-6-

of artifacts that correspond to the program fragment to the plurality of reference artifacts that
correspond to the program fragment. For certain example embodiments, the program
fragment has been identified in the database to correspond to a flaw. Examples of such flaws
include a bug, a security vulnerability, and a protocol deficiency. These flaws can be within
the one or more software files or can be related to one or more interfaces between the
software files. Additional embodiments also can have the processor be configured to
automatically repair the flaw in the one or more software files.

[0021] According to an additional embodiment of the present invention, provided is a
non-transitory computer readable medium with an executable program stored thereon,
wherein the program instructs a processing device to perform the following steps: obtain a
software file, determine a plurality of artifacts for the software file, access a database which
stores a plurality of reference artifacts for each of a plurality of reference software files,
compare the plurality of artifacts to the plurality of reference artifacts, and identify the
software file by identifying the reference software file having the plurality of reference

artifacts that match the plurality of artifacts.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The foregoing will be apparent from the following more particular description of
example embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of
the present invention.

[0023] FIG. 1 is a flow diagram illustrating an example embodiment of a method for
providing a corpus for software files.

[0024] FIG. 2 is a flow chart illustrating example processing to extract intermediate
representation (IR) from input software files for the corpus in accordance with an
embodiment of the present invention.

[0025] FIG. 3 is a block diagram illustrating hierarchical relationships amongst artifacts
for software files in accordance with an embodiment of the invention.

[0026] FIG. 4 is a block diagram illustrating an example embodiment of a system for

providing a corpus of artifacts for software files.

WO 2015/191737 PCT/US2015/035138
-7 -

[0027] FIG. 5 is a block diagram illustrating an example embodiment of a method for
identifying design patterns.

[0028] FIG. 6 is a flow diagram illustrating an example embodiment of a method for
identifying flaws.

[0029] FIG. 7 is a block diagram illustrating the clustering of artifacts for identifying
design patterns in accordance with an embodiment of the present invention.

[0030] FIG. 8 is a flow diagram illustrating an example embodiment of a method for
identifying software files using a corpus.

[0031] FIG. 9 is a flow diagram illustrating an example embodiment of a method for
identifying program fragments.

[0032] FIG. 10 is a block diagram illustrating a system using the corpus in accordance

with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0033] A description of example embodiments of the invention follows. The entire
teachings of any patent or publication cited herein are incorporated into this document by
reference.

[0034] Software analysis in accordance with example embodiments of the present
disclosure allows for knowledge to be leveraged from existing software files, including files
that are from publicly available sources or that are proprictary software. This knowledge can
then be applied to other software files, including to repair flaws, identify vulnerabilities,
identify protocol deficiencies, or suggest code improvements.

[0035] Example embodiments of the present invention can be directed to varying aspects
of software analysis, including creating, updating, maintaining, or otherwise providing a
corpus of software files and related artifacts about the software files for the knowledge
database. This corpus can be used for a variety of purposes in accordance with aspects of the
present invention, including to identify automatically newer versions of software files,
patches that are available for software files, flaws in files that are known to have these flaws,
and known flaws in files that are previously unknown to contain these errors. Embodiments
of the present invention also can leverage the knowledge from the corpus to address these
problems.

[0036] Fig. 1 is a flow chart illustrating example processing of input software files for the

WO 2015/191737 PCT/US2015/035138
-8-

corpus in accordance with an embodiment of the present invention. The first illustrated step
is to obtain a plurality of software files 110. These software files can be in a source code
format, which typically is plain text, or in a binary code format, or some other format.
Further, for certain example embodiments of the present invention the source code format can
be any computer language that can be compiled, including Ada, C/C++, D, Erlang, Haskell,
Java, Lua, Objective C/C++, PHP, Pure, Python, and Ruby. For certain additional example
embodiments, interpreted languages can also be obtained for use with embodiments of the
present invention, including PERL and bash script.

[0037] The software files obtained include not only the source code or binary files, but
also can include any file associated with those files or the corresponding software project.
For example, software files also include the associated build files, make files, libraries,
documentation files, commit logs, revision histories, bugzilla entries, Common
Vulnerabilities and Exposures {CVE) entries, and other unstructured text.

[0038] The software files can be obtained from a variety of sources. For example,
software files can be obtained over a network interface via the Internet from publicly
available software repositories such as GitHUB, SourceForge, BitBucket, GoogleCode, or
Common Vulnerabilities and Exposures systems, such as the one maintained by the MITRE
corporation. Generally, these repositories contain files and a history of the changes made to
the files. Also, for example, a uniform resource locator (URL) can be provided to point to a
site from which files can be obtained. Software files can also be obtained via an interface
from a private network or locally from a local hard drive or other storage device. The
interface provides for communicatively coupling to the source.

[0039] Example embodiments of the present invention can obtain some, most, or all files
available from the source. Further, some example embodiments also automate obtaining files
and, for example, can automatically download a file, an entire software project (e.g., revision
histories, commit logs, source code), all revisions of a project or program, all files in a
directory, or all files available from the source. Some embodiments crawl through each
revision for the entire repository to obtain all of the available software files. Certain example
embodiments obtain the entire source control repository for each software project in the
corpus to facilitate automatically obtaining all of the associated files for the project, including
obtaining each software file revision. Example source control systems for the repositories

include Git, Mercurial, Subversion, Concurrent Versions System, BitKeeper, and Perforce.

WO 2015/191737 PCT/US2015/035138
-9.

Certain embodiments can also continuously or periodically check back with the source to
discern whether the source has been changed or updated, and if so, can just obtain the
changes or updates from the source, or also obtain all of the software files again. Many
sources have ways to determine changes to the source, such as date added or date changed
fields that example embodiments may use in obtaining updates from a source.

[0040] Certain example embodiments of the present invention also can separately obtain
library software files that may be used by the source code files that were obtained from the
repositories to address the need for such files in case the repositories did not contain the
libraries. Certain of these embodiments attempt to obtain any library software file reasonably
available from any public source or obtained from a software vendor for inclusion in the
corpus. Additionally, certain embodiments allow a user to provide the libraries used by
software files or to identity the libraries used so that they can be obtained. Certain
embodiments scrape the software files for each project to identify the libraries used by the
project so that they can be obtained and also installed, if needed.

[0041] The next step in the example method in accordance with the present invention is
determining a plurality of artifacts for each of the plurality of software files 120. Software
artifacts can describe the function, architecture, or design of a software file. Examples of the
types of artifacts include static artifacts, dynamic artifacts, derived artifacts, and meta data
artifacts.

[0042] The final step of the example method is storing the plurality of artifacts for each
of the plurality of software files in a database 130. The plurality of artifacts are stored in
such a way that they can be identified as corresponding to the particular software file from
which they were determined. This identification can be done in any of a well known variety
of ways, such as a field in the database as represented by the database schema, a pointer, the
location of where stored, or any other identifier, such as filename. Files that belong to the
same project or build can similarly be tracked so that the relationship can be maintained.
[0043] For different embodiments, the database can take different forms such as a graph
database, a relational database, or a flat file. One preferred embodiment employs OrientDB,
which is a distributed graph database provided by the OrientDB Open Source Project lead by
Orient Technologies. Another preferred embodiment employs Titan, which is a

scalable graph database optimized for storing and querying graphs distributed across a multi-

machine cluster, and the Apache Cassandra storage backend. Certain example embodiments

WO 2015/191737 PCT/US2015/035138
-10 -

can also employ SciDB, which is an array database to also store and operate on graph-
artifacts, from Paradigm4.

[0044] The static artifacts, dynamic artifacts, derived artifacts, and meta data artifacts
generally can be determined from source code files, binary files, or other artifacts. Examples
of these types of artifacts are provided below. Example embodiments can determine one or
more of these artifacts for the source code or binary software files. Certain embodiments do
not determine each of these types of artifacts or each of the artifacts for a particular type, and
instead may determine a subset of the artifact types and/or a subset of the artifacts within a
type, and/or none of a particular type at all.

Static Artifacts

[0045] Static artifacts for software files include call graphs, control flow graphs, use-def
chains, def-use chains, dominator trees, basic blocks, variables, constants, branch semantics,
and protocols.

