METHOD AND APPARATUS FOR TRIMMING THE OPTICAL PATH LENGTH OF OPTICAL FIBER COMPONENTS

Abstract: The method and apparatus of the present invention achieves the trimming and therefore, tuning of fiber optic devices by, in one embodiment, precisely heating a small area (A) of a fiber to allow its elongation when mounted under tension in its package. By pulsing a source of heat (40) in precise amount, the elongation can be precisely controlled within 1 micrometer precision over a tuning range of about 200 piconometers. In another embodiment with fibers having core dopants which can be diffused, the optical length of an optical fiber can be trimmed with nanometer precision. By employing a controlled source of localized energy applied to the optical fiber, real time trimming can be achieved in both systems by injecting a broad band source of energy (30) at the input of the device and coupling a spectrum (32) at its output to monitor the frequency characteristic of the optical device during trimming.
METHOD AND APPARATUS FOR TRIMMING
THE OPTICAL PATH LENGTH OF OPTICAL FIBER COMPONENTS

BACKGROUND OF INVENTION

1. Field of the Invention

The present invention relates generally to the trimming of optical fiber components and particularly to a method and apparatus for achieving the trimming of the optical path length of an optical fiber component.

2. Technical Background

Optical fiber based devices are widely utilized as components for optical communications due to their relatively low insertion loss and low cost. Foremost of optical fiber components are fiber Bragg gratings (FBG) which are typically made by ultraviolet (UV) wavelength energy exposure. Once an FBG is mounted to a substrate and annealed, it is no longer photosensitive and cannot be further tuned. Thus, it is necessary to empirically predict the final frequency of such a grating which can lead to a significant error and gratings which are not within specifications. Due to the uncertainty of the wavelength shift resulting from the attachment process and annealing, the center wavelength of a package fiber Bragg grating typically has an error of +/- 20 picometers from the desired center wavelength. Such a wavelength error combined with a wavelength drift of, for example, distributed feedback lasers, which may be from +/- 50 picometers, and the residual temperature dependence of +/- 20 picometers imposes a highly stringent requirement on the design of, for example, 50 GHz fiber Bragg gratings.

Infused fiber Mach-Zehnder interferometers are also wavelength selective and are used in a variety of communication devices, such as optical switches, filters, wave
division multiplexers, demultiplexers, and add/drop filters as examples. In Mach-Zehnder based devices, the optical performance critically depends on the phase difference and/or optical path length difference between two interfering arms. Phase trimming has been attempted utilizing UV exposure to the fibers, however, such fibers must be photosensitive and, once annealed after such UV exposure, the trimming processes cannot be further controlled. Additionally, the maximum amount of trimming utilizing UV exposure is limited to a few wavelengths due to the relatively small refractive index change induced by UV radiation. In some applications, such a trimming process may not be sufficient to achieve the optical path length change necessary. With optical path length sensitive fiber-based devices, therefore, not only is the tuning range a serious limitation by prior techniques, so is the tuning accuracy. There exists a need, therefore, for a system for the tuning of fiber optic devices over a relatively wide band of wavelengths, as well as to a precise wavelength.

SUMMARY OF THE INVENTION

The method and apparatus of the present invention achieves the tuning of fiber optic devices by, in one embodiment, precisely heating a small area of a fiber adjacent a grating mounted under tension to allow the grating length to change. By pulsing a source of heat in controlled amounts, the optical length of such a grating can be precisely controlled within 1 picometer precision over a tuning range of about 200 picometers.

In fibers having dopants which can be diffused, the length of an optical fiber can be trimmed with nanometer precision by thermal diffusion which directly affects the refractive index of the fiber, thereby effectively changing its optical path length.

