Title: MULTILAYERED SEPARATOR FOR LITHIUM SECONDARY BATTERY USING FUNCTIONAL POLYMER, AND PREPARATION METHOD THEREOF

Abstract: The present invention relates to a multilayered separator for a lithium secondary battery using a functional polymer, comprising a polyolefin-based polymer and a compound represented by chemical formula 1. The multilayered separator for a lithium secondary battery using a functional polymer according to the present invention has very excellent thermal stability due to low heat shrinkage and improved flame retardancy, and at the same time can be commercialized as a separator for a lithium secondary battery due to having the same level of high porosity and excellent mechanical properties as existing commercialized separators.

요약: 본 발명은 기능성 고분자를 이용한 리튬 이차전지용 다중구조 분리막 및 그 제조방법을 라.
명세서
발명의 명칭: 기능성 고분자를 이용한 리튬 이차전지용 다층구조 분리막 및 그 제조방법

기술분야

[1] 본 발명은 기능성 고분자를 이용한 리튬 이차전지용 다층구조 분리막에 관한 것으로서, 더욱 상세하게는 기계적 강도가 우수하고, 열적 안정성이 우수한 기능성 고분자와 플리올레핀 계열의 고분자로 이루어진 다층 구조의 분리막 및 그 제조방법에 관한 것이다.

배경기술

발명의 상세한 설명

기술적 과제

[6] 본 발명이 해결하고자 하는 두 번째 과제는 상기 기능성 고분자를 이용한 리튬
이차전지용 다중구조 분리막의 제조방법을 제공하는 것이다.

과제 해결 수단

[7] 본 발명은 상기 첫 번째 과제를 달성하기 위하여,
[8] 폴리올레핀 계열의 고분자와 하기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서,
[9] 상기 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층;으로 이루어져 있고,
[10] 상기 제1층과 제2층은 하기 [화학식 1]로 표시되는 화합물층; 또는 하기 [화학식 1]로 표시되는 화합물로 코팅된 폴리올레핀 계열의 고분자층;이며, 제3층은 폴리올레핀 계열의 고분자층;이고,
[11] 상기 제1층, 제2층, 제3층을 무착하고 압착하기 전에, 상기 제1층과 제3층 사이 및 제2층과 제3층 사이에 접착물질이 도포되어 있고, 상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액이며,
[12] 상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 리튬 이차전지용 분리막을 제공한다.

화학식 1

\[
\begin{pmatrix}
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3
\end{array}
\end{pmatrix}
\begin{pmatrix}
\begin{array}{c}
\text{CH}_3 \\
\text{Br}
\end{array}
\end{pmatrix}
\begin{pmatrix}
\begin{array}{c}
\text{Br} \\
\text{CH}_3
\end{array}
\end{pmatrix}
\]

[14] 상기 [화학식 1]에서,
[15] 상기 \(r \)은 0<\(r \)<1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다.
[16] 또한, 본 발명은 폴리올레핀 계열의 고분자와 하기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서,
[17] 상기 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층;으로 이루어져 있고,
[18] 상기 제1층, 제2층 및 제3층은 각각 독립적으로 폴리올레핀 계열의 고분자층이며, 상기 분리막의 외부 표면은 하기 [화학식 1]로 표시되는 화합물로 코팅되어 있고,
[19] 상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 리튬 이차전지용 분리막을 제공하고,
[20] 상기 제1층 및 제2층은 폴리프로필렌 고분자층이고, 제3층은 폴리에틸렌 고분자층일 수 있으며, 상기 제3층과 접착하지 않는 제1층의 표면 및 상기
제3층과 접착하지 않는 제2층의 표면은 하기 [화학식 1]로 표시되는 화합물로 코팅될 수 있다. 즉, 분리막이 폴리올레핀 계열의 고분자층으로 적층되어 3층 구조로 이루어져 있고, 전체 분리막 외부 표면이 상기 [화학식 1]로 표시되는 화합물로 코팅될 수 있다.

[화학식 1]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{Br} \\
\text{Br} & \quad \text{CH}_3 \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

[21] 상기 [화학식 1]에서,
[22] 상기 \(r \)은 0<\(r \)1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다.
[23] 본 발명의 일 실시예에 의하면, 상기 접착물질의 도포시에 본 발명에 따른 다공성 분리막의 공극 유지를 위하여 ultra air spraying, screen printing 또는 hydraulic spraying 방법으로 도포할 수 있고, 상기 도포된 접착물질의 입자 크기는 1-500 \(\mu \text{m} \)일 수 있다.
[24] 본 발명은 상기 두 번째 과제를 달성하기 위하여,
[25] (a) 하기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 용액을 제조하는 단계;
[26] (b) 상기 고분자 용액을 유리관에 캐스팅하고, 건조하여 하기 [화학식 1]로 표시되는 화합물 필름을 제조하는 단계;
[27] (c) 폴리올레핀 계열의 고분자 필름 위아래에 상기 [화학식 1]로 표시되는 화합물 필름을 위치시키고, 각 계면에 접착 물질을 도포한 후에 압착하여 3층으로 적층된 분리막을 제조하는 단계;를 포함하고,
[28] 상기 용매는 N-메틸-2-피톨리돈, 클로로포름, 테트라하이드로퓨란, 벤젠, 톨루엔 및 자일렌 중에서 선택되는 어느 하나이고,
[29] 상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌이며
[31] [화학식 1]
상기 [화학식 1]에서,

상기 \(r\)은 \(0 < r < 1\)이며, 상기 \(n\)은 1 내지 5000 사이의 정수이다.

본 발명의 일실시예에 의하면, 상기 (a) 단계는 상기 용매의 빠른 증발 속도를 저지하기 위하여 추가적으로 무탄올 및 프로판올 중에서 선택되는 어느 하나의 비용매를 더 포함하여 교반할 수 있고, 상기 용매: 비용매의 비율비는 1.5:4:1일 수 있다.

본 발명의 다른 일실시예에 의하면, 상기 (c) 단계에서 도포된 접착물질의 입자 크기는 본 발명에 따른 다공성 분리막의 공극 유지를 위하여 1-500 \(\mu\)m일 수 있다.

