48866 A2

0 02

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

20 June 2002 (20.06.2002) PCT WO 02/48866 A2
(51) International Patent Classification’: GO6F 9/00 HAYES, Andrew, R.; Redmond, WA (US). ZIMNICKS,
Audrius; ** (**). ROBISON, Jeff; ** (**).
(21) International Application Number: PCT/US01/48014
(74) Agent: BRUESS, Steven, C.; Merchant & Gould P.C.,

(22) International Filing Date:

11 December 2001 (11.12.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/255,238 11 December 2000 (11.12.2000) US
60/255,041 11 December 2000 (11.12.2000) US
60/255,042 11 December 2000 (11.12.2000) US
60/255,044 11 December 2000 (11.12.2000) US
60/255,051 11 December 2000 (11.12.2000) US
60/255,153 11 December 2000 (11.12.2000) US
60/255,050 11 December 2000 (11.12.2000) US
60/255,043 11 December 2000 (11.12.2000) US
60/255,052 11 December 2000 (11.12.2000) US
(71) Applicant: MICROSOFT CORPORATION [US/US];

One Microsoft Way, Redmond, WA 98052-6399 (US).
(72) Inventors: RAJARAJAN, Vij; Redmond, WA (US).
NEDUNGADI, Kishnan; Redmond, WA (US). KIER-
NAN, Casey; Redmond, WA (US). BHATIA, Brijesh, D.;
Redmond, WA (US). MACMAHON, Mel; Redmond, WA
(US). GANESAN, Anandha, K.; Redmond, WA (US).

P.O. Box 2903, Minneapolis, MN 55402-0903 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
ST, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, 7ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR MANAGEMENT OF MULTIPLE NETWORK RESOURCES

(57) Abstract: A method and system for management of a plurality of resources in a network environment. The system uses web
~~ technology, preferably XML-technology, to receive and store information related to back-end resources and to provide a framework
by which client computer systems can manage the plurality of back-end resources in a uniform manner. Using these communica-
tions, the management system uniformly associates information from the various resources via various multi-step, scenario-based
functions, such as, for example, searches, monitoring, scripting, software deployment, etc. That is, the management system is able
to provide easier, higher-level operation options to the administrator based on the associated information related to the various re-

sources.

WO 02/48866 PCT/US01/48014

5

10

15

20

25

30

METHOD AND SYSTEM FOR MANAGEMENT
OF MULTIPLE NETWORK RESOURCES

This application 18 being filed 11 December 2001 as a PCT application by
MICROSOFT CORPORATION, a United States national and resident, designating

all countries except US.

Technical Field

The present invention relates to methods and systems for managing multiple
resources in a network environment. More particularly, the present invention relates
to providing a method and system for performing scenario-based tasks requiring
interaction with multiple resources while providing a uniform user-interface for each
of the multiple resources.

Background of the Invention

Network administrators, also known as information technology staff, perform
many operations throughout each day in order to manage a number of different
resources associated with their respective networks. These networks may comprise
any number of hardware related computer resources, e.g., printers, computer
stations, servers, etc., as well as a number of software related resources, such as
databases, employee profiles, email servers, applications, among others. Typically,
each of these resources has a uniquely different front end or user interface that the '
administrator must use to modify, evaluate or otherwise configure that resource.
Consequently, in order to perform their duties, administrators must be familiar with
many different types of systems.

The resources are typically managed directly at the resource itself, or
remotely via a two-tier type of connection. The two-tier system involves (1) a client
computer system or "front-end" and (2) the resources themselves or "back-end". In
the two-tier model, the client computer system must be connected to the resources,
potentially through a network server, and have all the necessary software installed on
the front-end to effectively manage the resources. The software relates to the front-
end user interface for each different resource.

One of the problems associated with this two-tier system, in terms of

1

WO 02/48866 PCT/US01/48014

10

15

20

25

30

network administration, is that it is necessary to store and manage the appropriate
"front-end" applications for each resource, or set of related resources, at each client
location where network administration will take place. By placing the appropriate
"front-end" applications at the client computer level, the two-tier architecture
requires a significant and ongoing investment in technology, software, and data
updates.

An additional drawback to this two-tiered system is that each of the resources
and their respective front-end user interface applications operate uniquely and
independently for each of the resources being managed. Therefore, when a complex
multi-step task (or complex scenario) must be performed, the independence of the
resources requires that each separate front-end be accessed to perform functions
associated with performing one step of the multi-step task or otherwise performing
the individual parts of the scenario. For example, in order to add a new user to a
network system, many tasks must be completed, such as adding the user to the
employee database, setting up the user’s computer, setting up an email account for
the user, providing the user with a security badge, etc. The independent nature of
the various resources required to perform these tasks results in multiple, sometimes-
repetitive actions that must be performed for each front-end application each time a
certain task must be completed. For instance, when trying to find information
associated with a task, such as a particular user, many different resburces must be
accessed, again, using unique front-end applications, to search for the information
relevant to a particular topic. Unfortunately however, accessing different resources
in this manner is time consuming and requires a mastery of many types of
applications and front-ends. »

Another drawback associated with network administration, as so far
described, is that in order to effectively manage each of the varied resources
associated with a given network, a network administrator must be expertly familiar
with each of the "front-end" applications or user interfaces that are used to control
the resources. As such, significant training time and expense is required for an
administrator to learn, and keeping current with, the functioning of each of the
varied resources associated with the network, as well as the various associated front-

end applications or user interfaces.

WO 02/48866 PCT/US01/48014

10

15

20

25

30

It is with respect to these and other considerations that the present invention
has been made.

Summary of the Invention

This invention relates to a management system for managing computer-
related resources within a distributed or network relationship. The management
system or “portal”, also uses web technology, preferably XML-technology, to reduce
the overhead associated with existing management tools that depend heavily on a
two-tier system having client computer systems connected to the computer resources
themselves — which are inherently non-uniform in nature and make administration of
computer systems difficult. In an embodiment of the invention, the management
tool is a scalable, web-based management framework that manages a plurality of
back-end resources in a uniform manner. The resources communicate with the
management system via a conforming dialog, which is schema driven. Using these
communications, the management system uniformly associates information from the
various resources via various multi-step, scenario-based functions, such as, for
example, searches, monitoring, scripting, software deployment, etc. That is, the
management system is able to provide easier, higher-level operation options to the
administrator based on the associated information related to the various resources.

With respect to certain aspects, the present invention relates to a system for
managing a plurality of resources, the system having a management module in
communication with the plurality of resources. The management module is capable
of receiving a request to access information related to one or more of the plurality of
resources and in response to the receipt of a request to access information, the
management module accesses information from more than one resource. The
management module may have a configuration manager for receiving information~
from a plurality of resources and a configuration store for storing predetermined
information for the plurality of resources. Additionally, the configuration manager
installs resources such that the management module can modify configuration
information for the plurality of resources in response to a request. Moreover, in one
embddiment, each of the plurality of resources provides information to the
configuration manager iﬁ XML format.

In accordance with other aspects, the plurality of resources managed by the

3

WO 02/48866 PCT/US01/48014

10

15

20

25

30

system contain one or more objects. Each of these objects has one or more
attributes, each attribute having a data field and a value. Similarly, each object has
one or more associated tasks that may be performed on the object. In this case, the
management module accesses attribute and task information from the associated
resources in response to a request to access information. Additionally, the attribute
and/or task information for a singular object may be provided by more than one
resource and/or accessed by more than one resource. In one embodiment, each
object is defined by a property sheet and the attribute and/or task information is a
property page in the property sheet. A property sheet manager may be used to
receive and store property sheet information related to managed objects.

In accordance with yet other aspects, the present invention relates to a system
having a configuration manager for receiving information from a plurality of
resources, each resource having associated objects; a configuration store for storing -
predetermined information for the plurality of resources; and a search manager
adapted to receive predetermined search information from a plurality of resources; a
search data store adapted to store predetermined search information for the various
resources; and wherein the search manager searches the plurality of resources in
response to a single search request. In another embodiment, the system may have a
task manager in place of, or in addition to the search manager. The task manager
receives task information from the configuration manager related to tasks that may
be completed in managing the plurality of resources.

Additionally, the present invention relates to a method of managing a
plurality of resources, each resource having managed objects, wherein each of the
objects has associated attribute and task information. Initially, the method relates to
the acts of receiving information from a resource related to attribute information for
a managed object and receiving information from a different resource related to
attribute information for the same managed object. The method then stores the
information received from the second resource with the information received from
the first resource in association with the first managed object. Next, in management
of the resources, the method relates to receiving a request.to access information
related to the managed object and accessing stored information from the first and

second resources to access information related to the managed object. The method

4

WO 02/48866 PCT/US01/48014

10

15

20

25

30

may further include creating a property sheet for the managed object and associating
a first property page and second property page with the property sheet.

Tn accordance with yet other aspects, the method may further relate to
receiving a search or task request from a client computer system and searching a
plurality of resources in response to the single search request using information
associated with the property sheet or requesting task completion from a plurality of
resources. The method may further include the act of sharing search information
between resources.

The invention may be implemented as a computer process, a computing
system or as an article of manufacture such as a computer program product. The
computer program product may be a computer storage medium readable by a
computer system and encoding a computer program of instructions for executing a
computer process. The computer program product may also be a propagated signal
on a carrier readable by a computing system and encoding a computer program of
instructions for executing a computer process.

A more complete appreciation of the present invention and its improvements
can be obtained by reference to the accompanying drawings, which are briefly
summarized below, and to the following detailed description of presently preferred

embodiments of the invention, and to the appended claims.

Brief description of the Drawings

Fig. 1 illustrates a distributed network system incorporating aspects of the
present invention.

Fig. 2 illustrates a computer system incorporating aspects of a resource
management system according to the present invention.

Fig. 3 illustrates a software environment for implementing the present
invention, the software environment including a resource management system of the
present invention as well as various resources managed by the resource management
system and managed objects with the managed resources.

Fig. 4 is a flow diagram showing the operational characteristics performed by
the resource management system shown in Fig. 3 in adding a new resource to the

system.

WO 02/48866 PCT/US01/48014

10

15

20

25

30

Fig. 5 illustrates an exemplary screen display representing a managed object
having a property sheet and the extensibility of the property sheet by way of
property pages according to one embodiment of the invention.

Fig. 6 is a flow diagram illustrating the operational flow characteristics
performed by the resource management system in extending an existing property
sheet according to one embodiment of the invention.

Fig. 7 illustrates a software environment for performing a multi-step task in
an embodiment of the invention.

Fig. 8 is a flow diagram showing the operational characteristics performed by
the resource management system and the task manager, shown in Fig. 3 in
displaying a task list in an embodiment of the invention.

Fig. 9 is a flow diagram showing the operational characteristics performed by
the resource management system in creating a script in accordance with aspects of
the present invention.

Fig. 10 illustrates a software environment for performing a search in an
embodiment of the invention.

Fig. 11 is a flow diagram showing the operational characteristics performed
by the resource management system and the search manager, shown in Fig. 3 in
executing a search in an embodiment of the invention.

Fig. 12 illustrates general features of a graphical user interface management
console incorporating various elements for controlling and accessing the resource
management system shown in Fig. 3.

Fig. 13 illustrates various features of the management console shown in Fig.
12.

Fig. 14 illustrates additional features of, and further embodiments of, the
management console shown in Fig. 12.

Figs. 15-19 illustrate various details and features of a quick search tool
shown in the management console of Fig. 14.

Fig. 20 illustrates user interface elements that are generated in the
management console of claim 3 as a result of a search performed with the quick

search tool shown in Figs. 15-19.

WO 02/48866 PCT/US01/48014

10

15

20

25

30

Fig. 21 illustrates various details and features of an explorer tool shown in
the graphical user interface of Fig. 14.

Fig. 22 illustrates various elements of an exemplary module for use in the
management console shown in Fig. 12.

Fig. 23 illustrates another embodiment of an exemplary module for use in the

management console shown in Fig. 12.

Detailed Description of the Invention

A distributed environment 100 including aspects of the present invention is
shown in Fig. 1. The environment 100 has at least one client computer system, such
as client computer systems 102 that communicates with at least one server computer
system, such as server computer system 104, in a distributed environment 106, such
as the Internet or some other distributed environment, e.g., a WAN, LAN, etc. The
server computer system 104 is used to manage one or more resources 108. The
resources 108 generally relate to computer-resources that may be managed by a
network administrator. The resources 108, may include hardware devices, sﬁch as
printers, workstations, servers, etc. and software related elements such as databases,
security systems, email accounts and user accounts, among others. For example,
Resource 1, shown as 110 in Fig. 1, may be an email system that controls the email
for a particular network, and where Resource 2, shown as 112 relates to all the
printers for that network. As may be appreciated, the network may have any number
of resources, as shown by Resource N 114, wherein "N" relates to any variable
number of resources.

Importantly, the type and scope of the resources 108 is most likely different
from one network to another and, therefore, the scope of the present invention relates
to manageable resources in general, as opposed to one specific set of resources.
Additionally, potentially new and different resources that may be managed using
aspects of the present invention may emerge over time and the present invention is
not limited by the fact that these resources were not available previously. Indeed,
use of the present invention lends itself to the generation of new and different
resources that operate in conjunction with the present invention.

The resources 108 are operably connected to the server computer system 104

7

WO 02/48866 PCT/US01/48014

10

15

20

25

30

such that information can be sent to and received from the resources. These
connections are common in distributed environments, and may be wireless or not.
The protocols used to communicate between the resources and server computer
system may be proprietary to the resource and/or the server 104. However, the
protocol used should preferably allow for ability to control various features of the
resources, such as being able to modify the configuration of the resource, such as
being able to update its database, change its security options, etc.

The client computer system 102 may communicate with the server computer
system 104 via many different protocols over various types of connections. As
shown in Fig. 1, the systems 102 and 104 may communicate via the Internet 106
using Hypertext Transfer Protocol (HTTP), mark-up languages, or some other
communication protocol suitable for use with, for example, the Internet. Ina
particular embodiment, client computer system 102 is a Microsoft. NET client, but
other, non-Microsoft. NET clients may be used.

During operation, the client computer system 102 accesses information from
the server computer system 104. The information accessed relates to the various
resources 108. Once accessed, client computer system 102 displays a graphical user
interface 116 to be used in managing the resources 108 or, in other embodiments,
command line interfaces may be used. The client computer system 102 has a
graphical user interface 116 to provide effective management capabilities of
computer resources 108 through the server computer system 104. Alternative
embodiments, however, do not use the graphical user interface (GUI) 116, but
instead use other means of providing and receiving information from and to the user
of the client computer system 102. As discussed in more detail below, the interface
provides consistencies with respect to being able to manage the various resources,
even though each resource may still have some of its own unique characteristics.

In one embodiment, the present invention relates to a browser application
that operates in conjunction with a management module or system to coordinate
operations and events behind a firewall, such as between the server computer system
104 and the resources 108. In a particular embodiment, the management system is
integrated with an "Enterprise Namespace" (which catalogs objects and tasks across

an operational domain) and all user interactions are schema driven using distributed

8

WO 02/48866 PCT/US01/48014

10

15

20

25

30

services to perform all management tasks. That is, all interaction between the
browser application and the management module is expressed in XML or some other
schema-driven language.