[0046] A Call Graph (CGQ) is a directed graph of the functions called by a function. CGs
represent high-level program structure and are depicted as nodes with each node of the graph
representing a function and each edge between nodes is directional and shows if a function
can call another function.

[0047] A Control Flow Graph (CFG) is a directed graph of the control flow between
basic blocks inside of a function. CFGs represent function-level program structure. Each
node in a CFG represents a basic block and the edges between nodes are directional and
shows potential paths in the flow.

[0048] Use-Def (UD) and Def-Use Chains (DU) are directed acyclic graphs of the inputs
(uses), outputs (definitions), and operations performed in a basic block of code. For example,
a UD Chain is a use of a variable and all the definitions of that variable that can reach that use
without intervening re-definition. A DU Chain is a definition of a variable and all the uses
that can be reached from that definition without intervening re-definition. These chains
enable semantic analysis of basic blocks of code with regard to the input types accepted, the
output types generated, and the operations performed inside a basic block of code.

[0049] A Dominator Tree (DT) is a matrix representing which nodes in a CFG dominate
(are in the path of) other nodes. For example, a first node dominates a second node if every
path from the entry node to the second node must go through the first node. DTs are
expressed in Pre (from entry forward) and Post (from exit backward) forms. DTs highlight

WO 2015/191737 PCT/US2015/035138
-11 -

when the path changes to a particular node in a CFG.

[0050] Basic Blocks are the instructions and operands inside each node of a CFG. Basic
blocks can be compared, and similarity metrics between two basic blocks can be produced.
[0051] Variables are a unit of storage for information and its type, representing the types
of information it can store, for any function parameters, local variables, or global variables,
and includes a default value, if one is available. They can provide initial state and basic
constraints on the program and show changes in the type or initial value, which can affect
program behavior.

[0052] Constants are the type and value of any constant and can provide initial state and
basic constraints on the program. They can show changes in the type or initial value, which
can affect program behavior.

[0053] Branch Semantics are the Boolean evaluations inside of if statements and loops.
Branches control the conditions under which their basic blocks are executed.

[0054] Protocols are the name and references of protocols, libraries, system calls, and
other known functions used by the program.

[0055] Example embodiments of the present invention can automatically determine static
artifacts from an intermediate representation (IR) of the software source code files such as
provided by the publicly available LLVM (formerly Low Level Virtual Machine) compiler
infrastructure project. LLVM IR is a low level common language that can represent high
level languages effectively and is independent of instruction set architectures (ISAs), such as
ARM, X86, X64, MIPS, and PPC. Different LLVM compilers, also termed front ends, for
different computer languages can be used to transform the source code to the common LLVM
IR. Front ends for at least Ada, C/C++, D, Erlang, Haskell, Java, Lua, Objective C/C++,
PHP, Pure, Python, and Ruby are publicly available. Further, front ends for additional
languages can be readily programmed. LLVM also has an optimizer available and back ends
that can transform the LLVM IR into machine language for a variety of different ISAs.
Additional example embodiments can determine static artifacts from the source code files.
[0056] Fig. 2 is a flow chart illustrating additional example processing of input software
files for the corpus that can be utilized in accordance with an embodiment of the present
invention. Example embodiments can obtain, among other things, both source code 205 and
binary code 210 software files. When a LLVM compiler 220 is available for the language of
a source code file 205, the LLVM compiler 220 for that language can be used to translate the

WO 2015/191737 PCT/US2015/035138
-12-

source code into LLVM IR 250. For compiled languages without an available LLVM
compiler, the source code 205 can be first compiled into a binary file 230 with any supported
compiler 215 for that language. Then, the binary file 230 is decompiled using a decompiler
235 such as Fracture, which is a publicly available open source decompiler provided by
Draper Laboratory. The decompiler 235 translates the machine code 230 into LLVM IR 250.
For files that are obtained in binary form 210, which is machine code 230, they are
decompiled using the decompiler 235 to obtain LLVM IR 250. Example embodiments can
extract language- independent and ISA-independent artifacts from the LLVM IR.

[0057] Example embodiments of the present invention can automatically obtain the IR
for each of the source code software files. For example, the example embodiments can
automatically search the repository for a project for a standard build file, such as autocomf,
cmake, automake, or make file, or vendor instructions. The example embodiments can
automatically selectively try to use such files to build the project by monitoring the build
process and converting compiler calls into LLVM front end calls for the particular language
of the source code. The selection process for the build files can step through each of the files
to determine which exist and provide for a completed build or partially completed build.
[0058] Additional example embodiments can use a distributed computer system in
automatically obtaining files from a repository, converting files to LLVM IR, and/or
determining artifacts for the files. An example distributed system can use a master computer
to push projects and builds out to slave machines to process. The slaves can each process the
project, version, revision, or build they were assigned, and can translate the source or binary
files to LLVM IR and/or determine artifacts and provide the results for storage in the corpus.
Certain example embodiments can employ Hadoop, which is an open-source software
framework for distributed storage and distributed processing of very large data sets.
Obtaining of the files from a source repository can also be distributed amongst a group of
machines.

[0059] The software files and the LLVM IR also can be stored in the corpus in
accordance with example embodiments, including in distributed storage. Example
embodiments also may determine that the software file or LLVM IR code is already stored in
the database and choose to not store the file again. Pointers, edges in a graph database, or
other reference identifiers can be used to associate the files with a particular project,

directory, or other collection of files.

WO 2015/191737 PCT/US2015/035138
-13 -

Dynamic Artifacts

[0060] Dynamic artifacts are representative of program behavior and are generated by
running the software in an instrumented environment, such as a virtual machine, emulators
(e.g. quick emulator (“QEMU”), or a hypervisor. Dynamic artifacts include system call
traces/library traces and execution traces.

[0061] A system call trace or library trace is the order and frequency in which system
calls or library calls are executed. A system call is how a program requests a service from

an operating system’s kernel, which manages the input/output requests. A library call is a
call to a software library, which is a collection of programming code that can be re-used to
develop software programs and applications.

[0062] An execution trace is a per-instruction trace that includes instruction bytes, stack
frame, memory usage (e.g., resident/working set size), user/kernel time, and other run-time
information.

[0063] Example embodiments of the present invention can spawn virtual environments,
including for a variety of operating systems, and can run and compile source code and binary
files. These environments can allow for dynamic artifacts to be determined. For example,
publicly available programs such as Valgrind or Daikon can be employed to provide run-time
information about the program to serve as artifacts. Valgrind is a tool for, among other
things, debugging memory, detecting memory leak, and profiling. Daikon is a program that
can detect invariants in code; an invariant is a condition that holds true at certain points in the
code.

[0064] Yet other embodiments can employ additional diagnostic and debugging programs
or utilities, such as strace and dtrace, which are publicly available. Strace is used to monitor
interactions between processes and the kernel, including system calls. Dtrace can be used to
provide run-time information for the system, including the amount of memory used, CPU
time, specific function calls, and the processes accessing a specific file. Example
embodiments can also track execution traces (e.g., using Valgrind) across multiple runs of the
program.

[0065] Additional embodiments can run the LLVM IR through the KLEE engine. KLEE
is a symbolic virtual machine which is publicly available open source code. KLEE

symbolically executes the LLVM IR and automatically generates tests which exercise all

WO 2015/191737 PCT/US2015/035138
-14 -

code program paths. Symbolic execution relates to, among other things, analyzing code to
determine what inputs cause each part of the code to execute. Employing KLEE is highly
effective at finding functional correctness errors and behavioral inconsistencies, and thus,
allowing example embodiments of the present invention to rapidly identify differences in

similar code (e.g., across revisions).

Derived Artifacts

[0066] Derived artifacts are representative of complex, high-level program behaviors and
extract properties and facts that are characteristic of these behaviors. Derived artifacts
include Program Characteristics, Loop Invariants, Extended Type Information, Z Notation
and Label Transition System representation.

[0067] Program Characteristics are facts about the program derived from execution
traces. These facts include minimum, maximum, and average memory size; execution time;
and stack depth.

[0068] Loop Invariants are properties which are maintained over all iterations (or a
selected group of iterations) of a loop. Loop invariants can be mapped to the branch
semantics to uncover similar behaviors.