본 발명의 다른 일실시예에 의하면, 상기 (c) 단계에서 3중에서 적층된 분리막은 hot-pressing 방법으로 압착하여 제조할 수 있고, 120-130 \(^\circ\)C 온도와 100-300 kgf/cm\(^2\)의 압력에서 1-5 초 동안 압착하여 3중으로 적층된 분리막을 제조할 수 있다.

또한, 본 발명은 (d) 하기 [학화식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 용액을 제조하는 단계;

(e) 상기 고분자 용액을 폴리올레핀 재열의 고분자 필름에 코팅하여, 하기 [화학식 1]로 표시되는 화합물이 코팅된 폴리올레핀 재열의 고분자 필름을 제조하는 단계;

(f) 폴리올레핀 재열의 고분자 필름 위와 아래에 상기 [화학식 1]로 표시되는 화합물이 코팅된 고분자 필름을 위치시키고, 각 계면에 접착 물질을 도포한 후에 압착하여 3중으로 적층된 분리막을 제조하는 단계;을 포함하고,

상기 폴리올레핀 재열의 고분자는 폴리에틸렌 또는 폴리프로필렌이며,

상기 접착물질은 비닐에틸렌아세테이트를 물에 화석한 고분자 수용액인 것을 특징으로 하는 이차전지용 분리막의 제조방법을 제공한다.

[화학식 1]
상기 [화학식 1]에서,

상기 r은 0<r<1이며, 상기 n은 1 내지 5000 사이의 정수이다.

본 발명의 일예시에 의하면, 상기 (d) 단계에서의 용액은 폴리올레핀 재열의 고분자 펄프에 코팅한 고분자 용액을 제조하기 위한 절에서 용액은 휘발성이 강한 클로로포름일 수 있다.

본 발명의 다른 일예시에 의하면, 상기 (e) 단계는 상기 고분자 용액을 폴리올레핀 재열의 고분자 펄프에 코팅시 매우 적은 중으로 코팅하기 위하여, 냉-코팅 방법을 사용할 수 있으며, 상기 냉-코팅의 속도는 8-9 mm/분일 수 있다.

본 발명의 다른 일예시에 의하면, 상기 (f) 단계에서 도포된 접착물질의 입자 크기는 본 발명에 따른 다공성 분리막의 공극 유지를 위하여 1-500 μm일 수 있다.

본 발명의 다른 일예시에 의하면, 상기 (f) 단계에서 3층으로 적층된 분리막은 hot-pressing 방법으로 압착하여 제조할 수 있고, 120-130 °C 온도와 100-300 kgf/cm²의 압력에서 1-5초 동안 압착하여 3층으로 적층된 분리막을 제조할 수 있다.

또한, 본 발명은 (g) 하기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 용액을 제조하는 단계; 및

(h) 3층으로 적층된 폴리올레핀 재열의 고분자 분리막의 표면을 하기 [화학식 1]로 표시되는 화합물로 코팅하는 단계;를 포함하고,

상기 3층으로 적층된 폴리올레핀 재열의 고분자 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층으로 이루어져 있으며, 제3층의 위와 아래에 제1층과 제2층을 위치시키고, 각 계면에 접착물질을 도포한 후에 압착하여 제조하고,

상기 폴리올레핀 재열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 이차전지용 분리막의 제조방법을 제공하고, 상기 제1층 및 제2층은 폴리프로필렌 고분자층이고, 제3층은 폴리에틸렌 고분자층일 수 있다.

[화학식 1]
상기 [화학식 1]에서,

[59] 상기 \(r \)은 0<\(r \)<1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다.

[60] 다만, 상기 \((g) \) 단계 및 \((h) \) 단계를 포함하는 본 발명의 이차전지용 분리막의 제조방법에 있어서, 상기 제조방법에 한정하지 아니하고, 상기 [화학식 1]로 표시되는 화합물과 포함하는 고분자 용액을 상기 제1층 및 제2층의 양 표면 중 일 표면에 코팅하여 양 표면 중 일 표면이 [화학식 1]로 표시되는 화합물로 코팅된 제1층, 제2층 필름을 각각 제조한 후에, [화학식 1]으로 표시되는 화합물로 코팅되지 않은 표면을 제3층에 각각 접착하여 분리막 전체 외부가 [화학식 1]로 표시되는 화합물로 코팅된 3층 구조로 적층된 분리막을 제조할 수 있다.

[61] 즉, 분리막이 플라스테라린 계열의 고분자중으로 적층되어 3층 구조로 이루어져 있고, 전체 분리막 외부 표면이 상기 [화학식 1]로 표시되는 화합물로 코팅된 구조이면서 분리막의 특성이 동일하다면 본 발명의 범위에 포함된다 할 것이다.

발명의 효과

도면의 간단한 설명

[63] 도 1a 내지 도 1c는 본 발명의 일 구현예에 따른 3층 구조로 적층된 리튬 이차전지용 분리막을 나타내는 개념도이다.

[64] 도 2a와 도 2b는 각각 본 발명의 실시예 1에 따라 제조한 분리막(BPPO-PE-BPPO)에 대한 표면 및 단면을 나타내는 SEM 이미지이다.

[65] 도 2c 및 도 2d는 각각 본 발명의 실시예 2에 따라 제조한 분리막(BPPO가 코팅된 PP-PE-BPPO가 코팅된 PP)에 대한 표면 및 단면을 나타내는 SEM 이미지이다.

[66] 도 2e 및 도 2f는 각각 본 발명의 실시예 3에 따라 제조한 BPPO가 코팅된 3층 적층(PP/PE/PP) 구조의 분리막에 대한 표면 및 단면을 나타내는 SEM 이미지이다.

[67] 도 3은 실시예와 비교예에 따른 분리막에 대한 열수축 정도(thermal
shrinkage)을 실험한 결과를 보여주는 이미지이다.

도 4는 실시예와 비교예에 따른 분리막에 대한 열수축 정도(thermal shrinkage)를 실험한 결과를 나타낸 그래프이다.

도 5는 실시예와 비교예에 따른 분리막에 대한 인화성 실험 결과를 보여주는 이미지이다.

도 6은 본 발명에 따른 분리막을 사용하여 셀 테스트한 결과로서, 단위 용량에 따른 전위의 비교를 나타낸 그래프이다.