Similarly, communications between the management system and other
resources may also conform to a defined schema. Requiring conforming
communications between resources and the management layer provides the ability to
share or associate related information from different resources and to logically
combine sub-functions and property information. In turn, using the associated
information, the management module may provide advanced capabilities to the user
by allowing task or scenario-based operations that effectively manage the multiple
resources 108 in response to merely a few requests, e.g., one request to add a user
may effectively modify information in two or more resources. As discussed in more
detail below, the management module may include many different sub-modules or
components that carry out various multi-step task or scenario-based management
functions. Additionally other modules may also be incorporated to perform scripting
functions (not requiring a User Interface), searching functions, customization and/or
other administrative functions using the associated information from the plurality of
resources 108.

An exemplary computer system 200 that may be used to perform the
functions of either the client computer system 102 or the server computer system
104 to manage the various resources 108 within the system 100 according to the
present invention is shown in Fig. 2. The system 200 has a processing unit or
processor 202 and memory 204. In an alternative embodiment of the invention, the
system may have multiple processors (not shown).

In its most basic configuration, the computing system 200 is illustrated in
Fig. 2 by dashed line 206. Additionally, the system 200 may also include additional
storage (removable and/or non-removable) including, but not limited to, magnetic or
optical disks or tape. Such additional storage is illustrated in Fig. 2 by removable
storage 208 and non-removable storage 210. Typically, the bulk of the database
information is stored in such additional storage. Computer storage media includes
volatile and nonvolatile, removable and non-removable media implemented in any

method or technology for storage of information such as computer readable

9

WO 02/48866 PCT/US01/48014

10

15

20

25

30

instructions, data structures, program modules or other data. Memory 204,
removable storage 208, and non-removable storage 210 are all examples of
computer storage media. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can be accessed by the
system 200. Any such computer storage media may be part of system 200.
Depending on the configuration and type of computing device, the memory 204 may
be volatile, non-volatile or some combination of the two.

The system 200 may also contain communications connection(s) 212 that
allow the device to communicate with other devices. The communications
connection(s) 212 is an example of communication media. The communication
media typically embodies computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of
example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. The term computer readable media as used herein
includes both storage media and communication media.

System 200 may also have input device(s) 214 such as keyboard, mouse,
pen, voice input device, touch input device, etc. Output device(s) 216 such as a
display, speakers, printer, etc. may also be included. All these devices are well
known in the art and need not be discussed at length here.

In an embodiment, a software environment 300 incorporating aspects of the
invention may be illustrated as shown in Fig. 3. The environment 300 includes three
components: a client computer system 302, a management module 304, and
resources 306. A first component 302 relates to the client computer system 302,
which is used by a network administrator to manage various resources. The second

component 304 relates to a management module that communicates with the client

10

WO 02/48866 PCT/US01/48014

10

15

20

25

30

computer system 302 to facilitate management of resources 306.

In an embodiment, the system 302 includes client computer system software
308 and a user interface module 310. The client computer system software 308
provides several functions. For instance, the software 308 communicates with the
management module 304 to provide requests for information and/or requests for
tasks to be completed. This communication may be performed in any number of
ways, e.g., it may involve the transfer of information across a network connection,
such as the Internet or it may involve communication between two separate
processes in a single machine. Some of these various connections are discussed
above with respect to Fig. 1.

Additionally, the client computer system software 308 also communicates
with or provides functionality to the user through the user interface module 310.
The user interface module 310 may employ a GUI, such as GUI 116 shown in Fig.
1, or may employ a command line interface. In one embodiment, discussed in detail
below, the user interface includes a web browser application 311 to present the GUI
116. To facilitate the presentation of the GUI in the web browser 311, the interface
module 310 may also include an applet 313. Details regarding both the web browser
313 and the applet 313 are provided below. The user interface 310 may further
include other elements such as input elements, e.g., keyboards, touch screens, touch
pads, mice, among others. The user interface 310 may also include output elements
such as the graphical user interface 116, as shown in Fig. 1, or other output elements
such as printers, speakers, etc. An end user, such a network administrator,
communicates with the computer system software 308 through the user interface
module 310. In turn, the computer system software 308 communicates with the
management module 304 to effectively manage resources 306.

With respect to the resources 306 shown in Fig. 3, the resources 312, 314,
316 are similar to resources 110, 112, 114 shown in Fig. 1. Again, these resources
may relate to any computer resource that may be managed by a network
administrator. These resources may involve software and/or hardware components.
The resources may further include resource APIs, such as APIs 318, 320, 322.
Resource APIs relate to application program interface modules that allow

communication between the resource itself and a separate computer system, such as

11

WO 02/48866 PCT/US01/48014

10

15

20

25

30

the management system 304. These APIs may be standard or custom designed to
facilitate communication and eventual management of the resources.

In an embodiment, each of the resources 306 has a datastore, such as
datastores 323, 325 and 327 for storing information related to that resource.
Additionally, each resource 306 manages one or more objects, such as objects 329,
331 and 333. An object is a particular set of data and information describing that
data. For instance a user object may relate to a particular user in the network and the
object may include relationship or meta information about the user. Of course, the
various resources may manage other objects, such as objects relating to specific
hardware units, e.g., printers or workstations, or to events or operations. Typically,
the information stored about an object relates to particular properties or attributes
assigned to the object. In the example relating to a user object, the information may
identify attributes such as, for example, name, address, title, etc. In addition, the
information stored may also indicate the type of actions that can be taken with
respect to an object, e.g., edit user information, delete user object, etc.

In a particular embodiment, resources may be created by a resource
developer. Before creating a resource, a developer must know what objects, e.g.,
objects 329, will be managed, and what object tasks will be available to the user of
the resource in managing those objects. For example, an object may relate to system
users, and a task may involve resetting a user's password. Next, the following XML
documents may be created: (1) an Object Type XML document, which provides a
description of the object types used by the plugin; (2) a Plugin Information XML
document which provides plugin configuration and version information; (3) a
Property Sheet XML document which provides property sheet information; and (4) a
Task XML document which provides information about the tasks available for the
plugin’s objects. The XML documents can be created using any text editor or XML
authoring tool. The XML documents describe the plugin and the plugin objects,
tasks, and property sheets.

Next, in this embodiment, a Microsoft ".NET Framework" assembly is
created. The assembly for the plugin may implement the following interfaces:
IPluginPropertySheet, IPluginScope, and IPluginSearch, which, in general,

implement methods for managing property sheets, search functions and other

12

WO 02/48866 PCT/US01/48014

10

15

20

25

30

elements of the plugin. In order to manage the plugin, these interfaces may be
accessed by the system management environment 304.

The management module 304, which may be present on a server computer
system such as 104 shown in Fig. 1, provides a “middle tier” of the management
system 100 shown in Fig. 1. In a particular embodiment, the environment 300 is
based on the Microsoft ".NET" framework. The server-side functionality may
potentially be written in C# and communicate via IIS and ASP+ and be hosted on a
single server or on a web faﬁn. The management module 304 may be located in a
separate domain to the client and also to the managed resources and communication
can take place between firewalls. In this embodiment, the managed resources can be
written in any .NET compliant language, for example, C# or VB.NET. The
managed resources preferably also expose certain web services to facilitate
communication with the management module 304. Additionally, the management
module 304 may be a web service associated with the .NET framework. Web
Services are described in more detail in the article titled "The Programmable Web:
Web Services Provides Building Blocks for Microsoft NET Framework" from the
magazine "MSDN Magazine" September 2000 issue.

The management module 304 uses many elements to facilitate management
of the resources 306. In an embodiment of the invention, the management module
304 has a plurality of managers that operate relatively independently to perform
various functions in managing the resources 306. Each manager may further have a
store of information that resides on the computer system housing the manager itself,
as discussed in more detail below. In an embodiment of the invention, the
management module 304 has a search manager 324, a user interface manager 326, a
task manager 328, a configuration manager 330, a property sheet manager 332, and a
persistence manager 334. In alternative embodiments the management module 304
may include other managers. Moreover, in yet other embodiments, the management
module may incorporate fewer managers than shown in Fig. 304. The various
managers communicate with each other as indicated by connection 335 shown in
Fig. 3.

In general, a manager is a component that is data driven so that it is available

relatively automatically in the management module 304 for use by any other

13

WO 02/48866 PCT/US01/48014

10

15

20

25

© 30

manager or component within system 304. In addition, other management hosting

user-interface components may be incorporated into the module 304 as needed for
specific administrative functions, e.g., user management, operations management,
configuring services, etc. These components may be created by third parties and
used to provide specific user-interface support for their specific resources.

With respect to the user interface manager 326, the manager 326 provides the
interface functionality between the management module 304 and the client computer
system software 308. In an embodiment, the user interface module provides many
advanced features, e.g., the user interface manager 326 may customize output
information for a particular client computer system. Consequently, the user interface
manager 326 allows for the use of many different types of client computer systems,
e.g., laptops, desktops, PDAs, cell phones, etc. The user interface manager
communicates with the client computer system to provide the proper format and
amount of output information, as well as input information. Furthermore, the user
interface manager may adapt to many different network protocols which may be
used across the distributed network.

Details of the user interface manager 326 and the interaction between the
management module 304 and a web browser operation on the client computer
system 302 are provided below.

In general, the persistence manager 334 functions to store various predefined
and authored layouts of a management console graphical user interface (console
layouts) that is described in detail below. The persistence manager preferably stores
these console layouts as XML tyi)e files in a memory, such as persistence store 346,
shown in Fig. 3.

With respect to the search manager 324, it generally parses and performs -
search operations on portions of data stored and used on the system 300. Typically,
the search manager receives a query from the client computer system software 308,
and performs the query using information stored in search store 336 as well as
through functional interaction with the back-end resources 306 to thereby supply
search results back to the client 308.

Similarly, the task manager 328 receives task requests from the client

computer system software 308 and is involved in executing those tasks. The tasks

14

WO 02/48866 PCT/US01/48014

10

15

20

25

30

generally relate to actual management or configuration type tasks, such as adding
new users to the network, but may also refer to other tasks such as providing task
related information to the user. The task manager 328 may perform tasks by
interaction with one or more back-end resources 306. To carry out a requested task,
the task manager 328 has instructional informatipn stored in task store 340 used to
recognize the functions to be performed in carrying out a specific task, such as, for
example, which resources must be notified or used in performing the task. For
instance, in adding a new user to the network, the task manager 328 may need to
send new user information to an employee database managed by a SQL server, to an
email server and to a security-clearance application, among others. In such a case,
the task manager may store, in task store 340, the set of application or resources that
must be notified of the fact that a new user is being added. The task manager 328,
the search manager 324 and other managers are discussed in more detail below as
they relate to the actual management of the resources 306.

Prior to management of a resource, the resource must be installed or
registered with or on the system. Fig. 4 illustrates the operational flow
characteristics related to the registration of a new resource to the management
module 304 shown in Fig. 3. Prior to the start of flow 400, the resource will be
created by a developer or some other third party as described above. The purpose of
the process 400 relates to the registration of that resource in such a manner as to
hook it into the management system 300 and to thereby allow for the various
managers described above to access and manage the installed resource. Hence, the
resource is to be included in the framework of the system, such as system 300 and
will eventually be managed by the management module 304. Furthermore, through
the registration process, the installed resource thereafter recognizes a method of
communication with the management module 304 and, typically, all communication
between the two are performed according to that protocol or method.

Initially, flow 400 begins as receive operation 402 receives a request
indicating that a resource or "plugin” is requesting to be installed on the system.
Resources that hook themselves into the management module 304 are generally
referred to as plugins, where the plugin is the portion of the resource that

communicates with the management module by sending and receiving messages.

15

WO 02/48866 PCT/US01/48014

10

15

20

25

30

The request may be made by the resource itself or the system may recognize that a
new resource is being plugged into the system, thus generating the request. In an
embodiment the configuration manager 330 (Fig. 3) receives the request. The
request, as well as other provided information, is in a predetermined format, such as
in XML, so that the management module 304 understands the configuration
information. The request typically includes some predetermined information, such
as the name of the resource, the location of various XML files, among others.

In a particular embodiment, the configuration manager 330 is a web service
that supports defined methods that any plugin can call into to register? to un-register,
and/or to update its install information. In this case, the request from the plugin
merely executes one or more of these methods. Also, in this particular embodiment,
the information provided by the plugin, relates to the directory where the plugin is
installed on the network, such that the system or configuration manager 330 can find
more information about the plugin.

Besides installation information, during the initial communication phase 402
between a plugin and the system, the plugin may provide other information relating
to the objects, such as objects 329, 331 and 333 (Fig. 3) managed by that plugin.
For instance, receive operation 402 may receive information from the plugin relating
to the types of objects to be exposed to the system upon completion of the
installation process, attributes of those objects, available actions that may be used on
those objects, and searchable criteria for those objects. The plugin may further
provide information as to other types of objects that are recognized, but not
necessarily exposed, by the plugin. Moreover, the plugin may provide available
actions that may be accessed that relate to objects managed by another plugin to
effectively extend the existing object.

As an example, an Active Directory plugin may exist on the system and it
may expose objects relating specific users, known in a preferred embodiment of the
invention as user objects. Subsequently, an email application may be installed that
recognizes user objects, and specifically provides an email address attribute to
existing user objects. Furthermore, the email application may provide available
actions to user objects, such as editing email addresses, sending email messages,

activating or deactivating an email account, etc. These attributes and actions relating

16

WO 02/48866 PCT/US01/48014

10

15

20

25

30

to existing objects are communicated to the configuration manager during receive
operation 402. As discussed below, receiving such additional information provides
the ability to extend the user object to include the additional information.

Upon receiving information from the plugin, evaluate operation 404 checks
the information in the provided directory to ensure that the plugin is installed
correctly. In an embodiment, the configuration manager makes sure that the plugin
is installed with the correct XML file formats and validates the web service
interfaces that the plugins need to expose to the system 304.

Following evaluate operation 404, supply act 406 supplies relevant
information to other managers, such as the task manager 328, query or search
manager 324, and/or the property sheet manager 332. The act of supplying the
information may be performed in a number of ways. For instance, the configuration
manager 330 may sort through the various information provided by the plugin and
then send the information to each manager that may find a partfcular piece of
information relevant. In such a case, each attribute or property provided by the
resource is evaluated to determine if another manager in the system may be
interested in the new resource, or some portion thereof. Upon determining that
another manager may be interested in information from the new resource, the supply
operation 406 effectively notifies the other manager of the information. In another
embodiment, the configuration manager 330 may initiate an event that is picked up
by other managers, wherein the event indicates that a new plugin has been installed
and is requesting registration. Consequently, each manager is responsible for
locating and gathering the relevant information.

Once the information has been supplied to the various managers, store
operation 408 stores relevant information in local store(s). That is, each manager
that receives information related to a newly installed and registered plugin stores
some of the information, if relevant, in its local store. For instance, the task manager
328 may evaluate the new information and determine that some task-related
information should be stored in the local store corresponding to the task manager.
As stated above, each manager may maintain a dedicated store of information for
this purpose.

Following store operation 408, the plugin is considered to be installed and

17

WO 02/48866 PCT/US01/48014

10

15

20

25

30

registered with the management module such that future management can be
controlled through the management module and, therefore, the flow 400 ends at end
operation 410.

