Abstract: A balloon catheter for use with a guidewire includes an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end. An inflatable balloon is connected to the distal end of the shaft, the balloon including a working surface. A radioopaque identifier is provided for identifying the working surface. A receiver adjacent the proximal end of the shaft is adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.
BALLOON CATHETER WITH FLOATING HUB

Technical Field

This disclosure relates generally to catheters for performing medical procedures, such as balloon angioplasty and, more particularly, to a catheter including a floating hub, which may be used for ensuring the proper alignment between a radiopaque identifier and a portion of the balloon, such as the working surface.

Background of the Invention

Balloons are routinely used to resolve or address flow restrictions or perhaps even complete blockages in tubular areas of the body, such as arteries or veins. In many clinical situations, the restrictions are caused by hard solids, such as calcified plaque, and require the use of high pressures to compact such blockages. Commercially available balloons employ complex technology to achieve high pressure requirements without sacrificing the profile of the balloon. Besides high pressure requirements, the balloons should also be resistant to puncture, easy to track and push, and present a low profile, especially when used for angioplasty.

In clinical practice, angioplasty balloons are expanded from a deflated, folded state to an expanded state within a vessel to treat a target area, such as a portion of the circumferential inner wall I of a blood vessel V, as shown in Figures 1 and 2. The inflation of a balloon 12 with wall 28 is traditionally completed using an X-ray contrast agent CM along dimension DX to provide better visibility under X-ray or other form of radiography R during the interventional procedure, as illustrated in Figures 3 and 3a (which shows the intensity measured by a fluoroscope detector plate, FDP). Typically, a 70/30 percent mixture of contrast agent and saline is used to inflate the balloon during an angioplasty procedure.

In general, a desirable goal is to reduce inflation and deflation times required for balloons without sacrificing the profile of the balloons, especially for large volume balloons (which can require up to two minutes of inflation/deflation times with the contrast agent). Because of its relatively high viscosity, it would also be desirable to eliminate, or at least reduce the amount of, the contrast agent used in inflation/deflation of the balloons. The use of contrast agent prolongs the inflation/deflation times and also poses the risk of iodine exposure to patients sensitive to iodine. In this regard, a non-radiopaque substance could be used in lieu of the contrast agent, such as for example saline or carbon dioxide, but such substances are invisible during X-ray imaging, and thus do not enhance visibility.
Furthermore, the physician performing the angioplasty procedure should be able to locate the position of the uninflated balloon with accuracy, so that the balloon will be properly positioned once inflated. This is conventionally accomplished by attaching marker bands on the catheter shaft in the region corresponding to the balloon working surface. This "working surface" is the surface along the portion of the balloon that is used to achieve the desired treatment effect, such as contacting the calcified plaque (which surface in the case of a balloon having conical or tapering sections at the proximal and distal ends is typically co-extensive with a generally cylindrical barrel section).

Misalignment of the marker bands during placement along the shaft sometimes results in their failure to correspond precisely to the extent of the working surface, as is shown in Figure 4 (note misalignment amount X between each interior marker band M carried by shaft S and working surface W of balloon 12, which also typically includes a radiopaque tip P at the distal end). Even upon exercising great care to position the markers properly on the underlying shaft in alignment with anticipated boundaries of the working surface when the balloon is inflated, there remains a tendency for mismatch due to several possible factors. One such factor may be the tolerance stack-ups arising as a consequence of the affixation of the balloon to the distal end of the catheter shaft. The balloon also has a tendency to grow in the longitudinal direction when inflated, especially with large and particularly long balloons. Another factor is the tendency of the portion of the catheter shaft within the balloon to bend or flex during inflation. This may lead to misalignment between radiopaque markers fixed to the shaft and the working surface.

Whatever the cause, the resulting misalignment may prevent the clinician from accurately identifying the location of the working surface of the balloon during an interventional procedure. This may lead to a geographic misplacement, or "miss," of the intended contact between the target area T and the working surface W of the balloon 12 (see Figure 2). It is especially desirable to avoid such an outcome when the balloon is designed to deliver a payload (such as a drug, stent, or both) or a working element to a specified location within the vasculature, since a miss may prolong the procedure (such as, for example, by requiring redeployment of the balloon 12 or the use of another balloon catheter in the case of a drug coated balloon).

Upon deflation, the balloon may also be subject to a phenomenon known as "pancaking." In this condition, the balloon 12 folds down upon itself to a flattened state, as shown in Figure 5. This situation may cause the balloon to be viewed through fluoroscopy as perhaps still being in the inflated condition, since the full width of the balloon may still be perceived. This can give the clinician the false perception that the balloon remains inflated, when in fact it is not.

Accordingly, the need is identified for a balloon for which the working surface may be identified during an interventional procedure with enhanced precision. The solution would take into account the possible mismatch between fixed locations on the catheter shaft and the balloon to define the working surface. The improved identification may also allow for the better detection of the false perception of deflation caused by pancaking. Overall, procedural efficiency would be enhanced without remarkably
increasing cost or complexity, and in a manner that can be applied to many existing catheter technologies without extensive modification.

Summary of the Invention

An object of the disclosure is to provide a balloon for which the working surface may be identified during an interventional procedure with enhanced precision.

Brief Description of the Drawings

Figures 1-9 are illustrative of the background of the invention;

Figure 10 illustrates a first embodiment according to the disclosure;

Figure 11 illustrates a second embodiment according to the disclosure;

Figures 12 and 13 are partial views of the Figure 11 embodiment;

Figures 14 and 15 illustrate additional aspects of the disclosure;

Figure 15 illustrates the embodiment of Figure 14 in a folded condition; and

Figures 16 and 17 illustrate a further embodiment according to the disclosure.

Modes for Carrying Out the Invention

The description provided below and in regard to the figures applies to all embodiments unless noted otherwise, and features common to each embodiment are similarly shown and numbered.

Provided is a catheter 10 having a distal portion 11 with a balloon 12 mounted on a catheter tube 14. Referring to Figures 6, 7, and 8, the balloon 12 has an intermediate section 16, or "barrel," and end sections 18, 20. In one embodiment, the end sections 18, 20 reduce in diameter to join the intermediate section 16 to the catheter tube 14 (and thus sections 18, 20 are generally termed cones or cone sections). The balloon 12 is sealed at balloon ends (proximal end 15a and distal end 15b) on the cone sections 18, 20 to allow the inflation of the balloon 12 via one or more inflation lumens 17 extending within catheter tube 14 and communicating with the interior of the balloon 12.

The catheter tube 14 also includes an elongated, tubular shaft 24 forming a guidewire lumen 23 that directs the guidewire 26 through the catheter 10, and along the distal end of which the balloon 12 may be located. As illustrated in Figure 8, this guidewire 26 may extend through the proximal end of the catheter 10 and a first port 25 of a connector 27 into the lumen 23 to achieve an "over the wire" (OTW) arrangement, but could also be provided in a "rapid exchange" (RX) configuration, in which the guidewire 26 exits a lateral opening 14a closer to the distal end (see Figure 9) or else is fed through the tip distally of the balloon 12 (not shown). A second port 29 may also be associated with catheter 10, such as by way of connector 27, for introducing a fluid (e.g., saline, a contrast agent, or both) into the interior compartment of the balloon 12 via the inflation lumen 17.