도 7a 및 7b는 본 발명에 따른 분리막을 사용하여 셀 테스트한 결과로서, 도 7a는 사이클 회수에 따른 상대적 용량률의 비교를 나타낸 그래프이고, 도 7b는 사이클 회수에 따른 콜레 효율의 비교를 나타낸 그래프이다.

발명의 실시를 위한 형태

이하, 본 발명을 더욱 상세하게 설명한다.

본 발명의 종류, 리튬 이차전지의 분리막에서 나타나는 열적 안정성과 액체 전해질에 대한 전화도 문제를 해결하기 위하여 기능성 고분자로서 하기 [화학식 1]로 표시되는 화합물(BPPO(brominated poly(phenylene oxide))과 폴리올레핀 계열의 고분자로 이루어지고, 다양한 구조로 형성된 리튬 이차전지용 분리막을 제공한다.

[화학식 1]

[그림]

상기 [화학식 1]에서, 상기 r은 0<r<1이며, 상기 n은 1 내지 5000 사이의 정수이다.

상기 [화학식 1]로 표시되는 BPPO(brominated poly(phenylene oxide)) 화합물은 액체 전해질 첨가제와 유사한 분자 구조를 지니고 있어 향상성이 양호하고, 또한 BPPO 구조의 브로 workstation는 라디칼 반응을 저해하는 기능을 지니며 공극 내부에 존재하는 액체 전해질의 발화성을 감소시키며 결국, 리튬 이차전지의 폭발 위험을 저감시키는 역할을 한다.

본 발명에 따른 분리막은 기계적 강도와, 분리막의 필수요소인 Shut down 효과(전지 과열시 미세기공폐쇄 기능)와 Melt down 효과(추가 온도 상승에도 필름 형태 유지)를 중진시키기 위하여 폴리올레핀 계열의 고분자와 함께 사용한 3층 구조의 분리막이다.
본 발명에 따른 다층 구조의 분리막은 폴리올레핀 계열의 고분자와 상기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서, 상기 분리막은 제1층, 제2층 및 상기 제1층과 제2층 사이에 존재하는 제3층으로 이루어져 있고, 상기 제1층과 제2층은 상기 [화학식 1]로 표시되는 화합물로 코팅된 폴리올레핀 계열의 고분자층이며, 제3층은 폴리올레핀 계열의 고분자층이고, 상기 제1층, 제2층, 제3층을 부착하고 압착하기 전에, 상기 제1층과 제3층 사이 및 제2층과 제3층 사이에 접착물질이 도포되어 있고, 상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액이며, 상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 한다.

또한, 본 발명에 따른 다층 구조의 분리막은 폴리올레핀 계열의 고분자와 상기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서, 상기 분리막은 제1층, 제2층 및 상기 제1층과 제2층 사이에 존재하는 제3층으로 이루어져 있고, 상기 제1층, 제2층 및 제3층은 각각 독립적으로 폴리올레핀 계열의 고분자층이며, 상기 분리막의 외부 표면은 상기 [화학식 1]로 표시되는 화합물로 코팅되어 있는 것을 특징으로 한다.

상기 제1층 및 제2층은 폴리프로필렌 고분자층이고, 제3층은 폴리에틸렌 고분자층일 수 있으며, 상기 제3층과 접착하지 않는 제1층의 표면 및 상기 제3층과 접착하지 않는 제2층의 표면은 상기 [화학식 1]로 표시되는 화합물로 코팅될 수 있다. 즉, 분리막이 폴리올레핀 계열의 고분자층으로 적층되어 3층 구조로 이루어져 있고, 전체 분리막 외부 표면이 상기 [화학식 1]로 표시되는 화합물로 코팅될 수 있다.

이에 따라 la 및 le의 개념도에서 보는 바와 같이, 본 발명의 정의에서는 3층 구조의 분리막은 BPO/PE(폴리에틸렌)/BPPP 구조의 3층 구조 분리막과, BPPP가 코팅된 PP(폴리프로필렌)/PE/BPPP가 코팅된 PP 구조의 3층 구조 분리막 또는 분리막 외부 표면이 BPO로 코팅되고, 폴리올레핀 계열의 고분자층으로 적층된 3층 구조 분리막(BPO-PP/PE/PP-BPPP)일 수 있다.

본 발명은 상기 다층 구조로 형성된 리튬 이차전지용 분리막의 제조방법을 제공하고, 기능성 고분자인 BPO를 캐스팅 방법으로 필름을 제조하거나 또는 냉-코팅 방법으로 코팅하여 필름을 제조하는 과정, 이후 올레핀 계열 분리막과 접착하여 3층으로 적층 접착하는 과정으로 이루어지며, 그 제조방법의 세부적인 궁정은 다음과 같다.
[86] (1) 상기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 융액을 제조하는 단계.

[87] (2) 상기 고분자 융액을 유리판에 캐스팅하고, 건조하여 상기 [화학식 1]로 표시되는 화합물 필름을 제조하는 단계, 또는 (2') 상기 고분자 융액을 폴리올레핀 재열의 고분자 필름에 코팅하여, 상기 [화학식 1]로 표시되는 화합물이 코팅된 폴리올레핀 재열의 고분자 필름을 제조하는 단계.

[89] 상기 (1)에서의 고분자 융액을 제조하기 위한 용매는 N-메틸-2-피리ollower, 클로로포름, 테트라하이드로퓨란, 벤젠, 투루렌 및 자일렌 중에서 선택되는 어느 하나일 수 있고, 또한 상기 용매의 빈도 중분 속도를 저지하기 위하여 추가로 교반되는 비용매로서 부탄을 또는 프로판올을 첨가할 수 있고, 상기 용매 대 비용매의 부피비를 4:1 또는 3:2로 함이 바람직하다.

[90] 또한, (2')에서 폴리올레핀 재열의 고분자 필름에 코팅할 고분자 융액을 제조하기 위해서는 상기 (1)에서 사용하는 용매는 휘발성이 강한 클로로포름이 바람직하다.