Although the flow 400 generally relates to adding a new resource to the system, it
also relates to extending existing objects within the system. For example, assume
the flow 400 is installing an email application to an existing system having an
“Active Directory” application that exposes user objects. In this case, since the
email application supports user objects, the supply operation 406 essentially supplies
new user-object information to managers within the system and the store operation
408 stores the information for later use. The new user object information may
include task information, e.g., creating a new email account, editing an email
address, activating and deactivating accounts, etc. to the task manager. .Similarly, if
the email address is a searchable attribute, then this information may be
communicated to the search manager 324, Essentially, the user object supported by
the Active Directory is now also supported by the email application. More
importantly, combining information from separate resources into a single, exposed
object, provides a relatively comprehensive set of information about each user, such
as all attributes and/or actions by simply accessing the object.

Consequently, the flow 400 relates to the installation of a new resource and
the sharing of information between separate modules to provide more
comprehensive task handling as well. In the example provided above, assume one of
the existing activities for user objects relates to adding a new user, as provided by
the Active Directory. Next, assume that the email application was installed
according to the flow 400 and that during the supply operation 406, the task manager
328 received supported, user-object tasks, including creating a new account for a
new user. The task manager 328 may then recognize that when an “add user” task is
executed by the administrator, the system calls both the Active Directory application
to add a new user profile and the email application to create a new email account for
the new user.

As stated above, in a particular embodiment, the addition of new resources is
handled by the configuration manager 330 (shown in Fig. 3), which communicates

with resources as they are added to the system. Preferable the resources are installed

18

WO 02/48866 PCT/US01/48014

10

15

20

on the system and then registered with the management module 304. The
configuration manager 330 may further configure the resources 306 to allow
management of those resources, or at least perform a test operation to make sure the
resources are installed in compliance with the necessary minimum requirements to
allow other managers to access and manage the resource. For instance, as a new
resource is added to the environment 300, configuration manager 330 comprises the
software element that communicates with that resource in order to install the
resource within the system and evaluate whether the resource is properly installed.

The configuration manager 330 also provides other managers, such as the
search manager 324 and the task manager 328, necessary information related to a
newly installed and registered resource. Consequently, the various managers can
store, within their respective stores, any information related to the new resource so
that future communications are possible between the managers and that resource.
The new information may relate to the location of the new resource, how to
communicate with the new resource, that the new resource should be contacted when
a predetermined task is performed, the type of information necessary to perform the
task, etc.

As stated, in an embodiment the configuration manager 330 is a web service.
Potential web service methods to the configuration manager 330 are provided below
in Table 1. The resources 306, as well as other managers, such as the search
manager 324 and the task manager 328, may use the methods shown and described

in Table 1 to get information about the resources or plugins 306 installed on the

system.
Table 1: Methods to the Configuration Manager
Method Example Description

Pluginnstalled String PluginInstalled(This method is called by a
string sPath plugin when it is done
); installing itself.
Where sPath is the relative path to
the plugin to be installed

PluginUnlInstalled | String PluginUnInstalled(This method is called by a
string sPath plugin when it is done un-
); installing itself.
Where sPath is the relative path to

19

WO 02/48866

PCT/US01/48014

the plugin to be uninstalled
PluginUpdated String PluginUpdated(This method is called when
string sPath a plugin updates its
); installation.
Where sPath is the relative path to
the plugin to be updated
DisablePlugin String DisablePlugin(This method can be called
string sPath by the administrator of the
); management module to
Disable a plugin that is
Where sPath is the relative path to registered to the
the plugin to be disabled management module.
EnablePlugin String EnablePlugin(This method can be called
string sPath by the administrator of the
); management module to
Enable a plugin that is
Where sPath is the relative path to registered to the
the plugin to be enabled Management Module.
DisableAll String DisableAll(); This method can be called
by the administrator of the
DisableAll does not require any Management Module to
parameters Disable all plugins.
EnableAll String EnableAll(); This method can be called
by the administrator of the
EnableAll does not require any Management Module to
parameters Enable all plugins.
GetPlugins XML String GetPluginsXML(); This method returns all the
high level information
GetPluginsXML does not require about plugins, like their
any parameters name, description and
directory install path.
GetLocalApplication | String Plugins can use this method
RootDirectory GetLocalApplicationRootDirectory() | to get information about the
; Management Module
GetLocalApplicationRootDirectory | Application directory.
does not require any parameters
GetLocalApplication | String Plugins can use this method
BinDirectory GetLocalApplicationBinDirectory(); | to get information about the
Management Portal Bin
GetLocalApplicationBinDirectory directory.
does not require any parameters
String String , Plugins can use this method
GetLocalApplication | GetLocalApplicationPluginDirectory | to get information about the
PluginDirectory 0 Management Portal Plugins
Directory
GetLocalApplicationPluginDirectory
does not require any parameters

20

WO 02/48866 PCT/US01/48014

10

15

20

25

30

Using the methods shown and described in Table 1, in combination with
flow 400 shown in Fig. 4, plugins can dynamically install, uninstall or update the
information they provide to the management module 304. Since the management
module 304, in one embodiment, is a web based application, all the new resources
only need to be installed in one location and all their information is dynamically
picked up by the different managers and translated into an integrated front end for
the users.

In a particular embodiment, the information provided to the configuration
manager 330 is provided in XML format. Using the XML format, the configuration
manager 330 is able to parse the information and understand whether other managers
need to be notified of any particular aspect of the XML file. Typically, the resource
converts the file to XML format prior to a transmission to the configuration manager
330. Alternatively however, a separate component may be supplied by the system
304 to perform the translation.

The resources 306 manage objects, such as objects 329. Therefore, each
resource 306 provides information to the system 304 about its obj ects, e. g., resource
312 provides information about objects 329. In an embodiment, the resource may
provide object information in a property sheet which may be in XML format and
which defines a generic object, e.g., such as a generic user object. Additionally, the
property sheet may comprise one or more property pages. The property sheet may
therefore relate to a combination of property pages. Each property page is defined in
an XML formatted portion of code that describes the layout, e.g., where the
information is going to be rendered on the user interface, what types of controls are
located on the page, etc. Also the XML code for the property page may provide a
pointer to a piece of code that populates data regions of the page as well as another
pointer that identifies another piece of code that is called to modify the information,
e.g., with a set or modify data command.

With respect to certain aspects of the present invention, the property sheets
that are exposed to the system 304 by one resource are extendible by other resources.
Fig. § illustrates the concept of having a separate, independent application or

resource extend an existing property sheet. In Fig. 5, a property sheet representing a

21

WO 02/48866 PCT/US01/48014

10

15

20

25

30

particular user object is illustrated in display 500. Consequently, the display 500
represents the object itself. The object provides a title bar 502, an active region 504,
and a scope list 506. The title displays the title of an object as defined by the
property sheet. The active region 504 displays controls and data fields for one
property page, as selected from the list 506. The list 506 lists the various property
pages that may be displayed in the active region 504 that relate to the user object
500.

As shown in Fig. 5, the personal information property page control 508 has
been selected and therefore the active region 504 displays the property page relating
to the personal information for the particular user. Other selection controls for
additional property pages are displayed in the scope list 506, such as a job
information control 510 and an email information control 512. Additional
information about the visual representation of the schema at the client computer
system is displayed below with respect to the management console.

Independent resources or applications may define one or more property
pages associated with a particular object, such as user object 500 shown in Fig. 5.
For example, assume that an Active Directory api)licaﬁon exposed the user object
500. Also, assume the Active Directory application defined various property pages,
e.g., the personal information page relating to unique personal identification data,
such as name, home address, employee number, etc. Additionally, assume another,
job-related property page was also defined by the Active Directory application and it
included job-related information, such as the person's job title, building location,
group, etc. Next, assume that another application is installed on the system, such as
an email server. The email server may recognize user objects and supply a property
page to be included in the user object property sheet, for instance to associate an
email address with the user. Instead of creating a new property sheet, which would
include much of the same information, such as the user's name, etc., the email
address property page 512 is simply added to the user object property sheet. The
information associated with the email address property page includes pointers to
code located on the email server relating to available actions for a particular user
object relating to email tasks.

As stated above, the property pages may be based on an XML schema, which

22

WO 02/48866

defines both the types of controls that a property page will contain and the layout of

PCT/US01/48014

those controls on a page. Table 2 illustrates an example of a Document Type

Definition or DTD that defines an XML schema for creating a property page.
Table 2: Example DTD for an XML Schema for a Property Page

<IELEMENT propertySheets (propertySheet+)>

<IELEMENT propertySheet propertySheetID, name,
description, getDataHandler,
(setDataHandler,propertyPage+)>

<IELEMENT propertyPage (propertyPagelD, name,
description, attributes,layout)>

<IELEMENT attributes (attribute+)>

<IELEMENT attribute (attributeID, name,
defaultValue?, displayHints?)>

<!ELEMENT layout (row+)>

<IELEMENT row (item+)>

<!IELEMENT item (attributeID?, displayHints)>

<IELEMENT displayHints (Type, (Text | Label)?, rows?,
cols?, Size?, Show)>

<!ELEMENT Label (#PCDATA)>

<!ATTLIST Label width CDATA "20%" style
(left|right|top) "left">

<!ELEMENT Text (#PCDATA)>

<IELEMENT rows (#PCDATA)>

<!ELEMENT cols (#PCDATA)>

<IELEMENT propertySheetID (#PCDATA)>

<!IELEMENT propertyPagelD (#PCDATA)>

<!ELEMENT attributeID (#PCDATA)>

<IELEMENT name (#PCDATA)>

<IELEMENT description (#PCDATA)>

<IELEMENT getDataHandler (#PCDATA)>

<IELEMENT setDataHandler (#PCDATA)>

<!ELEMENT defaultValue (#PCDATA)>

<!IELEMENT Type (#PCDATA)>

<IELEMENT Size (#PCDATA)>

<IELEMENT Show (#PCDATA)>

An example definition of a property page is shown in Table 3. The example
shown in Table 3 relates to the schema shown in Table 2 and defines a property page
containing a gender data field allowing the user to choose between male or female.
The property page depicted in Table 3 also supplies the management module, such

10 as module 304 shown in Fig. 3, with pointers to the code to populate the gender data

23

WO 02/48866 PCT/US01/48014

field and to handle the data once the user has selected a gender. Further, the
property page indicates its associated property sheet, i.e., the property sheet that
includes the property page.)

Table 3: Example XML Property Page Definition

propertyPage>
<propertySheetID>
ActiveDirectory User_ PropertySheet ID
</propertySheetID>
<propertyPageID>
User_General PropertyPage_ID
</propertyPagelD>
<name>
General
</name>
<description>
Provide the users email details
</description>
<order>
1
</order>
<getDataHandler>
<getDataHandlexrID>
ADUserGetHandler
</getDataHandlerID>
<getDataHandlerType>
Serverside
</getDataHandlerType>
<getDataHandlerURL>
ActiveDirectoryPlugin/user.asp
</getDataHandlerURL>
</getDataHandler>
<setDataHandler>
<setDataHandlexrID>
ADUserSetHandler
</setDataHandlerID>
<setDataHandlerType>
Serverside
</setDataHandlerType>
<setDataHandlerURL>
ActiveDirectoryPlugin/user.asp
</setDataHandlerURL>
</setDataHandler>
<attributes>
<attribute>
<attributelID>
UserID
</attributeID>
<name>
Gender
</name>
<type>
<typelD> !
enum
</typelD>
<typeData>
<DataValue>Male</DataValue>
<DatavValue>Female</Datavalue>
</typeData>
</type>
<defaultvalue/>
</attribute>
<attributes/>
</propertyPage>

In order for a resource to expose property sheet functionality, one
embodiment of the invention suggests that the resource implement an interface, such

as IPluginPropertySheet which may be accessed by the management module 304. In

24

WO 02/48866

10

PCT/US01/48014

particular, a property sheet mariager 332 may be implemented as part of the module

304 to communicate with resources that have exposed property sheet functionality.

The interface IPluginPropertySheet provides a resource or plugin with a property

sheet handler: an interface that may be called by the property sheet manager 332 to

get or set property sheet information. Alternative embodiments may utilize other

communication methods in order to provide management capabilities over the

property sheets.

The IPluginPropertySheet object defines the methods show and described

below in Table 4.

Table 4: Methods Implemented by Resource Property Sheet Interface

Method Example Description
GetData Properties GetData(Retrieves data from
string striD the property sheet.
string strObjectInstancelD
); A "Properties"
Where: object containing
strID is the identifier for the the properties for
property sheet and the object identified
strObjectInstancelD is the instance | by
identifier for the object whose data | strObjectInstancelD
is used by the property page. is returned by the
given example.
GetDataForCondition | Properties GetDataForCondition(This method returns
ConditionData conditiondata); | the plugin's data for
a property sheet,
Where conditiondata defines the based on a
condition that the properties will be | condition, in
based on. "Properties" object.
GetPagelnitData Properties GetPagelnitData (Retrieves initial
PagelnitData pageinitdata); data for the property
sheet, i.e., initializes
Where pageinitdata is the data used | the data for a
to initialize the property page. property page, in
"Properties” object.
SetData Task SetData(Sets data in the
Properties psData); property sheet.
Task is a an object
Where psData is the property sheet | that should be run

data values that have changed.

on a client system.

Using the methods shown in Table 4, the management module 304, and in

25

WO 02/48866 PCT/US01/48014

10

15

20

25

30

particular, a property sheet manager, may get data from a plugin or resource and
modify data that is stored in the resource with respect to property pages.

Fig. 6 illustrates the functional components or operational flow
characteristics related to the extension of an existing property sheet by another,
separate resource. That is, when a resource is initially installed, the resource
supplies information to the configuration manager 330, shown in Fig. 3. Fig. 6
illustrates an exemplary flow of operations during one such installation procedure,
and in particular to the communication between the resource and the property page
manager 332, shown in Fig. 3. Additionally, the procedure shown in Fig. 6 relates
to particular operations that may occur during operations 406 and 408 described
above in conjunction with Fig. 4, where new object information is supplied to other
managers within the managemeht module 304 and then stored by those managers.

The flow 600 begins as receive operation 602 receives information related to
a supported object. In one embodiment, receive operation relates to the property
sheet manager 332 receiving a property page and an indication of the parent object,
i.e., property sheet for that property page. Upon receiving the property page, a
determine ope;ation 604 determines whether the parent object, i.e., property sheet
for that property page has already been defined by another resource. If so, the flow
branches YES to append an operation 606.

The append operation 606 appends the received property page to the property
sheet. Essentially, the property sheet definition is modified, such as by the property
page manager to include a pointer to the new property page. Thus, the next time the
property sheet is called, the new property page information is displayed along with
other property pages for the supported object.

Following the append operation 606, a store operation 608 stores the revised
property sheet information, such as in a property sheet datastore, e.g., store 344
shown in Fig. 3. Once the information is stored, flow ends at an end operation 610.
If, however, the determine operation 604 determines that the object has not been
defined, then the flow 600 branches NO to a define object operation 612, which
defines the property sheet for the system. Once the object has been defined, the flow
600 continues to the append operation 606, which adds the received property page to
the newly defined property sheet. As discussed above, the property sheet may be

26

WO 02/48866 PCT/US01/48014

10

15

20

25

30

modified to include a pointer to the new property page. As before, once the property
sheet is modified, the information is stored at the store operation 608, and the flow
600 ends at an end operation 610.