[0069] Extended Type Information comprise facts about types, including the range of
values a variable can hold, relationships to other variables, and other features that can be
abstracted. Type constraints can reveal behaviors and features about the code.

[0070] Z Notation is based on Zermelo-Fraenkel set theory. It provides a typed algebraic
notation, enabling comparison metrics between basic blocks and whole functions ignoring
structure, order, and type.

[0071] Label Transition System (LTS) representation is a graph system which represents
high-level states abstracted from the program. The nodes of the graph are states and the
edges are labelled by the associated actions in the transition.

[0072] For certain example embodiments, derived artifacts can be determined from other
artifacts, from the source code files, including using programs described above for dynamic

artifacts, and from LLVM IR.

Meta data Artifacts

[0073] Meta data artifacts are representative of program context, and include the meta

WO 2015/191737 PCT/US2015/035138
-15 -

data associated with the code. These artifacts have a contextual relationship to the computer
programs. Meta data artifacts include file names, revision numbers, time stamps of files,
hash values, and the location of the files, such as belonging to a specific directory or project.
A subset of meta data artifacts can be referred to as developmental artifacts, which are
artifacts that relate to the development process of the file, program, or project.
Developmental artifacts can include in-line code comments, commit histories, bugzilla
entries, CVE entries, build info, configuration scripts, and documentation files such as
README.* TODO.*.

[0074] Example embodiments can employ Doxygen, which is a publicly available
documentation generator. Doxygen can generate software documentation for programmers
and/or end users from specially commented source code files (i.e. inline code
documentation).

[0075] Additional embodiments can employ parsers, such as a Another Tool For
Language Recognition (ANTLR)4-generated parser, to produce abstract syntax trees (ASTs)
to extract high-level language features, which can also serve as artifacts. ANTLR4 takes a
grammar, production rules for strings for a language, and generates a parser that can build
and walk parse trees. The resultant parsers emit the various types, function definitions/calls,
and other data related to the structure of the program. Low-level attributes extracted with
ANTLR4-generated parsers include complex types/structures, loop invariants/counters (e.g.,
from a for each paradigm), and structured comments (e.g., formal pre/post condition
statements). Example embodiments can map this extracted data to its referenced locations in
the LLVM IR because filename, line, and column number information exists in both the
parser and LLVM IR.

[0076] Example embodiments of the present invention can automatically determine one
or more meta data artifacts by extracting a string of characters, such as an in-line comment,
from the source software files. Yet other embodiments automatically determine meta data

artifacts from the file system or the source control system.

Hierarchical inter-artifacts relationships
[0077] Fig. 3 is a block diagram illustrating hierarchical relationships amongst artifacts
for software files in accordance with an embodiment of the invention. Example embodiments

can maintain and exploit these hierarchical inter-artifact relationships. Further, different

WO 2015/191737 PCT/US2015/035138
- 16 -

embodiments can use different schemas and different hierarchical relationships. For the
example embodiment of Figure 3, the top of the artifact hierarchy is the LTS artifact 310.
Each LTS node 310 can map to a set or subset of functions and particular variable states.
Under the LTS artifact 310 is the CG artifact 320. Each CG node 320 can map to a particular
function with a CFG artifact 330 whose edges may contain loop invariants and branch
semantics 330. Each CFG node 330 can contain basic blocks, and DTs 340. Beneath those
artifacts are variables, constants, UD/DU chains, and the IR instructions 350. Fig. 3 clearly
illustrates that artifacts can be mapped to different levels of the hierarchy, from an LTS node
describing ranges of dynamic information down to individual IR instructions. These
hierarchical relationships can be used by example embodiments for a variety of uses,
including to search more efficiently for matching artifacts, such as by first comparing
artifacts closer to the top of the hierarchy (as compared to artifacts closer to the bottom) so as
to include or exclude entire sets of lower level artifacts associated with the higher level
artifacts depending upon whether or not the higher level artifacts are a match. Additional
embodiments can also utilize the hierarchical relationships in locating or suggesting repair
code for flaws or for feature enhancements, including by going higher in the hierarchy to
locate repair code for a flaw having matching higher level artifacts.

[0078] Fig. 4 is a block diagram illustrating an example embodiment of a system for
providing a corpus of artifacts for software files. An example embodiment can have an
interface 420 capable of communicating with a source 430 having a plurality of software
files. This interface 420 can be communicatively coupled to a local source 430 such as a local
hard drive or disk for certain embodiments. In other embodiments, the interface 420 can be a
network interface 420 for obtaining files over a public or private network. Examples of
public sources 430 of these software files include GitHUB, SourceForge, BitBucket,
GoogleCode, or Common Vulnerabilities and Exposures systems. Examples of private
sources include a company’s internal network and the files stored thereon, including in shared
network drives and private repositories. This example system also has one or more
processors 410 coupled to the interface 420 to obtain the plurality of software files from the
source 430. The processor 410 can also be used to determine the plurality of artifacts for
cach of the plurality of software files. These artifacts can be static, dynamic, derived, and/or
meta data artifacts. For additional embodiments, the processor 410 can also be configured to

convert each of the software files into an intermediate representation and to determine

WO 2015/191737 PCT/US2015/035138
-17 -

artifacts from the intermediate representation.

[0079] The example system also has one or more storage devices 440a - 440n for storing
the artifacts for each of the software files, and are coupled to the processor 410. These
storage devices 440a - 440n can be hard drives, arrays of hard drives, other types of storage
devices, and distributed storage, such as provided by employing Titan and Cassandra on a
Hadoop File System (HDFS). Likewise, the example system can have one processor 410 or
employ distributing processing and have more than one processor 410. Yet other
embodiments also provide from direct communicative coupling between the interface 420
and the storage devices 440a - 440n.

[0080] FIG. 5 is a block diagram illustrating an example embodiment of a method for
locating design patterns. Examples of design patterns include bug, repair, vulnerability,
security-patch, protocol, protocol-extension, feature, and feature-enhancement. Each design
pattern can be associated with extracted artifacts (e.g., specifications, CG, CFG, Def-Use
Chains, instruction sequences, types, and constants) at various levels of the software project
hierarchy.

[0081] The example method provides accessing a database having multiple artifacts
corresponding to multiple software files 510. The database can be a graph database,
relational database, or flat file. The database can be located locally, on a private network, or
available via the Internet or the Cloud. Once the database has been accessed, then the method
can identify automatically a design pattern based on at least one of the plurality of artifacts
for a first file of the plurality of files 520. For certain example embodiments, each of the
plurality of artifacts can be static artifacts, dynamic artifacts, derived artifacts, or meta data
artifacts. Other embodiments can have a mix of different types of artifacts. Further, the
format of the files is not limited, and can be a binary code format, a source code format, or an
intermediate representation (IR) format, for example.

[0082] For certain embodiments, the design patterns can be identified by key word
searching or natural language searching of the developmental artifacts. For example, inline
code comments in a revision of a source code file may identify a flaw that was found and
fixed. The comments may use words such as flaw, bug, error, problem, defect, or glitch.
These words could be used in key word searching of the meta data. Commit logs also can
include text describing why new revisions and patches have been applied, such as to address

flaws or enhance features. Further, training and feedback can be applied to the searching to

WO 2015/191737 PCT/US2015/035138
- 18 -

refine the search efforts.

[0083] Additional example embodiments can search the developmental artifacts from
CVE sources, which identify common vulnerabilities and errors in text and can describe the
flaw and the available repairs, if any. This text can be obtained as an artifact and stored in
the database. Certain sources also code the flaws so that code can be used as a key word to
locate which file contains a flaw. Additionally, the source of the artifacts can be considered
and weighted in the identification of a software file. For example, a CVE source may be
more reliable in identifying flaws than a repository without provenance or in-line comments.
Yet other embodiments may use meta data artifacts such as file name and revision number to
at least preliminarily identify a software file and confirm the identification based on matching
additional artifacts, such as, for example, CGs or CFGs.

[0084] Certain embodiments of the present invention perform the example method and
try to identify design patterns for some, most, or all source code and LLVM IR files.
Additionally, whenever files are added to the corpus, certain embodiments access the
database and try to identify any design patterns. Certain embodiments can also label the
identified design patterns for later use.