[91] 상기 (2')에서 고분자 융액을 폴리올레핀 재열의 고분자 필름에 코팅시 닫-코팅 방법을 사용하고, 상기 닫-코팅시 dipping 및 withdrawing 속도는 8-9 mm/분으로 함이 바람직하다.

[92] 상기 (3)에서는 120-130 ℃ 온도와 100-300 kg·f/cm²의 압력에서 1-5 초 동안 압착하는 것이 바람직하다.

[93] 또한, 본 발명에 따라 분리막 외부 표면에 BPPO로 코팅되고, 폴리올레핀 재열의 고분자층으로 적층된 3층 구조 분리막을 제조하는 방법은 (4) 하기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 융액을 제조하는 단계와.

[94] (5) 3층으로 적층된 폴리올레핀 재열의 고분자 분리막의 표면을 하기 [화학식 1]로 표시되는 화합물로 코팅하는 단계를 포함하는 것을 특징으로 한다.

[95] 상기 3층으로 적층된 폴리올레핀 재열의 고분자 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층으로 이루어져 있으며, 제3층의 위와 아래에 제1층과 제2층을 위치시키고, 각 계면에 접착 물질을 도포한 후에 압착하여 제조한다.

[96] 또한, (4)에서 폴리올레핀 재열의 고분자 필름에 코팅할 고분자 융액을 제조하기 위해서는 상기 (4)에서 사용하는 용매는 휘발성이 강한 클로로포름이 바람직하다.

[97] 상기 (5)에서 고분자 융액을 폴리올레핀 재열의 고분자 필름에 코팅시 닫-코팅 방법을 사용하고, 상기 닫-코팅시 dipping 및 withdrawing 속도는 8-9 mm/분으로
함이 모세관 현상에 따른 폴리머의 부착량을 최소화함으로써 본래 분리막이 가지고 있는 공극을 유지하기 위하여 바람직하다.

[99] 즉, 분리막이 폴리올레핀 계열의 고분자층으로 적층되어 3층 구조로 이루어져 있고, 전체 분리막 외부 표면이 상기 [화학식 1]로 표시되는 화합물로 코팅된 구조이면서 분리막의 특성이 동일하다면 본 발명의 범위에 포함된다 할 것이다.

[100] 이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이를 위하여 제한되지 않고, 본 발명의 범주 및 기술상 범위 내에서 다양한 변경 및 수정이 가능한 등업계의 통상의 지식을 가진 자에게 자명할 것이다.

[101] <실시예>

[102] 실시예 1.

[103] (1) 본 발명에 따라 3층으로 이루어진 분리막의 제조는 기능성 고분자인 BPPO(brominated poly(phenylene oxide))를 이용한 다공성 분리막을 제조하는 단계와, 올레핀 계열의 분리막인 폴리에틸렌(Poly ethylene, PE)의 양 면에 BPPO 다공성 분리막을 적층한 3층 분리막 제조 단계로 구성되어 있다.

[104] (2) BPPO를 이용한 다공성 분리막 제조 단계

[105] BPPO 3 g을 N-메틸-2-피롤리돈 8 ml에 용해하고 부탄올 2 ml을 추가 교반하여 고분자 용액을 얻었다. 상기 얻어진 고분자 용액을 유리관에 닿카 블레이드로 캐스팅 한 후, 용매의 증발을 위해 대기 중에서 3분 동안 건조하였다. 그 후, 중류수에 12시간 동안 보관하여 상전율을 실시함으로써 다공성 고분자 분리막 필름을 제조하였다.

[106] (3) 3층 분리막의 제조 단계

[107] 상기 실시예 1-(2)에서 제조된 단층 분리막(BPPO)을 제1층 및 제2층으로 바갑층으로 구성하고, PE를 제3층으로 하여 상기 제1층 및 제2층 사이에 존재하는 내층으로 하여 BPPO/PE/BPPO의 3층 적층계 구조로 접착하였다.

[108] 접착제는 Air flex EP 645를 1/2000 배로 혼합하여 ultra air spray 방법에 의해 제1층인 BPPO 분리막의 기존 면적 4 x 4 cm² 위에 0.5 ml의 접착제를 도포하였다. 먼저, 제3층인 PE의 윗면에 접착제를 도포하고 제1층을 적층한 후 뒤집어, 같은 방식으로 제3층의 윗면에도 접착제를 도포하고 제2층을 적층하여, PE의 양면에 BPPO 단층 분리막을 순서대로 적층하였다. BPPO/PE/BPPO의 3층 적층계 구조는 120-130 °C와 100-300 kg-f/cm²의 조건에서 hot pressing 기기를 사용하여 5초
이내에서 순간적으로 접착하였다.

실시 예 2.

(1) 본 발명에 따라 3층으로 이루어진 분리막의 제조는 기능성 고분자인 BPPO를 울레편계 분리막인 플리프로폴렌(Poly propylene, PP) 표면에 닦-코팅하여 BPPO가 코팅된 PP의 다공성 분리막을 제조하는 단계와, 울레편 계열의 분리막인 폴리에틸렌(Poly ethylene, PE)의 양면에 BPPO가 코팅된 PP의 다공성 분리막을 적층한 3층 분리막 제조 단계로 구성되어 있다.

(2) BPPO가 코팅된 PP의 다공성 분리막 제조

BPPO 10 g을 Chloroform 50 ml에 용해하여 닦-코팅을 위한 고분자 용액을 제조하고, 울레편 계열 분리막인 PP를 4 x 4 cm²의 사이즈로 잘라 준비된 고분자 용액에 8.56 mm/분의 속도로 dipping과 withdrawing을 차례대로 수행함으로써 PP표면에 얇게 BPPO를 코팅하여 BPPO가 코팅된 PP의 다공성 분리막을 제조하였다.

(3) 3층 분리막의 제조 단계

상기 실시 예 2-(2)에서 제조된 단층 분리막(BPPO가 코팅된 PP의 다공성 분리막)을 제1층 및 제2층으로 바깥으로 구성하고, PE를 제3층으로 하여 상기 제1층 및 제2층 사이에 존재하는 내층으로 하여 BPPO coated PP/PE/BPPO coated PP의 3층 적층계 구조로 접착하였다.