The ability to extend an existing property sheet by other, independent
resources provides the management module 304 with an effective means of
displaying and launching functions based on an object-centric approach. That is, an
object, such as a user object, may be located by the management module 304 and
displayed. The displayed object may include property pages supplied by more than
one resource. Thus, the display is based on the user object and not based on the

many and various resources that may or may not support the user object. In other

.words, displaying an object may display all the information about that object, even if

some of the information is supplied by different resources.

Besides providing an object-centric approach to displaying information, the
environment 300 (Fig. 3) may also display and launch functions based on a task-
based approach, wherein a combination of management functions across multiple
resources are combined into a single task. Fig. 7 illustrates the task manager in an
embodiment of the invention and the display of a task list according to this
embodiment. That is, the environment 300 displays many functions that may be
performed on a particular object, even if those functions may require the use of
different resources, such as resources 306 (Figs. 3 and 7). Yet in an alternative
embodiment, groups of functions may be combined into a script to perform multiple
functions across multiple resources relating a particular task, e.g., a task that an
administrator performs in their job function. Fig. 7 illustrates a software
environment used in displaying and executing tasks or groups of tasks in an
environment, such as environment 300 (Fig. 3). As will be noted, some of the
components in Fig. 7 also appear in Fig. 3 and therefore like reference numerals
remain consistent between the figures.

Tasks or task groups may be displayed on user interface control 702 by a task
management service module 704. A further description of a GUI suitable for the
user interface control 702, or task list, is described below with respect to the
management console. In a particular embodiment, the user of the system may search

for tasks using either quick search or advanced search techniques, as described

27

WO 02/48866 PCT/US01/48014

10

15

20

25

30

below. Searching for the tasks causes the task manager 328 and task management
service 704 to return a list of tasks that match or are related to the task that was
requested. Alternatively, the user may browse a list of available tasks with the
control of the task manager 328. In an embodiment, browsing may be performed by
scrolling through a hierarchical list of tasks based on the application or resource
associated with the task or based on which object is associated with the task.

In a particular embodiment, the task list 702 displays a list of tasks
associated with a given instance or object. These tasks can be provided by the
framework in response to a query and subsequent generation of a "results list"
described below. Thus, the framework provides the end user with tasks that are
appropriate based on the environment and state of the data object when the user
locates and/or selects such an object. The task list can also be segmented into task
groups. Groups can be predefined by the appiication or redefined by the
administrator.

Once the set of tasks has been discovered by the user and displayed in the
task list 702, the list 702 provides a launch point for the tasks. That is, a user may
provide an indication to execute a task from the user interface. Once indicated, the
task management service 704 receives the task request. In turn, the task manager
328 may begin to carry out the task. The task manager 328 may need to reference
the task request with information in the task store 340 to locate which resources need
to be accessed and which parameters need to be passed to those resources.

Upon determining which resources must be accessed, the task manager 328
communicates with those resources, such as resources 318, 320 and 322 through a
SOAP proxy and a firewall, as shown in Fig. 7. SOAP is an XML-based protocol
that is designed to exchange structured and typed information on the Web. The
purpose of SOAP is to enable rich and automated Web services based on a shared
and open Web infrastructure. SOAP can be used in combination with a variety of
existing Internet protocols and formats including HTTP, SMTP, and MIME and can
support a wide range of applications from messaging systems to RPC.
Alternatively, other proxy communications may be used to provide the
communication protocol. The resources are therefore called by the task manager and

provided information to carry out specific tasks. Importantly, more than one

28

WO 02/48866 PCT/US01/48014

10

15

20

resource may be called in response to a single task request from the user. The
method of combining multiple functions into a single tésk may be customized by the
user as described below with respect to scripting.

In displaying the tasks, different display methods may be implemented. In a
particular embodiment of the present invention, an XML definition of tasks, task
groups and the handlers for those tasks is used. An example XML definition of
tasks, task groups and the handlers for those taéks is provided below in Table 5. In
this case, the “Manage Computers” task groups will, when rendered, contain a
“Properties” and a “Terminal Server” task.

Table 5: Sample XML File for Generating and Displaying a Task List

<tasks>
<static>
<taskgroup>
<id>1</id>
<name>Manage Computers</name>
<task>
<name>Properties</name>
<description>Change the properties</description>
<id>2</id>
<icon>images/ThirdPaneIndicator_Icon.gif</icon>
<handler><! [CDATA[alert ('Not implemented');]]></handler>
</task>
<task>
<name>Terminal Server</name>
<description>Launch terminal server</description>
<id>3</id>
<icon>images/ThirdPanelIndicatoxr_ Icon.gif</icon>
<handler><
// task handler script here
</handler>
</task>
</taskgroup>
</static>
</tasks>

Using an XML file similar to the one shown in Table 5, a task list, such as
task list 702 shown in Fig. 7, may be generated and displayed for the user upon
selection of a data object or upon some other function, such as a request to display
possible tasks that may be performed for a particular resource. Fig. 8 illustrates the
functional components or operational flow characteristics related to the generation
and display of such a task list. In particular, the flow 800 illustrated in Fig. 8 relates
to the generation and display of a task list related to particular tasks that may be
performed for a given object type that, for example may have been selected by the
user. Therefore, in this embodiment, as a task list is being rendered for display in
the user interface, the list is associated with the one or more objects that the tasks

would ultimately apply. In a particular embodiment, the task manager 328 (Fig. 3)

29

WO 02/48866 PCT/US01/48014

10

1S

20

25

30

provides the functions shown and described in conjunction with Fig. 8. In
alternative embodiments, other managers may be used to provide some or all of the
functions shown and described in Fig. 8.

Initially, the flow 800 begins as a receive operation 802 receives a request to
display a task list for a selected object. That is, prior to receive operation, a user or
the system selects an object and conducts a request indicating that the associated
tasks for that object should be collected and displayed. For example, an
administrator may highlight a particular user object. Highlighting or otherwise
selecting the user object may, in one embodiment, automatically causes a request to
be made for the tasks associated with that object. The request to collect and display
all the tasks for the object typically includes the object type and the information
about the instance or context of the object.

Upon receiving the request, a collect operation 804 collects all the definitions
that statically apply to the particular object type. Static tasks are defined as those
tasks which may also be performed on a particular object. In one embodiment, when
a task is created by a resource and associated with an object the resource may
designate the task as a static task and that task may always be performed on any
object of that object type. For instance, for a user object having user information,
static tasks may relate to editing the user information and/or deleting the object.
Since these tasks are static, the collect operation 804 may locate the tasks in a local
store of information, such as store 340 shown in Fig. 3, or by requesting the tasks
from the resource that supports the task.

While the collect operation 804 is collecting static task definitions, a get
operation 806 gets the task handler address for the particular object type. The task
handler address may be found in the definition of the object and/or property page
itself. The address indicates a particular resource that may have dynamic tasks that
are to be displayed. Using the task handler address, a request is generated and sent
to the identified resource to collect all dynamic tasks. Dynamic task information
relates to functions that may be performed on particular data object, e.g., a particular
user, but may not be available for all objects of that type, e.g., all users.
Additionally, dynamic tasks may relate to the particular instance of an object, e.g., a

task relating to disabling an account is dynamic since it depends on whether the

30

WO 02/48866 PCT/US01/48014

10

15

20

25

30

account has been enabled.

Following the request for dynamic tasks at operation 806, a receive operation
808 receives the dynamic tasks from the indicated resource. Once the static and
dynamic functions have been collected and located, a merge operation 810 merges
the task information. Upon merging the information, a render operation 812 renders
the list information to the user in the form of task list 702 (Fig. 7). In an
embodiment, render operation 812 renders DHTML code needed to display the task
list. Additionally, render operation 812 renders definitions of the task handlers
which are associated with the various tasks displayed in the list 702 and which may
be called upon selection of one of the displayed tasks.

In accordance with other aspects of the present invention, the task manager
328 may also provide the ability to group functions or tasks that may be performed
across multiple resources. In one embodiment, the grouping of functions are
implemented as "scripts" and actions taken within the user interface trigger these
scripts, thereby passing various parameters. The parameters may be provided
explicitly by the user or the parameters may be extrapolated, by the framework from
the context of the user interface when a particular script is invoked. Having all
functions implemented as scripts increases the manageability of objects. Scripts
may run on a local server or be pushed to the managed resources and executed on the
resource. Additionally, scripts can be amalgamated in process to support
customization for the end user. Extensibility of functions relates to the extending
application simply adding a new script to the library of the original application or
resource.

In an embodiment, the scripts for all applications are stored in a central script
library and are referenced by a script identification value. An end user may invoke a
script by referencing the script using the identification value while passing in a set of
parameters. Alternatively, a query may be passed in place of the parameter list,
which causes the script to be executed on all objects that satisfy the query parameter.

Fig. 9 illustrates the functional components or operational flow 900
characteristics related to the creation of script having two or more functions
associated with the script. Initially, an execute operation 902 executes the macro

function, which records two or more user functions or operations into a macro

31

WO 02/48866 PCT/US01/48014

10

15

20

25

30

format. The macro operation and function is similar to other macro recording
operations. The macro effectively contains both tasks and parameters relating to the
actual, recorded, user-interface functions.

Following the execute operation 902, a convert operation 904 converts the
macro into an XML format file. The conversion necessarily separates the actual
tasks from the parameters used in performing each task. Next, using the XML file, a
create operation 906 creates a script from the XML file. Creating the script involves
storing the task information independent from the parameters. Some indication may
be stored along with the task information within the script that prompts the user to
supply one or more needed parameters. Alternatively, the indication may refer to the
store to determine the information from the context that the script was executed, or
to locate supplied parameters from a query list.

Upon creating the script, a store operation 908 stores the script in the script
datastore. The user may call the script at a later time to execute the plurality of
functions. Alternatively, the script may be executed automatically in response to a
predetermined event or as a periodically timed task.

To illustrate the scripting functionality, consider the following example.
Assume that a human resources specialist is charged with creating a new user profile
within the company. The specialist may record a macro of all the separate tasks that
must be performed in order to create a new user profile. Those tasks may include
notifying the accounting department to inform them that they need to address payroll
information for the user and notifying the corporate security department indicating
that a new key card should be made. Similarly, other relevant departments may be
notified. A script of all these functions and notifications is created and stored in a
script store so that the next time a new user profile must be generated; only the script
needs to be called. In this case, the script prompts the specialist for user information
to complete the profile and then the script notifies accounting, corporate security,
etc. Consequently, the specialist does not have to perform repetitive steps in
creating a new user profile for each new user.

With respect to other aspects of the present invention, the management
module 304 provides search capabilities. The environment 300 and the management

module 304 includes a search or query manager 324 that is used to carry out various

32

WO 02/48866 PCT/US01/48014

10

15

20

25

30

searches, such as searches for objects types, particular objects, resources, tasks,
groups of tasks, among others. The search manager 324 interacts with the user
interface manager 326 to receive queries and, in turn interacts with resources 312,
314 and 316 to locate requested items based on the given query.

In an embodiment of the invention, the manager 324 uses a schema driven
search method which greatly enhances the flexibility of traditional searching
capabilities by allowing the search parameters to be fully configurable through XML
schema by the resources themselves. In essence, a resource may choose what object
attributes can be searched over and in what domains the search is to be performed
while still maintaining the uniformity of the user-interface and the architectural
interface across different renderings of the management module 304.

More particularly, in an embodiment the plugin may provide such
information to the configuration manager at process step 402 described above in
conjunction with Fig. 4. The plugin provides the configuration manager 330 with a
list of all attributes that define their objects and also a list of which of these attributes
that may be used in subsequent searches. Additionally, the plugin may indicate the
available scopes for such searches. The search manager 324 is then provided this
information at supply operation 406.

Based on the information provided by the plugin, the management module
304 can generate the appropriate user-interface, as well as pass the schema to other
resources to ensure an appropriate search is performed and the correct search results
are displayed. In this embodiment, the environment does not have to specify all
attribute names that are searchable for all possible object types. Instead; the plugin
provides this information.

Additionally, as shown in Fig. 10, the plugin may incorporate its own search
engine 1002. An embodiment of the present invention provides the plugin the
capability of specifying its own search engine 1002 and hooking it into the
management environment 304 and search manager 324. Therefore, when a user
performs a search for a particular object type the management module 304 passes the
search string to the tailored search engine 1002 and retrieves the correct resulis from
that search engine 1002. In this manner, the end user experiences similar search

characteristics independent of the object being located or the location of the object.

33

WO 02/48866 PCT/US01/48014

10

Moreover, a standard method of searching need not be written in the management
module 304, e.g., a method that would account for the search syntax and
architectural backend for supporting any and all searches over any object types.
Instead, the separate search engines, such as engine 1002, are hooked into the
management module 304 and called via a predetermined protocol.

In an embodiment, the protocol relates to use of an XML schema that
conforms to the following Document Type Deﬁnitioﬁ (the rules of the schema)
shown in Table 6. The DTD shown in Table 6 provides the schema for defining an
object type, which includes the schema to define the objects search parameters.

Table 6: Object Type XML DTD

<IELEMENT objectTypes (objectType+)>

<IELEMENT objectType (id, domain?, name, imageURL,
quickSearchHandlerURL,
quickSearchHandlerType,
advancedSearchHandler,
advancedSearchUI,
adInfo?,attributes, tasks)>

<IELEMENT attributes (attribute+)>

<IELEMENT attribute (((isScope, scopeHandlerURL,
scopeHandlerType) |
(isInstanceID?,id, name,
isQuickSearchable?, dataType,
advancedQueryDisplayHints,
resultsDisplayHints)))>

<IELEMENT (show, requiredValue,
advancedQueryDisplayHints defaultValue, order, width)>
<!ELEMENT resultsDisplayHints (show, order, width)>
<!IELEMENT tasks (static?,dynamic?)>
<IELEMENT static " (taskgroup)>
<!IELEMENT taskgroup (id, name, task+)>
<!IELEMENT task (name, description, id, icon,
handler)>
<!ELEMENT handler (#PCDATA)>
<IELEMENT dynamic (publishers)>
<!IELEMENT publishers (publisher+)>
<!IELEMENT adInfo (objectCategory, objectClass)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT objectCategory (#PCDATA)>
<!ELEMENT objectClass (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT icon (#PCDATA)>
<IELEMENT show (#PCDATA)>

34

WO 02/48866 PCT/US01/48014

<!IELEMENT requiredValue (#PCDATA)>
<IELEMENT defaultValue (#PCDATA)>
<IELEMENT order (#PCDATA)>
<IELEMENT width (#PCDATA)>
<!ELEMENT scopeHandlerURL (#HPCDATA)>
<IELEMENT scopeHandlerType (#PCDATA)>
<IELEMENT isInstancelD (#PCDATA)>
<IELEMENT isQuickSearchable (#PCDATA)>
<IELEMENT dataType (#HPCDATA)>
<!IELEMENT isScope (#PCDATA)>
<IELEMENT id (#PCDATA)>
<IELEMENT domain (#HPCDATA)>
<IELEMENT name (#PCDATA)>
<IELEMENT imageURL (#PCDATA)>
<IELEMENT (#PCDATA)>
quickSearchHandlerURL

<!IELEMENT (#PCDATA)>
quickSearchHandlerType '
<IELEMENT advancedSearchHandler (#PCDATA)>
<IELEMENT (#PCDATA)>
advancedSearchHandlerUI

An example XML schema to define a search is shown in Table 7.

