009/002722 A2 |0 0000 0 00O O

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
31 December 2008 (31.12.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

RO A RO A

(10) International Publication Number

WO 2009/002722 A2

(51)

21

(22)
(25)
(26)

(30)

(1)

(72)

International Patent Classification:
GOGF 9/38 (2006.01)

International Application Number:
PCT/US2008/066775

International Filing Date: 12 June 2008 (12.06.2008)

Filing Language: English
Publication Language: English
Priority Data:

11/821,647 25 June 2007 (25.06.2007) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: DUFFY, John Joseph; One Microsoft Way,
Redmond, Washington 98052-6399 (US). CALLLAHAN,
David; One Microsoft Way, Redmond, Washington
98052-6399 (US). DETLEFS, David; One Microsoft
Way, Redmond, Washington 98052-6399 (US). MORRI-
SON, Vance; One Microsoft Way, Redmond, Washington
98052-6399 (US). GRUNKEMEYER, Brian; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

(81)

(34)

TRIBBLE, Eric Dean; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: CONCURRENT EXCEPTION HANDLING

106 100

COMPUTING DEVICE

¥

REMOVABLE
STORAGE

Pl

s

108

104

3
102
SYSTEM MEMORY

VOLATILE PROCESSING UNIT

NON-VOLATILE

NON-REMOVABLE
STORAGE

"\ FIG.1

110

OUTPUT DEVICE(S) . »

112

INPUT DEVICE(S) 115

14

200 -
e CONCURRENT

4 EXCEPTION HANDLER
APPLICATION

OTHER
| COMPUTERS/
APPLICATIONS

OTHER B
COMMUNICATION
CONNECTION(S)

o (57) Abstract: Various technologies and techniques are disclosed for providing concurrent exception handling. Exceptions that
occur in concurrent workers are caught. The caught exceptions are then forwarded from the concurrent workers to a coordination
worker. The caught exceptions are finally aggregated into an aggregation structure, such as an aggregate exception object. This
aggregation structure is rethrown and the individual caught exceptions may then be handled at a proper time.

=
=

WO 2009/002722 A2

— asto the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

WO 2009/002722 PCT/US2008/066775

CONCURRENT EXCEPTION HANDLING
BACKGROUND

[001] Software programs have been written to run sequentially since the beginning
days of software development. In a sequential program, tasks execute one after
another, i.e. one task finishes completely first before the next is begun, and if a
previous task does not finish subsequent tasks do not execute. Steadily over time
computers have become much more powerful, with more processing power and
memory to handle advanced operations. This trend has recently shifted away from
ever-increasing single-processor clock rates and towards an increase in the number
of processors available in a single computer, i.e. away from sequential execution
and toward parallel execution. Software developers want to take advantage of
improvements in computer processing power, enabling their software programs to
run faster as new hardware is adopted. With parallel hardware, however, this
requires a different approach: developers must arrange for one or more tasks of a
particular software program to be executed “concurrently” (sometimes called “in
parallel”), so that the same logical operation can utilize many processors at one
time, and deliver better performance as more processors are added to the computers
on which such software runs.
[002] Concurrent programs are fundamentally different than sequential ones,
because many tasks happen at once instead of one after the other. This raises one
particularly difficult problem: whereas in a sequential program, execution of a
logical operation stops at the first occurrence of an exception, in concurrent
programs exceptions may occur in many tasks at once. Current exception handling
mechanisms assume linear, sequential execution, and so communicating such
failures to the program presents problems. To make matters worse, the software
developer is often working with an application programming interface that gives
the appearance of a traditional sequential interface, even though its implementation
runs work concurrently, which makes it increasingly difficult to encapsulate the

implementation details of an interface when concurrency is used internally.