In either embodiment, real time tuning is achieved by injecting a broad band source of energy at the input of the device and coupling a spectral analyzer at its output to monitor the center frequency of the optical device during trimming using a controlled source of localized energy applied to the optical fiber. In a preferred embodiment of the invention, the energy source comprised a laser and particularly a CO2 laser having a relatively narrow beam corresponding to the diameter of the optical fiber employed in the device. Energy from the laser is directed to a small area of the optical device in pulses which provide precise control of the trimming process.
A method of trimming an optical fiber component by directing a source of radiation onto a section of the component for heating the section, coupling a broad band source of signals to an input of the component, coupling an optical analyzer to an output of the component, and monitoring the signal at the output of the component while selectively applying the radiation to the component from the source to achieve a predetermined trimming effect.

Additional features and advantages of the invention will be set forth in the detailed description which follows and will be apparent to those skilled in the art from the description or recognized by practicing the invention as described in the description which follows together with the claims and appended drawings.

It is to be understood that the foregoing description are exemplary of the invention only and are intended to provide an overview for the understanding of the nature and character of the invention as it is defined by the claims. The accompanying drawings are included to provided a further understanding of the invention and are incorporated and constitute part of this specification. The drawings illustrate various features and embodiments of the invention which, together with their description serve to explain the principals and operation of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an enlarged schematic side elevational view of a fiber Bragg grating, shown partially packaged;

Fig. 2 is a top plan view of the fiber Bragg grating shown in Fig. 1 and the structure employed in practicing the method of the present invention and their relationship to the grating;

Fig. 3 is a waveform diagram illustrating the trimming of a fiber Bragg grating, employing the apparatus and method illustrated in Fig. 2; and

Fig. 4 is a schematic view of a Mach-Zehnder interferometer employed as an add drop filter, which can be trimmed according to an alternative embodiment of the present invention at locations indicated in Fig. 4.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to Fig. 1, there is shown a typical fiber Bragg grating assembly 10 which includes an optical fiber 12 on which there is imprinted in a central area 14 spanning a width of approximately 30 centimeters, a grating desired to be tuned to 1559.25 nanometers (nm). The optical fiber 12 is supported on a negative coefficient of expansion substrate 16, such as β-eucryptite, by a pair of spaced glass frits 18 and 20. Between the glass frits 18 and 20, there exists end zones 22 and 24 spanning the grating 14 and each having a length of approximately 10 centimeters such that the overall distance between frits 18 and 20 is approximately 50 centimeters.

Fiber 12 is mounted to the substrate 16 under a tension of approximately 10 kpsi, with grating 14 being conventionally formed utilizing an ultraviolet light to change the index of refraction of the core of the fiber 12 in a pattern selected for a wavelength of approximately 1559.2 nanometers as an example. Naturally, other frequency fiber Bragg gratings can be trimmed with the trimming method of the present invention. The grating assembly 10 is then annealed, which eliminates the photosensitivity of the fiber 12, preventing any further tuning. As a result, the exact frequency of the grating mounted to the substrate 16 can vary significantly. Before the final packaging of the grating shown in Fig. 1, it can be precisely trimmed, resulting in its tuning to an exact frequency utilizing the method and apparatus shown in Fig. 2 and now described.

In Fig. 2, a top plan schematic view of the grating assembly 10 is shown. The grating is trimmed for the desired optical path length of the grating area 14 itself by heating an isolated area encircled as area A in Fig. 2 in end section 22 of the grating, although the trimming can take place at either of ends 22 or 24 or both, if desired. It was discovered that the area of fiber 12 adjacent grating 14 can be heated to change its viscosity, which is a function of the width “w” of an impinging laser beam and indirectly proportional to three times the elongation speed of section 22 upon heating according to the following formula: $\eta (T, z) = \frac{\sigma w}{3\nu}$ after heating, where “T” is the heated temperature and “z” is the position of the laser beam.

After heating for a time “t”, the localized fiber elongation Δ (causing the grating spacing to shorten) is:
\[\Delta = \frac{\sigma w}{t} \frac{t}{\eta(T,z)} \] (equation 1).

Thus, it was discovered that by controlling the local viscosity utilizing an appropriate heat source and exposure time, a small amount of elongation in the order of nanometers can be achieved. Before describing a specific example of the results obtained, a brief description of the equipment and method of Fig. 2 follows.