접착제는 Air flex EP 645를 1/2000 배로 희석하여 ultra air spray방법에 의해 제1층인 BPPO가 코팅된 PP의 다공성 분리막의 기준 면적 4 x 4 cm² 위에 0.5 ml의 접착제를 도포하였다. 그 후, 제3층인 PE를 올리 놓은 후, 120-130에서 hot pressing을 사용하여 접착하였다. 또한, 상기 제3층과 제2층의 분리막도 같은 방식으로 접착하여 3층 분리막을 제조하였다.

실시 예 3.

(1) 3층으로 적층(PP/PE/PP)된 폴리올레핀 계열의 고분자 분리막 제조 단계

Celgard 2340(PP/PE/PP)과 동일하게 바깥쪽인 제1층 및 제2층을 PP로 하고, 내층인 제3층을 PE로 하여 상기 실시예 1-(3)과 동일한 방법으로 제조하였다.

(2) BPPO로 코팅된 3층 적층 고분자 분리막 제조 단계

BPPO 10 g을 Chloroform 50 ml에 용해하여 닦-코팅을 위한 고분자 용액을 제조하고, 상기 제조된 tri-layer(PP/PE/PP, Celgard 2340)를 원하는 사이즈로 잘라 준비된 고분자 용액에 8.56 mm/분의 속도로 dipping과 withdrawing을 차례대로 수행하여 tri-layer 표면에 얇게 BPPO를 코팅하였다.

비교예 1.

상용화된 올레핀 계열의 플리프로폴렌을 고분자 시트로 단일층으로 하여 25 두께의 분리막을 사용하였다.

비교예 2.

상용화된 올레핀 계열의 플리프로폴렌과 폴리에틸렌을 사용하여 3층으로 적층된 PP/PE/PP(Celgard 2340)의 3층 분리막을 사용하였다.
실험 2. Porosity 분석
(1) 본 발명에 따라 3층 구조로 적층하여 제조된 분리막의 porosity 유지를 확인하기 위하여 본 발명에 따라 제조된 3층 구조의 분리막 실시에 1 내지 실시에 3과, 상용화된 비교예와 비교하여 공기투과도 및 porosity를 확인하였다.
(2) 공기투과도는 지름 13 mm의 준비된 분리막에 일정한 공기압을 푸딩과 투과된 기압을 bubble meter로 측정하여 Gurley값을 계산하였다. 하기 [표 1]은 실시에 1 내지 3과 비교예의 공기투과도 결과를 나타낸 것이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>실험에 1</th>
<th>실험에 2</th>
<th>실험에 3</th>
<th>비교예 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gurley (s/100 cc)</td>
<td>144.0</td>
<td>144.0</td>
<td>143.9</td>
<td>144.2</td>
</tr>
</tbody>
</table>

상기 [표 1]에서 보는 바와 같이, 본 발명에 따른 실험에와 비교예가 큰 차이를 보이지 않기 때문에 porosity가 잘 유지된 알 수 있다. 이에 따라 본 발명에 따른 분리막이 배터리 운전시 상용화된 분리막과 비슷한 리튬이온의 이동성을 나타낼을 의미한다.

(3) Porosity 실험은 미네랄 오일을 사용하여 제조된 분리막의 오일의 함유 정도를 무게로 측정하여 porosity를 계산하였다. 하기 [표 2]는 실험에 1 내지 실험에 3, 비교예에 대한 porosity의 결과를 나타낸 것이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>실험에 1</th>
<th>실험에 2</th>
<th>실험에 3</th>
<th>비교예 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity(%)</td>
<td>31.1</td>
<td>30.6</td>
<td>26.2</td>
<td>31.8</td>
</tr>
</tbody>
</table>

상기 [표 2]에서 보는 바와 같이, 실험에와 비교예의 값에 큰 차이를 보이지
있는 것으로 볼 때, 3층 구조로 적층식 접착계의 영향은 거의 없음을 알 수 있으며, 실험 2 내지 실험 3의 porosity가 비교에 비하여 다소 낮은 것은 BPPO의 코팅으로 인한 공극 크기의 감소 때문이기 때문이다. 거의 동일 수준에서 porosity가 잘 유지됨을 알 수 있고, 따라서, 이는 상용화된 분리막과 동일한 수준의 성능을 보이는 것으로서, 본 발명에 따라 제조된 분리막이 상용화된 분리막을 대체할 수 있을 정도로 실용화 가능성이 충분함을 보여주는 것이다.

[137] 실험 3. 분리막의 열적 안정성 테스트

(1) 본 발명에 따른 기능성 고분자 분리막에 대해서 열적 안정성을 확인하기 위하여 상기 실험에와 비교해를 사용하여 thermal shrinkage 실험과 인화성 실험을 실시하였다.

(2) Thermal shrinkage 실험은 100-200℃ 범위의 다양한 온도 조건에서 30 분 동안 샘플을 열을 가해 측정한 열은 샘플의 길이를 측정하여 수축 정도를 계산하였다. 하기 3은 초기 조건의 샘플과 180℃ 처리 후 샘플의 사이이다. 하기 3의 측측은 아무런 열적 조건을 주지 않은 상태에서 4 x 4 cm²의 면적으로 준비한 것이고, 유측 샘플은 180℃의 처리 후의 것으로서, 열처리 후 수축 정도를 보여주고 있다. 비교 2의 경우에는 매우 투명한 상태를 보여주는데, 이는 분리막의 균열이 완전히 막혔음을 의미하는 것이고, 200℃의 경우에는 비교 2의 분리막이 완전 녹았기 때문에 이미지로 나타내지 않았다.

또한, 하기 3과 4에서 분리막 면적의 변화를 측정하여 thermal shrinkage를 갖는 도의 조건에 따라 백분율로 나타내었다.

하기 3, 4에서 보는 바와 같이, 비교 1에는 71.1%로, 실시 2에는 4.9%, 실시 3에는 50.1%의 열적 수축성을 나타내어 비교에의 샘플이 실시 1과 실시 3에 비하여 열적 수축성이 크다는 것을 확인할 수 있다.

