

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	101998900716765	
Data Deposito	12/11/1998	
Data Pubblicazione	12/05/2000	

	Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
l	В	60	L		

Titolo

DISPOSITIVO ELETTROMECCANICO ATTO AD AUMENTARE LA DURATA DELLA CARICA ELETTRICA DELLE BATTERIE DI VEICOLI AZIONATI DA MOTORI ELETTRICI

DESCRIZIONE PER UN BREVETTO DI INVENZIONE INDUSTRIALE A NOME DI:

BELLORA LUIGI - VIA LARIO N. 5 - CAMPARADA (MI)

RIASSUNTO DELL'INVENZIONE

A corredo di domanda di brevetto di invenzione a titolo:
"Dispositivo elettromeccanico atto ad aumentare la durata della
carica elettrica delle batterie di alimentazione dei veicoli azionati da
motori elettrici

DESCRIZIONE

1 2 NOV. 1998

La presente invenzione si riferisce principalmente ad autoveicoli o similari azionati da motori elettici alimentati con batterie o accumulatori.

Come è noto ogni veicolo al quale viene impresso un movimento di traslazione, possiede un'energia detta energia cinetica EC, che risulta essere direttamente proporzionale alla massa del veicolo stesso ed alla velocità posseduta.

Questa energia cinetica viene espressa dalla formula:

 $EC = (P: 2g) V^2$

Tale energia è posseduta dal mezzo, sino a quando il veicolo si muove, viene quindi necessariamente sempre dissipata durante l'operazione di decelerazione (frenata), sino al momento in cui (V^2) è diventato (O) e quindi si ha l'arresto del veicolo.

Se consideriamo ad esempio un autoveicolo tradizionale, si deduce che tale energia cinetica EC viene dissipata principalmente durante la frenatura delle ruote e dagli attriti passivi.

E' chiaro che recuperando questa energia, specie nelle auto elettriche ed accumulandola nelle batterie di alimentazione la durata della carica di queste ultime, può essere sensibilmente aumentata.

Il principio tecnico del presente trovato, atto ad aumentare la durata di carica della batteria è il seguente:

se ad un veicolo azionato da un motore elettrico ad esempio un automobile alimentata mediante accumulatori e batterie, viene applicata ad ogni ruota traslante un generatore di corrente, ne consegue che a seguito della trazione delle ruote stesse, viene prodotta energia elettrica che serve per integrare la carica della batteria.

Risulta evidente che pur dovendo spendere per la marcia dell'autoveicolo una quantità maggiore di energia, ogni qualvolta che per motivi di marcia viene staccata, l'alimentazione al motore propulsore, le ruote continuano a girare per inerzia e quindi

Spell fr.

i generatori ad esse applicate continuano a girare producendo energia, che convogliata alle batteria ne integrano la carica.

Ċ

43

E' chiaro che inoltre anche durante la marcia dell'autoveicolo i generatori applicati alle ruote, producono sempre corrente che compensa in parte quella spesa per la marcia, ma soprattutto è durante la decelerazione o nei tratti necessariamente percorsi in folle per inerzia, che il recupero è totale, in quanto in questi casi, il motore non assorbe energia.

Se si considera che nei percorsi cittadini i tratti percorsi per inerzia rappresentano una notevole percentuale, si deduce che l'incremento dell'energia disponibile ricuperabile è sensibilmente notevole.

L'applicazione di questo accorgimento aumento l'autonoma della batteria, riducendo sensibilmente gli interventi aumentando anche la rapidità della carica.

Come risulta evidente trattasi di un principio molto semplice di facile applicazione che offre notevoli vantaggiosi risultati.

Un ulteriore considerazione: poiché le ruote iniziano appena il veicolo inizia la sua marcia e anche i generatori al fine di non generare ulteriori forze negative durante lo spunto, è consigliabile l'impiego di un cambio meccanico di velocità od un variatore continuo (cambio automatico).

Inoltre il recupero può avvenire quando la velocità del veicolo è già notevole e quindi la EC disponibile, ha un valore maggiore.

Quest'ultimo accorgimento può essere realizzato sia con mezzi elettronici, meccanici che elettrici, come pure i generatori possono avere forme, capacità e potenze appropriate.