[0085] Certain embodiments also find the location of the flaw in the source code or the
LLVM IR associated with the file that also has been stored in the database. For example, the
developmental artifacts may specify where in the source code the flaw exists and where in a
patch the repair exists. Also, the source code or LLVM IR can be analyzed and compared
with the file having the flaw and the newer repaired version of the file for isolating the
differences and discerning where the flaw and repair are located. For certain embodiments
the type of flaw identified in the developmental artifact can also be used to narrow the search
of the code for the location of the flaw. Additional embodiments also can identify the design
pattern, such as using a label, and store the identifier in the database for the file. This allows
the database to be readily searched for certain flaws or types of flaws. Examples of such
labels include character strings obtained from the developmental artifacts for the software file
or from the source code. This same approach can apply to identifying features and feature
enhancements and labeling them.

[0086] For certain example embodiments, the design pattern is located in the software
file. For certain example embodiments, the design pattern may relate to the interaction, such

as interfaces, between files. Example embodiments can identify automatically the design

WO 2015/191737 PCT/US2015/035138
-19 -

pattern by basing the identification on artifacts for multiple software files, such as a first and
second file which both belong to a software project. For example, a pre-identified pattern
that denotes a design pattern, such as an interface mismatch error, can be stored in a database
or elsewhere that allows artifacts from the first and second file to be used to identify that the
interface error exists for these files. Example design patterns for example embodiments
include a flaw, repair, feature, feature enhancement, or a pre-identified program fragment.
[0087] For certain example embodiments, the method locates in an artifact a character
string that denotes a flaw or a repair. Often, such strings, such as bug, error, or flaw, are
present in developmental artifacts, as well as strings regarding repairs and where those can be
found in the code. These developmental artifacts also can have strings that denote a feature
or a feature enhancement.

[0088] For certain example embodiments, the design patterns are based on a pre-
identified pattern which denotes the design pattern. These pre-identified patterns can be
created by a user, can be previously identified by methods associated with this disclosure, or
can be identified in some other way. These pre-identified patterns can correspond to flaws,
repairs, features, feature enhancements, or items of interest or other significance.

[0089] Fig. 6 is a flow diagram illustrating an example embodiment of a method for
locating flaws. The method includes accessing a database, 610 such as the corpus, having a
plurality of software artifacts corresponding to a plurality of software files. Then, the
artifacts are analyzed to discern patterns from the volume of data. For example, this analysis
can include clustering the plurality of artifacts 620. By clustering the data, known flaws in
files that are not known to contain the known flaws can be found. Thus, from the clustering,
the example method can identify a previously unidentified flaw based on one or more
previously identified flaws 630.

[0090] Certain example embodiments of the present invention can employ machine
learning to the corpus. Machine learning relates to learning hierarchical structures of the data
by beginning with low level artifacts to capture related features in the data and then build up
more complex representations. Certain example embodiments can employ deep learning to
the corpus. Deep learning is a subset of the broader family of machine learning methods
based on learning representations of data. For certain embodiments, autoencoders can be used
for clustering.

[0091] For certain example embodiments, the artifacts can be processed by a set of

WO 2015/191737 PCT/US2015/035138
-20 -

autoencoders to automatically discover compact representations of the unlabeled graph and
document artifacts. Graph artifacts include those artifacts that can be expressed in graph
form, such as CGs, CFGs, UD chains, DU chains, and DTs. The compact representations of
the graph artifacts can then be clustered to discover software design patterns. Knowledge
extracted from the corresponding meta data artifacts can be used to label the design patterns
(e.g., bug, fix, vulnerability, security-patch, protocol, protocol-extension, feature, and feature-
enhancement).

[0092] For certain example embodiments, the autoencoders are structured sparse auto-
encoders (SSAE), which can take vectors as input and extract common features. For certain
embodiments to automatically discover features of a program, the extracted graph artifacts
are first expressed in matrix form. Many of the extracted artifacts can be expressed as
adjacency matrices, including, for example, CFG, UD chains, and DU chains. The structural
features can be learned at each level of the software file and project hierarchy.

[0093] The number of nodes in the graph artifacts can vary widely; therefore,
intermediate artifacts can be provided as input for deep learning. One such intermediate
artifact is the first k eigenvalues of the Graph Laplacian, enabling the deep learning to
perform processing akin to spectral clustering. Other intermediate artifacts include clustering
coefficients, providing a measure of the degree to which nodes in a graph tend to cluster
together, such as the global clustering coefficient, network average clustering coefficient, and
the transitivity ratio. Another intermediate artifact is the arboricity of a graph, a measure of
how dense the graph is. Graphs with many edges have high arboricity, and graphs with high
arboricity have a dense subgraph. Yet another intermediate artifact is the isoperimetric
number, a numerical measure of whether or not a graph has a bottleneck. These intermediate
artifacts capture different aspects of the structure of the graph for use in machine learning
methods.

[0094] Machine learning, including deep learning, for example embodiments can employ
algorithms that are trained using a multi-step process starting with a simple autoencoder
structure, and iteratively refining the approach to develop the SSAE. The SSAE also can be
trained to learn features from the intermediate artifacts. An autoencoder learns a compact
representation of unlabeled data. It can be modeled by a neural network, consisting of at least
one hidden layer and having the same number of inputs and outputs, which learn an

approximation to the identity function. The autoencoder dehydrates (encodes) the input

WO 2015/191737 PCT/US2015/035138
221 -

signals to an essential set of descriptive parameters and rehydrates (decodes) those signals to
recreate the original signals. The descriptive parameters can be automatically chosen during
training to optimize rehydrating over all training signals. The essential nature of the
dehydrated signals provides the basis for grouping signals into clusters.

[0095] Autoencoders can reduce the dimensionality of input signals by mapping them to
a lower-dimensionality feature space. Example embodiments can then perform clustering
and classification of the codes in the feature space discovered by the autoencoder. A k-means
algorithm clusters learned features. The A-means algorithm is an iterative refinement
technique which partitions the features into & clusters which minimize the resulting cluster
means. The initial number of clusters, &, can be chosen based on the number of topics
extracted. It is very efficient to search over the number of potential clusters, calculating a
new result for each of many different £’s, because the operating metric for k-means clustering
is based on Euclidean distance. Example embodiments can classify the resultant clusters with
the labels of the topics most frequently occurring within the software files from which the
clustered features are derived.

[0096] Although the feature vector is sparse and compact, it can be difficult to understand
the input vector merely by inspection of the feature vector. Thus, example embodiments can
exploit the priors associated with previously learned weight parameters. Given a sufficient
corpus, patterns in the parameter space should emerge e.g., for “repaired” code. Example
embodiments can incorporate particular patterns into the autoencoder using prior information
given by the data set collected up to that point. In particular, as labels are learned by the
system, example embodiments can incorporate that information into the autoencoder
operation.

[0097] Example embodiments can use a mixture of database management (e.g., joins,
filters) and analytic operations (e.g., singular value decomposition (SVD), biclustering).
Example embodiments’ graph-theoretic (e.g., spectral clustering) and machine learning or
deep learning algorithms can both use similar algorithm primitives for feature extraction.
SVD also can be used to denoise input data for learning algorithms and to approximate data
using fewer dimensions, and, thus, perform data reduction.

[0098] Example embodiments can encapsulate human understanding of the code state
over time and across programs through unsupervised semantic label generation of document

artifacts, including via text analytics. An example of text analytics is latent Dirichlet

WO 2015/191737 PCT/US2015/035138
-0

allocation (LDA). Semantic information can be extracted from the document artifacts using
LDA and topic modeling. These approaches are “bag-of-words” techniques that look at the
occurrences of words or phrases, ignoring the order. For example, a bag representing

2% ¢

“scientific computing” may have seed terms such as “FFT,” “wavelet,” “sin,” and “atan.”
The example embodiments can use the extracted document artifacts from sources such as
source comments, CG/CFG node labels, and commit messages to fill “bags” by counting the
occurrence of terms. The resulting fixed bin histogram can be fed to a Restricted Boltzmann
Machine (RBM), an implementation of a deep learning algorithm appropriate for text
applications. The extracted topics capture the semantic information associated with the
extracted document artifacts and can serve as labels (e.g., bug/fix, vulnerability/patch) for the
clusters formed by the unsupervised learning of graph-artifacts via the autoencoder. Other
forms of text analytics that can be employed by additional example embodiments includes
natural language processing, lexical analysis, and predictive analysis.