Balloon 12 may include a single or multi-layered balloon wall 28 forming the interior for receiving the inflation fluid. The balloon 12 may be a non-compliant balloon having a balloon wall 28 that maintains its size and shape in one or more directions when the balloon is inflated. Examples of non-compliant
balloons may be found in U.S. Pat. No. 6,746,425 and Publication Nos. US 200670085022, US 200670085023 and US 200670085024, the disclosures of which are hereby incorporated herein by reference. The balloon 12 in such case also has a pre-determined surface area that remains constant during and after inflation, also has a pre-determined length and predetermined diameter that each, or together, remain constant during and after inflation. However, the balloon 12 could be semi-compliant or compliant instead, depending on the particular use.

One embodiment for achieving the desired features is by arranging the shaft 24 in a manner that allows it to move a predetermined amount under a restrained condition in order to align the working surface W with particular location, such as the position of one or more radiopaque identifiers. In one embodiment, as shown schematically in Figure 10, the catheter 100 includes a seal 102, such as may be provided by one or more O-rings or the like, at or near a proximal end of the inner shaft 24. The seal 102 is adapted for positioning in a recess 104 formed in a receiver 101 for receiving the shaft 24, such as hub 106, which is shown as being oversized for purposes of illustration. The recess 104 is oversized so as to allow movement of the seal 102 and thus shaft 24 relative to the tube 14 within inflation lumen 17, which is in turn connected to the proximal end of the balloon 12. Other than at the distal end 15b of balloon 12 and the seal 102, the shaft 24 is not connected to any other structure in the catheter 10, and thus can move to and fro a distance in the longitudinal direction corresponding to the length of the recess 104.

Turning to Figures 11-15, the balloon 12 may include a radiopaque identifier separate from the shaft 24 to allow for identification of a particular location under fluoroscopy. In one embodiment, this identifier is provided in the form of an insert 44. This insert 44 may be tubular in form, and extend in a spaced apart manner along and generally coaxially with the shaft 24 extending through the interior compartment of the balloon 12, thus forming a sleeve. A free end portion 44a of the insert 44 is located at a position aligned with the edge or extent of the working surface W at the proximal end 15a, while the opposite, fixed end portion 44b is connected to the balloon 12, such as at the point where it attaches to the tube 14 at this proximal end. The connection between the insert 44 and the balloon 12, tube 14, or both, may be one or more of an interference fit, bonding (using an adhesive, welding, etc.), friction, or other like manners of forming a secure arrangement that does not permit relative movement of two distinct parts when connected.

The insert 44 may also be adapted so as to minimize interference with the inflation of the balloon 12. For example, as shown in Figure 14, the insert 44 may be provided with one or more perforations 45. These perforations 45 prevent the insert 44 from serving as a barrier that would retard the inflation fluid emanating from the tube 14 from readily flowing into the interior compartment of the balloon 12, and thus help to preserve the desired short inflation times. Indeed, the presence of such perforations 45 may allow the inserts 44 and 46 to be combined into a single unitary piece of material extending continuously between the proximal and distal ends 15a, 15b of the balloon 12.
A second, at least partially radiopaque insert 46 may also be provided at the distal end 15b including the conical section 20. In one embodiment, this insert 46 is arranged at the location where the distal end 15b of the balloon 12 is secured to the shaft 24 to form the tip P (which as noted may also be radiopaque). As shown in Figure 15, this insert 46 may be connected to the shaft 24, or may be embedded within the material forming the corresponding distal end 15b of the balloon 12 (especially if a multi-layered arrangement is used to form the balloon wall 28).

Other types of identifiers may also be used instead of or in addition to the particular inserts 44, 46 shown. Details may be found in commonly filed patent applications, entitled "MEDICAL BALLOON INCLUDING RADIOPAQUE INSERT FOR PRECISELY IDENTIFYING A WORKING SURFACE LOCATION," for inventors Pat Byrne, Sean Wall, Angela Jensen, Andrew Schaffer, Angela Crall, the disclosure of which is incorporated herein by reference.

In any case, the proximal end portion 46a of the insert 46 terminates at the distal edge of the working surface W, so as to assist in the identification process. The proximal end portion 46a of this insert 46 extending within the interior compartment of the balloon 12 may be spaced from the shaft 24 (note gap 47 in Figure 15) so as to be less susceptible to any misalignment caused by bending. This end 46a may be partially or entirely radiopaque. This radiopaque end portion 46a provides an indication of the distance between the distal edge of the working surface W and the distal end 15b of the balloon 12. Also, the distal end portion 46b of the insert 46 may be formed with the tip P as a unitary, continuously radiopaque structure (for example, with different radiopaque qualities (patterns, shapes, densities, etc.)), if desired to allow for ready identification of these components.

With reference now to Figures 16 and 17, it can be understood that the seal 102 provides the desired closed lumen 17 to receive the inflation fluid. On inflation of the balloon 12, such as in a vessel V, any tendency of the shaft 24 to bend and cause misalignment has no impact on the location of the radiopaque identifier, such as inserts 44, 46. This is because the insert 44 at the proximal end 15a is separate from the shaft 24, and the insert 46 at the distal end 15b of the balloon 12 may move along with the shaft 24, which is free to move in the longitudinal direction until the seal 102 reaches the distal end of the recess 104 (note position 102' in Figure 17). This tends to eliminate any tendency of the shaft 24 within the balloon 12 to bend, and even with minor bending, the inserts 44, 46 are generally separate from the intermediate portion of the shaft 24 most susceptible to bending. The result is a more precise alignment of the radiopaque identifier with the target treatment area and ultimately with the working surface W of the balloon 12, and without regard to any bending of the shaft 24.

Balloons 12 that carry one or more surface elements, such as a payload (drug, stent, or both) or a working implement (cutter, focused force wire, or the like) into the vasculature may also benefit from the foregoing description of marking techniques. For example, as shown in Figure 10, a balloon 12 including a defined working surface W may include a portion coated with such a drug D, such as one designed for
achieving a desired therapeutic effect when applied to the interior of the vessel. The drug D may be applied to the inflated balloon as part of the manufacturing process, and prior to folding for insertion in the vasculature. The clinician may thus with the benefit of a fluoroscope determine the precise positioning of the working surface W prior to inflating the balloon 12 in the vasculature to deliver the drug D to the desired location and provide the desired treatment regimen.

The following items also relate to the invention:

1. A balloon catheter for use with a guidewire, comprising:
 an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end;
 an inflatable balloon connected to the distal end of the shaft; and
 a receiver adjacent the proximal end of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.

2. The catheter of item 1, wherein the shaft carries a stop, and the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

3. The catheter of item 2, further including a tube for supplying an inflation fluid to inflate the balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop forms a seal with the recess to prevent the inflation fluid from passing around the shaft.