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

SUMMARY
[003] Various technologies and techniques are disclosed for providing concurrent
exception handling. Exceptions that occur in concurrent tasks are caught and
torwarded to a coordination task. These exceptions are then aggregated into an
aggregation structure, such as an aggregate exception object, and rethrown by the
coordination task. The aggregation structure may then be caught and the individual
exceptions inside handled appropriately by the program.
[004] In one implementation, the exceptions are handled in the program once all
concurrent tasks have completed. In such an implementation, a coordination task
initializes a shared flag and a shared list of exceptions to be aggregated.
Concurrent worker tasks are started, and should one throw an exception, the shared
flag is set and the exception is added to the shared list. All worker tasks poll the
tlag to determine whether it has been set; when they see that it has been set, they
voluntarily terminate. If any additional exceptions occur on concurrent tasks before
they are able to voluntarily terminate, those further exceptions are also added to the
shared list. Once all of the concurrent worker tasks terminate, an aggregate
exception object is created by the coordination task containing references to each of
the exceptions in the shared list and then the aggregate exception is thrown by the
coordination task.
[005] In another implementation, when the concurrent work is spawned, one or
more exception handler descriptors are supplied: each such descriptor is comprised
of an exception type and a handler function. For each respective exception that
occurs on a given concurrent worker task, the task determines if the respective
exception type is of a kind of handled by the one or more exception handler
functions provided. If the respective exception is of such a type, then the particular
handler function is run and the exception is considered handled. Any exceptions
that remain unhandled are then processed in the manner described above.
[006] In one implementation, a sequential process is provided that uses concurrent
worker tasks, with a collection of input data being processed to produce a
corresponding collection of output results. The exceptions are interleaved

alongside non-exceptional output results. The collection of output results is made

10

15

20

25

WO 2009/002722 PCT/US2008/066775

available to the sequential process. The worker tasks continue to produce the
output results completely, as exceptions are encountered. This technique defers the
evaluation of exceptions, permitting them to be handled during the consumption of
the results rather than as part of the production of said output results.
[007] In another implementation, a single particular exception is selected that
represents the multiple exceptions, leading to only one exception being thrown out
of the coordination task. This is used when many homogeneous exceptions are
caught and/or when a clear preference can be determined by the system.
[008] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[009] Figure 1 is a diagrammatic view of a computer system of one
implementation.
[010] Figure 2 is a diagrammatic view of a concurrent exception handling
application of one implementation operating on the computer system of Figure 1.
[011] Figure 3 is a high-level process flow diagram for one implementation of the
system of Figure 1.
[012] Figure 4 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in catching and forwarding from the
concurrent tasks to a coordination task.
[013] Figure 5 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in aggregating many exceptions into a
single aggregate exception object.
[014] Figure 6 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in terminating concurrent tasks after the

first concurrent exception has been thrown.

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

[015] Figure 7 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in collapsing exceptions that occurred
concurrently on separate tasks into fewer exceptions.
[016] Figure & is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in handling multiple exceptions once
gathered in the aggregate and rethrown from the coordination task.
[017] Figure 9 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in providing a deferred concurrent
exception process.
[018] Figure 10 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in selecting an exception to raise out of
many exceptions.

DETAILED DESCRIPTION
[019] For the purposes of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the
drawings and specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope is thereby intended. Any
alterations and further modifications in the described embodiments, and any further
applications of the principles as described herein are contemplated as would
normally occur to one skilled in the art.
[020] The system may be described in the general context as an application that
provides concurrent exception handling, but the system also serves other purposes
in addition to these. In one implementation, one or more of the techniques
described herein can be implemented as features within a framework program such
as MICROSOFT® .NET Framework, or from any other type of program or service
that handles concurrent exceptions occurring in programs.
[021] In one implementation, a concurrent exception handling system is provided
that can manage exceptions that occur concurrently on many worker tasks. The
exceptions can be handled in various ways and at various times, such as by
aggregating exceptions and throwing from a coordination task after all concurrent

worker tasks finish, such as placing exceptions interleaved among non-exceptional

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

data in the output stream for deferred handling, and so on. The term “task™ as used
herein means a logical unit of work which may or may not result in an independent
thread. The term “coordination task™ as used herein means a task that is
responsible for coordinating multiple worker tasks. The term “worker task™ as used
herein means a task that is responsible for carrying out one or more particular
logical units of work associated with a higher level program operation.