[0099] The topic labels extracted from the document artifacts can provide the labeling
information to inform the structuring of the autoencoder. Example embodiments can query
the corpus database for populations of training data based on learned topics, the semantic
commonalities that represent ordinal software patterns (i.e., before/after software revisions).
These patterns can capture changes embedded in software development files, such as in
commit logs, change logs, and comments, which are associated with the software
development lifecycle over time. The association of these changes provides insight into the
evolution of the software relevant for detection and repair such as bugs/fixes,
vulnerability/security patch, and feature/enhancement. This information also can be used to
understand and label the knowledge automatically extracted from the artifact corpus.

[00100] Fig. 7 shows a block diagram illustrating the clustering of artifacts for identifying
design patterns in accordance with an embodiment of the present invention. The structural
features can be learned at each level of the software file hierarchy, including system,
program, function, and block 710. Graph artifacts, such as CGs, CFGs, and DTs, can be
analyzed for the clustering 715. These graph artifacts can be transformed into graph invariant
features 720. These graph features 740 can then be provided as input to a graph analytics
module 760, such as an autoencoder, and the resultant clustering reviewed for the like design
patterns, which are clustered together 780. Text, such as one or more strings of characters

from source code files or from developmental artifacts, can be mapped to labels 730. These

WO 2015/191737 PCT/US2015/035138
-23 -

labels 750 can be analyzed by a text analytics module 770, such as by using LDA or other
natural language processing, and the labels can be associated with the corresponding
discovered clusters 780 from which the labels were derived. These modules 760, 770 can be
realized in software, hardware, or combinations thereof.

[00101] Fig. 8 shows a flow diagram illustrating an example embodiment of a method for
identifying software using a corpus. The example embodiment obtains a software file 810.
The file can be obtained via a network interface from a public or private source, such as a
public repository via the Internet, the Cloud, or a private company’s server. Certain example
embodiments can also obtain the software file from a local source, such as a local hard drive,
portable hard drive, or disk. Example embodiments can obtain a single file or multiple files
from the source and can do so automatically, such as via the use of a scripting language, or
manually with user interaction. The example method can then determine a plurality of
artifacts for the software file 820, such as any of the other artifacts described herein. The
example method can then access a database 830 which stores a plurality of reference artifacts
for each of a plurality of reference software files. The reference artifacts can be stored in the
corpus database. For certain example embodiments, these reference files can include the
software files that have previously been obtained and whose artifacts have been stored in the
database, along with the software files for certain embodiments. The artifacts, or plural
subsets thereof, that have been determined for the obtained software file are compared to the
reference artifacts, or plural subsets thereof, stored in the database 840. Example
embodiments can identify the software file by identifying the reference software file having
the plurality of reference artifacts that match the plurality of artifacts 850. Because the
compared artifacts and reference artifacts match, the software file and the reference software
file are identified as being the same file.

[00102] Additional artifacts or portions of code can also then be compared to increase the
confidence level that the correct identification was made. The degree of confidence can be
fixed or adjustable and can be based on a wide variety of criteria, such as the number of
artifacts that match, which artifacts match, and a combination of number and which artifacts.
This adjustment can be made for particular data sets and observations thereof, for example.
Furthermore, for certain embodiments matching can include fuzzy matching, such as having
an adjustable setting for a percentage less than 100% of matching, to have a match declared.

[00103] For certain example embodiments, certain artifacts can be given more or less

WO 2015/191737 PCT/US2015/035138
-4 -

weight in the matching and identification process. For example, common artifacts, such as
whether the instructions are associated with a 32 bit or 64 bit processor, can be given a
weight of zero or some other lesser weight. Some artifacts can be more or less invariant
under transformation and the weights for these artifacts can be adjusted accordingly for
certain example embodiments. For example, the filename or CG artifact may be considered
highly informative in establishing the identity of a file while certain artifacts, such as LTS or
DTs, for example, can be considered less dispositive and given less weight for certain
example embodiments and sources. Additional embodiments can give certain combinations
of artifacts more weight to identify a match when making comparisons. For example, having
the CFG and CG artifacts match may be given more weight in making an identification than
having basic block artifacts and DT artifacts match. Likewise, certain artifacts not matching
may be given more or less weight in making an identification of a file. Additional examples
of evaluating weighting in the identification process can include expressing an identification
threshold, such as in percentages of matching artifacts or some other metric. Additional
embodiments can vary the identification threshold, including based on such things as the
source of the file, the type of the file, the time stamp, which includes the date of the file, the
size of the file, or whether certain artifacts cannot be determined for the file or are otherwise
unavailable.

[00104] Additional embodiments can determine some of the plurality of artifacts for the
software file by converting the software file into an intermediate representation, such as
LLVM IR, and determining at least one of the plurality of artifacts from the intermediate
representation. Yet other embodiments can determine some of the plurality of artifacts by
extracting a character string from the software file, such as a source code file or
documentation file.

[00105] Example embodiments can also include determining whether a newer version of
the software file exists by analyzing at least one of the reference artifacts associated with the
identified reference software file. For example, once the software file has been identified, the
database can be checked to see whether a newer revision of the software file is available,
such as by checking the revision number or time stamp of the corresponding reference file, or
the labels associated with artifacts and files in the database that can identify the reference file

as an older revision of another file. Additional example embodiments can also automatically

WO 2015/191737 PCT/US2015/035138
_25.-

provide the newer version of the software file, including to a user or a public or private
source.

[00106] Certain additional embodiments can determine whether a patch for the software
file exists by analyzing at least one of the reference artifacts associated with the identified
reference software file. For example, the example embodiments can check an artifact
associated with the reference software file and determine that a patch exists for the file,
including a patch that has not yet been applied to the software file. Additional embodiments
can automatically apply the patch to the software file or prompt a user as to whether they
want the patch applied.

[00107] Certain additional embodiments can analyze the patch, and also the software file
(or the reference software file because they are matched) for certain embodiments, to
determine a repair portion of the patch that corresponds to a repair of a flaw in the software
file. This analysis can occur before or after the software file is obtained for certain
embodiments. Additional embodiments can apply only the repair portion of the patch to the
software file, including automatically or prompting a user as to whether they what the repair
portion of the patch applied. Additional embodiments can provide the repair portion of the
patch to the source for it to be applied at the source. Further, the analysis of the patch and the
software file can include converting the patch and the software file into an intermediate
representation and determining at least one of the plurality of artifacts from the intermediate
representation. Similarly, additional embodiments can analyze the patch and the software file
(or the reference software file because they are matched) to determine a feature enhancement
portion of the patch that corresponds to an improvement or change of a feature in the
software file. Additional embodiments can apply only the feature enhancement portion of the
patch to the software file, including automatically or prompting a user as to whether they
want the feature enhancement portion of the patch applied.

[00108] Additional example embodiments can determine whether a flaw exists in the
software file by analyzing at least one of the reference artifacts associated with the identified
reference software file. For example, the reference software file can have an artifact that
identifies it as having a flaw for which a repair is available. Additional embodiments can
automatically repair the flaw in the software file, including by automatically replacing a
block of source code with a repair block of source code or a block of intermediate

representation in the software file with a repair block of intermediate representation.

WO 2015/191737 PCT/US2015/035138
-26 -

Additional embodiments can repair the flaw in a binary file by replacing a portion of the
binary with a binary patch. For certain embodiments, the repaired file can be sent to the
source of the software file. Additional embodiments can provide for the repair code to be
provided to the source of the software file for the file to repaired there.

[00109] Fig. 9is a flow diagram illustrating an example embodiment of a method for
identifying code. The example method can obtain one or more software files 910. For the
software files, a plurality of artifacts can be determined 920. Certain embodiments can
instead obtain the artifacts rather than determining the artifacts if they have already been
determined. A database can be accessed which stores a plurality of reference artifacts 930.
The reference artifacts are artifacts as described herein and can correspond to reference
software files, reference design patterns, or other blocks of code of interest. The database can
be stored in many locations, such as locally, or on a network drive, or accessible over the
Internet or in the Cloud, and also can be distributed across a plurality of storage devices.
Then, a program fragment that is in the one or more software files, or associated with them
such as interface bugs, can be identified by matching the plurality of artifacts that correspond
to the program fragment to the plurality of reference artifacts that correspond to the program
fragment 940. A program fragment is a sub portion of a file, program, basic block, function,
or interfaces between functions. A program fragment can be as small as a single instruction
or as large as the entire file, program, basic block, function, or interface. The portions chosen
can be sufficient to identify the program fragment with any desired degree of confidence,
which can be set or adjustable for certain embodiments, and which can vary, such as
described above with respect to identifying files.