4. The catheter of item 3, wherein the seal comprises an O-ring arranged coaxially with the shaft.

5. The catheter of any of the foregoing items, wherein the balloon includes a working surface, and further including a radiopaque identifier for identifying the working surface, said identifier being separate from the shaft.

6. The catheter of item 5, wherein the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.

7. The catheter of item 6, wherein the insert comprises a tubular sleeve arranged coaxially with the shaft.

8. The catheter of any of items 5 to 7, wherein the insert comprises a first insert at a proximal end of the balloon and a second insert at a distal end of the balloon.

9. The catheter of any of the foregoing items, further including a guidewire for positioning in the shaft.

10. A hub for a balloon catheter having an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and an inflatable balloon connected to the distal end of the shaft for being inflated by an inflation fluid, comprising:
a body including a receiver for receiving a proximal portion of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction; and

a stop for restraining the movement of the shaft relative to the body in the longitudinal direction.

11. The hub of item 10, wherein the body includes a guidewire port arranged in communication with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the balloon.

12. The hub of item 10 or 11, wherein the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

13. The hub of any of items 10 to 12, wherein the stop forms a seal with the recess to prevent the inflation fluid from passing.

14. The hub of any of items 10 to 13, wherein the stop comprises an O-ring.

15. The catheter of any of the foregoing items 1 to 9, comprising a hub for receiving a proximal end of a guidewire shaft, said shaft being adapted to slidably move in a restrained manner relative to the hub.

16. The catheter of any of the foregoing items 1 to 9 and 15, including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.

17. The balloon catheter of any of the foregoing items 1 to 9, 15 and 16, wherein the balloon includes a drug.

The following items also relate to the invention:

1. A catheter comprising a hub for receiving a proximal end of a guidewire shaft, the shaft being adapted to slidably move in a restrained manner relative to the hub.

2. The catheter of item 1, including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.

3. The balloon catheter of item 1 or 2 for use with a guidewire, comprising:

 an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end;

 an inflatable balloon connected to the distal end of the shaft; and

 a receiver adjacent the proximal end of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.

4. The catheter of item 3, wherein the shaft carries a stop, and the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.
5. The catheter of item 4, further including a tube for supplying an inflation fluid to inflate the balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop forms a seal with the recess to prevent the inflation fluid from passing around the shaft.

6. The catheter of item 5, wherein the seal comprises an O-ring arranged coaxially with the shaft.

7. The catheter of any of the foregoing items 3 to 6, wherein the balloon includes a working surface, and further including a radiopaque identifier for identifying the working surface, said identifier being separate from the shaft.

8. The catheter of item 7, wherein the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.

9. The catheter of item 8, wherein the insert comprises a tubular sleeve arranged coaxially with the shaft.

10. The catheter of any of items 7 to 9, wherein the insert comprises a first insert at a proximal end of the balloon and a second insert at a distal end of the balloon.

11. The catheter of any of the foregoing items 3 to 10, further including a guidewire for positioning in the shaft.

12. A hub for a balloon catheter having an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and an inflatable balloon connected to the distal end of the shaft for being inflated by an inflation fluid, comprising:

 a body including a receiver for receiving a proximal portion of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction; and

 a stop for restraining the movement of the shaft relative to the body in the longitudinal direction.

13. The hub of item 12, wherein the body includes a guidewire port arranged in communication with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the balloon.

14. The hub of item 12 or 13, wherein the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

15. The hub of any of items 12 to 14, wherein the stop forms a seal with the recess to prevent the inflation fluid from passing.

16. The hub of any of items 12 to 15, wherein the stop comprises an O-ring.

17. The balloon catheter of any of the foregoing items 1 to 11, wherein the balloon includes a drug.

The following items also relate to the invention:
1. A catheter including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.

2. The catheter of item 1, comprising a hub for receiving a proximal end of a guidewire shaft, the shaft being adapted to slidably move in a restrained manner relative to the hub.

3. The balloon catheter of item 1 or 2 for use with a guidewire, comprising:
 - an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end;
 - an inflatable balloon connected to the distal end of the shaft; and
 - a receiver adjacent the proximal end of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.

4. The catheter of item 3, wherein the shaft carries a stop, and the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

5. The catheter of item 4, further including a tube for supplying an inflation fluid to inflate the balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop forms a seal with the recess to prevent the inflation fluid from passing around the shaft.

6. The catheter of item 5, wherein the seal comprises an O-ring arranged coaxially with the shaft.

7. The catheter of any of the foregoing items 3 to 6, wherein the balloon includes a working surface, and further including a radiopaque identifier for identifying the working surface, said identifier being separate from the shaft.

8. The catheter of item 7, wherein the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.

9. The catheter of item 8, wherein the insert comprises a tubular sleeve arranged coaxially with the shaft.

10. The catheter of any of items 7 to 9, wherein the insert comprises a first insert at a proximal end of the balloon and a second insert at a distal end of the balloon.

11. The catheter of any of the foregoing items 3 to 10, further including a guidewire for positioning in the shaft.

12. A hub for a balloon catheter having an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and an inflatable balloon connected to the distal end of the shaft for being inflated by an inflation fluid, comprising:

 - a body including a receiver for receiving a proximal portion of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction; and
a stop for restraining the movement of the shaft relative to the body in the longitudinal
direction.
13. The hub of item 12, wherein the body includes a guidewire port arranged in communication
with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the
balloon.
14. The hub of item 12 or 13, wherein the receiver further includes a recess for receiving the
stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding
dimension of the stop.
15. The hub of any of items 12 to 14, wherein the stop forms a seal with the recess to prevent the
inflation fluid from passing.
16. The hub of any of items 12 to 15, wherein the stop comprises an O-ring.
The subject matter of each of the paragraphs below citing a balloon or a catheter can be part of a balloon or a
catheter respectively that is cited in any of the other paragraphs:
1.1 A balloon catheter, comprising: an elongated, tubular shaft extending in a longitudinal direction, said
shaft having a proximal end and a distal end; and an inflatable balloon supported along the distal end of the
shaft, the balloon when inflated including first and second spaced conical end sections and a working surface
between the conical sections, the balloon further including at least one radiopaque marking identifying the
transition from the conical end section to the working surface.
1.2 The catheter of paragraph 1.1, wherein the at least one radiopaque marking comprises a first
radiopaque marking at a first transition between the first conical end section and the working surface, and
further including a second radiopaque marking at a second transition between the second conical end section
and the working surface.
1.3 The catheter of any of the foregoing paragraphs, wherein the at least one marking comprises a strip.
1.4 The catheter of any of the foregoing paragraphs, further including a plurality of radiopaque markings
in the form of strips.
1.5 The catheter of paragraph 1.4, wherein the strips extend at least partially in a longitudinal direction
between the first and second conical end sections.
1.6 The catheter of paragraphs 1.4 or 1.5, wherein the strips comprise annular bands.
1.7 The catheter of any of the foregoing paragraphs, wherein at least two spaced radiopaque markings are
provided on each conical end section, including one adjacent a distal portion and a proximal portion of each
conical end section.
1.8 The catheter of any of the foregoing paragraphs, wherein the balloon includes a barrel section
between the first and second conical end sections, and further including a plurality of radiopaque markings on
the barrel section,
1.9 The catheter of any of the foregoing paragraphs, wherein the marking comprises a first pattern on the conical end sections and further including a second, different pattern on the working surface.