실시 1의 경우에는 3층 분리막의 적층이 매우 잘되어 있는 상태이기 때문에 BPPO 분리막의 색이에 있는 PE가 수축되더라도 얇각에 있는 BPPO 분리막이 단단히 바쳐주고 있어 매우 행성된 열적 안정성을 보여주고 있다. 이는 본 발명에 따른 기능성 고분자에 열적 안정성 특성으로 인하여 분리막의 열적 수축성이 크게 개선되었음을 보여주고 있다. 즉, 본 발명에 따른 분리막이 상용화된 분리막에 비하여 고온에서 열적 안정성이 보다 우수하다는 것을 알 수 있다.

(3) 인화성 실험은 분리막을 전해질로 적신 후 표면에 묻은 전해질만 제거하고 불을 붙여 시행하였다. 이는 연소가 시작할 때부터 완전히 불이 꺼질 때까지의 연화 시간을 측정하였고, 완전 연소 후 분리막의 남은 상태를 확인하였다. 시간에 따른 연소과정은 하기 3에 나타내었다.

하기 3에서 보는 바와 같이, 연소가 시작되고 실험 1은 4 초, 실험 2는 9 초 내에 연소가 중지되었으며, 분리막의 전해질의 연소 후에 분리막의 형태가 부분 분해되었다. 이에 반하여, 실험 2에서 연소가 시작하여 2 초 후에 분리막이 분리되어 길게 녹아내리고, 연소과정에서는 리튬의 산화로 인한
스파크의 발생도 확인할 수 있었다. 또한, 연소가 끝난 후 분리막은 완전 연소되어 형태가 없어졌다.

[145] 이는 본 발명에서 사용된 기능성 고분자의 탐연성 특성에 따라 분리막 내의 리튬염을 포함하는 전해질을 안정적으로 연소시키며, 연소 후에도 분리막의 잔해를 남김으로써, 리튬이온전지의 폭발시 접촉단락을 오랫동안 방지하여 열적 안정성이 매우 우수함을 보여주는 것이다.

[146] 실험에 4. 셀 테스트

(1) 본 발명에 따른 분리막을 사용하여 충·방전 효과를 확인하기 위하여 CR2032규격의 coin cell을 제작하여 반복적인 cell test를 수행하였다.

[148] (2) Coin cell은 cathode에 LiCoO2의 양극 활물질과 anode에 Li metal을 사용하였고, 1 M LiPF6 in EC/DEC 1:1 용액을 전해질로 사용하였다. 셀 조립은 아르곤 가스가 침해되어 있는 클리어 박스 안에서 진행하였다. 셀 테스트의 충전과 방전 전압은 4.2 V에서 3.0 V사이로 지정하였고, 0.1 C의 속도로 충·방전을 10 회 반복하여 단위 용량 및 상대적 용량률과 품질 효율을 확인하였다. 그 결과를 하기로 6 및 7에 나타내었다.

[149]

[150] 하기로 6은 실시에 1, 3과 비교예 2의 테스트 결과를 용량에 따른 전위(potential)로 나타낸 것이고, 10 번째 사이클의 충·방전 그래프를 나타낸 것이다. 그 결과, 실시에 1, 3 그리고 비교예 2의 방전 용량은 각각 126.6 mAh/g, 124.2 mAh/g, 그리고 124.4 mAh/g로 나타났으며 본 발명으로 제조된 분리막인 실시에 1은 상용화된 분리막보다 용량이 더 높게 나왔고, 실시에 3은 상용화된 분리막의 셀 테스트와 거의 대등한 용량을 나타내고 있음을 확인할 수 있다.

[151] 이는 기존 폴리올레핀 게열의 분리막보다 기능성 고분자 분리막의 큰 공극(pore) 크기에 기인하는 것이며, BPPO의 성질에 따라 전해질에 대한 풍부성이 뛰어나 단위 용량에서 보다 향상된 결과가 나타난 것이다. 방전의 경우, 실시에 1, 3의 방전 그래프가 비교예 2의 방전 그래프보다 전선히 떨어짐을 확인할 수 있는데 이에 의해서 방전효율도 역시 보다 개선되었음을 알 수 있다.

[152] 하기로 7a 및 7b는 실시에 1, 3의 리튬 이차전지와 비교예 2의 리튬 이차전지의 사이클 회수에 따른 상대적 용량률과 품질 효율을 도식한 그래프로서, 하기로 7a 및 7b에서 보는 바와 같이, 본 발명에 따른 실시에 1의 분리막이 적용된 리튬 이차전지는 충·방전 사이클 횟수가 증가함에 따라 상대적인 용량률 및 품질 효율이 높음을 알 수 있다. 또한, 본 발명에 따른 실시에 3의 분리막이 적용된 리튬 이차전지는 충·방전 사이클 횟수가 증가함에 따라 비교예 2의 이차전지와 비슷한 수준의 상대적 용량률을 가지며, 품질 효율은 높음을 알 수 있다.

[153] 따라서, 상용화된 분리막과 비교시 본 발명에 따른 분리막이 적용된 리튬 이차전지의 성능이 보다 향상되거나 대등한 효율을 가지고 있어서, 비교예의 분리막을 대체하여 리튬 이차전지로 충분히 사용이 가능함을 알 수 있다.
[청구항 1]
폴리올레핀 재열의 고분자와 하기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서, 상기 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층;으로 이루어져 있고, 상기 제1층과 제2층은 하기 [화학식 1]로 표시되며, 화합물로 코팅된 폴리올레핀 재열의 고분자층이며, 제3층은 폴리올레핀 재열의 고분자층이고 상기 폴리올레핀 재열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 리튬 이차전지용 분리막.

[화학식 1]

\[
\begin{align*}
&\left(\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3
\end{array}\right)_r \\
&\left(\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\text{Br}
\end{array}\right)
\end{align*}
\]

상기 [화학식 1]에서, 상기 \(r \)은 0<\(r \)<1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다.

[청구항 2]
제 1항에 있어서, 상기 제1층, 제2층, 제3층을 부착하고 압착하기 전에, 상기 제1층과 제3층 사이 및 제2층과 제3층 사이에 접착물을 도포되어 있고, 상기 접착물질은 비닐에틸렌아세테이트를 묻에 희석한 고분자 수용액의 것을 특징으로 하는 리튬 이차전지용 분리막.