In Fig. 2, real time trimming of the grating 14 can be achieved by providing a broad band source 30 of optical energy to an input 19 of grating assembly 10, while an optical spectral analyzer 32 is coupled to an output 21 of the grating assembly 10. Thus, before trimming, the wavelength of the grating can be determined by viewing the display output from the analyzer 32. Assuming it is desired to trim the grating assembly 14, tuning it to a desired frequency, the localized heat source is applied to the center of the 10 mm section 22, that is 5 mm in from frit 18 in the preferred embodiment in the location identified by encircled area A. The energy employed is provided by a CO₂ laser 40 which has a frequency which provides heating of the area A. A conventional CO₂ laser, such as an SYNRAD 48-2W having a power stability within +/- 1-percent per hour was employed in the preferred embodiment of the invention. The light beam 42 from CO₂ laser 40 is passed through a control shutter 43, through a beam splitter 44 onto a focusing lens 46 made of ZnSe having a 1.5 inch focal length, thus positioned approximately 1.5 inches from position A on the fiber Bragg grating. The laser beam 42 passes through the beam splitter 44, which is employed to coaxially align a visible light beam 45 from a helium neon laser 48 positioned to provide a combined beam 42 and 45 which is visible such that a microscope 50 can be positioned in the area adjacent position A for visibly inspecting the area to which the laser beam 42 is to be directed, assuring its freedom from dust particles or other contaminants and precisely aligning the CO₂ laser onto area A of the optical fiber. The microscope has a magnification of approximately 100x to monitor the heated region A.

The focused laser beam has a diameter substantially equivalent to the diameter of the optical fiber and, in the preferred embodiment, 125 \(\mu \)m. By providing the impinging heating light beam 42 from laser 40 laterally, as illustrated in Fig. 2, the substrate 16 is not heated, thereby not interfering with the trimming of the fiber Bragg grating 14. An example of the trimming of a fiber Bragg grating 10 having a length of
50 mm between the frits and a tension σ equal to 10 kpsi, a laser width "w" of .2 mm, trimming of 1.5 picometers in one second requires a viscosity of 13.0 dPa.s. This results in a temperature of 1,200°C for the viscosity of silica employed for the optical fiber.

To achieve a trimming speed of 1 picometer per second, the laser power and focusing condition is first calibrated utilizing a packaged grating with a similar tension and attachment length. The grating is mounted on an XYZ translation stage 60 (shown in phantom in Fig. 2) and positioned utilizing the helium neon laser beam 45 and microscope 50. Due to the relative shallow depth of the field of the microscope, it effectively registers both lateral and axial positions of the heated region. If necessary for more precise registration, a second microscope orthogonal to the direction of the first microscope and to the laser direction can be employed for precise alignment. Once the reference fiber Bragg grating is aligned, the stage 60 can receive other gratings moved into the same initial position. Final adjustments and inspection of each grating being trimmed is similarly achieved using visible laser beam 45, microscope 50, and stage 60.

The laser beam 42 is pulsed using the controlled electro-mechanical shutter 43 which provides pulses of selectable duration and frequency typically from 1 to 30 seconds in duration. The shutter 43 is a commercially available unit and allows laser 40 to remain continuously on for stability. The target tuned wavelength of the grating can be approached in small increments as illustrated by the waveform diagram of Fig. 3. Thus, for example, a trimming step of 4 picometers is obtained with the laser power adjusted to .660 watts and an exposure time of 2.5 seconds. Fig. 3 illustrates five consecutive exposures indicating a relatively linear shift in a gratings tuned wavelength. The wavelength shift is stabilized after about 10 seconds from the exposure to the laser beam 42. An exposure time of .5 seconds results in a wavelength shift of less than 1 pm, which is beyond the resolution of the optical spectral analyzer 32. The wavelength shift is shown by the following equation:

$$\frac{\Delta \lambda_{\text{Bragg}}}{\lambda_{\text{Bragg}}} = \frac{\Delta}{l}$$

Where "l" is the fiber length between the two frits 18 and 20. The amount of trimming of the grating and tuning of the Bragg wavelength, therefore, is:
\[\Delta \lambda_{\text{Bragg}} = -\frac{\sigma w}{3l} \left(\frac{r}{\eta(T, z)} \right) \lambda_{\text{Bragg}} \]

where \(\Delta \) is derived from equation 1 supra.