1.10 The catheter of any of the foregoing paragraphs, wherein the at least one marking is selected from the group consisting of a pattern, a strip, a brand, a logo, a letter, a number, a word, or combinations thereof.

1.11 The catheter of any of the foregoing paragraphs, wherein the identifier comprises a scale.

1.12 The catheter of any of the foregoing paragraphs, wherein the balloon includes a drug.

1.13 The catheter of paragraph 1.12, wherein the drug corresponds to the location of the radiopaque marking.

1.14 The catheter of paragraph 1.12, wherein the drug corresponds to other than the location of the radiopaque marking.

1.15 The catheter of paragraph 1.12, wherein the radiopaque marking comprises the drug formulated to include a radiopacifier.

1.16 A balloon having a drug carried on a working surface of the balloon wall and a radiopaque identifier identifying the location of the drug on the balloon.

1.17 The balloon of paragraph 1.16, wherein the radiopaque identifier comprises a radiopaque material mixed with a formulation comprising the drug.

1.18 The balloon of paragraph 1.16, wherein the working surface is along a barrel section of the balloon, and the radiopaque identifier is on one or both cone sections of the balloon.

2.1 A balloon catheter, comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; and an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including a generally cylindrical barrel section forming a working surface, and generally conical end sections that do not form a part of the working surface, the balloon further including at least one radiopaque identifier for indicating the relative position of the working surface, said identifier being provided on at least one of the conical end sections of the balloon so as to define the extent of the working surface.

2.2 The catheter of paragraph 2.1, wherein the identifier comprises a marking.

2.3 The catheter of paragraph 2.1 or 2.2, wherein a first marking is provided at a first transition between the first conical section end section and the working surface and a second marking is provided at a second transition between the second end section and the working surface.

2.4 The catheter of paragraph 2.2 or 2.3, wherein the marking comprises a strip.

2.5 The catheter of any of the foregoing paragraphs, wherein the identifier comprises a longitudinal strip extending between an end of the balloon and the barrel section.

2.6 The catheter of any of the foregoing paragraphs, further including a plurality of identifiers.

2.7 The catheter of paragraph 2.6, wherein each of the plurality of identifiers comprises a longitudinally extending strip.
2.8 The catheter of paragraph 2.6 or 2.7, wherein the identifiers comprise annular bands.
2.9 The catheter of paragraph 2.6 or paragraph 2.8 as dependent on paragraph 2.6, wherein the identifiers comprise longitudinally extending strips.
2.10 The catheter of any of the foregoing paragraphs 2.1 to 2.9, wherein at least two spaced radiopaque identifiers are provided on each end section.
2.11 The catheter of any of the foregoing paragraphs 2.1 to 2.10, further including at least one radiopaque identifier on the barrel section.
2.12 The catheter of any of the foregoing paragraphs 2.1 to 2.11, wherein the identifier is a first identifier comprising a first pattern, and further including a second identifier comprising a second, different pattern.
2.13 The catheter of any of the foregoing paragraphs 2.1 to 2.12, wherein the identifier includes at least one letter or number.
2.14 The catheter of any of the foregoing paragraphs 2.1 to 2.13, wherein the identifier comprises a logo.
2.15 The catheter of any of the foregoing paragraphs 2.1 to 2.14, wherein the identifier comprises a scale.
2.16 The catheter of any of the foregoing paragraphs 2.1 to 2.15, further including a drug on the balloon.
3.1 An inflatable balloon for use in connection with a catheter, comprising: an inflatable body including a working surface extending in a longitudinal direction between a first end and a second end, the body having at least one radiopaque identifier provided along the body for identifying at least a first end of the working surface, the radiopaque identifier having a first radiographic quality for identifying the location of the first end of the working surface and a second radiographic quality at a location other than at the first end of the working surface.
3.2 The balloon of paragraph 3.1, wherein the second radiographic quality is provided for identifying the second end of the working surface.
3.3 The catheter of paragraph 3.2, wherein the first radiographic quality and the second radiographic quality are substantially the same.
3.4 The balloon of paragraph 3.1, wherein the radiopaque identifier comprises a marking.
3.5 The balloon of paragraph 3.1, wherein the radiopaque identifier follows a generally helical path from the first end to the second end of the working surface.
3.6 The balloon of paragraph 3.1, wherein the identifier comprises a plurality of helical identifiers extending along the working surface.
3.7 The balloon of paragraph 3.1, wherein the identifier comprises a radiopaque filament.
3.8 The balloon of paragraph 3.7, wherein the filament is wound helically along at least a portion of the working surface of the balloon.
3.9 The balloon of any of the foregoing paragraphs 3.1 to 3.8, further including a drug on the balloon.
3.16 A balloon for use in connection with a catheter, comprising: a body having an outer surface and at least one winding extending along the outer surface of the balloon, said balloon having a radiopaque quality.
3.17 The balloon of paragraph 3.16, wherein the winding comprises a radiopaque filament.
3.18 The balloon of any of the foregoing paragraphs, wherein the radiopaque identifier comprises a helical pattern or a diamond pattern.
3.19 A catheter including the balloon of any of the foregoing paragraphs.
3.20 An inflatable balloon for use in connection with a catheter comprising a radiopaque identifier comprising a helical pattern or a diamond pattern.

4.1 A balloon catheter for use in connection with a guidewire, comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including first and second spaced ends and a working surface between the ends; and at least one wire including at least a radiopaque portion for identifying the location of working surface of the balloon.
4.2 The catheter of paragraph 4.1, wherein said wire comprises a material having a shape memory for adjusting between a first state and a second state.
4.3 The catheter of paragraph 4.1 or 4.2, wherein the at least one wire extends generally in the longitudinal direction.
4.4 The catheter of any of the foregoing paragraphs 4.1 to 4.3, wherein the radiopaque portion is elongated.
4.5 The catheter of any of the foregoing paragraphs 4.1 to 4.4, wherein the wire at least partially comprises a polymer.
4.6 The catheter of any of the foregoing paragraphs 4.1 to 4.5, wherein the at least one wire is at least partially elastic.
4.7 The catheter of any of the foregoing paragraphs 4.1 to 4.6, comprising: a plurality of wires extending generally in the longitudinal direction, at least one of the wires including at least a radiopaque portion for identifying the location of working surface of the balloon.
4.8 The catheter of any of the foregoing paragraphs 4.1 to 4.7, wherein at least one wire extends along an outer surface of the balloon.
4.9 The catheter of any of the foregoing paragraphs 4.1 to 4.8, wherein at least one wire extends along an inner surface of the balloon.
4.10 The catheter of any of the foregoing paragraphs 4.1 to 4.9, wherein at least one wire extends from the first end to the second end of the balloon.
4.11 The catheter of any of the foregoing paragraphs 4.1 to 4.10, wherein the radiopaque portion of at least one wire extends along a portion of the balloon corresponding to the working surface.
4.12 The catheter of any of the foregoing paragraphs 4.1 to 4.11, wherein the radiopaque portion of at least one wire extends along other than along the portion of the balloon corresponding to the working surface.
4.13 The catheter of paragraph 4.7 or any of paragraphs 4.8 to 4.12 as dependent on paragraph 4.7, wherein the wires are spaced substantially equidistantly around a circumference of the balloon.