[00110] For certain embodiments, determining artifacts for the software file includes
converting the software file into an intermediate representation and determining at least one
of the artifacts from the intermediate representation. For certain embodiments, the software
file and the reference software file are each in a source code format or are each in a binary
code format. For additional embodiments, the program fragment corresponds to a flaw in the
software file and has been identified in the database to correspond to the flaw. Additional
embodiments can automatically repair the flaw in the software file or offer one or more repair
options to a user to repair the flaw. Certain embodiments can order repair options, including,
for example, based on one or more previous repair options selected by the user or based on

the likelihood of success for the repair option.

WO 2015/191737 PCT/US2015/035138
_27 -

[00111] Fig. 10 is a block diagram illustrating a system using a database corpus of
software files in accordance with an embodiment of the present invention. The example
system includes an interface 1020 that can communicate with a source 1010 that has at least
one software file. The interface 1020 is also communicatively coupled to a processor 1030.
For additional embodiments, the interface 1020 can also be coupled directly to a storage
device 1040. This storage device 1040 can be a wide variety of well known storage devices
or systems, such as a networked or local storage device, such as a single hard drive, or a
distributed storage system having multiple hard drives, for example. The storage device 1040
can store reference artifacts, including for each of a number reference software files and can
be communicatively coupled to the processor 1030. The processor 1030 can be configured to
cause a software file to be obtained from the source 1010. The identity of this software file
and whether there are newer versions of the file available, whether there are patches
available, or whether the file contains flaws or unenhanced features are examples of questions
that the example system can address. The processor 1030 is also configured to determine a
plurality of artifacts for the software file, access the reference artifacts in the storage device
1040, compare the artifacts for the software file to the reference artifacts stored in the storage
device 1040, and identify the software file by identifying the reference software file having
the reference artifacts that correspond to the compared artifacts for the software file.

[00112] In additional embodiments of the example system, the processor 1030 can be
configured to automatically apply a patch to the software file if one is available in the storage
device 1040 for the file. In yet additional embodiments, the processor also can be configured
to analyze an identified patch and the software file to determine if there is a repair portion of
the patch that corresponds to a repair of a flaw in the software file, and, if so, automatically
apply only the repair portion of the patch to the software file, or prompt a user.

[00113] The block diagram of Fig. 10 also can illustrate another example system using a
database corpus in accordance with an embodiment of the present invention. This other
illustrated example system includes an interface 1020 that can communicate with a source
1010 that has one or more software files. The interface 1020 is also communicatively
coupled to a processor 1030. For additional embodiments, the interface 1020 can also be
coupled directly to a storage device 1040. This storage device 1040 can be a wide variety of
well known storage devices or systems, such as a networked or local storage device, such as a

single hard drive, or a distributed storage system having multiple hard drives, for example.

WO 2015/191737 PCT/US2015/035138
-28 -

The storage device 1040 can store reference artifacts and can be communicatively coupled to
the processor 1030. The processor 1030 can be configured to cause one or more software
files to be obtained, to determine a plurality of artifacts for the one or more software files, to
access a database which stores a plurality of reference artifacts, and to identify a program
fragment for the one or more software files by matching the plurality of artifacts that
correspond to the program fragment to the plurality of reference artifacts that correspond to
the program fragment. For certain example embodiments, the program fragment has been
identified in the database to correspond to a flaw. Examples of such flaws include a bug, a
security vulnerability, and a protocol deficiency. These flaws can be within the one or more
software files or can be related to one or more interfaces between the software files.
Additional embodiments also can have the processor be configured to automatically repair
the flaw in the one or more software files. For certain example embodiments, the program
fragment has been identified in the database to correspond to a feature and certain
embodiments can also automatically provide a feature enhancement, including in the form of

a patch for a source code or binary file.

Repairs

[00114] Example embodiments support program synthesis for automated repair, including
by replacing CG nodes (functions), CFG nodes (basic blocks), specific instructions, or
specific variables and constants to instantiate selected repairs. These elements (e.g., function,
basic block, instruction) are swappable with elements that have compatible interfaces (i.c.,
the same number of parameters, types, and outputs) and can transform the LLVM IR by
replacing a flaw bock of LLVM IR with a repair block of LLVM IR.

[00115] Certain embodiments can also elect to swap a basic block with a function call and
a function call with one or more basic blocks. Certain embodiments can patch source code
and binaries. Additional embodiments can also create suitable elements for swap when they
do not already exist. High level artifacts (e.g., LTS and Z predicates) can be used to derive
compatible implementations for the software patches. Example embodiments can exploit the
hierarchy of the extracted graph representations, first ascending the hierarchy to a suitable
representation of the repair pattern, and then descending the hierarchy (via compilation) to a
concrete implementation. The hierarchical nature of the artifacts can help in fashioning the

repair code.

WO 2015/191737 PCT/US2015/035138
-29.

[00116] Example embodiments can allow a user to submit a target program (either source
or binary) and example embodiments discover the existence of any flaw design patterns. For
cach flaw, candidate repair strategies (i.e., repair design patterns) can be provided to the user.
The user can select a strategy for the repair to be synthesized and the target to be patched.
Certain example embodiments also can learn from the user selections to best rank future
repair solutions, and repair strategies can also be presented to the user in ranked order.
Certain embodiments also can run autonomously, repairing flaws or vulnerabilities over the
entire software corpus, including continuously, periodically, and/or in the design
environment.

[00117] In addition to the embodiments discussed above, the present invention can be
employed for a wide variety of uses. For example, example embodiments can be used during
programming of software code to assistant the programmer, including to identify flaws or
suggest code re-use. Additional example embodiments can be used for discovering flaws and
vulnerabilities and optionally automatically repairing them. Yet other example embodiments
can be used to optimize code, including to identify code that is not used, inefficient code, and
suggest code to replace less efficient code.

[00118] Example embodiments can also be used for risk management and assessment,
including with respect to what vulnerabilities may exist in certain code. Additional
embodiments may also be used in the design certification process, including to provide
certification that software files are free from known flaws, such as bugs, security
vulnerabilities, and protocol deficiencies.

[00119] Yet still other additional example embodiments of the present invention include:
code re-use discoverer (finding code which does the same thing already in your codebase),
code quality measurement, text-description to code translator, library generator, test-case
generator, code-data separator, code mapping and exploration tool, automatic architecture
generation of existing code, architecture improvement suggestor, bug/error estimator, useless
code discovery, code-feature mapping, automated patch reviewer, code improvement
decision tool (map feature list to minimal changes), extension to existing design tools (e.g.,
enterprise architect), alternate implementation suggestor, code exploration and learning tool

(e.g., for teaching), system level code license footprint, and enterprise software usage

mapping.

WO 2015/191737 PCT/US2015/035138
-30 -

[00120] It should be understood that the example embodiments described above may be
implemented in many different ways. In some instances, the various methods and machines
described herein may each be implemented by a physical, virtual or hybrid general purpose
computer having a central processor, memory, disk or other mass storage, communication
interface(s), input/output (I/0) device(s), and other peripherals. The general purpose
computer is transformed into the machines that execute the methods described above, for
example, by loading software instructions into a data processor, and then causing execution
of the instructions to carry out the functions described, herein. The software instructions may
also be modularized, such as having an ingest module for ingesting files to form a corpus, an
analytics module to determine artifacts for files for the corpus and/or files to be identified or
analyzed for design patterns, a graph analytics module and a text analytics module to perform
machine learning, an identification module for identifying files or design patterns, and a
repair module for repairing code or providing updated or repaired files. These modules can
be combined or separated into additional modules for certain example embodiments.