Il principio esposto può trovare pratiche e vantaggiose applicazione non solo nel campo automobilistico, ma che in quei sistemi di organi in movimento di traslazione dove è possibile e conveniente recuperare energia, ad esempio vagoni ferroviari, motorini e biciclette.

E' possibile corredare il veicolo con 2 o più batterie, di cui una eroga energia e l'altra o le altre sono sotto carica; munite di dispositivo elettronico che sposta automaticamente l'erogazione della batteria erogante ad una delle altre, quando questa risulta parzialmente insufficiente come descritto nella rivendicazione n. 13.

Non si ritiene necessario allegare disegni dimostrativi, in quanto la descrizione del trovato risulta molto semplice, da non richiedere alcun supposto illustrativo.

gelle he

RIVENDICAZIONI

- 1. Recupero di energia cinetica mediante applicazione di generatori di corrente azionati dalla traslazione di un sistema di movimento.
- 2. Il sistema di recupero di energia di cui alla rivendicazione 1, è caratterizzato dal fatto che ad ogni ruota possono essere applicati più generatori.
- 3. Il sistema di recupero di energia di cui alle rivendicazioni 1 e 2 è caratterizzato dal fatto che anziché l'indotto può ruotare lo statore sull'indotto.
- 4. Il sistema di recupero di energia di cui alla rivendicazione 1.2 e 3, è caratterizzato dal fatto che i generatori possono essere applicati anche ad autoveicoli promiscui.
- 5. Il sistema di recupero dell'energia di cui alle rivendicazioni precedenti è caratterizzato dal fatto che i generatori possono essere applicati a carrozzine, cicli, tricicli, motorini o altri semoventi azionati da motori elettrici alimentati da batterie.
- il sistema di recupero di energia di cui alle rivendicazione precedenti, è
 caratterizzato dal fatto che questo recupero avviene indipendentemente dal tipo di
 batteria applicata.
- 7. Il sistema di recupero di energia di cui alle rivendicazioni precedenti, è caratterizzato dal fatto che il recupero può essere integrato da batterie solari, dai recuperi di frenatura, dai recuperi della velocità del mezzo e dalla variazione della rotazione del motore propulsore.
- 8. Il sistema di recupero di energia di cui alle rivendicazioni precedenti, è caratterizzato dal fatto che il recupero può avvenire non necessariamente sin dallo spunto d'avviamento del mezzo, ma quando è stata raggiunta una certa velocità, interponendo anche un cambio elettromeccanico od elettronico per lo spunto.
- 9. Il sistema di recupero di energia di cui alle rivendicazioni precedenti, è caratterizzato dal fatto che ad ogni ruota possono essere applicati generatori disposti in posizione radiale o coassiale o altre disposizioni opportunamente dimensionati.
- 10.Il sistema di recupero di energia di cui alle rivendicazioni precedenti, è caratterizzato dal fatto che possono essere realizzate anche biciclette elettriche idonee per persone debilitate. In questo caso può avvenire mediante l'applicazione di un dispositivo azionato con i pedali i quali azionano un disco elettromagnetico che produce corrente da aggiungere al recupero della traslazione:

 $EC = (P:2g) V^2$

oppure mediante l'applicazione di un generatore fissato alla ruota posteriore.

- 11. Il sistema di recupero energia di cui alle rivendicazioni precedenti è caratterizzato dal fatto che è possibile applicare anche uno o più generatori azionato dallo spostamento dell'aria.
- 12. Il sistema di recupero dell'energia di cui alle rivendicazioni precedenti, è caratterizzato dall'applicazione di generatori direttamente al motore propulsore, eliminando la batteria di alimentazione.
- 13. Sistema di recupero di energia di cui alle rivendicazioni precedenti, è caratterizzato dal fatto che è possibile corredare il veicolo di 2 batterie, di cui una che eroga energia e l'altra posta sotto carica. Un dispositivo elettronico sposta l'erogazione di una batteria all'altra ogni qualvolta la batteria erogante è parzialmente scarica o insufficiente.

Î

ē,

Jellah.

14. Sistema di recupero di energia caratterizzato dall'applicazione di generatori azionati per inerzia sostanzialmente come descritto e rivendicato.

Milano P

