Process for preparing aryl-substituted pyrazoles ## Abstract The present invention relates to a process for preparing 1-aryl-substituted pyrazoles, comprising the reaction of alkoxy enones and enamino ketones with arylhydrazine derivatives to give 1-arylsubstituted dihydro-1H-pyrazoles, the further reaction thereof with elimination of water to give 1-aryl-substituted trihalomethylpyrazoles, and the further processing thereof. ## Claims 1. Process for preparing aryl-substituted pyrazole derivatives of the general formula (I) $$R^1$$ N R^2 R^3 R^3 R in which R¹ is hydroxyl, alkoxy, aryloxy, halogen, R² is hydroxyl, alkoxy, arylalkoxy, alkylthio, halogen, O-(C=O)alkyl, O-(C=O)O-alkyl, (C=O)haloalkyl, OSO₂-haloalkyl, OSO₂-aryl, R³ is halogen, CN, NO₂, alkyl, cycloalkyl, haloalkyl, halocycloalkyl, alkoxy, haloalkoxy, alkylamino, dialkylamino, cycloalkylamino, Z is CH, N, characterized in that (A) alkoxy enones and enamino ketones of the formula (II) in which R^4 is H, alkyl, arylalkyl, -(C=O)alkyl, (C=O)haloalkyl, -(C=O)O-alkyl, SO_2 -haloalkyl, SO_2 -aryl, X is fluorine, chlorine, bromine, iodine, R⁵ is alkoxy, dialkylamino, cycloalkylamino, thioalkyl, or is cycloalkyl which may optionally contain 1-3 heteroatoms from the group of O, N, S, are reacted with arylhydrazines of the formula (III) in which R³ is halogen, CN, NO₂, alkyl, cycloalkyl, haloalkyl, halocycloalkyl, alkoxy, haloalkoxy, alkylamino, dialkylamino, cycloalkylamino, Z is CH, N, to give 1-aryl-substituted dihydro-1H-pyrazoles of the formula (IV) $$\begin{array}{c|c} HO & R^4 \\ X_3C & N \\ \hline R^3 & (IV) \end{array}$$ in which X, R³, R⁴, Z are each as defined above, (B) the latter are optionally converted further, without preceding isolation, with elimination of water, to 1-aryl-substituted trihalomethylpyrazoles of the formula (V) $$X_3C$$ N R^3 (V) in which X, R³, R⁴, Z are each as defined above, (C) these compounds of the general formula (V) are converted with addition of HCl, H_2SO_4 or a base, for example, to pyrazolecarboxylic acids of the formula (VI) in which R³, R⁴, Z are each as defined above, (D) the latter are converted, after detaching the R⁴ group, to hydroxymethylpyrazole acids of the formula (VII) in which R³, Z are as defined above, and (E) the latter are converted to compounds of the formula (I) $$R^1$$ N R^2 R^3 R^3 R - 2. Process according to Claim 1, characterized in that - R^1 is hydroxyl, (C_1-C_6) -alkoxy, halogen, - R^2 is hydroxyl, halogen, O-(C=O)(C₁-C₆)alkyl, - R^3 is halogen, CN, NO₂, (C₁-C₆)-alkyl, halo(C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, halo(C₁-C₆)alkoxy, - X is fluorine, chlorine, bromine, - Z is N, R⁴ is $aryl(C_1-C_6)$ -alkyl, $(C=O)(C_1-C_6)$ -alkyl, (C=O)halo (C_1-C_6) -alkyl, $-(C=O)O-(C_1-C_6)$ -alkyl, $SO_2(C_1-C_6)$ -alkyl, SO_2 -halo (C_1-C_6) -alkyl, R^5 is (C_1-C_6) -alkoxy, $di(C_1-C_6)$ -alkylamino, morpholino, thioalkyl. 3. Process according to either of Claims 1 and 2, characterized in that R^1 is (C_1-C_6) alkoxy, hydroxyl, R² is hydroxyl, C(=O)CH₃, R³ is chlorine, R^4 is (C=O)CH₃, R⁵ is methoxy, X is chlorine, Z is N. 4. Compound of the general formula (IV) according to Claim 1, characterized in that X, R³, Z are each as defined above, R^4 is $(C=O)(C_1-C_6)$ -alkyl, (C=O)halo (C_1-C_6) -alkyl. - Compound of the general formula (V) according to Claim 1, characterized in that X, R³, Z are each as defined above, - $R^4 \qquad \quad is \ (C=O)(C_1-C_6)\text{-alkyl}, \ (C=O)\text{halo}(C_1-C_6)\text{-alkyl}.$ - 6. Compound of the general formula (IV) according to Claim 4, characterized in that $R^4 \qquad \text{is (C=O)CH}_3 \text{ and X is chlorine.}$ - 7. Compound of the general formula (V) according to Claim 5, characterized in that R⁴ is (C=O)CH₃ and X is chlorine. Dated this 23/01/2012 (HRISHIKESH RAY/CHAUDHURY) OF REMFRY & SAGAR ATTORNEY FOR THE APPLICANT[S]