[022] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 106.

[023] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 1 by removable storage 108 and non-
removable storage 110. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[024] Computing device 100 includes one or more communication connections

114 that allow computing device 100 to communicate with other

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

computers/applications 115. Device 100 may also have input device(s) 112 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
111 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here. In one
implementation, computing device 100 includes concurrent exception handling
application 200. Concurrent exception handling application 200 will be described
in further detail in Figure 2.

[025] Turning now to Figure 2 with continued reference to Figure 1, a concurrent
exception handling application 200 operating on computing device 100 is
illustrated. Concurrent exception handling application 200 is one of the application
programs that reside on computing device 100. However, it will be understood that
concurrent exception handling application 200 can alternatively or additionally be
embodied as computer-executable instructions on one or more computers and/or in
different variations than shown on Figure 1. Alternatively or additionally, one or
more parts of concurrent exception handling application 200 can be part of system
memory 104, on other computers and/or applications 115, or other such variations
as would occur to one in the computer software art.

[026] Concurrent exception handling application 200 includes program logic 204,
which is responsible for carrying out some or all of the techniques described herein.
Program logic 204 includes logic for providing a system that performs operations
for an application concurrently on multiple concurrent worker tasks 206; logic for
catching exceptions that occur in the concurrent tasks 208; logic for forwarding
exceptions to the shared exception list and setting the shared flag 210; logic for
producing an aggregation of the exceptions from the coordination task 212; logic
for optionally collapsing exceptions into fewer exceptions 214; logic for optionally
selecting a single exception to raise out of multiple exceptions 216; and other logic
for operating application 220. In one implementation, program logic 204 is
operable to be called programmatically from another program, such as using a
single call to a procedure in program logic 204.

[027] Turning now to Figures 3-10 with continued reference to Figures 1-2, the

stages for implementing one or more implementations of concurrent exception

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

handling application 200 are described in further detail. Figure 3 is a high level
process flow diagram for concurrent exception handling application 200. In one
torm, the process of Figure 3 is at least partially implemented in the operating logic
of computing device 100. The process begins at start point 240 with providing a
system that performs operations for an application concurrently (i.e. executing
multiple concurrent worker tasks on multiple OS threads) (stage 242). The system
recognizes exceptions that occur in the concurrent tasks (stage 244), forwards them
to a coordination task, and aggregates them (e.g. in an aggregate exception object
or other structure) (stage 246). The system propagates the aggregate from the
coordination task once all concurrent worker tasks have completed, enabling the
program to handle the concurrent exceptions that happened during the operation at
a proper time (stage 248). The logic performed to handle any given exception
within the aggregate can be equivalent to the logic it would perform on a sequential
program, provided it is capable of recognizing the aggregate exception type and
retrieving individual exceptions from within. The process ends at end point 250.
[028] Figure 4 illustrates one implementation of the stages involved in catching
and forwarding exceptions from the concurrent worker tasks to a coordination task.
In one form, the process of Figure 4 is at least partially implemented in the
operating logic of computing device 100. The process begins at start point 270
with providing a system that performs operations for an application concurrently on
multiple worker tasks (e.g. running in separate OS threads) (stage 272). The
system catches exceptions that occur in the concurrent worker tasks (stage 274) and
forwards the recognized exceptions from the concurrent tasks to a coordination task
(stage 276), e.g. by placing them into a shared location. The coordination task is
then responsible for tracking the received exceptions from other concurrent worker
tasks, if applicable (stage 278). The process ends at end point 280.