Table 7: Sample XML Schema to Define a Search

<OBJECTTYPE>

<ID>4D36E96A-E325-11CE-BFC1-08002BEL10318 </ID>
<NAME> Computer </NAME>

<QUICKSEARCHHANDLER>

http://MMP/Search/ADS_Search.ASP

</QUICKSEARCHHANDLER>

<ADVANCEDSEARCHHANDLER>
</ADVANCEDSEARCHHANDLER>

<ATTRIBUTES>
<ATTRIBUTE>
<ISQUICKSEARCHABLE>
True
</ISQUICKSEARCHABLE>

<ISDEFAULT> True </ISDEFAULT>
<ID> OF-40-5012 </ID>
<NAME> Office </NAME>
<DATATYPE> String </DATATYPE>
<ADVANCEDQUERYDISPLAYHINTS>
</ADVANCEDQUERYDISPLAYHINTS>
<RESULTSDISPLAYHINTS>

<SHOW>

</SHOW>

<ORDER>

</ORDER>

<WIDTH>

</WIDTH>
</RESULTSDISPLAYHINTS>

</ATTRIBUTES>
</OBJECTTYPE>

The above example defines part of an object having an attribute named

"Office" that is to be exposed to the search system. That is, when an end user of the

35

WO 02/48866 PCT/US01/48014

10

15

20

25

30

management system 304 wishes to search for an object of this type they can do so
using the office attribute.

In another embodiment, the line "http://MMP/Search/ADS_Search. ASP" is
replaced with "http://MMP/Search/ADS_Search.asmx" such that the example
defines part of an object including a pointer to the search engine that is to be used to
search for objects of the above type. In this case the pointer is now
http://MMP/Search/ADS_Search.

In a particular embodiment, the search manager 324 may provide two options
to the user, a quick search and an advanced search. With respect to the advanced
search function, the user may supply an advance-search query to the search manager
324, which, in turn, parses the query. Based on the results of the parsing action, the
search manager may then access the various resources and subsequently search
information stored in conjunction with those resources to locate the requested
information. Many different advanced search algorithms may be implemented to
perform the search function. The search manager 324, however, controls the
searches performed, either using plugin search engines, such as engine 1002 or a
search engine located on the resource management module 304, not shown. Results
from searches rﬁay be marshaled back to the user through a search management
service 1004 and displayed in the user interface 1006, as described below.

Fig. 11 illustrates an operational flow 1100 related to the execution of a
search function. Initially, a receive operation 1102 receives a search query. The
query may be received from the client system 308. However, in other embodiments,
the system 304 may receive the query from other sources, such as one of the
managers, e.g., the task manager 328 or one of the resources 306. The query
includes information related to the types of objects or tasks that are requested.
However, in other embodiments, the query may include any information that can be
used to conduct a search either locally on the management module 304, or on one or
more resources 306.

Upon receiving the query, a send operation 1104 sends the query to the
search manager 324 (Fig. 3). The search manager 324 may then parse the search
request and associated query. In an embodiment, the request is formatted in an

XML format and includes a tag identifying a search handler. Next, a determine

36

WO 02/48866 PCT/US01/48014

10

15

20

25

30

operation 1106 determines the search handler from the received query. The search
handler is identified by an address or pointer located in the query or within a
property sheet which may be determined based on the query terms.

Following determine operation 1106, a package operation 1108 packages the
data into an XML formatted file. The query may include attributes that can be
passed to a resource. However, prior to passing to the resource, the information is
first put into a recognized format, e.g., XML. .Once packaged, a send operation 1110
sends fhe information or data to the resource. The resource that receives the
information relates to the resource that manages the search handler. The resource
then performs a search amongst its managed objects to locate the requested
information.

Following the send operation 1110, and once the resource has located the
requested information, a receive operation 1112 receives the results from the
resource. The received information may be formatted into an XML format.
Additionally, any parsing of the results may be done by the receive operation 1112.
Furthermore, should the results contain multiple pages of information, the receive
operation 1112 may also page the results into memory. Next, a send operation 1114
sends the results of the query to the client. As stated, the results may contain a
significant amount information and therefore the results may be divided into pages
for the client.

The method shown and described in conjunction with Fig. 11 may be used
for either the advanced search or the quick search feature. However, the advanced
search option provides a layer of processing that may evaluate query strings and
access multiple resources, such that the scope of the search may be quite broad.
Indeed, the searches may be general in nature and the results may comprise a
plurality of objects. In such a case, those objects may reside on different resources.

On the other hand, the quick search feature is intended to compliment the
advanced search feature by providing the plugin with a way to expose their most
frequently sought data to the user through a simple, easy to use search interface. In
an embodiment, the quick search feature is a subset of the advanced search, i.e. it’s
queries feed into the advanced search algorithm. Alternatively, the quick search

operates independently of the advanced search algorithm. Further particulars related

37

WO 02/48866 PCT/US01/48014

10

15

20

25

30

to the quick search features are discussed in detail below with respect to the
management console GUL.

As described, the systems and methods of the present invention allow for the
management or administration of a number of varied resources ina computer
network. As will now be described in greater detail, the managemerit or
administration of the varied resources may be carried out via a unique graphical user
interface displayed on a client computer system, such as the client computer system
302 shown in Fig. 3. As will now be described, in an embodiment of the present
invention, a unique "management console" running in a web browser application on
a client computer system provides a consistent interface for a variety of "back-end"
resources, such that the system administrator may perform his or her network
administration tasks in a clear and concise manner from any number of computing
device having accesses to the internet.

As described above, the user interface manager 326, of the management
module 304, provides appropriate communication links and protocols between the
client computer system 302 and the management module 304 in a manner that
allows a browser, such as the web browser 116 on the client computer system 116,
to provide remote resource management capabilities to a system administrator. In
one embodiment, the interface manager 326 includes a web service. As is known, a
web service is a unit of application logic providing data and services to other
applications, such as the web browser 116 running on the client computer system
102.

As also described above an application, such as the browser 116, may access
the web service of the interface manager 326 using web protocols and data formats,
such as HTTP, XML, and SOAP. During an initial access of the interface manager
326 by the browser 116, the interface manager 326 downloads a small application,
herein referred to as the console applet 313, to the web browser 311, as shown in
Fig. 3. The console applet 313 may comprise, for example and without limitation, a
Java applet. The console applet 313 operates within the browser to render a
management console, within the browser, in accordance with predefined console
layout specifications and features. As also described below, the console 313 applet

also manages the sending and receiving of information to and from the interface

38

WO 02/48866 PCT/US01/48014

10

15

20

25

30

manager 326.

In one embodiment of the present invention, the layout of a format of the
particular management console being rendered in the browser 311 on the client
computer system 116 is specified by an XML document sent from the interface
manager 326 to the console applet 313. In this embodiment, the console applet then
opens the XML file by loading the XML file into an XML Document Object Model
(DOM) object. The DOM object is then used to access the data defining the format
of the consol. The console applet 313 then interprets the data and generates
appropriate HTML, DHTML, or scripts (such as java script or jscript) for rendering
the management consol in the browser 311.

Additionally, data relating to requests or inquiries from the client
environment 302 to the management module 304, or responses from the
management module 304 to the client environment 302, may also be formatted and
transferred between the client environment 302 and the management module 304 as
XML documents. Once the interface manager 326 has received a request or inquiry
from the client environment 302, the interface manager functions to distribute the
request or inquiry to the appropriate manager or resource.

The format of the XML documents sent between the console applet 313 and
the interface manager 316 are predetermined. In one embodiment, the format of any
XML document sent between the interface manager 326 and the console applet 313
is specific to the particular manager that will ultimately access or handle the data
contained in the XML document. For example, as described above, information or
requests that are to be handled by the search manager may be transmitted in an XML
document that has a format that is uniquely configured for search specific data and
commands.

As shown in Fig. 3, the client environment 302 may include a web browser
311, such as browser 116 shown in Fig. 1, as well as an applet 313 running on the
web browser 311. The applet 313 functions to generate a management console, as
described below, in the web browser 311. The web browser 311 may be any
standard web browser that is compatible with the Microsoft ".NET Framework."

As is known, a web browser is a client application, software component, or

operating system utility that communicates with server computers via standardized

39

WO 02/48866 PCT/US01/48014

10

15

20

25

30

protocols such as HTTP, FTP and Gopher. Web browsers receive documents from
the computer network and present them to a user. Microsoft Internet Explorer,
available from Microsoft Corporation, of Redmond, Wash., is one example of a web
browser.

Fig. 12 illustrates some of the elements of a user interface in accordance an
embodiment of the present invention. As described above, in an embodiment, the
user interface comprises what is referred to herein as a management console 1200,
which is rendered in a window of a web browser, such as web browser 311 (Fig. 3).
In one embodiment, the rendering of the console 1200 may be handled by the web
browser 1211 in accordance with a markup language document, such as, without
limitation, an XML document, an HTML document, or a DHTML document. In the
case where the consol is rendered in accordance with an XML document, that
document may be converted to, and accessed in the form of, a DOM object.

The console 1200 employs a GUI-type visual presentation to convey
information to and receive commands from users for controlling or accessing one or
more of the resources 306. The console 1200 relies on a variety of GUI elements or
objects, including windows, icons, text, drop-down menus, dialog boxes, toblbars,
buttons, controls, and the like. A user, such as a system administrator, may interact
with the GUI presentation of the console 1200 by, for example and without
limitation, using a pointing device (e.g., a mouse) to position a pointer or a cursor
over an object and "clicking" on the object or by using keys on a keyboard.

The style and behavior of any component that is laid out on the console can
be persisted. Users can completely customize their consoles, specifying everything
from the content and configuration of the zones to the level of information displayed
in a property page. Customized consoles can be saved for personal use or published
for use by others.

As shown in Fig. 12, the console 1200 includes a tool bar 1210 and three
zones, including a first tool zone 412, a work zone 1214, and second tool zone 1216.
In one embodiment, the toolbar 1210 is located at an uppermost edge 1202 of the
console 1200. It will be appreciated by one skilled in the art that the present
invention is not limited to the toolbar described herein, but may encompass any type

of toolbar containing control elements or commands for controlling the features of

40

WO 02/48866 PCT/US01/48014

10

15

20

25

30

console 1200. The toolbar 1210 may include any number of controls that are

associated with the console 1200. In one embodiment, as shown in Fig. 12, the

toolbar 1202 includes a console selection element 1222, a show element 1224, a first
zone display element 1218, and a second zone display element 1220. These controls
perform specific functions in association with the console 1200, as will now be
described.

The console selection element 1222 allows a user to select from among a

‘number of predefined consoles. That is, the user may use the console selection

element 1222 to access a number of different "console layouts." Additionally,
consoles may be saved, as described below. A system adminisfrator may "author" a
number of different consoles, each of which may contain different elements and
features. For example, and without limitation, consoles may be authored to include
graphical control elements that are appropriate for various scenarios or tasks.
Alternatively, consoles may be authored to include graphical control elements that
are specific to a specific user's job functions or administrative level.

As shown in Fig. 13, in one embodiment, the console selection element 1222
includes an entry point 1330 and a drop-down menu 1332, including a list of
available console layouts, that is exposed for operation by a user via the entry point
1330. The entry point 1330 may be implemented by a conventional toolbar button
or menu, or by a special control element. Although this exemplary embodiment
includes a visible entry point, those skilled in the art will appreciate that the function
of selecting a desired console layout can also be implemented by "clicking" a
selected mouse button while the cursor is located over a particular location of the
toolbar.

To select a particular console layout, the user may use a mouse (or keyboard)
to move a cursor to the entry point 1330, and thereafter click on (or select) the entry
point 1330. When the user clicks on the entry point 1330, the drop-down menu
1332 is displayed, as shown in FIG. 13. This exemplary embodiment uses a drop-
down menu having selection indicators, which may be implemented as a
checkboxes, to indicate whether a particular layout from the list of available console
layouts has been selected. To select a particular console layout, the mouse may be

used to select the desired console layout. A checkbox is a type of interactive control

41

WO 02/48866 PCT/US01/48014

10

15

20

25

30

often found in a GUI and is used to indicate which of the desired console layouts in
the menu has been selected.

Additionally, located in the drop-down menu 1332 of the console selection
element 1222 are a console "save" element 1334 and console "save as" buttons 1336.
The console "save" element 1334 may be used to save the current state of the
console layout 1200, under the current console name. In contrast, the console "save
as" element 1336 may be used to save the current state of the console 1200 under a
different console name. In one embodiment, the console "save" element 1334 and
the console "save as" 1336 element 1336 may be implemented as buttons located in
the drop-down menu 1332, as shown in Fig. 13. Once the saved, the layout of a
console may be save, for example as an XML file, by the persistence manager 334.
The selection of these elements may then be accomplished by "clicking" the buttons
using a mouse. However, the console "save" element 1334 and the console "save as"
element 1236 may also, or alternatively, be located in other areas of the console
1200.

As shown in Fig. 13, the show element 1224 allows a user to hide and/or
show the first 1212 and second 1216 zones. In one embodiment, the show element
1224 is presented and operates in a similar manner to the console selection element
1222, as a show drop-down menu 1340. Located in the show drop-down menu 1340
are a "hide left zone" element 1342 and a "hide right zone" element 1344. The "hide
left zone" element 1342 allows a user to select or deselect the display of the first
zone 1212. The "hide right zone" element 1344 allows a user to select or deselect
the display the second zone 1212.

In addition to the "hide left zone" element 1342 and the "hide right zone"
element 1344, in one embodiment, the show drop-down menu 1340 may also
include other elements for selecting or deselecting the display of the various tools
located in the first zone 1212 and/or the second zone 1216 of the console 1200. For
example, as shown in Fig. 13, the show drop-down menu 1340 includes a "hide
quick search tool" element 1346 and a "hide monitors tool" element 1348. The
selecting or deselecting of the display of various the various tools located in the first
zone 1212 and/or the second zone 1216 of the console 1200 may be accomplished in

a similar manner as that described above with respect to the "hide right zone"

42

WO 02/48866 PCT/US01/48014

10

15

20

25

30

element 1344 and the "hide left zone" element.

Returning to Fig. 12, the first zone display element 1218 allows a user to
"toggle-off" and/or "toggle-on" the first zone 1212. That is, the first zone display
element 1218 allows a user to add or remove the first zone 1212 from the console
1200. As shown in Fig. 13, the first zone display element 1218 may be implemented
as abutton. In this embodiment, the user positions the mouse over the first zone
display button 1218 and clicks on the button 1218 to "toggle" the button between a
first state, where the first zone 1212 is displayed in the console 1200, and a second
state where the first zone 1212 is not displayed in the console 1200. A number of
mechanisms may be employed to indicate when the first state has been selected. For

example, giving focus to or highlighting the button 1218 when the first state is

- selected, changing the color of the selected button 1218 when the first state is

selected, displaying a different icon, such as a light bulb, when the first state is
selected, or using radio buttons, etc. -

The second zone display element 1220 allows a user to "toggle-off" and/or
"toggle-on" the second zone 1216. That is, the second zone display element 1220
allows a user to add or remove the second zone 1216 from the console 1200. The
second zone display element 1220 may be implemented in a similar manner to that
just described with respect to the first zone display element 1218.