[청구항 3]
제 1항에 있어서, 상기 도포된 접착물질의 입자 크기는 1-500 \(\mu \)m인 것을 특징으로 하는 리튬 이차전지용 분리막.

[청구항 4]
폴리올레핀 재열의 고분자와 하기 [화학식 1]로 표시되는 화합물로 이루어진 리튬 이차전지용 분리막으로서, 상기 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층;으로 이루어져 있고, 상기 제1층, 제2층 및 제3층은 각각 독립적으로 폴리올레핀 재열의 고분자층이며, 상기 분리막의 외부 표면은 하기 [화학식 1]로 표시되는 화합물로 코팅되어 있고, 상기 폴리올레핀 재열의 고분자는 폴리에틸렌 또는
폴리프로필렌의 것을 특성으로 하는 리튬 이차전지용 분리막.
[화학식 1]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_2\text{Br} \\
\text{O} \\
\text{Br} \\
\text{CH}_3
\end{array}
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_2\text{Br} \\
\text{O} \\
\text{Br} \\
\text{CH}_3
\end{array}
\]

상기 [화학식 1]에서,
상기 \(r \)는 0<\(r \)<1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다

[청구항 5]
상기 제1증 및 제2증은 폴리프로필렌 고분자증이고, 제3증은 폴리에틸렌 고분자증이며, 상기 제3증과 접착하지 않는 제1증의 표면 및 상기 제3증과 접착하지 않는 제2증의 표면은 상기 [화학식 1]로 표시되는 화합물로 코팅되어 있는 것을 특성으로 하는 리튬 이차전지용 분리막.

[청구항 6]
상기 제1증, 제2증, 제3증을 부착하고 압착하기 전에, 상기 제1증과 제3증 사이 및 제2증과 제3증 사이에 접착물을 도포되어 있고, 상기 접착물질은 비닐에틸렌아세테이트를 무에 화석한 고분자 수용액인 것을 특성으로 하는 리튬 이차전지용 분리막.

[청구항 7]
상기 도포된 접착물질의 입자 크기는 1-500 \(\mu \text{m} \)인 것을 특성으로 하는 리튬 이차전지용 분리막.

[청구항 8]
(a) 하기 [화학식 1]으로 표시되는 화합물을 용매에 용해하고
교반하여 고분자 용액을 제조하는 단계;
(b) 상기 고분자 용액을 유리판에 캐스팅하고, 건조하여 하기 [화학식 1]로 표시되는 화합물 필름을 제조하는 단계;
(c) 폴리올레핀 재질의 고분자 필름 위와 아래에 상기 [화학식 1]로 표시되는 화합물 필름을 위치시키고, 각 계면에 접착 물질을 도포한 후에 압착하여 3중으로 접착된 분리막을 제조하는 단계;를
포함하고,
상기 용매는 N-메틸-2-피롤리돈, 클로로포름, 테트라하이드로프uran, 번젠, 툴루엔 및 자일렌 중에서 선택되는 어느 하나이며,
상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌의 것을 특정으로 하는 이차전지용 분리막의 제조방법.

[화학식 1]

장치 [화학식 1]에서,
상기 r은 0<r<1이며, 상기 n은 1 내지 5000 사이의 정수이다.

[청구항 9]
상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액인 것을 특정으로 하는 이차전지용 분리막의 제조방법.

[청구항 10]
상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액인 것을 특정으로 하는 이차전지용 분리막의 제조방법.

[청구항 11]
상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액인 것을 특정으로 하는 이차전지용 분리막의 제조방법.

[청구항 12]
상기 접착물질의 입자 크기는 1-500 µm의 것을 특정으로 하는 이차전지용 분리막의 제조방법.

[청구항 13]
(d) 하기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 용액을 제조하는 단계;
(e) 상기 고분자 용액을 폴리올레핀 계열의 고분자 필름에 코팅하여, 하기 [화학식 1]로 표시되는 화합물이 코팅된 폴리올레핀 계열의 고분자 필름을 제조하는 단계;
(f) 폴리올레핀 계열의 고분자 필름 위에 아래에 상기 [화학식 1]로 표시되는 화합물이 코팅된 고분자 필름을 위치시키고, 각 계면에 접착 물질을 도포한 후에 압착하여 3층으로 적층된 분리막을 제조하는 단계를 포함하고,
상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[화학식 1]

상기 [화학식 1]에서,
상기 r는 0<r<1이며, 상기 n은 1 내지 5000 사이의 정수이다.

[청구항 14]
상기 접착물질은 비닐에틸렌아세테이트를 물에 희석한 고분자 수용액인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 15]
상기 (d) 단계에서 용매는 클로로포름인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 16]
상기 (e) 단계는 상기 고분자 용액을 폴리올레핀 계열의 고분자 필름에 코팅시 닥-코팅 방법을 사용하고, 상기 닥-코팅의 속도는 8-9 mm/분인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 17]
상기 (f) 단계에서 도포된 접착물질의 입자 크기는 1-500 μm인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 18]
상기 (f) 단계는 120-130 °C 온도와 100-300 kgf/cm²의 압력에서 1-5 초 동안 압착하여 3층으로 적층된 분리막을 제조하는 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 19]
(g) 하기 [화학식 1]로 표시되는 화합물을 용매에 용해하고 교반하여 고분자 용액을 제조하는 단계; 및
(h) 3층으로 적층된 폴리올레핀 계열의 고분자 분리막의 표면을 하기 [화학식 1]로 표시되는 화합물로 코팅하는 단계;를 포함하고, 상기 3층으로 적층된 폴리올레핀 계열의 고분자 분리막은 제1층; 제2층; 및 상기 제1층과 제2층 사이에 존재하는 제3층;으로
이루어져 있으며, 제3층의 위와 아래에 제1층과 제2층을 위치시키고, 각 계면에 접착물질을 도포한 후에 압착하여 제조하고.
상기 폴리올레핀 계열의 고분자는 폴리에틸렌 또는 폴리프로필렌인 것을 특징으로 하는 이차전지용 분리막의 제조방법.
[화학식 1]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3
\end{array}
\]

상기 [화학식 1]에서,
상기 \(r \)은 0\(<\)r\(<\)1이며, 상기 \(n \)은 1 내지 5000 사이의 정수이다.