[029] Figure 5 illustrates one implementation of the stages involved in aggregating
many exceptions into a single aggregate exception object. In one form, the process
of Figure 5 is at least partially implemented in the operating logic of computing
device 100. The process begins at start point 290 with providing an aggregate

exception object that can store multiple exceptions and related details (stage 292).

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

In one implementation the aggregate exception object can store the stack trace,
thread id, and/or API specific information about the concurrent operations which
threw the forwarded exceptions to help debuggability, etc. (stage 292). In other
implementations, additional and/or fewer details can be stored. The system
populates the aggregate exception object with exceptions that occurred in
concurrent worker tasks (optionally in the order in which they were thrown by
assigning a global timestamp ordering) (stage 294). The system then throws the
aggregate exception, enabling an exception handler in the program to handle it at a
proper time (stage 296). The process ends at end point 298.

[030] Figure 6 illustrates one implementation of the stages involved in terminating
concurrent worker tasks after the first concurrent exception has been thrown. In
one form, the process of Figure 6 is at least partially implemented in the operating
logic of computing device 100. The process begins at start point 310 with
providing a coordination task that initializes a shared flag and a shared location
(e.g. a list of exceptions) (stage 312). The coordination task initiates one or more
concurrent worker tasks (e.g. by assigning logical units of work called tasks to OS
threads, processes, etc.) (stage 314). As soon as an exception is thrown by such a
task, the shared flag is set and the exception is added to the shared location (stage
316). When a concurrent worker task subsequently polls the flag to see if it was
set, it voluntarily terminates (stage 318). If any further exceptions occur before a
respective task terminates, those exceptions are also logged to the shared location
(stage 320). The coordination task then waits for all concurrent tasks to terminate
(stage 322). An aggregate exception object is created out of the logged exceptions
and 1s then thrown by the coordination task for proper handling (stage 324). In one
implementation, an optional mechanism is provided for telling the user which
operations completed, which operations threw an exception, and/or which ones
were not processed. The process ends at end point 326.

[031] Figure 7 illustrates one implementation of the stages involved in collapsing
exceptions that occurred concurrently on separate worker tasks into fewer
exceptions. In one form, the process of Figure 7 is at least partially implemented in

the operating logic of computing device 100. The process begins at start point 340

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

with aggregating exceptions that occurred on separate tasks (stage 342). The
aggregated exceptions are analyzed to see if any can be eliminated as redundant,
such as because they are homogeneous (i.e. of the same exception type and the
same root cause) (stage 344). The system eliminates the redundant exceptions so
that only the exceptions necessary to convey the issues remain in the aggregated
exceptions structure (stage 346). If all exceptions are homogeneous, an
implementation may decide to propagate just one of the exceptions instead of
aggregating into an aggregate exception object. The process ends at end point 348.
[032] Figure 8 illustrates one implementation of the stages involved in handling
multiple exceptions once gathered in the aggregate and rethrown from the
coordination task. In one form, the process of Figure 8 is at least partially
implemented in the operating logic of computing device 100. The process begins at
start point 370 with receiving exception results (i.e. catching an aggregate
exception object that was thrown) (stage 372). The catch handler invokes an API
and supplies one or more exception handler functions (stage 374), each of which is
comprised of an exception type and a handler function. For each of the exceptions
(decision point 376), the system determines if the exception is one of the kinds
handled by the handler function(s) (decision point 378). If so, the particular
handler is run and the exception is marked as handled (stage 380). Once all of the
exceptions are processed to see if there are handlers, the system determines if any
unhandled exceptions are still present (decision point 382). If none remain, then
the process ends at end point 386. If one exception remains, then the system
rethrows the specific exception; if more than one exception remains, a new
aggregate exception object is constructed with just the unhandled exceptions and
the new aggregate exception object is rethrown (stage 384). The process ends at
end point 386.

