Process for preparing aryl-substituted pyrazoles

Abstract

The present invention relates to a process for preparing 1-aryl-substituted pyrazoles, comprising the reaction of alkoxy enones and enamino ketones with arylhydrazine derivatives to give 1-arylsubstituted dihydro-1H-pyrazoles, the further reaction thereof with elimination of water to give 1-aryl-substituted trihalomethylpyrazoles, and the further processing thereof.

Claims

1. Process for preparing aryl-substituted pyrazole derivatives of the general formula (I)

$$R^1$$
 N
 R^2
 R^3
 R^3
 R

in which

R¹ is hydroxyl, alkoxy, aryloxy, halogen,

R² is hydroxyl, alkoxy, arylalkoxy, alkylthio, halogen, O-(C=O)alkyl, O-(C=O)O-alkyl, (C=O)haloalkyl, OSO₂-haloalkyl, OSO₂-aryl,

R³ is halogen, CN, NO₂, alkyl, cycloalkyl, haloalkyl, halocycloalkyl, alkoxy, haloalkoxy, alkylamino, dialkylamino, cycloalkylamino,

Z is CH, N,

characterized in that

(A) alkoxy enones and enamino ketones of the formula (II)

in which

 R^4 is H, alkyl, arylalkyl, -(C=O)alkyl, (C=O)haloalkyl, -(C=O)O-alkyl, SO_2 -haloalkyl, SO_2 -aryl,

X is fluorine, chlorine, bromine, iodine,

R⁵ is alkoxy, dialkylamino, cycloalkylamino, thioalkyl, or is cycloalkyl which may optionally contain 1-3 heteroatoms from the group of O, N, S,

are reacted with arylhydrazines of the formula (III)

in which

R³ is halogen, CN, NO₂, alkyl, cycloalkyl, haloalkyl, halocycloalkyl, alkoxy, haloalkoxy, alkylamino, dialkylamino, cycloalkylamino,

Z is CH, N,

to give 1-aryl-substituted dihydro-1H-pyrazoles of the formula (IV)

$$\begin{array}{c|c}
HO & R^4 \\
X_3C & N \\
\hline
R^3 & (IV)
\end{array}$$

in which X, R³, R⁴, Z are each as defined above,

(B) the latter are optionally converted further, without preceding isolation, with elimination of water, to 1-aryl-substituted trihalomethylpyrazoles of the formula (V)

$$X_3C$$
 N
 R^3
 (V)

in which X, R³, R⁴, Z are each as defined above,

(C) these compounds of the general formula (V)

are converted with addition of HCl, H_2SO_4 or a base, for example, to pyrazolecarboxylic acids of the formula (VI)

in which R³, R⁴, Z are each as defined above,

(D) the latter are converted, after detaching the R⁴ group, to hydroxymethylpyrazole acids of the formula (VII)

in which R³, Z are as defined above, and

(E) the latter are converted to compounds of the formula (I)

$$R^1$$
 N
 R^2
 R^3
 R^3
 R

- 2. Process according to Claim 1, characterized in that
 - R^1 is hydroxyl, (C_1-C_6) -alkoxy, halogen,
 - R^2 is hydroxyl, halogen, O-(C=O)(C₁-C₆)alkyl,
 - R^3 is halogen, CN, NO₂, (C₁-C₆)-alkyl, halo(C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, halo(C₁-C₆)alkoxy,
 - X is fluorine, chlorine, bromine,
 - Z is N,

R⁴ is $aryl(C_1-C_6)$ -alkyl, $(C=O)(C_1-C_6)$ -alkyl, (C=O)halo (C_1-C_6) -alkyl, $-(C=O)O-(C_1-C_6)$ -alkyl, $SO_2(C_1-C_6)$ -alkyl, SO_2 -halo (C_1-C_6) -alkyl,

 R^5 is (C_1-C_6) -alkoxy, $di(C_1-C_6)$ -alkylamino, morpholino, thioalkyl.

3. Process according to either of Claims 1 and 2, characterized in that

 R^1 is (C_1-C_6) alkoxy, hydroxyl,

R² is hydroxyl, C(=O)CH₃,

R³ is chlorine,

 R^4 is (C=O)CH₃,

R⁵ is methoxy,

X is chlorine,

Z is N.

4. Compound of the general formula (IV) according to Claim 1, characterized in that X, R³, Z are each as defined above,

 R^4 is $(C=O)(C_1-C_6)$ -alkyl, (C=O)halo (C_1-C_6) -alkyl.

- Compound of the general formula (V) according to Claim 1, characterized in that
 X, R³, Z are each as defined above,
 - $R^4 \qquad \quad is \ (C=O)(C_1-C_6)\text{-alkyl}, \ (C=O)\text{halo}(C_1-C_6)\text{-alkyl}.$
- 6. Compound of the general formula (IV) according to Claim 4, characterized in that $R^4 \qquad \text{is (C=O)CH}_3 \text{ and X is chlorine.}$
- 7. Compound of the general formula (V) according to Claim 5, characterized in that

R⁴ is (C=O)CH₃ and X is chlorine.

Dated this 23/01/2012

(HRISHIKESH RAY/CHAUDHURY)
OF REMFRY & SAGAR
ATTORNEY FOR THE APPLICANT[S]