[청구항 20]
제 19 항에 있어서,
상기 제1층 및 제2층은 폴리프로필렌 고분자층이고, 제3층은 폴리에틸렌 고분자층인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 21]
제 19 항에 있어서,
상기 접착물질은 미닐에틸렌아세테이트를 물에 화석한 고분자 수용액인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 22]
제 19 항에 있어서,
상기 (g) 단계에서 용매는 클로로포름인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 23]
제 19 항에 있어서,
상기 (h) 단계는 상기 고분자 용액을 3층으로 적층된 폴리올레핀 계열의 고분자 분리막의 표면에 코팅시 락-코팅 방법을 사용하고, 상기 락-코팅의 속도는 8-9 mm/분인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 24]
제 19 항에 있어서,
상기 3층으로 적층된 폴리올레핀 계열의 고분자 분리막의 각 계면에 도포된 접착물질의 입자 크기는 1-500 \(\mu \)m인 것을 특징으로 하는 이차전지용 분리막의 제조방법.

[청구항 25]
제 19 항에 있어서,
상기 3층으로 적층된 폴리올레핀 재료의 고분자 분리막은 120-130 ℃ 온도와 100-300 kg·f/cm²의 압력에서 1-5 초 동안 압착하여 제조하는 것을 특징으로 하는 이차전지용 분리막의 제조방법.
[Fig. 5]

[Fig. 6]
A. CLASSIFICATION OF SUBJECT MATTER

H01M 2/16(2006.01)i, B32B 27/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01M 2/16; H01M 10/0567; H01M 10/0525; B32B 27/32; H01G 9/02; H01M 10/0569; C08J 5/18; H01M 10/052; C08J 5/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: membrane, lithium secondary battery, polymer, polyolefin

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See abstract, claim 1, paragraphs [0055-0076]</td>
</tr>
<tr>
<td></td>
<td>See abstract, claim 1, the detailed description of the invention pages 3-5</td>
</tr>
<tr>
<td></td>
<td>See abstract, claims 1-7, the detailed description of the invention pages 4-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2010-0132927 A (DAI-ICHI KOGYO SEIYAKU CO., LTD.) 20 December 2010</td>
</tr>
<tr>
<td></td>
<td>See abstract, claim 1, paragraphs [0014-0048]</td>
</tr>
</tbody>
</table>

Relevant to claim No. | 1-25 |

Further documents are listed in the continuation of Box C. ☐

See patent family annex. ☒

<table>
<thead>
<tr>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>E earlier application or patent but published on or after the international filing date</td>
</tr>
<tr>
<td>L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>O document referring to an oral disclosure, use, exhibition or other means</td>
</tr>
<tr>
<td>P document published prior to the international filing date but later than the priority date claimed</td>
</tr>
<tr>
<td>T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td>X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, each combination being obvious to a person skilled in the art</td>
</tr>
<tr>
<td>& document member of the same patent family</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

15 FEBRUARY 2013 (15.02.2013)

Date of mailing of the international search report

22 FEBRUARY 2013 (22.02.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonim-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 10-2012-0043164 A</td>
<td>03.05.2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200903885 A</td>
<td>16.01.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0285348 A1</td>
<td>11.11.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-093575 A1</td>
<td>07.08.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1309028 B1</td>
<td>18.10.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-004769 B2</td>
<td>07.11.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 564566 B</td>
<td>01.12.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6869731 B2</td>
<td>22.03.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2262037 A1</td>
<td>15.12.2010</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야(IPC))

H01M 2/16(2006.01)i, B32B 27/32(2006.01)i

B. 조사된 문헌

조사된 최소문헌(국제특허분류를 기재)
H01M 2/16; H01M 10/0567; H01M 10/0525; B32B 27/32; H01G 9/02; H01M 10/0569; C08J 5/18; H01M 10/052; C08J 5/22

조사된 기술문헌에 속하는 최소문헌 이외의 문헌
한국특허신용조사공보 및 한국공개신용조사공보: 조사된 최소문헌담에 기재된 IPC
일본특허신용조사공보 및 일본공개신용조사공보: 조사된 최소문헌담에 기재된 IPC

국제조사에 이용된 전자 데이터베이스: 데이터베이스의 명칭 및 검색어(해당하는 경우)
cKOMPASS(특허청 내부 검색시스템) & Kъ카다, 분리막, 리튬 이차전지, 고분자, 폴리올레핀

C. 관련 문헌

카테고리*	인용문헌명 및 관련 구절(해당하는 경우)의 기재	관련 정구항
A | KR 10-2007-0082402 A (주식회사 엘지화학) 2007.08.21 요약, 청구항1, 발명의 상세설명3-5 페이지 참조 | 1-25

* 인용된 문헌의 특별 카테고리:
“T” 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상관없이 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
“X” 특별한 관리가 없는 문헌, 해당 문헌 하나만으로 청구권 발명의 신규성 또는 전보성이 없는 것으로 본다.
“Y” 특별한 관리가 없는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당연하거나 자명한 경우 청구권 발명은 전보성이 없는 것으로 본다.
“&” 동일한 대응특허문헌에 속하는 문헌

추가 문헌은 C(계속)에 기재되어 있습니다. 대응특허에 관련 별지를 참조하십시오.

국제조사의 실적 확인일
2013년 02월 15일 (15.02.2013)
국제조사보고서 발송일
2013년 02월 22일 (22.02.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정殺로 189,
4동(문산동, 정부대전청사)
팩스번호 82-42-7140

시식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 2116372 A1</td>
<td>2009.11.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-210794 A</td>
<td>2009.11.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2012-0043164 A</td>
<td>2012.05.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200903885 A</td>
<td>2009.01.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0285348 A1</td>
<td>2010.11.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008-093575 A1</td>
<td>2008.08.07</td>
</tr>
<tr>
<td>KR 10-2007-0082402 A</td>
<td>2007.08.21</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1309028 B1</td>
<td>2006.10.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-004769 B2</td>
<td>2007.11.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 564566 B</td>
<td>2003.12.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6869731 B2</td>
<td>2005.03.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2262037 A1</td>
<td>2010.12.15</td>
</tr>
</tbody>
</table>

사전 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)