[033] Figure 9 illustrates one implementation of the stages involved in providing a
deferred concurrent exception process. In one form, the process of Figure 9 is at
least partially implemented in the operating logic of computing device 100. The
process begins at start point 400 with a sequential process that uses concurrent

worker tasks. A collection of input data is processed to produce a corresponding

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

collection of output results (stage 402). The collection contains either an actual
output value or an exception value for each result, with the actual output values
being interleaved with the exception values (stage 402). In one implementation, the
output results can contain the completed results, aggregated exceptions, and/or an
indicator that the work was not processed.

[034] In one implementation, as exceptions are interleaved among ordinary output,
the system provides the option of preserving the original input ordering in the
resulting output. Suppose there is an input of {a,b,c,x,y,z}, and the task is to map
elements via some projection function f. The system can provide the capability of
ensuring output ordering corresponds to input ordering, such that the results will
always be: {f(a),f(b),f(c),f(x).f(y).f(z)}. Similarly, when exceptions are deferred,
the system can ensure the resultant exception ends up in the corresponding output
element position. If exceptions el and e2 happened while executing f(b) and (y),
but all others succeeded, for instance, then the results will be:
{f(a),el,f(c).f(x),e2.(z)}.

[035] The collection of output results is made available to the sequential process,
and the worker tasks continue to produce the output results completely, as
exceptions are encountered (stage 404). In one implementation, the output results
can then be processed as usual, which causes any exceptions to be rethrown lazily
during processing as exceptional output elements are seen. This allows the
exceptions to be handled as part of the consumption rather than the production of
output. In another implementation, exceptions may be written to the output results
first, and then if an exception of a certain type occurs, the operation stopped. For
example, if a serious exception occurs that would affect the result of the
computation, then it could be better to stop the computation than to continue
writing exceptions to the output results.

[036] A gather-exceptions operation is optionally provided to accumulate all
exceptions in the output results into a list which can be further analyzed, logged,
etc. (stage 406). An eliminate-exceptions operation is optionally provided to
remove exception values in the output results and optionally store them in a list

which can be further analyzed (stage 408). The process ends at end point 410.

10

10

15

20

25

WO 2009/002722 PCT/US2008/066775

[037] Figure 10 illustrates one implementation of the stages involved in selecting
an exception to raise out of many exceptions. In one form, the process of Figure 10
is at least partially implemented in the operating logic of computing device 100.
The process begins at start point 430 with aggregating multiple exceptions that
occurred on concurrent worker tasks (stage 432). The system selects one exception
that represents the multiple exceptions (e.g. one that is heuristically determined to
be most important, one determined programmatically by a policy, one that was
thrown first, etc.) (stage 434). In one implementation, the selected exception is an
exception that was not one of the multiple exceptions. In another implementation,
the selected exception is selected out of the multiple exceptions as one exception to
represent the others because the multiple exceptions all have a same root problem.
The system then throws the selected exception (stage 436), discarding the rest. The
process ends at end point 438.

[038] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[039] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, user interface screen content,
and/or data layouts as described in the examples discussed herein could be
organized differently on one or more computers to include fewer or additional

options or features than as portrayed in the examples.

11

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

What is claimed is:
1. A computer-readable medium having computer-executable instructions for
causing a computer to perform steps comprising:

catch exceptions that occur in concurrent worker tasks;

forward the caught exceptions from the concurrent worker tasks to a
coordination task;

aggregate the caught exceptions into an aggregation structure; and

rethrow the aggregation structure from the coordination task so that the
caught exceptions can be handled by the program at a proper time.
2. The computer-readable medium of claim 1, wherein the aggregation
structure is an aggregation exception object.
3. The computer-readable medium of claim 2, wherein the aggregate exception
object is provided to an exception handler so the exceptions can be handled by the
program at the proper time.
4, The computer-readable medium of claim 1, wherein the coordination task is
responsible for tracking the recognized exceptions from the concurrent worker
tasks.
S. The computer-readable medium of claim 1, wherein one or more of the
caught exceptions are removed from the aggregation structure as being redundant
exceptions.
6. The computer-readable medium of claim 1, wherein the aggregation
structure 1s an output stream that contains concurrent exceptions interleaved with
normal output.
7. The computer-readable medium of claim 1, wherein the exceptions are only
aggregated into an aggregation structure if an unhandled exception occurs on one of
the concurrent worker tasks.
8. The computer-readable medium of claim 1, wherein the proper time for
aggregating and rethrowing the caught exceptions in the aggregation structure is
when all of the concurrent worker tasks finish executing.
0. A method for aggregating many exceptions into a single aggregate exception