4.14 The catheter of any of the foregoing paragraphs 4.1 to 4.13, wherein the wire includes a compliant or semi-compliant portion.

4.15 The catheter of any of the foregoing paragraphs 4.1 to 4.14, wherein at least one end of the at least partially radiopaque wire is attached to a bond connecting the balloon to the shaft.

4.16 The catheter of any of the foregoing paragraphs 4.1 to 4.15, further including a drug provided on the balloon.

4.17 The catheter of any of the foregoing paragraphs 4.1 to 4.16, wherein at least one wire at least partially comprises a material having a shape memory for adjusting between a first state and a second state.

4.18 The catheter of paragraph 4.2 or 4.17, wherein the shape memory material comprises NITINOL.

5.1 A balloon catheter adapted for use with a guidewire, comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including first and second spaced ends, and a working surface between the ends; and an insert located within the interior compartment of the balloon, the insert including at least a radiopaque portion separate from the shaft.

5.2 The catheter of paragraph 5.1, wherein the insert is adapted for moving relative to the shaft.

5.3 The catheter of paragraph 5.1 or 5.2, wherein the insert extends from a first end of the balloon to one end of the working surface.

5.4 The catheter of any of the foregoing paragraphs 5.1 to 5.3, wherein the insert comprises a tube made at least partially of a radiopaque material.

5.5 The catheter of any of the foregoing paragraphs 5.1 to 5.4, wherein the insert comprises at least one finger.

5.6 The catheter of paragraph 5.5, wherein the finger includes a radiopaque end portion.

5.7 The catheter of any of the foregoing paragraphs 5.1 to 5.6, wherein the insert comprises a plurality of fingers, adapted for moving from a retracted condition to an expanded condition, when the balloon is inflated.

5.8 The catheter of any of the foregoing paragraphs 5.1 to 5.7, further including a retractable sheath at least partially covering the insert.

5.9 The catheter of any of the foregoing paragraphs 5.1 to 5.8, wherein the insert comprises a wire.

5.10 The catheter of paragraph 5.9, wherein the wire includes a radiopaque portion corresponding to the working surface.

5.11 The catheter of paragraph 5.10, wherein the wire extends from the first end to the second end of the balloon, and the radiopaque portion comprises an intermediate portion of the wire.
5.12 The catheter of paragraph 5.10 or 5.11, wherein the wire extends from the first end to the second end of the balloon, and the radiopaque portion comprises an end portion of the wire.

5.13 The catheter of any of the foregoing paragraphs 5.1 to 5.12, wherein at least one end of the insert is connected at a location where the balloon connects to the tubular shaft.

5.14 The catheter of any of the foregoing paragraphs 5.1 to 5.13, wherein the insert comprises an annular band.

5.15 The catheter of any of the foregoing paragraphs 5.1 to 5.14, wherein the insert includes perforations.

5.16 The catheter of any of the foregoing paragraphs 5.1 to 5.15, wherein the insert comprises a material having a shape memory.

5.17 The catheter of any of the foregoing paragraphs 5.1 to 5.16, further including a drug on the balloon.

6.1 A parison for being blow molded into a medical balloon for a catheter, comprising: a first tubular layer having a functional modification; and a second tubular layer adapted for bonding with the first tubular layer to form the blow molded balloon.

6.2 The parison of paragraph 6.1, wherein the first layer is external to the second layer.

6.3 The parison of paragraph 6.1, wherein the first layer is internal to the second layer.

6.4 The parison of any of the foregoing paragraphs, wherein the functional modification comprises a radiopaque strip.

6.5 The parison of paragraph 6.4, wherein the strip comprises a circumferential band.

6.6 The parison of paragraph 6.4 or 6.5, wherein the strip extends between a first end and a second end of the first layer.

6.7 The parison of any of the foregoing paragraphs, wherein the first tubular layer is spaced from the second tubular layer.

6.8 The parison of any of the foregoing paragraphs, wherein the functional modification is selected from the group consisting of an added radiopacifier, a surface pattern, an etching, one or more perforations, and combinations of the foregoing.

6.9 A medical balloon formed by the parison of any of the foregoing paragraphs, comprising: a tubular, inflatable body comprising a wall, the body including first and second generally conical ends and a generally cylindrical barrel section between the generally conical ends and providing a working surface.

6.10 The balloon of paragraph 6.9, wherein the first layer extends from the first end to the second end of the balloon.

6.11 The balloon of paragraph 6.9, wherein the first layer extends along only the working surface.

6.12 The balloon of any of paragraphs 6.9 to 6.11, wherein the first layer extends along an entire circumference of a portion of the wall.

6.13 The balloon of any of paragraphs 6.9 to 6.12, wherein the first layer extends along the full circumference of the wall.
6.14 The balloon of any of paragraphs 6.9 to 6.13, wherein the wall includes first and second spaced shoulders, and wherein the first layer is positioned between the shoulders.

6.15 The balloon of any of paragraphs 6.9 to 6.14, wherein the first and second layers both extend from a first end to a second end of the balloon.

6.16 The balloon of any of paragraphs 6.9 to 6.15, further comprising an at least partially radiopaque tube positioned over the barrel section and extending substantially along the working surface.

6.17 The balloon of paragraph 6.16, further including first and second shoulders adjacent the proximal and distal ends of the radiopaque tube.

6.18 The balloon of paragraph 6.16 or 6.17, wherein the entire tube is radiopaque.

7.1 A balloon catheter, comprising: an elongated, tubular shaft having a proximal end and a distal end; and a balloon positioned along the distal end of the shaft, a portion of a wall of the balloon partially comprising a coextruded radiopaque material.

7.2 The catheter of paragraph 7.1, wherein the radiopaque portion comprises at least one strip extending along a working surface of the balloon.

7.3 The catheter of paragraph 7.1 or 7.2, wherein the radiopaque portion comprises at least one strip extending along a full length surface of the balloon.

7.4 The catheter of any of paragraphs 7.1 to 7.3, wherein the radiopaque portion comprises at least one strip extending along a first cone section of the balloon.

7.5 The catheter of paragraph 7.4, wherein the radiopaque portion comprises at least one strip extending along a second cone section of the balloon.

7.6 The catheter of any of paragraphs 7.1 to 7.5, wherein the balloon includes a plurality of radiopaque portions.

7.7 The catheter of paragraph 7.6, wherein each of the plurality of radiopaque portions comprises a longitudinal strip.

7.8 The catheter of paragraph 7.7, wherein the strips extend at least along a working surface of the balloon.

7.9 The catheter of any of paragraphs 7.6 to 7.8, wherein the plurality of radiopaque portions are spaced apart in a circumferential direction.