As can be seen from the above, a tuning step of 1.5 picometers corresponds to a fiber elongation of 50 nanometers, allowing grating 14 to contract and increase in frequency by as much as 200 picometers. This system, therefore, can be employed for providing precise trimming of, for example, Lucent 50 GHz gratings for center wavelength tuning.

The apparatus of Fig. 2 can also be employed for tuning of optical devices which are not mounted under tension and, therefore, the optical length changed not by allowing the relaxation of the optical fiber but instead by the diffusion of a dopant of an optical fiber. This changes the refractive index and, therefore, varies the optical length for precise tuning of, for example, a Mach-Zehnder interferometer as illustrated in Fig. 4.

Referring now to Fig. 4, there is shown a Mach-Zehnder optical device configured as a add-drop filter 60 which can be precisely tuned employing the method of the alternative embodiment of the present invention. The Mach-Zehnder add-drop filter 60 comprises first and second optical fibers 62 and 64, which are fused in a first coupler 63, and has branches with gratings 66 and 68, respectively, formed therein which can be tuned to matching wavelengths \(\lambda_1 \) as described in greater detail below. The fibers continue to a second fused coupler 65 and terminate in an input 69 for fiber 62 and an output 70 for fiber 64. Fiber 62 has an input 61 which receives, as an example, eight discrete wavelengths \(\lambda_1 - \lambda_8 \) modulated with signal information. The add-drop filter 60 drops the \(\lambda_1 \) frequency at output terminal 67, allowing the addition of \(\lambda_1' \) at input 69 to signals \(\lambda_2 - \lambda_8 \) at output 70.

The Mach-Zehnder device 60 is conventionally fabricated and must be trimmed to tune gratings 66 and 68. Typically, Mach-Zehnder devices, such as device 60, have been trimmed utilizing ultraviolet radiation, however, as noted above, such radiation is ineffective once a device is annealed, and such annealing affects the optical path length thereby changing any trimming which may have taken place. Additionally, ultraviolet radiation is not as effective in changing the index of refraction and, therefore, the optical path length of the optical devices. As a result in the past, frequently an isolator was
placed before the add port 69 to reduce multi-reflection interference. By using the trimming apparatus illustrated in Fig. 2 and applying heat at a precise location and in a controlled amount, the gratings 66 and 68 of the Mach-Zehnder device 60 can be precisely phase matched. The couplers 63 and 65 can also be trimmed to change their effective coupling length for providing a 50/50 coupler.

By applying precise amounts of energy through laser beam 42 in a manner similar to that described above with reference to Fig. 2 to the optical fiber area adjacent either of the interfering gratings 66 and 68 as shown by arrow B, for example, in Fig. 4, the core dopant diffuses toward the cladding, lowering the refractive index and shortening the optical path of one of the interfering arms 66, 68. The energy can be applied to either side of the center of gratings 66 or 68, depending on which of the legs needs to be optically shortened for phase matching of the two interfering gratings. Trimming can be done in real time by providing a broad band signal at input 61 and monitoring the output at port 70 to determine the absence of energy at the wavelength \(\lambda_i \) for a filter dropping \(\lambda_i \). The amount of energy is slightly greater than discussed with respect to the first embodiment with a Ge doped fiber requiring somewhat larger pulses from laser 40 of about 10 to 30 seconds to raise the temperature of the optical fiber at target area B to about 1600°C. For fibers doped with F1 or Bo, a lower temperature of about 1400°C results in the desired change in the refractive index n of the fiber to achieve trimming. Real time trimming is achieved by progressively applying pulses of the laser beam 42 while watching the output of analyzer 32 for the desired maximum rejection of the \(\lambda_i \) frequency. Alternatively, output 67 can be monitored for the maximum level of \(\lambda_i \) frequency reflected at the drop port 67.