object comprising the steps of:

17

10

15

20

25

30

WO 2009/002722 PCT/US2008/066775

providing an aggregate exception object that can store a plurality of
exceptions;

populating the aggregate exception object with the plurality of exceptions as
the plurality of exceptions occur in concurrent worker tasks; and

providing the aggregate exception object to an exception handler at a proper
time.
10. The method of claim 9, wherein the aggregate exception object can also
store related information about each of the plurality of exceptions.
11. The method of claim 10, wherein the related details include an identifier of
the thread which originally threw the exception.
12. The method of claim 10, wherein the related details include an original stack
trace.
13. The method of claim 10, wherein the related details include application
programming interface specific information about a concurrent operation that
resulted in a particular exception.
14. The method of claim 9, wherein the one or more of the plurality of
exceptions are removed from the aggregate exception object as being redundant
exceptions.
15. The method of claim 9, wherein the proper time at which the aggregate
exception object is provided to the exception handler is after all of the concurrent
worker tasks have finished executing.
16. The method of claim 9, wherein the proper time at which the aggregate
exception object is provided to the exception handler is after a first exception
occurs on one of the concurrent worker tasks.
17. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps recited in claim 9.
18. A method for terminating concurrent worker tasks after a first concurrent
exception occurs comprising the steps of:

providing a coordination task that initializes a shared flag and a shared
location;

starting concurrent worker tasks;

12

10

WO 2009/002722 PCT/US2008/066775

as soon as a first concurrent exception is thrown, setting the shared flag and
logging the exception to the shared location;

when each respective concurrent worker task subsequently polls the flag to
see if the flag was set, the respective task voluntarily terminates;

if any further exceptions occur before each respective task terminates,
logging those further exceptions to the shared location;

waiting for all of the concurrent worker tasks to terminate; and

creating an aggregate exception object out of any exceptions logged to the
shared location and then throwing the aggregate exception object for proper
handling.
19. The method of claim 18, wherein the shared location contains a collection of
exceptions.
20. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 18.

14

PCT/US2008/066775

WO 2009/002722

1710

SNOILVYIINddv
/S43LNdNOD
d3HLO

/

Gl

| "Old

NOILYDITddY
Y3TANVH NOILdIOX3
INIHHNONOD 4/
SN (SINOILOANNOD 002
NOILYOINNWINOD
—/
- Y3H1O0 ~
Bl ; 3711V IOA-NON
211~ (S)30IA3Q LNdNI
LINN ONISSID0Hd JTLYTOA
L) /
4 (9)301A30 LNALNO o S AHONIW WALSAS
!
0Ll ool
4 39v40L1S
379YAOWIY-NON
321A3d ONILNANOD
504 4 JOVHOLS
37gYAOWTY