7.10 The catheter of any of the foregoing paragraphs 7.1 to 7.9, wherein the balloon includes a barrel section and conical sections at each end of the barrel section, and wherein the radiopaque portion is provided on the barrel section.

7.11 The catheter of any of the foregoing paragraphs 7.1 to 7.10, wherein the balloon includes a barrel section and conical sections at each end of the barrel section, and wherein the radiopaque portion is provided on one or both of the cone sections.
7.12 The catheter of any of the foregoing paragraphs 7.1 to 7.11, wherein the radiopaque portion comprises a layer of the balloon wall.

7.13 The catheter of paragraph 7.12, wherein the layer comprises an inner layer.

7.14 The catheter of paragraph 7.12 or 7.13, wherein the layer comprises an outer layer.

7.15 The catheter of paragraph 7.14, wherein the outer layer is etched.

7.16 The catheter of any of paragraphs 7.12 to 7.15, wherein the balloon includes a barrel section and conical sections at each end of the barrel section, and the layer extends along the entire barrel section.

7.17 The catheter of any of paragraphs 7.12 to 7.16, wherein the balloon includes a barrel section and conical sections at each end of the barrel section, and the layer extends along the entirety of one or both of the conical sections.

7.18 The catheter of any of the foregoing paragraphs 7.1 to 7.17, wherein all portions of the wall comprise coextruded radiopaque material.

7.19 The catheter of any of the foregoing paragraphs 7.1 to 7.18, further including a drug on the balloon.

7.20 The catheter of any of the foregoing paragraphs 7.1 to 7.19, wherein the radiopaque material comprises ePTFE.

8.1 A balloon catheter, comprising: a shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and supporting at least one radiopaque identifier, an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including a working surface; and an actuator for aligning at least one end of the working surface with the at least one radiopaque identifier.

8.2 The catheter of paragraph 8.1, wherein the actuator includes a first position corresponding to a deflated state of the balloon and a second position corresponding to the inflated state of the balloon.

8.3 The catheter of paragraph 8.1 or 8.2, wherein the actuator comprises a spring.

8.4 The catheter of any of the foregoing paragraphs 8.1 to 8.3, wherein the spring comprises a leaf spring.

8.5 The catheter of any of the foregoing paragraphs 8.1 to 8.4, wherein the actuator comprises a plurality of springs spaced circumferentially about the catheter.

8.6 The catheter of any of the foregoing paragraphs 8.1 to 8.5, wherein a first portion of the actuator is fixed to the balloon and a second portion of the actuator is adapted for movement relative to the shaft.

8.7 The catheter of paragraph 8.6, wherein the first portion of the actuator is captured between two layers on the wall of the balloon.

8.8 The catheter of paragraph 8.6 or 8.7, wherein the shaft includes a channel for at least partially receiving the second portion of the actuator.

8.9 The catheter of any of the foregoing paragraphs 8.1 to 8.8, further including a stop for stopping the movement of the actuator.
8.10 The catheter of any of the foregoing paragraphs 8.1 to 8.9, wherein the radiopaque identifier comprises a marker attached to the shaft.

8.11 The catheter of any of the foregoing paragraphs 8.1 to 8.10, wherein the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.

8.12 The catheter of any of the foregoing paragraphs 8.1 to 8.11, wherein the actuator is a first actuator for aligning a distal end of the working surface with the radiopaque identifier, and further including a second actuator for aligning a proximal end of the working surface with the radiopaque identifier.

8.13 The catheter of paragraph 8.12, wherein each of the first and second actuators comprise a plurality of springs.

8.14 The catheter of any of the foregoing paragraphs, wherein the radiopaque identifier comprises a first marking and a second marking, and wherein the actuator is a first actuator for aligning a distal end of the working surface with the first marking, and further including a second actuator for aligning a proximal end of the working surface with the second marking.

8.15 The balloon catheter of any of the foregoing paragraphs 8.1 to 8.14, comprising: a shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and supporting first and second radiopaque identifiers; a first actuator for aligning a first end of the working surface with the first radiopaque marking; and a second actuator for aligning a second end of the working surface with the second radiopaque identifier.

8.16 The balloon catheter of any of the foregoing paragraphs 8.1 to 8.15, comprising: a shaft for carrying the balloon, the shaft including at least one channel formed in an outer portion of a wall of the shaft; and an actuator having a first end connected to the balloon and a second end at least partially positioned in the channel.

8.17 The balloon catheter of any of the foregoing paragraphs 8.1 to 8.16, comprising: a shaft for carrying the balloon, the shaft including a plurality of channels formed in an outer portion of the wall of the shaft.

8.18 The catheter of paragraph 8.17, further including an actuator having a first end connected to the balloon and a second end positioned in at least one of the channels.

8.19 The catheter of any of the foregoing paragraphs 8.1 to 8.8, comprising: a spring connected to a wall of the balloon.

8.20 The catheter of paragraph 8.19, wherein the spring is at least partially radiopaque.

8.21 The catheter of paragraph 8.19 or 8.20, wherein the spring is connected to a conical section of the wall of the balloon.

8.22 The balloon catheter of any of the foregoing paragraphs 8.1 to 8.21, wherein the balloon includes a drug.

9.1 A balloon catheter for use with a guidewire, comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon connected to
the distal end of the shaft, the balloon including a working surface; a radiopaque identifier for identifying the working surface; and a receiver adjacent the proximal end of the shaft and adapted for allowing die shaft to move relative to the receiver in at least the longitudinal direction.

9.2 The catheter of paragraph 9.1, wherein the shaft carries a stop, and the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

9.3 The catheter of paragraph 9.2, further including a tube for supplying an inflation fluid to inflate the balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop forms a seal with the recess to prevent the inflation fluid from passing around the shaft.

9.4 The catheter of paragraph 9.3, wherein the seal comprises an O-ring arranged coaxially with the shaft.

9.5 The catheter of paragraph 9.1, wherein the radiopaque identifier is separate from the shaft.

9.6 The catheter of paragraph 9.5, wherein the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.

9.7 The catheter of paragraph 9.6, wherein the insert comprises a tubular sleeve arranged coaxially with the shaft.

9.8 The catheter of paragraph 9.6, wherein the insert comprises a first insert at a proximal end of the balloon and a second insert at a distal end of the balloon.

9.9 The catheter of paragraph 9.1, further including a guidewire for positioning in the shaft.

9.10 A hub for a balloon catheter having an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and an inflatable balloon connected to the distal end of the shaft for being inflated by an inflation fluid, comprising: a body including a receiver for receiving a proximal portion of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction; and a stop for restraining the movement of the shaft relative to the body in the longitudinal direction.

9.11 The hub of paragraph 9.10, wherein the body includes a guidewire port arranged in communication with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the balloon.