In addition to phase matching the interfering gratings 66 and 68, the coupler 63 and decoupler 65 can be adjusted for providing equal splitting of energy by applying the laser energy to one or the other legs, as indicated by arrow C and D, respectively, again to cause the diffusion of the core’s dopant material, lowering the index of refraction "n".

The same diffusion trimming technique can also be employed with unbalanced and lattice filters by phase trimming the amount of unbalance in the optical path length between the two arms of the Mach-Zehnder device, as well as the cross talk and optical
switches may be optimized to better than 40 dB with such phase trimming and coupler trimming.

In the first embodiment of the invention, the grating spacing is shortened to increase the center frequency of the grating by lengthening the edge connection of the grating to the frit. In the second embodiment, the refractive index is lowered to decrease the optical length of a fiber optic component. With either embodiment, precise tuning of an optical fiber component can be achieved.

It will become apparent to those skilled in the art that various modifications to the preferred embodiment of the invention as described herein can be made without departing from the spirit or scope of the invention as defined by the appended claims.

The invention claimed is:
1. A method of trimming an optical fiber component comprising the steps of:
 directing a source of radiation onto a section of the component for heating
 the section;
 coupling a broad band source of signals to an input of the component;
 coupling an optical analyzer to an output of the component; and
 monitoring the signal at the output of the component while selectively
 applying the radiation to the component from the source to achieve a
 predetermined trimming effect.

2. The method of claim 1 wherein the directing step includes providing a beam of
 radiation having a beam width substantially the size of an optical fiber of the component.

3. The method of claim 2 wherein the selective applying step includes interposing a
 shutter in the optical path of the beam and opening and closing the shutter to pulse the
 beam.

4. The method of claim 3 wherein the directing step includes employing a CO₂ laser
 to generate the beam of radiation.

5. The method of claim 1 wherein the directing step includes employing a CO₂ laser
 as the source of radiation and further employing a visible spectrum laser with a beam
 coaxially aligned with the beam of the CO₂ laser onto the section of the component.

6. The method of claim 1 wherein the directing step comprises positioning a fiber
 Bragg grating component with a section adjacent a grating thereof in alignment with the
 radiation and wherein the selective applying step plastically deforms the section to change
 the optical path of the fiber Bragg grating component for tuning the fiber Bragg grating
 component.
7. The method of claim 1 wherein the directing step comprises positioning a section of a Mach-Zehnder component in alignment with the radiation and wherein the selective applying step diffuses dopant in the core of the section to change the refractive index and the optical path for tuning the Mach-Zehnder component.

8. An apparatus for trimming a fiber optic component comprising:
 a CO\textsubscript{2} laser for directing a beam therefrom onto a section of a fiber optic component;
 a control coupled in the beam path of the laser to selectively pulse the beam for controlling the heating of the section of the fiber optic component;
 a source of broad band signals coupled to an input of the fiber optic component; and
 a detector coupled to an output of the component for monitoring signals at the output while the beam is applied to the component to trim the fiber optic component in a predetermined manner.

9. The apparatus of claim 8 wherein the fiber optic component is a fiber Bragg grating with an optical fiber mounted in tension to a substrate and wherein the beam from the CO\textsubscript{2} laser heats a section of the fiber Bragg grating adjacent a grating section to change the optical length of the grating section for trimming the fiber Bragg grating.

10. The apparatus of claim 8 wherein the fiber optic component is a Mach-Zehnder interferometer and wherein the beam from the CO\textsubscript{2} laser heats at least one section of one of the legs of the Mach-Zehnder interferometer such that a core dopant diffuses to change the index of refraction of the leg for trimming the Mach-Zehnder interferometer.