o 904

PCT/US2008/066775

WO 2009/002722

2/10

¢ Ol

022
NOILVOIlddV FHL ONILVHIdO 404 J19071H3IHLO

912
SNOILd3D0X3 FTdILTNN 40 1NO 3SIVYE OL NOILd3OX3 FTONIS ¥V ONILOTT13S ATIVNOILJO H04 31901

24
SNOILd33X3 d3dM3d OLNI SNOILd3IX3 ONISAVT10D ATIVNOILJO 404 31901

%4
MSVL NOILVNIGHOO0O FHL WOd4 SNOILd30X3 3JHL 40 NOILVOIFHOOV NV ONIONAOHd 404 J1901

01z
OV1d A3HVHS FHL ONILLIS ANV LSIT NOILd30Xd A34VHS FHL OL1 SNOILd3OX3 ONITHYMHEOS 04 J190T

802
SUSVL HINHOM LINFHHNONOD FHL NI dNI3D0 LVHL SNOILd3OX3 ONIHOLYD HO4 1901

902
SUSVL HINHOM LNFHHNIONOD F1dIL N
NO ATINIHINIONOD NOILYIITddY NV J04 SNOILYHIdO SINHO4d3d LYHL INFLSAS V ONIAIAOHd 04 J190T

02
19071 NVHO0dd

00¢
NOILVOIIlddV d371ANVH NOILd3OX3 LINFHHNINOD

WO 2009/002722 PCT/US2008/066775

3710

START
240

PROVIDE A SYSTEM THAT PERFORMS OPERATIONS FOR AN
APPLICATION CONCURRENTLY
242

'

RECOGNIZE EXCEPTIONS THAT OCCUR IN THE CONCURRENT
WORKER TASKS
244

'

FORWARD THE EXCEPTIONS TO A COORDINATION TASK, AND
AGGREGATE THEM
246

v

PROPAGATE THE AGGREGATE ON THE COORDINATION TASK ONCE
ALL CONCURRENT WORKER TASKS HAVE COMPLETED, ENABLING THE
PROGRAM TO HANDLE THE CONCURRENT EXCEPTIONS OF THE
THREADS AT A PROPER TIME
248

END
250

FIG. 3

WO 2009/002722 PCT/US2008/066775

4/10

START
270

PROVIDE A SYSTEM THAT PERFORMS OPERATIONS FOR AN APPLICATION
CONCURRENTLY ON MULTIPLE WORKER TASKS
272

:

CATCHES EXCEPTIONS THAT OCCUR IN THE CONCURRENT WORKER TASKS
274

/

FORWARD THE RECOGNIZED EXCEPTIONS FROM THE CONCURRENT WORKER
TASKS TO A COORDINATION TASK
276

/

THE COORDINATION TASK IS RESPONSIBLE FOR TRACKING THE RECEIVED
EXCEPTIONS FROM OTHER CONCURRENT WORKER TASKS, IF APPLICABLE
278

END
280

FIG. 4

WO 2009/002722 PCT/US2008/066775

5/10

PROVIDE AN AGGREGATE EXCEPTION OBJECT THAT CAN STORE MULTIPLE
EXCEPTIONS AND RELATED DETAILS
292

POPULATE THE AGGREGATE EXCEPTION OBJECT WITH EXCEPTIONS THAT
OCCURRED IN CONCURRENT WORKER TASKS
294

i

THROWS THE AGGREGATE EXCEPTION, ENABLING AN EXCEPTION HANDLER
ON THE COORDINATION TASK’S THREAD TO HANDLE IT AT A PROPER TIME
296

END
298

FIG. 5

WO 2009/002722 PCT/US2008/066775

6/10

START
310

PROVIDE A COORDINATION TASK THAT INITIALIZES A SHARED FLAG AND A
SHARED LOCATION
312

:

COORDINATION TASK KICKS OFF CONCURRENT WORKER TASKS
314

v

AS SOON AS AN EXCEPTION IS THROWN BY SUCH A WORKER TASK, THE
SHARED FLAG IS SET AND THE EXCEPTION IS ADDED TO THE SHARED
LOCATION
316

v

WHEN CONCURRENT WORKER TASK SUBSEQUENTLY POLLS THE FLAG TO
SEE IF IT WAS SET, THEY VOLUNTARILY TERMINATE
318

'