[00121] Asis known in the art, such a computer may contain a system bus, where a bus is
a set of hardware lines used for data transfer among the components of a computer or
processing system. The bus or busses are essentially shared conduit(s) that connect different
elements of the computer system, e.g., processor, disk storage, memory, input/output ports,
network ports, efc., which enables the transfer of information between the elements. One or
more central processor units are attached to the system bus and provide for the execution of
computer instructions. Also attached to system bus are typically I/O device interfaces for
connecting various input and output devices, e.g., keyboard, mouse, displays, printers,
speakers, etc., to the computer. Network interface(s) allow the computer to connect to
various other devices attached to a network. Memory provides volatile storage for computer
software instructions and data used to implement an embodiment. Disk or other mass storage
provides non-volatile storage for computer software instructions and data used to implement,
for example, the various procedures described herein.

[00122] Embodiments may therefore typically be implemented in hardware, firmware,
software, or any combination thereof. Furthermore, example embodiments may wholly or
partially reside on the Cloud and can be accessible via the Internet or other networking

architectures.

WO 2015/191737 PCT/US2015/035138
231 -

[00123] In certain embodiments, the procedures, devices, and processes described herein
constitute a computer program product, including a non-transitory computer-readable
medium, e.g., a removable storage medium such as one or more DVD-ROM’s, CD-ROM’s,
diskettes, tapes, etc., that provides at least a portion of the software instructions for the
system. Such a computer program product can be installed by any suitable software
installation procedure, as is well known in the art. In another embodiment, at least a portion
of the software instructions may also be downloaded over a cable, communication and/or
wireless connection.

[00124] Further, firmware, software, routines, or instructions may be described herein as
performing certain actions and/or functions of the data processors. However, it should be
appreciated that such descriptions contained herein are merely for convenience and that such
actions in fact result from computing devices, processors, controllers, or other devices
executing the firmware, software, routines, instructions, etc.

[00125] It also should be understood that the flow diagrams, block diagrams, and network
diagrams may include more or fewer elements, be arranged differently, or be represented
differently. But it further should be understood that certain implementations may dictate the
block and network diagrams and the number of block and network diagrams illustrating the
execution of the embodiments be implemented in a particular way.

[00126] Accordingly, further embodiments may also be implemented in a variety of
computer architectures, physical, virtual, cloud computers, and/or some combination thereof,
and, thus, the data processors described herein are intended for purposes of illustration only
and not as a limitation of the embodiments.

[00127] While this invention has been particularly shown and described with references to
example embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the scope of the

invention encompassed by the appended claims.

WO 2015/191737 PCT/US2015/035138

-32-
CLAIMS
What is claimed is:
1. A method for identifying software comprising:

obtaining a software file;

determining a plurality of artifacts for the software file;

accessing a database which stores a plurality of reference artifacts for each of a
plurality of reference software files;

comparing the plurality of artifacts to the plurality of reference artifacts; and

identifying the software file by identifying the reference software file having the
plurality of reference artifacts that match the plurality of artifacts.

2. The method of Claim 1 wherein the plurality of artifacts includes one or more of a call
graph, control flow graph, use-def chain, def-use chain, dominator tree, basic block, variable,

constant, branch semantic, and protocol.

3. The method of Claim 1 wherein the plurality of artifacts includes one or more of a

system call trace and execution trace.

4. The method of Claim 1 wherein the plurality of artifacts includes one or more of a

loop invariant, type information, Z notation, and label transition system representation.

5. The method of Claim 1 wherein the plurality of artifacts includes one or more artifacts
determined from any of an in-line code comment, commit history, documentation file, and

common vulnerabilities and exposure source entry.

6. The method of Claim 1 wherein the plurality of artifacts are each a graph artifact.
7. The method of Claim 1 wherein the plurality of artifacts are cach a meta data artifact.
8. The method of Claim 1 wherein the plurality of reference artifacts match the plurality

of artifacts when at least a fuzzy match exists between the plurality of reference artifacts and

the plurality of artifacts.

WO 2015/191737 PCT/US2015/035138
-33 -

9. The method of Claim 1 wherein determining the plurality of artifacts for the software
file includes converting the software file into an intermediate representation and determining

at least one of the plurality of artifacts from the intermediate representation.

10. The method of Claim 1 further comprising determining whether a newer version of
the software file exists by analyzing at least one of the reference artifacts associated with the

identified reference software file.

11. The method of Claim 10 further comprising automatically providing the newer

version of the software file.

12. The method of Claim 1 further comprising determining whether a patch for the
software file exists by analyzing at least one of the reference artifacts associated with the

identified reference software file.

13. The method of Claim 12 further comprising automatically applying the patch to the

software file.

14. The method of Claim 12 further comprising analyzing the patch to determine a repair
portion of the patch that corresponds to a repair of a flaw in the software file, and applying

only the repair portion of the patch to the software file.

15. The method of Claim 14 wherein analyzing the patch includes converting the patch
into an intermediate representation and determining at least one patch artifact from the

intermediate representation.

16. The method of Claim 1 further comprising determining whether a flaw exists in the
software file by analyzing at least one of the reference artifacts associated with the identified

reference software file and at least one of the artifacts associated with the software file.

WO 2015/191737 PCT/US2015/035138
-34 -

17. The method of Claim 16 further comprising automatically repairing the flaw in the

software file.

18. The method of Claim 17 wherein automatically repairing the flaw comprises

replacing a block of source code with a repair block of source code.

19. The method of Claim 17 wherein automatically repairing the flaw comprises

replacing a block of binary code with a repair block of binary code.

20. The method of Claim 17 wherein automatically repairing the flaw comprises
replacing a block of intermediate representation in the software file with a repair block of

intermediate representation.

21. A method comprising:
obtaining one or more software files;
determining a plurality of artifacts for the one or more software files;
accessing a database which stores a plurality of reference artifacts; and
identifying a program fragment for the one or more software files by matching the
plurality of artifacts that correspond to the program fragment to the plurality of reference

artifacts that correspond to the program fragment.

22. The method of Claim 21 wherein the program fragment has been identified in the

database to correspond to a flaw.

23. The method of Claim 21 wherein the program fragment corresponds to a flaw in the
one or more software files.

24. The method of Claim 21 wherein the program fragment corresponds to a flaw that is
selected from the group consisting of a bug, a security vulnerability, and a protocol

deficiency.

25. The method of Claim 23 further comprising automatically repairing the flaw in the

one or more software files.

WO 2015/191737 PCT/US2015/035138
-35-

26. The method of Claim 25 wherein automatically repairing the flaw includes providing

a repair program fragment to replace a flaw program fragment.

27. The method of Claim 23 further comprising offering one or more repair options to a

user to repair the flaw.

28. The method of Claim 27 further comprising ordering the one or more repair options

offered to the user.

29. The method of Claim 28 wherein the ordering of the one or more repair options is

based on one or more previous repair options selected by the user.

30. The method of Claim 28 wherein the ordering of the one or more repair options is

based on a likelihood of success for each of the repair options.

31. The method of Claim 21 wherein the program fragment has been identified in the

database to correspond to a feature.

32. The method of Claim 31 further comprising automatically augmenting the feature

with a feature enhancement.

33. The method of Claim 21 wherein the plurality of artifacts include a graph artifact.

34. The method of Claim 21 wherein the plurality of artifacts include a developmental
artifact.

35. The method of Claim 21 wherein the plurality of artifacts each are a meta data
artifact.

36. The method of Claim 21 wherein determining the plurality of artifacts for the one or

more software files includes converting the one or more software files into an intermediate

WO 2015/191737 PCT/US2015/035138
-36 -

representation and determining at least one of the plurality of artifacts from the intermediate

representation.

37. The method of Claim 21 wherein the one or more software files are each in a source

code format.

38. The method of Claim 21 wherein the one or more software files are each in a binary

code format.

39. The method of Claim 21 wherein the one or more software files are files within a

software project.

40. A system for identifying software comprising:
an interface capable of communicating with a source having a software file;
a storage device which stores a plurality of reference artifacts for each of a plurality of
reference software files; and
a processor communicatively coupled to the interface and the storage device, and
configured to:
cause the software file to be obtained;
determine a plurality of artifacts for the software file;
access the plurality of reference artifacts in the storage device;
compare the plurality of artifacts to the plurality of reference artifacts; and
identify the software file by identifying the reference software file having the
plurality of reference artifacts that matched the plurality of artifacts.