In an embodiment of the present invention, the first zone 1212 and the
second zone 1216, are operable to display one or tools, where a tool is a graphical
user interface element that provides a user quick access to features or functions of
the console 1200. For example, as shown in Fig. 12, the first zone includes a quick
search tool 1240, which provides a hierarchical selection structure to enable the user
to quickly search for different objects and to populate the work zone 1214. As also
shown in Fig. 12, the second zone includes a monitor tool that displays the status of
CPU usage.

The work zone 1214 is where much of the functionality of the console 1200
is carried out. As shown in Fig. 12, the work zone 1214 has displayed therein a
workspace 1250. Each workspace typically maps to a single job function, such as
managing servers or printers. While numerous workspaces may be viewed in the

work zone 1214, in one embodiment of the present invention only a single

43

WO 02/48866 PCT/US01/48014

10

15

20

workspace may be viewed at a time in the work zone 1214. However, in the case
where a console includes more than one workspace, a user may use a browser tool to
access the various workspaces, as described in greater detail below.

Located within the workspace is workspace window 1252, which is operable
to display one or more modules 1254. Also included in the workspace 1250 is a
scroll bar 1255. The scroll bar is a graphical control element that allows a user to
view information outside of the viewing area of the qukspace window 1252. For
example, the scroll bar 1255 may be used to scroll the workspace window 1252 in a
manner that brings one or another module of the modules present in the workspace
1250 into view in the workspace window 1252. As is typical, the scroll bar 1255
includes a scroll box 1256 that may moved up and down inside the scroll bar using a
mouse. Scroll arrows 1258 at each end of the scroll bar 1255 can also be clicked to
move the viewing area of the workspace window 1252 in a specified direction.
Additionally, the scroll box may be moved up and down inside the scroll bar 1255
by clicking inside of the scroll bar in an area not occupied by the scroll box 1256, as
is conventional.

Located within the workspace window 1252 are one or modules 1254.
Where a workspace is mapped to job functions, modules 1254 typically map to a
specific object(s) upon which work is done. As discussed above, there are two types
of distinct modules—those which reside in a workspace and pertain to a specific
object type and those which reside in the first and second zones, herein referred to as
tools. Table 8, shown below, illustrates a list of several modules that may be
displayed within the various zones.

Table 8 - Example Modules

Module Name Function
Quick Search Module to launch and perform any job
function by quickly searching object types.
Explorer Launch point for workspaces and modules

provides user with a snapshot of the current
state of the console.

Monitors Provides user with a snapshot of the status
of requests, tasks, or objects.
Notifications Provides user with explicit notifications

when predetermined rules are met.

-44

WO 02/48866 PCT/US01/48014

Advanced Search Provides advanced search functions for the
user beyond capabilities of Quick Search.

Browse Alternative searching capability through
Browse techniques.

Results List Workspace area for storing the results of a
query, may be provided by the Quick
Search or Advanced Search function.

Task List Workspace area provided to display a list
of tasks associated with given instances.

Task Pads Tool that allows for customization of
available tasks.

Property Sheets Workspace display of various properties
for the particular object selected.

Wizards Wizards provide the ability to specify
complex workflow relationships between
pages.

Graphs Workspace area for viewing various data,
such as monitored data in graph format.

Editable Grid Editable Grid functions similar to a

spreadsheet. Provides the user the ability
to view, edit and modify tabular data.

Drawing Surface

Drawing area providing visual display of
workflow for such items as Wizards and
other components.

Enterprise Event Log | Viewer to provide administrator with the
useful display of events alerts or trouble
areas.

Scheduling Module for scheduling events for managed-
objects.

Hosted or Spawned | Other applications used within a
predetermined workspace, such as Instant

Applications Messenger or Terminal Server.

Each module 1254 contains a module window 1260. Each module window
1260 includes one or more associated panes. As shown in Fig. 12, in one
embodiment, the module window 1260 includes four distinct panes: a query pane
5 1262, an object pane 1264, a task pane 1266, and a work pane 1268.
In general, the object pane 1264 is operable to display information about one
or more objects that are applicable to the module 1260 in which the object pane
1264 resides. For example, the object pane 1264 may include a list of objects

associated with a given module that may be selected for access by a user. The

45

WO 02/48866 PCT/US01/48014

10

15

20

25

30

objects in the object pane may be presentation in a number of ways, depending on
the number of objects to be displayed and the preferences of the author of the
console 1200. For example, and without lirﬁitaﬁon, the objects may be displayed in
a simple object list, as shown in Fig. 14. A user may then select one or more of the
objects in the list for accessing.

The task pane 1266 is operable to display various tasks that are or applicable
to, and available for, an object that has been selected in the object pane. As with the
object pane, tasks in the task pane 1266 may be presentation in a number of ways,
depending on the number of tasks to be displayed and the preferences of the author
of the console 1200. For example, and without limitation, the tasks may be
displayed in the task pane 1266 as a simple task list, as shown in Fig. 14. A user
may then select one or more of the tasks in the list for access.

Once a task has been selected from the task list 1266, the function of the
selected task may be immediately carried out or, alternatively, a work pane 1268
may be displayed showing additional information and/or presenting additional
functionality, or sub-tasks, related to the selected task. The additional information,
the presented additional functionality, and/or the related sub-tasks, may be displayed
in the work pane 1268 in a number of ways, depending on the type of information or
functionality that is to be displayed and the preferences of the author of the console
1200.

The query pane 1262 is operable to search multiple resources associated with
the software environment 300 (Fig. 3). As described previously, network
administrators may work with many different objects of differing types. In a typical
network administration environment objects are usually only accessible through
applications that are specific to either one or a small collection of object types.
Thus, if an network administrators needs to work with a specific object or group of
objects, the network administrators must first navigate to the application that is
associated with the desired object type and then navigate to the specific object or
group of objects. This does not provide an integrated user experience. In contrast,
the query pane 1262 provides an integrated manner in which objects from multiple
resources may be accessed. That is, the query pane 1262 provides one mechanism

by which the object pane 1264 may be populated by objects from or related to a

46

WO 02/48866 PCT/US01/48014

10

15

200

25

30

variety of references.

The query pane 1262 may be presented in a number of ways, depending on
the type of resources that are to be queried and the prpferences of the author of the
console 1200. In one embodiment, such as shown in Fig. 14, the query pane 1262
may comprise a simple text box 1470 for entering terms for a desired query using a
keyboard. A mouse may then be used to click a "Go!" button 1472 to initiate the
query.

In one embodiment, the result of executing a query produces one of three
states: 1) no objects found; 2) one object found; or 3) multiple objects found. If an
object or multiple objects are found, they are displayed in the objects pane 1264. As
such, refreshing or modifying the query may result in different objects being
displayed in the object pane.

The query pane provides a unique and cohesive approach to object selection
and management. Instead of requiring the netwofk administrators to navigate to an
application and then navigate to an object or group of objects, as was common in
prior network administration tools. The query pane 1262 allows a network
administrator to navigate directly to an object or group of objects. Once an object(s)
is located the network administrators is then able to perform all task that are
associated with that object(s).

Turning now to Fig. 14, shown therein is an exemplary console 1400,
displaying a toolbar 1410 positioned at the top 1411 of the console 1400, a first zone
1412 positioned on the left side 1413 of the console 1400, a second zone 1416
positioned on the right side 1417 of the console 1400, and work zone 1414
positioned in the center 1415 of the console 1400. Displayed in the first zone 1412
are two tools, a quick search tool 1418 and an explorer tool 1420. Displayed in the
second zone 1414 are another two tools, a monitors tool 1422 and a notifications
tool 1424. Displayed in the work zone 1414 is a user administration workspace
1426 containing a module 1454. It will be understood that the particular console
shown in Fig. 14 is but one example of a console and is presented here to provide a
better understanding of various functionality and display characteristics that may be
available with respect to a console. As such, the layout and functions of the

particular console shown in Fig. 6 are not intended to encompass all feature, layout,

47

WO 02/48866 PCT/US01/48014

10

15

20

25

30

and/or functionality that may be presented in a console.

As described above, the quick search tool 1418 provides a hierarchical
selection structure that enables a user to quickly search for different objects from'a
variety of resources and to populate the work zone 1414. More particularly, the
quick search tool 1418 includes GUI controls that allow a system administrator to
easily combine a specific object instance (or instances) and an action to be
performed against that object instance, as well as specify the scope of the search.

As shown in Fig. 15, the quick search tool 618 employs common GUI
controls such as the drop-down menus, text boxes, and buttons. The controls are
arranged logically to support a simple work flow for performing the action of
specifying an object instance-action pair to be found. In an embodiment, the quick
search tool 618 includes a tool bar 1510, including a quick search drop-down menu
selector 1512, an edit element 1514, and a quick search close element 1516. The
quick search drop-down menu selector 1512 includes a triangular visual element that
may be "clicked" on by a mouse to open or close a quick search drop-down menu
1518, in a conventional manner. The quick search close element 1516 includes an x-
shaped visual element that may be "clicked" on by a mouse to close the quick search
tool 1518, in a conventional manner.

In one embodiment, the quick search drop-down menu 1518 includes an
object type selection element 1530, a search scope selection element 1532, an
instance(s) selection element 1534, an action selection element 1536, and a quick
search initiation element 1538, each of which will now be described.

The object type selection element 1530 provides a graphical representation of
the various object types that are searchable by a user, such as a system administrator.
The number and selection of the various object types that are displayed by the object
type selection element 1530 may be preselected, such as by an author of a consol.
Additionally, the number and selection of the various object types that are displayed
by the object type selection element 1530 may vary when either a different console
1400 or a different workspace 1426 are selected.

The object type selection element 1530 may display the various object types
for selection in a number of ways. Furthermore, the object type selection element

1530 may provide any of a number of different mechanisms by which an object type

48

WO 02/48866 PCT/US01/48014

10

15

20

25

30

may be selected from the display of the various object types. For example, and
without limitation, the object type selection element 1530 may display the various
object types for selection in the form of a list of objects in a drop-down menu 1610,
as shown in Fig. 16. A user of the quick search tool may then select a particular
object from the list of objects 1612 by clicking on a desired object with a mouse.
Alternatively, the user of the quick search tool could select a particular object from
the list of objects 1612 using keys on a keyboard. For example, a user could use up
and down arrow keys on a keyboard to navigate the list of objects 1612.

Once the user has selected a particular object from the list of objects 1612,
the search scope selection element 1532 is enabled and may be used to define the
scope of the desired quick search. In one embodiment, the user may define the
scope of the search either by entering a desired scope. Alternatively, based on the
type of object selected, the scope of the search may be defined to reflect an
appropriate list of areas within which to search for the object instance the user has
specified. For example, as shown in Fig. 16, the user has selected a user object. If,
for example, instances of the user object are stored in the Active Directory. In such
a case, the scope of the search may involve selecting the domain in which to search.
As another example, if the instance is stored in a SQL Server database, then the
scope would most likely be a list of database names.

The search scope selection element 1532 may display the various search
scopes for selection in a number of ways. Furthermore, the search scope selection
element 1532 may provide any of a number of different mechanisms by which a
search scope may be selected from the display of the various search scopes. For
example, and without limitation, the search scope selection element may display the
various scopes for selection in the form of a list in a drop-‘down menu, in the same
manner as described above with respect to the object type selection element 1530
shown in Fig. 16. A user of the quick search tool 1418 could then select a particular
scope from the list of scopes by clicking on the desired scope with a mouse.
Alternatively, the user of the quick search tool could select a particular scope from
the list of objects using keys on a keyboard.

As shown in Fig. 17, the object type (User) has been selected, as shown in

the search scope selection element 1532. Because the instances of this object type

49

WO 02/48866 PCT/US01/48014

10

15

20

25

30

are stored in an Active Directory, the scope would be a list of domain names. In the
example shown in Fig. 17, the user has accepted the default domain, Microsoft.com,
and that scope is shown in the search scope selection element 1532.

After selecting a particular scope for the search, the user may then select an
instance of the object type specified using the instance selection element 1534. An
instance of an object type is specific, named object. For example if an object is of a
type type ‘User’, then the instance will be an actual user. The instance selection
element 1534 may display the various instances for selection in a number of ways.
Furthermore, the instance selection element 1534 may provide any of a number of
different mechanisms by which a instance may be selected from the display of the
instances. For example, and without limitation, the instance selection element 1534
may display the various instances for selection in the form of a list in a drop-down
menu. Alternatively, the instance selection element 1534 may allow the user to
input the desired instance(s) manually. For example, as shown in Fig. 17, the user
may type a desired instance(s) into a text box 1710 in the quick search drop-down
menu 1518. Additionally, by using a delimiter such as a semi colon, the user may
specify multiple instances. The user may also employ "wildcards," such as an
asterisk or a question mark, etc., when specifying instances. Instance names will
typically be a unique identifier for the object type. For example, if an Active
Directory’s user object has been selected the instance name might be a logon name.

After selecting a particular instance(s) for the search, the user may select
from a number of actions that are available for the selected object type, scope, and
instance(s) using the action selection element 1536. The action selection element
1536 may display the various actions for selection in a number of ways.
Furthermore, the action selection element 1536 may provide any of a number of
different mechanisms by which an action may be selected from the display of the
actions. For example, and without limitation, the action selection element 1536 may
display the various instances for selection in the form of a action list in a drop-down
menu 1810, as shown in Fig. 18. A user of the quick search tool 1418 could then
select a particular action to be completed from the list of actions by clicking on the
desired action with a mouse. Alternatively, the user of the quick search tool 1418

could select a particular action from the list of actions using keys on a keyboard.

50

WO 02/48866 PCT/US01/48014

10

15

20

25

30

The available action list is populated with a list of allowable actions for the
selected object, again provided to the configuration manager by the resource during
the installation process. As discussed above, available actions may be segmented
into static and dynamic tasks. A static action or task is one that the resource knows
will be associated with all instances of the given object, e.g. the reset password
action is one that is associated with all user objects and can therefore be labeled as
static. A dynamic task on the other hand is a task that may or may not be associated
with a given object depending on its state, e.g. a "disable account" task is one that is
only valid for users who’s accounts are enabled. If a user’s account is already
disabled then the "disable account" task is not displayed in the available actions list,
e.g., list 1014. In an embodiment, the drop down list on the quick search pane is
populated only with static tasks. Once the results set has been returned and a
specific object has been selected then the task list in the scratch module will be
populated with both dynamic and static tasks. The tasks are obtained by querying
the task manager, discussed above.

Once a user has selected an object type, scope, instance(s), and action, the
search is initiated using quick search initiation element 1538. The quick search
initiation element 1538 may be displayed in a number of ways. For example, and
without limitation, the quick search initiation element 1538 may display as a search
button, as shown in Fig. 19. To initiate the search, the user may then click on the
search button 1538. In the example shown in Fig. 19, the search button is labeled
"Go!" However, it will be understood that other labels are possible to indicate the
function of the search button 1538 (e.g., Search, Begin, Start, OK, etc.).