9.12 The hub of paragraph 9.10, wherein the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

9.13 The hub of paragraph 9.12, wherein the stop forms a seal with the recess to prevent the inflation fluid from passing.

9.14 The hub of paragraph 9.10, wherein the stop comprises an O-ring.
9.15 A catheter including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.

9.16 The catheter of any of the foregoing paragraphs, further including a drug on the balloon.

9.17 A catheter comprising a hub for receiving a proximal end of a guidewire shaft, the shaft being adapted to slidably move in a restrained manner relative to the hub.

10.1 A balloon catheter, comprising: an elongated tubular shaft having a proximal end and a distal end spaced apart in a longitudinal direction, the shaft along a distal portion including at least one radiopaque identifier, said distal portion being formed of a material resistant to elongation in the longitudinal direction; and an inflatable, non-compliant balloon extending over the distal portion of the shaft.

10.2 The catheter according to paragraph 10.1, wherein the balloon includes a generally cylindrical barrel section positioned between generally conical sections, said barrel section including a working surface having at least one edge aligned with the radiopaque identifier.

10.3 The catheter according to paragraph 10.2, wherein the radiopaque identifier comprises a first marker positioned at the at least one edge of the working surface, and further including a second marker positioned at the opposite edge of the working surface in the longitudinal direction.

10.4 The catheter according to paragraph 10.2, wherein each marker comprises a radiopaque band swaged to the distal portion of the shaft.

10.5 The catheter according to paragraph 10.1, wherein the distal portion of the shaft comprises a tube adapted for guiding a guidewire from a proximal end of the balloon to a distal end of the balloon.

10.6 The catheter according to paragraph 10.1, wherein at least the distal portion of the shaft comprises steel.

10.7 The catheter according to paragraph 10.1, wherein the shaft comprises steel.

10.8 The catheter according to paragraphs 10.6 or 10.7, wherein the steel shaft comprises a stainless steel.

10.9 The catheter according to paragraphs 10.7 or 10.8, wherein the steel shaft includes a spiral cut along a portion other than the distal portion covered by the balloon.

10.10 The catheter according to paragraphs 10.7 or 10.8, wherein the steel shaft comprises a polymer layer.

10.11 The catheter according to paragraph 10.10, wherein the polymer layer comprises an outer layer of the shaft.

10.12 The catheter according to paragraph 10.1, wherein the distal portion of the shaft comprises a polymer shaft including a braid or mesh.

10.13 The catheter according to paragraph 10.1, wherein the balloon includes a generally cylindrical barrel section positioned between generally conical sections, the distal portion of the shaft extending from a first end of a first conical section to a second end of a second conical section.

10.14 The catheter according to paragraph 10.1, wherein the non-compliant balloon comprises one or more inelastic fibers.
10.15 The catheter according to paragraph 10.1, wherein the non-compliant balloon comprises polyethylene terephthalate.

10.16 The catheter of any of the foregoing paragraphs 10.1 to 10.15, further including a drug on the balloon.

11.1 A balloon catheter, comprising: a shaft extending in a longitudinal direction and adapted for expanding from a compressed condition to an expanded condition in the longitudinal direction, the shaft supporting at least one radiopaque identifier, and an inflatable balloon positioned along the shaft, the balloon when inflated including a working surface for aligning with the radiopaque identifier in at least the expanded condition of the shaft.

11.2 The catheter of paragraph 11.1, wherein the expandable shaft comprises a first portion connected in tandem to an expandable element

11.3 The catheter of paragraphs 11.1 or 11.2, wherein the expandable element comprises a spring.

11.4 The catheter of paragraph 11.3, wherein the spring comprises a coil spring.

11.5 The catheter of paragraphs 11.3 or 11.4, wherein the spring comprises a tension coil spring.

11.6 The catheter of paragraph 11.2, wherein the expandable element comprises a bellows.

11.7 The catheter of paragraph 11.2, wherein the expandable element comprises a fiber matrix.

11.8 The catheter of paragraph 11.7, further including a spring associated with the fiber matrix.

11.9 The catheter of any of paragraphs 11.2-11.8, wherein the expandable element is inside an interior compartment of the balloon.

11.10 The catheter of any of paragraphs 11.2-11.8, wherein the expandable element is outside an interior compartment of the balloon.

11.11 The catheter of any of paragraphs 11.2-11.10, wherein the expandable element connects to one end of the balloon.

11.12 The catheter of any of paragraphs 11.2-11.10, wherein the expandable element connects the first portion of the shaft to a second portion of the shaft.

11.13 The catheter of any of the foregoing paragraphs 11.1 to 11.12, wherein the shaft comprises an inflation lumen for delivering an inflation fluid to the balloon.

11.14 The catheter of any of the foregoing paragraphs 11.1 to 11.13, wherein the expandable shaft in at least a partially expanded condition a port for delivering the inflation fluid to the balloon, said port being closed when the shaft is in a non-expanded condition.

11.15 The catheter of any of the foregoing paragraphs 11.1 to 11.14, wherein the expandable shaft comprises a first expandable element connecting a first portion of the shaft to a second portion of the shaft, and further including a second expandable element connecting the second portion of the shaft to a third portion of the shaft.
11.16 The catheter of paragraph 11.15, wherein the first and second expandable elements comprise first and second coil springs.

11.17 The catheter of paragraph 11.16, wherein the first and second coil springs have different spring constants.

11.18 The catheter of any of the foregoing paragraphs 11.1 to 11.17, wherein the radiopaque identifier comprises a pair of spaced radiopaque markers, one positioned in alignment with a first end of the working surface and another positioned at a second end of the working surface.

11.19 The catheter of any of paragraphs 11.15-11.18, wherein the first and second expandable elements comprise a radiopaque material.

11.20 The catheter of any of the foregoing paragraphs 11.1 to 11.19, wherein the radiopaque identifier comprises a spring.

11.21 The catheter of paragraph 11.2, wherein the expandable element comprises a spring having a variable spring constant.

11.22 The catheter of any of the foregoing paragraphs 11.1 to 11.21, wherein the shaft comprises a guidewire lumen.

11.23 The catheter of any of the foregoing paragraphs 11.1 to 11.22, further including a passage adjacent the tip for receiving a guidewire external to the balloon.

11.24 The catheter of paragraph 11.2, wherein the first portion is adjacent a distal end of the shaft.

11.25 A balloon catheter, comprising: a shaft; a balloon; and an expandable element adapted for expanding in the longitudinal direction connecting the shaft to the balloon.

11.26 The catheter of paragraph 11.25, wherein the expandable element is selected from the group consisting of a spring, a bellows, a fiber matrix, or combinations of the foregoing.

11.27 The catheter of paragraph 11.25 or 26, wherein the expandable element comprises an encapsulated spring.

11.28 A balloon catheter comprising a balloon and an inflation lumen including an expandable element adapted for expanding in the longitudinal direction for providing a fluid to the balloon.