11. The apparatus of claim 8 and further including a visible spectrum laser and an optical element for aligning the beam of the visible spectrum laser coaxially with the beam of the CO\textsubscript{2} laser for aligning the section of the fiber optic component with the CO\textsubscript{2} laser beam.
12. The apparatus of claim 11 and further including an XYZ stage receiving the fiber optic component for positioning the component in alignment with the beam.

13. The apparatus of claim 12 and further including an optical microscope positioned to view the visible spectrum laser beam for positioning the optical component with the beam impinging on the section of the fiber optic component.

14. A fiber Bragg grating comprising:

 a substrate;

 an optical fiber mounted in tension on the substrate, the fiber having end boundary areas extending on opposite sides of a grating therein; and

 at least one of the boundary areas is plastically deformed to tune the fiber Bragg grating to a predetermined frequency.

15. A Mach-Zehnder interferometer comprising:

 a pair of optical fibers fused at a first coupler near one end and at a second coupler at an opposite end;

 gratings formed in each fiber between the first and second couplers; and

 wherein the fiber core dopant in an area between at least one of the gratings adjacent one of the first and second couplers is diffused to tune the Mach-Zehnder interferometer.

16. A method of trimming an optical fiber component comprising the steps of:

 providing a CO2 laser source of radiation;

 focusing the beam of the CO2 laser to a beam width substantially the size of an optical fiber of the component;

 aligning a section of the component with the focused beam for heating the section;

 coupling a broad band source of signals to an input of the component;

 coupling an optical analyzer to an output of the component; and
monitoring the signal at the output of the component while selectively applying the radiation to the component from the source to achieve a predetermined trimming effect.

17. The method of claim 16 and further including coaxially aligning the beam of a visible spectrum laser with the beam of the CO₂ laser for aligning the section of the fiber optic component with the CO₂ laser beam.

18. The method of claim 17 and further including the step of positioning an optical microscope to view the visible spectrum laser beam impinging on the section of the fiber optic component for precisely positioning the optical component with the beam impinging on the section of the fiber optic component.

19. A method of trimming an optical fiber component comprising the steps of:

 directing a CO₂ laser beam onto a section of a fiber optic component for heating the section; and
 controlling the application of the beam on the section to achieve a predetermined trimming effect.

20. The method of claim 19 wherein the directing step includes providing a beam of radiation having a beam width substantially the size of an optical fiber of the component.

21. The method of claim 20 wherein the controlling step includes interposing a shutter in the optical path of the beam and opening and closing the shutter to pulse the beam.

22. The method of claim 21 wherein the directing step further includes employing a visible spectrum laser with a beam coaxially aligned with the beam of the CO₂ laser onto the section of the component.

23. The method of claim 19 wherein the directing step comprises positioning a fiber Bragg grating component with a section adjacent a grating thereof in alignment with the
beam and wherein the controlling step plastically deforms the section to change the optical path of the fiber Bragg grating component for tuning the fiber Bragg grating component.

24. The method of claim 19 wherein the directing step comprises positioning a section of a Mach-Zehnder component in alignment with the beam and wherein the controlling step diffuses dopant in the core of the section to change the refractive index and the optical path for tuning the Mach-Zehnder component.
WAVELENGTH SHIFTS OF A FBG AFTER FIVE CONSECUTIVE EXPOSURES OF 2.5 SEC.

FIG. 3

FIG. 4
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/13527

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : G23B 6/34
US CL : 385/10, 24, 31, 37, 123, 129; 359/130
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 385/10, 24, 31, 37, 123, 129; 359/130; 372/6, 20

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, P</td>
<td>WO 00/29881 A1 (CANNING ET AL) 25 May 2000, see entire document.</td>
<td>1-2, 7-8, 10, 14-16, 19-20, 23, 24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 B earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Document member of the same patent family

Date of the actual completion of the international search
29 OCTOBER 2000

Date of mailing of the international search report
06 DEC 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
HEMANG SANGH AVI

Telephone No. (703) 305-3484

Form PCT/ISA/210 (second sheet) (July 1998)