In one embodiment, it is not necessary for the user to select an action with
the action selection element 1536 before a search is initiated. In such a case, if the
user does not select an action, the results of the search will be returned for whatever
object instance(s) has been selected, together with all associated actions.

When the user selects GO button 1538, a search string is generated and
embedded in an XML document described above with respect to Table 7. The XML
document is passed to the search management service (an asmx file that exposed the
search manager object) and then passed directly to the search manager 324. The

search manager 324 parses the query string in the XML document to obtain the

51

WO 02/48866 PCT/US01/48014

10

15

20

25

30

object type identification. The search manager then searches an object type database
and obtains the XML schema for the provided object type, such as during the
determine operation 1106 described above. The search manager then inserts the
query string from the query string XML document into an attribute designated as
quick searchable.

The resulting XML document has both an object type definition and a search
string, and this XML document makes up the query that is passed along to the
resource. This query contains the URL or other identifier for the search handler, as
specified by the plugin. The search manager 324 reads the value of the search
handler URL and creates a proxy, passing it the URL and the XML query. The
proxy enables the system to reach the URL regardless of its location (e.g. behind a
firewall etc.) as shown in Fig. 10. |

In a particular embodiment, the proxy communicates the query XML
document to the search handler using SOAP as shown in Fig. 10. Alternatively,
other communication protocols may be used. In this embodiment, the search handler
(an asmx file — compiled ASP+) must expose the method “ExecuteSearch” that takes
the XML query as a parameter. Once the resource has performed its search it returns
the results to the search manager by embedding them in another XML schema and
returning this XML as a string from the search handler. The search manager 324
parses the file and sends the results set to thc; user interface which displays them in a
module that was opened in the consol by the quick search tool 1418 as soon as the
user selected the GO button 1538.

Once a quick search has initiated, the results of that search may be displayed
in a number of different ways in the console 1200. For example, as shown in Fig.
20, the results of the defined search are displayed in the module 2010 in a workspace
2014 in a work zone 2016 of a consol 2018. As shown in Fig. 20, in an
embodiment, parameters of the search that have been performed may be displayed as
a search string 2022 in a window search 2020 located in a search pane 2024 within
the module 2010. In such a case, the user may then perform a new or additional
search by modifying the search string 2022 in the search. A search initiation
element 2026, such as a button, may then be used to start the search.

Using the above system and method, administrators are able to use a search

52

WO 02/48866 PCT/US01/48014

10

15

20

25

30

driven model for locating and working with objects, of differing types, without
having to navigate through varying applications will increase user satisfaction and
productivity. That is, since administrators work with many different objects of
differing types, the above system provides a framework that allows an administrator
to work with a specific object or group of objects, without first navigating to the
application that is associated with the desired object type and then navigating to the
specific object or group of objects. Instead of requiring the user to navigate to an
application and then navigate to an object or group of objects, the above framework
allows the user to navigate directly to the object or group of objects. Once an
object(s) is located, the user is able to perform all tasks that are associated with that
object(s).

Returning now to Fig. 14, as described above, the console 1400 shown
therein includes an explorer tool 1420. In general, the explorer tool 1420 is a
navigation tool that is used to show workspaces and modules in the work zone 1414.
The particular workspaces and modules that are shown in the work zone 1414
depend on which workspaces and modules are developed and/or installed for a
particular console 1400. As shown in Fig. 14, the explorer tool 1420 includes a
number of graphical display elements that permit the selection of workspaces and
modules using common GUI controls.

Fig. 21 illustrates an enlarged view of the explorer tool 1420 shown in Fig.
14. As shown in Fig. 21, in one embodiment, the explorer tool 1420 includes a tool
bar 2108, having an explorer drop-down menu selector 2110, an edit element 2112,
and a explorer close element 2114. The explorer drop-down menu selector 2110
includes a triangular visual element 2116 that may be "clicked" on by a mouse to
open or close an explorer drop-down menu 1318, in a conventional manner. The
explorer close element 2114 comprises an x-shaped visual element that may be
"clicked" on by a mouse to open or close the explorer tool 1412, in a conventional
manner. In one embodiment, the edit element 2112 provides functionality for a user
to add, delete, and/or move workspaces within the explorer.

The explorer drop-down menu 2118 is operable to display a list of
workspaces 2120 and modules 2122 associated with the workspaces 2120, as shown

in Fig. 21. Each of the workspaces 2120 shown in the explorer drop-down menu

53

WO 02/48866 PCT/US01/48014

10

15

20

25

2118 includes a triangular element 2124 that may be "clicked" on by a mouse to
open or close an drop-down list 2118 of modules associated with that workspace
2120. For example, as shown in Fig. 21, the monitors workspace 2126 displayed in
the explorer drop-down menu 2118 has associated therewith a computers module
2128 and an agents workspace 2130.

In an embodiment, a visual indicator may be associated with a selected
workspace and/or module. A number of mechanisms may be employed to indicate a
particular Workspace and/or module has been selected. For example, as shown in
Fig. 21, the User Admin workspace 2132 and the associated Admin User module
2134 have been highlighted to show that they have been selected.

Selection of a particular workspace 2120 in the explorer tool 1420 will cause
that particular workspace to be displayed in the work zone 1414 of the console 1400,
as shown in Fig. 14. Additionally, selection of a particular module 2122 in the
explorer tool 1420 will cause that particular module to be displayed in the
workspace 2120 that has been selected. In one embodiment, the first time a
particular workspace 2120 is selected in this manner, it will be displayed with all
available modules 2122 open, with the topmost module appearing at the top of the
selected workspace 2122. Subsequent times the particular workspace is selected
from the explorer tool 1420, the particular workspace will be displayed in the same
state as it was last viewed.

There may be any number of explorer tool 1420 taxonomies that define the
particular workspaces and modules that will appear in a given explorer tool 1420,
and the arrangement of those particular workspaces and modules in a given explorer
tool 1420. Table 9 illustrates an exemplary explorer tool taxonomy that may be
employed in the management of a number of resources. It should be understood that
the particular taxonomy illustrated in Table 9 is not intended to be exhaustive or
limiting in any way. The exemplary explorer tool taxonomy simply provides one
example taxonomy to illustrate how an explorer tool taxonomy may be arranged.

Table 9 - Example Explorer Tool Taxonomy

v Users
Users
Groups
\ 4 Servers

54

WO 02/48866

PCT/US01/48014

<4«

Services
Registry
Protocols
DNS
DHCP
WINS
Databases
SQL
Oracle
DB2
Informix
Messaging
Conferencing Server
Exchange
Clustering
Applications
Application Center Server
Versions
Security
Kerberos
PKI
IPSec
Performance Monitoring
Counter Collection
Thresholds
Application Dependencies
Operations Management
Distributed Events :
Model Applications and Dependencies
Availability :
Change
Configuration
SLAs
Clients
Software Distribution
Add/remove Programs
Hosting
Web Structures
FTP
Printers
Printers
Fax
Multimedia
Net Meeting
Net Theater
Streaming Media
Storage
RAID

55

WO 02/48866 PCT/US01/48014

10

15

20

25

Backup
v Files and Shares
v DES
A\ Group Policy

Turning now to Fig. 22, illustrated therein is an exemplary module 2200
including a query pane 2210, an object pane 2212, a task pane 2214, and a work
pane 2216. As shown in Fig. 22, the object pane 2212 includes a list of objects
2218. It is from this list of objects 2218 in the object pane 2212 that a particular
object may be selected for access by a user. For example, the object 2220 titled
"Kristy Wallace" has been selected from the object list 2218 shown in Fig. 22, as
illustrated by highlighting.

In response to the selection of the particular object 2220, a list of applicable
tasks 2222 is displayed in the task pane 2214. Included in the list of applicable tasks
2222 is a properties task 2224, that has been selected in the task pane, as shown by
highlighting. In response to the selection of the properties task 2224, the work pane
2216 has been populated with a property sheet 2226 associated with the particular
object 2220 selected in the object pane 2212.

Included in the property sheet 2226 is a list of property pages 2228 that are
associated with the property sheet 2226. Included in the list of property pages 2228
is a general property page 2224 that has been selected, as shown by highlighting. In
response to the selection of general property page 2224, the work pane 2216 has
been populated with a property page 2230 including number of controls for editing
the general property page 2224. In one embodiment, the user may, at this point,
compare various property sheets for different objects by simply selecting another
object in the object pane. For example, the user may use the tab key to "tab"
between the objects in the object pane. In such a case, the property sheet for the
newly selected object will replace the property sheet of the previously selected
object in the work pane.

Fig. 23 illustrates a feature of an embodiment of the present invention,
wherein two or more property pages can be viewed in a single window at the same

time. The basic layout of the module 2300 shown in Fig, 23 is similar to the module
56

WO 02/48866 PCT/US01/48014

10

15

20

25

30

2200 shown in Fig. 22. However, as shown in Fig. 23, the list of tasks 2322 in the
task pane 2314 includes a compare properties task 2332. The function of the
compare properties task 2332 is to allow two or more property pages from two or
more users to be displayed and/or manipulated in the work pane 2316.

In one embodiment, the selection of multiple property sheets for display
and/or manipulating in the work pane 2316 may be accomplished as follows. As
shown in Fig. 23, one or more objects are first selected from this list of objects 2318
in the object pane 2312. For example, the object 2320 titled "Kristy Wallace" and
the object 2334 titled "Tim Jones" have been selected from the object list 2318.

In response to the selection of the particular objects 2320 and 2334, a list of
applicable tasks 2322 has been displayed in the task pane 2314. Included in the list
of applicable tasks 2322 is a compare properties task 2332 that has been selected in
the task pane, as shown by highlighting. In response to the selection of compare
properties task 2332, a section of the work pane 2316 has been populate with a
property sheet 2326 associated with the object 2320 titled "Kristy Wallace.”
Included in the property sheets 2326 is a list of property pages 2328 that are
associated with the property sheet 3326. Included in the list of property sheets 2326
is a general property page 2324 that has been selected in the list of property pages
2328, as shown by highlighting. In response to the selection of general property
page 2324, the work pane 2316 has been populated with a general property page
2330 associated with the "Kristy Wallace" object 2320, as well as a general property
page 2340 associated with the "Tim Jones" object 2320. Each of the property pages
includes a number of controls for editing the general property pages 2330 and 2340.

In the case where more than two objects are selected for comparison, the size
and position of the work pane 2316, as well as the size and position of the property
sheet and associated property pages may be dynamically adjusted. Additionally, if a
great number of objects are selected for comparison by a user for display in work
pane 2316, alternate display elements may be employed to show the property sheet
and property pages. For example, and without limitation, the various property pages
may be displayed in a tabular form in the work pane 2316.

Although the invention has been described in language specific to structural

features, methodological acts, and computer readable media containing such acts, it

57

WO 02/48866 PCT/US01/48014

is to be understood that the invention defined in the appended claims is not
necessarily limited to the specific structure, acts or media described. Therefore, the
specific structure, acts or media are disclosed as preferred forms of implementing the

claimed invention.

58

WO 02/48866 PCT/US01/48014

10

15

20

25

30

Clajms
What is claimed is:
1. A system for managing a plurality of resources comprising:

a management module in communication with the plurality of
resources; the management module capable of receiving a request to access
information related to one or more of the plurality of resources; and

in résponse to the receipt of a request to access information, the

management module accesses information from more than one resource.

2. A system as defined in claim 1 wherein the management module comprises a
configuration manager for receiving information from a plurality of resources and a
configuration store for storing predetermined information for the plurality of

resources.

3. A system as defined in claim 2 wherein the configuration manager installs
resources such that the management module can modify configuration information

for the plurality of resources.

4. A system as defined in claim 3 wherein each of the plurality of resources

provides information to the configuration manager in XML format.

5. A system as defined in claim 1 wherein each of the plurality of resources
manages one or more objects, each object comprising:
one or more attributes, each attribute having a data field and a value;
one or more associated tasks that may be performed on the object;
and wherein the management module accesses attribute and task information

from the associated resources in response to a request to access information.

6. A system as defined in claim 5 wherein the attribute information for an

object is provided by more than one resource.

7. A system as defined in claim 6 wherein each object is defined by a property

59

WO 02/48866 PCT/US01/48014

10

15

20

25 .

30

sheet and the attribute information is a property page in the property sheet.

8. A system as defined in claim 6 wherein the task information for an object is

provided by more than one resource.

9. A system as defined in claim 6 wherein each object is defined by a property
sheet and the task information is in a property page associated with the property

sheet.

10. A system as defined in claim 6 further comprising:
a 6onﬁguration manager for receiving and storing information from a
plurality of resources relating to managed objects; and
a property sheet manager for receiving and storing property sheet

information related to managed objects.

11. A system as defined in claim 1 further comprising:

a configuration manager for receiving information from a plurality of
resources, each resource having associated objects;

a configuration store for storing predetermined information for the
plurality of resources; and

a search manager adapted to receive predetermined search
information from a plurality of resources;

a search data store adapted to store predetermined search information
for the various resources; and

wherein the search manager searches the plurality of resources in

response to a single search request.

12. Asystem as defined in claim 1 wherein the management layer further
comprises:
a configuration manager for receiving information from a plurality of
resources, each resource having associated objects;

a configuration store for storing predetermined information for the

60

WO 02/48866 PCT/US01/48014

10

15

20

25

30

plurality of resources; and
a task manager, wherein the task manager receives task information
from the configuration manager related to tasks that may be completed in managing

the plurality of resources.

13. A method of managing a plurality of resources, each resource having
managed objects, wherein each of the objects has associated attribute and task
information, the method comprising:
receiving information from a first resource related to attribute
information for a first managed object;
receiving information from a second resource related to attribute
information for the first managed object,
storing the information received from the second resource with the
information received from the first resource in association with the first
managed object;
receiving a request to access information related to the first managed
object; and
accessing stored information from the first and second resources to

access information related to the first managed object.

14. A method as defined in claim 13 wherein the information received from the
first resource comprises a first property page and wherein the information received
from the second resource comprises a second property page and wherein the method
further comprises:

creating a property sheet for the first managed object;

associating the first property page with the property sheet; and

associating the second property page with the property sheet.

15. A method as defined in claim 14 further comprising:
receiving a search request from a client computer system; and
searching a plurality of resources in response to the single search

request using information associated with the property sheet.

61

WO 02/48866 PCT/US01/48014

10

15

20

25

30

16. A method as defined in claim 14 further comprising:
receiving a task request from a client computer system; and
in response to the task request, requesting task completion from a

plurality of resources.

17. A method as defined in claim 16 wherein the act of requesting task
completion from a plurality of resources comprises:
identifying two or more resources to configure in response to the task
request; and
performing the task by accessing the two or more resources
identified.

perform a task from a client’s computer system.

18. In a distributed network environment having a server computer system and a
plurality of managed resources, each resource maintaining a plurality of objects, a
method of representing at least one of the objects comprising:
receiving a first schema document that conforms to a property sheet
definition such that the first schema document defines a property sheet;
receiving a two or more schema documents that conform to a
property page definition to thereby define a plurality of property pages,
wherein at least one property page originates from a first resource and at least
one property page originates from a second resource, the second resource
being different from the first resource;
modifying the property sheet to include the received property pages;
and

wherein the property sheet represents the object.