IF ANY FURTHER EXCEPTIONS OCCUR BEFORE A RESPECTIVE WORKER
TASK TERMINATES, THOSE EXCEPTIONS ARE ALSO LOGGED TO THE SHARED
LOCATION
320

v

COORDINATION TASK THEN WAITS FOR ALL CONCURRENT WORKER TASKS
TO TERMINATE
322

v

AN AGGREGATE EXCEPTION OBJECT IS CREATED OUT OF THE LOGGED
EXCEPTIONS AND IS THEN THROWN BY THE COORDINATION TASK FOR
PROPER HANDLING
324

END
326

FIG. 6

WO 2009/002722 PCT/US2008/066775

7110

START
340

AGGREGATE EXCEPTIONS THAT OCCURRED CONCURRENTLY ON SEPARATE
WORKER TASKS
342

/

ANALYZE THE AGGREGATED EXCEPTIONS TO SEE IF ANY CAN BE
ELIMINATED AS REDUNDANT, SUCH AS BECAUSE THEY ARE HOMOGENEOUS
344

'

ELIMINATE THE REDUNDANT EXCEPTIONS SO THAT ONLY THE EXCEPTIONS
NECESSARY TO CONVEY THE ISSUES REMAIN IN THE AGGREGATED
EXCEPTIONS STRUCTURE
346

END
348

FIG. 7

WO 2009/002722 PCT/US2008/066775

8/10

START
370

RECEIVE EXCEPTION RESULTS
372

v

INVOKE AN API AND SUPPLY ONE OR MORE EXCEPTION HANDLER FUNCTIONS
374

/

MORE EXCEPTIONS?
376 NO

l YES
NO

IS THE EXCEPTION ONE OF THE KINDS HANDLED>

BY THE HANDLER FUNCTION(S)?
378

i YES

RUN THE PARTICULAR HANDLER AND MARK THE
— EXCEPTION AS HANDLED
380

ANY UNHANDLED EXCEPTIONS PRESENT?
382

, YES NO

IF JUST ONE REMAINS, THEN RETHROW THE SPECIFIC
EXCEPTION; IF MORE THAN ONE EXCEPTION REMAINS,
CONSTRUCT NEW AGGREGATE EXCEPTION OBJECT
WITH JUST UNHANDLED AND RETHROW
384

END
FIG. 8 386

WO 2009/002722 PCT/US2008/066775

9/10

START
400

PROCESS COLLECTION OF INPUT DATA TO PRODUCE CORRESPONDING
COLLECTION OF INTERLEAVED OUTPUT RESULTS WITH EITHER AN ACTUAL
OUTPUT VALUE OR AN EXCEPTION VALUE FOR EACH RESULT
402

i

MAKE COLLECTION OF OUTPUT RESULTS AVAILABLE TO THE SEQUENTIAL
PROCESS AND HAVE THE WORKER TASKS CONTINUE TO PRODUCE THE
OUTPUT RESULTS COMPLETELY, AS EXCEPTIONS ARE ENCOUNTERED
404

l

A GATHER EXCEPTIONS OPERATION IS OPTIONALLY PROVIDED TO
ACCUMULATE ALL EXCEPTIONS IN THE OUTPUT RESULTS INTO A LIST WHICH
CAN BE FURTHER ANALYZED, LOGGED, ETC.

406

i

AN ELIMINATE EXCEPTIONS OPERATION IS OPTIONALLY PROVIDED TO
REMOVE EXCEPTION VALUES IN THE OUTPUT RESULTS AND OPTIONALLY
STORE THEM IN A LIST WHICH CAN BE FURTHER ANALYZED
408

END
410

FIG.9

WO 2009/002722 PCT/US2008/066775

10/10

START
430

AGGREGATE MULTIPLE EXCEPTIONS THAT OCCURRED ON CONCURRENT
WORKER TASK
432

|

SELECT ONE EXCEPTION THAT REPRESENTS THE MULTIPLE EXCEPTIONS
434

|

THROW THE SELECTED EXCEPTION, DISCARDING THE REST
436

END
438

FIG. 10

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