41. The system of Claim 40 wherein determine the plurality of artifacts for the software
file includes converting the software file into an intermediate representation and determining

at least one of the plurality of artifacts from the intermediate representation.

42. The system of Claim 40 further comprising the processor also being configured to
determine whether a patch for the software file exists by analyzing at least one of the

reference artifacts associated with the identified reference software file.

WO 2015/191737 PCT/US2015/035138
-37-

43. The system of Claim 40 further comprising the processor also being configured to

automatically apply a patch to the software file.

44. The system of Claim 42 further comprising the processor also being configured to
analyze the patch to determine a repair portion of the patch that corresponds to a repair of a

flaw in the software file, and apply only the repair portion of the patch to the software file.

45. A system comprising:
an interface capable of communicating with a source having one or more software
files;
a storage device which stores a plurality of reference artifacts; and
a processor communicatively coupled to the interface and the storage device, and
configured to:
cause one or more software files to be obtained;
determine a plurality of artifacts for the one or more software files;
access a database which stores a plurality of reference artifacts; and
identify a program fragment for the one or more software files by matching
the plurality of artifacts that correspond to the program fragment to the plurality of

reference artifacts that correspond to the program fragment.

46. The system of Claim 45 wherein the program fragment has been identified in the

database to correspond to a flaw.

47. The system of Claim 45 wherein the program fragment corresponds to a flaw that is
selected from the group consisting of a bug, a security vulnerability, and a protocol

deficiency.

48. The system of Claim 45 further comprising the processor also being configured to

automatically repair the flaw in the one or more software files.

WO 2015/191737 PCT/US2015/035138
-38 -

49. A non-transitory computer readable medium with an executable program stored
thereon, wherein the program instructs a processing device to perform the following steps:

obtain a software file;

determine a plurality of artifacts for the software file;

access a database which stores a plurality of reference artifacts for each of a plurality
of reference software files;

compare the plurality of artifacts to the plurality of reference artifacts; and

identify the software file by identifying the reference software file having the plurality

of reference artifacts that match the plurality of artifacts.

50. A non-transitory computer readable medium with an executable program stored
thereon, wherein the program instructs a processing device to perform the following steps:

obtain one or more software files;

determine a plurality of artifacts for the one or more software files;

access a database which stores a plurality of reference artifacts; and

identify a program fragment for the one or more software files by matching the
plurality of artifacts that correspond to the program fragment to the plurality of reference

artifacts that correspond to the program fragment.

PCT/US2015/035138

WO 2015/191737

1/10

0ct

I "OId

aseqelep e ul S9|iJ 81emo0s Jo Ajjedn|d sauyj
JO yoes 404 syoejide Jo Ajljedanid syj au03s

S9|1} a1emyjos Jo Ajjedan|d syl Jo yoes
10} syoejide jo Ajljedanid e suiwialasg

S9|1} a4emyjos Jo Ajjeanid e uieyqo

PCT/US2015/035138
2/10

WO 2015/191737

¢ DId

A
Gee &

_\\\\\\\\\W

.............. \\\\\\

\ ONN

S0¢

0§¢ \\
Fl\

§\

WO 2015/191737 PCT/US2015/035138
3/10

.
Y NN g 2
: § 3R
o : N “'t\“f § \‘2. e‘\
Suls L3S
ARANAY \'\\: \\ “\“-\\‘ R x 3 3
SRS BN ow \\ 3
NN e e
\ 3 : \ }\.\ B x v
. U N R
e P
L B2 |
LS @ U

i

FIG. 3

PCT/US2015/035138

WO 2015/191737

4/10

Sa|l} |e207]
STdN

aND
ap0oDa|b600oH
1°X0nglig
26.104224n0g
dnHIO

v "OId

AWcovv

SALID
piey

Q0B LI9U]

N/omv

Loz

Awnovv

SALID
piey

AWmovv

SALID
piey

(s)Jossad04d

087

PCT/US2015/035138

WO 2015/191737

5/10

0¢s

0TS

S "DId

S9|14 Jo Ajljean|d ay3 jo 3|1 3414 e 40y sjoeyide Jo Ajjeanid ayy
JO BUO0 3se3| je uo paseq uiaped ubisap e Ajjeaizewoine Ajuapi

S9|14 JO Ajljedan|d e jJo yoes .0j
sjoejijde Jo Ajljeanid e buiaey aseqgejep e SSa00y

PCT/US2015/035138

WO 2015/191737

6/10

0¢9

019

9 "'DId

sSmelJ pauiauapl A|snoiAaad 10w 40 3UO0 U0 paseq
Mme|J pauiauapiun AjsnoiAald e bulaisnd syl wody Ajauspl

syelipe jo Ajjednid ayj 493sn|D

S9|1} a4emyjos Jo Ajljean|d e 03 bulpuodsa.alod
syejijde Jo Ajljeanid e buiaey aseqejep e SSa00y

WO 2015/191737 PCT/US2015/035138
7/10

730

720
760

FIG. 7

PCT/US2015/035138

WO 2015/191737

8/10

0S8

08

0€8

0¢8

018

8 DI

syoejipe Jo Ajjednid auy3 ysjew ey
Sjoejijde aouadalad Jo Ajjeanid sy buiaey a1} 24eM}J0S
aduaJajad ayj bulAjnuapl AQ 91} a1emlos syl AJinuspl

syoejiue aousJasad Jo Ajijean|d sy
03 syoejipe jJo Ajljeanid ayj saedwo)

S9|1} 94eM1J0S 2dUaJ34a. JO Ajljedn|d e Jo yoes Joj sjoejie
90U349)3J J0 Ajjedn|d e S21031s YdIym aseqelep e SS90y

%

3|1} 94eM1J0S Y3 104 Soeyide Jo Ajijean|d e suiwialag

A

9|1} 24eM1Jos e u1eIqo

PCT/US2015/035138

WO 2015/191737

9/10

.

.

0¢6

0T6

6 DId

Juswbed) wesbouad ayjy 0] puodsaliod jey) syoejiue
aduaJajad Jo Ajjedanid ayj o3 Juswbeuy weiaboud syl 03
puodsauiod jeyy syoejie Jo Ajjeanid ayy buiyojew Aq sofl
941eM]J0S 240w 10 dU0 33 404 Juswbely weiaboud e Ajpuspi

syoejilde aduadasad Jo Ajljeanid
B $940]S UdIym aseqejep e SSad0y

S9|1} 34eM1J0S 3] 404 syoejide Jo Ajljean|d e suiwlialaq

A

S9|1} 94eM1JOS BJOW 10 SUO uILeIqO

PCT/US2015/035138

WO 2015/191737

10/10

OT

DI4

00T

92IA2Q 2beu0ls

0€0T

10SS920.d

0B LI9U]

C o ™

22.1N0S

L

OT0T

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/035138

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, IBM-TDB, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20147013304 Al (VANGALA VIPINDEEP [IN] 1-9,21,
ET AL) 9 January 2014 (2014-01-09) 33-41,
45,49,50
Y paragraph [0001] 10-20,
paragraph [0024] - paragraph [0037] 22-32,
paragraph [0042] - paragraph [0044] 42-44,
46-48
X US 20127311534 Al (FOX BRIAN EDWARD [US] 1-9,21,
ET AL) 6 December 2012 (2012-12-06) 33-41,
45,49,50
Y paragraph [0004] - paragraph [0007] 10-20,
paragraph [0022] - paragraph [0032] 22-32,
paragraph [0039] 42-44,
paragraph [0054] 46-48
paragraph [0088] - paragraph [0092]
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 August 2015

Date of mailing of the international search report

25/08/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Milasinovic, Goran

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/035138

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6 195 792 Bl (TURNBULL MARK ANDREW [CA] 10-20,
ET AL) 27 February 2001 (2001-02-27) 22-32,
42-44,
46-48
A column 2, Tine 45 - line 67 1-9,21,
column 5, Tine 55 - line 65 33-41,
column 6, line 32 - column 7, line 7 45,49,50

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/035138
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014013304 Al 09-01-2014 NONE
US 2012311534 Al 06-12-2012 US 2012311534 Al 06-12-2012
US 2014075414 Al 13-03-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