19. A method of displaying management information related to managed
resources, each resource having at least one object, each object having associated
attribute and task information, the method comprising:

receiving a request to display object information;

62

WO 02/48866 PCT/US01/48014

10

15

20

25

30

retrieving attribute and task information, the attribute information and
the task information originating from different resources; and

displaying the attribute information and the task information.

20. A method of displaying management information related to network
resources in a window of a web browser application, each of the network resources
having at least one property sheet associated therewith, each property sheet
including one or more property pages:
requesting property sheets from two or more of the network
resources; and !
displaying the retrieved property sheets from each of the two or more

resources in the window of the web browser application.

21. A method of managing resources in a distributed network, the method
comprising:
receiving a query from a client computer system in the distributed
network;
accessing a plurality of resources in response to the query; and
providing management task options related to the query from more

than one resource.

22. A method of performing a management task, the task modifying information
associated with one or more back-end resources in a distributed network, the method
comprising:
receiving information from a first resource related to a first task, the
first task information for a first managed object of a predetermined object
type;
receiving information from a second resource related to a second task,
the second task associated with the first managed object;
storing the information received from the second resource in
association with the information received from the first resource;

receiving a request to perform the management task in relation to the

63

WO 02/48866 PCT/US01/48014

first managed object;
determining which resource to call in response to the request; and

sending a task request to the determined resource to perform the management task.

5 23. A method in a computer system for selecting the visual arrangement of
workspaces and modules in a network management console graphical user interface,
the console having a first zone operable to display tools and a second zone operable
to display workspaces and modules, the method comprising:

receiving a list of workspace names, each workspace name associated
10 with a workspace;
displaying an explorer tool in the first zone, the explorer tool
displaying the list of workspace names;
receiving from a user an indication that a first workspace name from
the list of workspace names has been selected; and
15 displaying in the second zone a first workspace associated with the

first workspace name.

64

WO 02/48866 PCT/US01/48014

1723

100
(110 5

Resource 1 |e._

Resource 2 [€---===---===============

— 112

Server
Computer
System

Resource N &

. —114

106
116

Console v Showv

Quick Search £qit v x Jii e Admin

¥ Monitors

(object type) [v] SAPSQLSY
dmin U X -]
=) | % S

. . \ . 99% dm—
(Instance(s)) il 5 SAPSQL99
(available actions) Iv Login Name

Jos Smith Jsmith

Scolt Stevens scatty ¥ More Tools

¥ Notifications Nl

g i Notification 1
olifical
Don Van Viiet — 7!})!sablu account Neification 2
F— ek Nollfcation 3 o« LBV
d 102
H

g '
Admin Users BRI 1

* Admin Groups View vAIl General
» User Workflow

First Name: [Cicisty tntiats: [kw |

m}

Address Last Name: [wallace }
Account | Display Name; ~ [_Kaisly Wallace — -
Profle Description: [System Engineer | C I I e nt
Telephones Offcs [ses0]
" Memberof | Telephono#: [5556687777] Computer System
Sesslons Lok || cancet |[Appy || Hep |

<]

Fig. 1

PCT/US01/48014

WO 02/48866

2/23

- — CrET I v OCE — — — —— | — —— o — — C— —— —— —— —— o Gy

(s)uoiosuuo)
UONESIUNWIWOY

(s)@o1ne(Indyj

91z ST (8)edmneq ndino

abelo)g

0Lz ST SIGEAOWOLAION

obeio)g
s|qeroway

- — — — — o —

——— — —— —
I
I
_
_
_ nun
_ Buisseoold
_ e
| 202 -
|
_
|
|
002 ---* 902 ----

e — — — — Com—

Kowisy

S|I}e|OA-UON

Aowisy
S|ejoN

Kowspy
wia)sAs

voz

306 <

WO 02/48866 PCT/US01/48014
3/23
—
5‘ 300
Managed L Managed - Managed -
Objects [l Objects Objects
—— el M ecaul— 333|316
-— ,; .
W‘. | Store
323 vee 327
Resource 1 Resource 2 Resource N
A A A
\ 4 4 \ 4
apIT P 218 API 2 APIN S 322
\ T A 320 A
A
o Search .| User Interface
‘ Manager Manager
Search Store |
) L 324)— 326
336 6335
Task | Configuration
Manager Manager
))} Configuration
328 330 Store
340 342
Property Sheet Persistence
o Manager | Manager
Property |
| Sheet Store | L sz L334 Persistence
Store
344 Management Module 346
-)
- Client Computer System Software s~ 308
¢
302< 311 Browser
Interface Module
Ny Applet 1
1 313 TC Fig. 3

WO 02/48866

4/23

PCT/US01/48014

/‘ 400

(Begin)

\ 4

Receive Information From A
Piugin Or Other Resource

i

Evaluate
Information

404

Y

402

Supply Relative Information To Predetermined Set ~_— 405
Of Managers, Such As The Task Manager,
Search Manager And Property Sheet Manager

Y

Each Receiving Manager Stores
Information In Its Respective Store.

408

End 410

WO 02/48866 PCT/US01/48014

5/23

j 500

502 —__Liohn Doe Properties X

Vieww All JPersonal Information

o

First Name: [John |

Personal
Information

—j LastName: |Doe
=
Display Name: {John Doe]

Ji

E-mail
Information
[J
)

Address:

Telephone: [123-123-1234

L OK H Cancel H Applr‘

//
k 504

Fig. 5

WO 02/48866 PCT/US01/48014

6/23

602
Receive Information Related f
To Supported Object

604

Has Object Been NO

Defined?

!

612
Define Object ;

Append Property Page <
Information To The Property
Sheet For The Supported

Object |/~ 606

A

f 608

Store Revised Property Sheet

End 610

WO 02/48866

PCT/US01/48014
7/23
—
Managed Managed Managed
Obj?‘cts 3 320 | Objects 2 544 Objects A
?\' 323 325 T 397
Store 5 Store 5 Store S
A_/ A_/
306 < 3 v
314 316
Resource 1 5312 Resource 2 /- eee |Resource N a
A A A
\ 4 v \ 4
Resource 1|5 318 |Resource 2|5 320 |Resource N|§ 322
API API AP|
Proxy
(SOAP) Fire Wall
A
Y
340 328
Task Manager S
7
Task Management Service S 704
702
Task List S
W Window 2000 Server Tasks

[] View Services

[] Properties

[] View Performance

} SQL Tasks

P IS Tasks

WO 02/48866 PCT/US01/48014

8/23

J, /‘ 800

Receive Request To K802

Display Task List For
A Selected Object
Y Y
Collect All Task 804 Get Task Handler | _— 806
Definitions That Address And Send
Statically Apply To Request To Resource
Objects Of That Type To Get Dynamic Tasks
\ 4
Receive Tasks ~— 808
A
_— 810
Merge Tasks

Y

Render DHTML And Script Code |~ 812
Needed To Form Task List, Including
Definitions Of The Task Handlers

WO 02/48866 PCT/US01/48014

9/23

(Begin) [‘900

Y

Execute Macro Function S 902

l

Convert To XML: Separate Tasks From | ¢~ 904

Parameters
A 4
Create Script |5~ 906
A 4
Store Script In Script Datastore 5 908
A 4
End 910

WO 02/48866

10/23

PCT/US01/48014

Plugin |
| Database

Resource

/" 1002

Plugin Search
Manager

1000
j312 2—

)

336

o~ K
Proxy

(SOAP)

Fire Wall

l

Search
Manager

_5- 324

A

Consals v

[ot |

s

Admi

* Admin Groups
+_User Workflow

Today - Thursday...

Sfowy

Login Nama

§v Monitors

T

Tools

Joe Smith

Jemith

> New

% e—
SAPSQL99
3
SAPSQLSg
99% m—_——
SAPSQLI9

Wi

Don Van Vllet

¥ More Tools

bheart

I3

Copy

¥ Notifications n

Disable account

Notification §

Tim Jones

Jordan

Frope

Mov
.

General

2
Notification 3

General Flrst Name: [[kesty] initials: [oW]
Address Last Name: [walace]
Account 1 Display Name: I—muaca |
Profile] Description: {System Engineer]
Telephones | ofmce (5050]
“Memberof § Telephona# [555-666-7777]
Sesslons [ook [cancet | [Aoy J{ Hep |

<

Fig.

10

WO 02/48866

11723

Receive Search Query

| 1102

I

Send To Search Manager

| 1104

A 4

Determine Search Handler From Schema

| 1108

Y

Package Data In XML Format

| 1108

A 4

Send Data To Resource

| 1110

Y

Receive Results And Parse/Page Results

| 1112

Y

Send Results To Client

| 1114

Y
End 1116

Fig. 11

PCT/US01/48014

/‘1100

PCT/US01/48014

WO 02/48866

12/23

n [A*TA 0ocl
b1 e vzl J Aka)
N F - m V IV J \\ /\V
\ — \ / g
= /
A N
8G<clL
aued
MIO0AA
6G7L 89¢1
\
ogel aued aued
= ysel, 19[00
Q9¢l y9cl oD
7921 aued Aenp [a[sucwoe sigeiers) ,,]o -
66108dvS {a] ((s)aoueysun)|
66108dVS \w\mm / SINPO af (edoos)|
e onm = / [a] (2dA) 103lqo) |
g SJOHUON a _— / \) womawv_._0>> X A¥P3 YoJesS MONpA
// \\ \h
AMOUS ABJOSUOD
_ s s / |) } y 0 [T, A 2
4 T} 02z f
0021 0LZ1 0Gcl 2021 LZL (NNv cecl

WO 02/48866

/ 1220

PCT/US01/48014
13723
1218
1992 1 234\
A} \\ 4
|_Console V¥, Show W DD
1 330/ | console 1 V| Hide left zone _—IT 1342
Console 2 Hide right zone . _—i— 1 344
Console 3 Hide @@¢k Seach Tool }—~ 1346
Hide Monitors Tool — T~ 1348
Console 4
i - 1340
/ ave
1332 /:ave as ...
1334 -{———
1 336/

Fig. 13

PCT/US01/48014

WO 02/48866

14/23

1 B4

oLyl
2

14542 Gyl
q_ Y

yAh42 N

A

[T

E@%mmm_ #mctﬁ
055 | S0UO

e Asn] | BueNAeda
TEEM | BueNsE]
Aspi| sueNEM

_
_
_ Babguesfs] uodosg
_
_

5]

(o] (suopeserens) |

(Spousyy) |

[a]

(ecoos) |

(edAipelo) |

el

gLyl

A NOS

A gBID

WO 02/48866

PCT/US01/48014

15/23

1512 1510 1514 1516 1418

[N L [

v/Quick Search | E/dit' X

1 (object type) M
P (scope) M
w411 (instance(s)) M
%11 (available actions) |v¥
B
/ Go! 11

1518

Fig. 15

WO 02/48866

PCT/US01/48014

16/23

¥ Quick Search Editv X

1530

Ne—————]

1512

|~ (object type) v

User

Group
Computer

Orginizational Unit

i~

Query

\

™

1510

Fig. 16

1418

WO 02/48866 PCT/US01/48014

17/23

1418
IVQuick Search Editr X
1990—+ User v
19%2—— Microsoft.com v
71011 Kim Majors v
1536 (available actions) |v
1538
Go! 1
//

1518

Fig. 17

WO 02/48866

1530

1532

1534

1536

18/23

PCT/US01/48014

Y Quick Search Editr X

—1. Kim Majors

-~ User v
~ Microsoft.com v
v

——1_ (available actions) |v

New User

Properties

Disable Account

Move

Go!

il Reset Password

N

Fig. 18

N

1810

1418

WO 02/48866

19/23

PCT/US01/48014

[1418

l‘ Quick Search Editr X
1530 |
~ User v
1532 :

— IT Microsoft.com v
¥ Kim Majors v
1536

— I~ Reset Password v

Gol
AN
N
N

Fig. 19

1538

PCT/US01/48014

WO 02/48866

20/23

0Z "bi-

¥20c

¥10¢

suoissag

uoBo JxeN je piomssed obueyo isniy sesn ||

Qoqna0

<

138N Wpny

sed josey

-+

TT ol lequsiy ppy
salpadold asedwon

saiusdoid a4

MSN «

S

N

_] plomssed ULBU0D
_] :pIomsseqd 5
_ b_ pi1OMssed Josoy _
i_ siofepy wiy _
5 _> _ LIOD"YOSOIDIN
A sme)s ¥oayn [a] 1080 |
X 4IP3 YOIESS YOIND Al

0102
4

ofeul
adAL | sweN uiboq 2202
e PREEIN, = USeg "o, = S 9960 ..
LT [amous 4@wosuod

00¢

WO 02/48866 PCT/US01/48014

21/23
2108 2112 2116 1412
2110 \ \
™~ X ,
~vExporer Editv X{—, .,
v Home T—2120
= Today - Thursday..{ __, ..,
2124—1-¥ Monitors 1
= Computers +—
2129 P 2128
= Agents T—2130

/— -
» Qverview

= Admin Groups
_ | = User Workflow

\\

2118

Fig. 21

PCT/US01/48014

WO 02/48866

22/23

ze b4

disH _ _ Addy _ _ |gouen _ MO _ SuoISSag
_ 1111-999-G6G | ‘#@uoydejay J0 Joquisy
occz— [0506 | 20110 seuoydeja]
| seeuibug weyshg | :uonduoseq ayoid
L ol Masy] | “OWeN Aejdsig JunoooY
| 0EJBM | ioweN JseT ssaIppy
[mi]semu [Rsiy] swenisi4 p1oUD
olzz— [[elouss) IV A MOIA

veee

¢ece

14T44

olece

00c¢c

III—BEHI
SAOIN
. sémado. Jesn Aup SOUOP Wil
.V E:ooom.m._.n.mm_o lasn Heauq 18I UeA uoQg
= fdoo ARL = 9B[IeAM ASINT
s)se] SIo0 a Jesn _ucm.mm_ wepo cmctoz
MON < Jesn ynwsf Upws sor
swieN

X syse 8dAl | sweN uibo

8¢cc

. 9zee
w_ V¢ce

[AY#4

0cce

“.__8lz¢

PCT/US01/48014

WO 02/48866

23/23

ez b4 Iree oeee
— / \

~ [_deH || Addy][meoueg [Mo | \ suo|Sseg

_ 8888-099-GGG | # suoydaje L. _ L111-999-GSS __ # euoydele | 40 Isquisiy

oqmw\ — _ 5509 | 200 i 0505 soyo | sSeuoydejaL 876z
| 4seulbug weysAs| :uopduoseq | Jesuibug wajsAs | :uopduoseg ajyold
| INog Awwy | |:ewen Aejdsiq _ aoe|len Misiy |-eweN Aedsig JuNoooy
9eec l\‘ B souor| :ewen jse _ 20BlEM | :eweN ise ssaippy [l 92¢€C
!“w_w:_c_ wil BWeN isiid !“w_m:_:_ E ‘BweN 1sli4 |elsuan yzez
lelsusg) [esusn (VA MBIA

(AR T

soladold

veec
Z2ez~ 4 wnoooe aqesia
v Adon 0cee
S)Sel QIO a wepQ UeWlopN A/\
8l€c
TN« upwsf ynws sor
vL€C ™ syse]

awep uibo

SIOS() UIWPY &

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