11.29 The catheter of any of paragraphs 11.25-11.28, wherein the expandable element comprises a radiopaque material.

11.30 The catheter of any of the foregoing paragraphs 11.1 to 11.29, further including a drug on the balloon.

12.1 A balloon catheter, comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; and a balloon having an inflation compartment formed a balloon wall including a working surface, and further including at least one chamber adjacent to the working surface adapted for receiving an identifier for identifying the location of the working surface.
12.2 The balloon catheter of paragraph 12.1, wherein the shaft includes a first lumen for supplying a fluid to the chamber.

12.3 The balloon catheter of paragraph 12.2, wherein the shaft includes a port between the first lumen and the chamber.

12.4 The balloon catheter of paragraph 12.2, wherein the shaft includes a second lumen for supplying a fluid to an interior compartment of the balloon.

12.5 The balloon catheter of paragraph 12.4, wherein the shaft includes a port between the second lumen and the interior compartment.

12.6 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.5, wherein the identifier comprises a contrast agent.

12.7 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.6, wherein the contrast agent comprises a material selected from the group consisting of a radiopacifier, polyvinyl acetate, cellulose, a fluid, a liquid, a solid, a powder, or combinations of the foregoing.

12.8 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.7, wherein the chamber comprises a first chamber at a proximal end of the balloon, and further including a second chamber at a distal end of the balloon.

12.9 The balloon catheter of paragraph 12.8, wherein the second chamber is adapted for receiving the identifier from a lumen in the shaft in fluid communication with the first chamber via a port.

12.10 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.9, wherein the chamber is generally annular.

12.11 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.10, wherein the chamber is positioned between a transition from a barrel section to a conical section of the balloon and an end of the balloon.

12.12 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.11, wherein the chamber is provided by a film attached to the balloon wall.

12.13 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.12, wherein the chamber is embedded in the balloon wall.

12.14 The balloon catheter of any of the foregoing paragraphs 12.1 to 12.13, wherein the chamber is provided by a film extending between the balloon wall and an outer surface of the shaft.

While the disclosure presents certain embodiments to illustrate the inventive concepts, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. For example, the ranges and numerical values provided in the various embodiments are subject to variation due to tolerances, due to variations in environmental factors and material quality, and due to modifications of the structure and shape of the balloon, and thus can be considered to be approximate and the term "approximately" means that the
relevant value can, at minimum, vary because of such factors. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
Claims

1. A balloon catheter for use with a guidewire, comprising:
 an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal
 end and a distal end;
 an inflatable balloon connected to the distal end of the shaft, the balloon including a working
 surface;
 a radiopaque identifier for identifying the working surface; and
 a receiver adjacent the proximal end of the shaft and adapted for allowing the shaft to move
 relative to the receiver in at least the longitudinal direction.

2. The catheter of claim 1, wherein the shaft carries a stop, and the receiver further includes a
 recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a
 corresponding dimension of the stop.

3. The catheter of claim 2, further including a tube for supplying an inflation fluid to inflate the
 balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop
 forms a seal with the recess to prevent the inflation fluid from passing around the shaft.

4. The catheter of claim 3, wherein the seal comprises an O-ring arranged coaxially with the
 shaft.

5. The catheter of any of the foregoing claims, wherein the radiopaque identifier is separate
 from the shaft.

6. The catheter of claim 5, wherein the radiopaque identifier comprises an insert positioned
 within the interior compartment of the balloon.

7. The catheter of claim 6, wherein the insert comprises a tubular sleeve arranged coaxially with
 the shaft.

8. The catheter of any of the foregoing claims 5 to 7, wherein the insert comprises a first insert
 at a proximal end of the balloon and a second insert at a distal end of the balloon.

9. The catheter of any of the foregoing claims, further including a guidewire for positioning in
 the shaft.

10. A hub for a balloon catheter having an elongated, tubular shaft extending in a longitudinal
 direction, said shaft having a proximal end and a distal end, and an inflatable balloon connected to the distal
 end of the shaft for being inflated by an inflation fluid, comprising:
 a body including a receiver for receiving a proximal portion of the shaft and adapted for
 allowing the shaft to move relative to the receiver in at least the longitudinal direction; and
 a stop for restraining the movement of the shaft relative to the body in the longitudinal
 direction.
11. The hub of claim 10, wherein the body includes a guidewire port arranged in communication with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the balloon.

12. The hub of claim 10 or 11, wherein the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.

13. The hub of any of the foregoing claims 10 to 12, wherein the stop forms a seal with the recess to prevent the inflation fluid from passing.

14. The hub of any of the foregoing claim 10 to 13, wherein the stop comprises an O-ring.

15. A catheter including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.

16. The catheter of any of the foregoing claims, further including a drug on the balloon.

17. A catheter comprising a hub for receiving a proximal end of a guidewire shaft, the shaft being adapted to slidably move in a restrained manner relative to the hub.
According to International Patent Classification (IPC) of the national classification and IPC:

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61M25/00 A61M25/10

ADD.

According to International Patent Classification (IPC) and to the national classification.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/135581 A2 (BOSTON SCIENTIFIC SCIMED INC [US]; GODIN DOMINICK [US]; WISE DEREK R [US]) 21 December 2006 (2006-12-21) page 2, paragraph 2 page 14, paragraph 2 - page 15, paragraph 2; figures 34-39</td>
<td>1-5, 10-17</td>
</tr>
<tr>
<td>X</td>
<td>US 2009/171278 AI (HI RZOWICZ ERAN [IL] ET AL) 2 July 2009 (2009-07-02) the whole document</td>
<td>1.5-10, 15-17</td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/003135 A2 (HOTSPUR TECHNOLOGIES INC [US]; KROLIK JEFFREY A [US]; MI RZAE DARYUSH []) 7 January 2010 (2010-01-07) abstract; figures</td>
<td>1, 10, 15, 17</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 850 659 AI (CORDIS CORP [US]) 1 July 1998 (1998-07-01) abstract; figures</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

 - "A" document defining the general state of the art which is not considered to be of particular relevance.
 - "E" earlier application or patent but published on or after the international filing date.
 - "L" later document published prior to the international filing date but later than the priority date claimed.

 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a skilled person in the art.

 - "A" document member of the same patent family.

Date of the actual completion of the international search: 4 July 2013

Date of mailing of the international search report: 12/07/2013

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:

Kousouretas, Ioannis
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006135581 A2</td>
<td>21-12-2006</td>
<td>CA 2611579 A1</td>
<td>21-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1907040 A2</td>
<td>09-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008543368 A</td>
<td>04-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007005092 A1</td>
<td>04-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006135581 A2</td>
<td>21-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012245608 A1</td>
<td>27-09-2012</td>
</tr>
<tr>
<td>WO 2010003135 A2</td>
<td>07-01-2010</td>
<td>AU 2009266808 A1</td>
<td>07-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2729750 A1</td>
<td>07-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102159277 A</td>
<td>17-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2307086 A2</td>
<td>13-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011526820 A</td>
<td>20-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010036410 A1</td>
<td>11-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010003135 A2</td>
<td>07-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69719708 T2</td>
<td>05-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5779731 A</td>
<td>14-07-1998</td>
</tr>
</tbody>
</table>