
US 2014O181174A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0181174 A1

Brashear (43) Pub. Date: Jun. 26, 2014

(54) DISTRIBUTED PROCESSING OF STREAM Publication Classification
DATAON AN EVENT PROTOCOL

(51) Int. Cl.
(71) Applicant: LiveOps, Inc., Redwood City, CA (US) H04L 29/08 (2006.01)

H04L 29/06 (2006.01)
(72) Inventor: Ronn Brashear, San Jose, CA (US) (52) U.S. Cl.

CPC H04L 67/10 (2013.01); H04L 65/608
(73) Assignee: LiveOps, Inc., Redwood City, CA (US) (2013.01)

USPC .. 709/201

(21) Appl. No.: 14/191,372 (57) ABSTRACT
An exemplary method for distributed processing of streaming

(22) Filed: Feb. 26, 2014 data on an event protocol comprises receiving a plurality of
related events from the streaming data at a node, amending a

O O state of the related events, determining an error margin based
Related U.S. Application Data on the amended State, and updating a current data transfor

(63) Continuation of application No. 1 1/974,113, filed on mation based on the amended State and error margin, thereby
Oct. 11, 2007, now Pat. No. 8,677,003. enabling real time analysis of streaming data.

Service

1.20a

at: Service ata service 3ta Sawice:

305 3

wap Nocie via Node iwap Node
140a 140b lic

ri-Cr---tor Critis-esters
idease ---or

120h

Aggregate Node 18O

Submit a job via a
Web Seiwer

Feedback loop consumer
O

Patent Application Publication Jun. 26, 2014 Sheet 1 of 7 US 2014/O181174 A1

Service

120c

DataService Data Service Data Service
138a 3. 130c

Redlice
Ni?is
1SO

Aggregate Node 160

Submit a job via a Feedback loop
Web Server 33

Patent Application Publication Jun. 26, 2014 Sheet 2 of 7 US 2014/O181174 A1

b ataase
w O

3ta. - or

Transformation
voie

3 t 3 reococorroceros 8:

Effor Cacuation
wode

3O

Resuit Genegatio:
ReS its assacra wode serrara

AO

Patent Application Publication Jun. 26, 2014 Sheet 3 of 7

Obtain

streaming data

Store streaming/
data

obtain a job /
redest

Fetch stored
data

via fetched data to a
Coininof; for at

3O

34

350

Determine a key for /
reated eve its

Send reiated events having the /
Safe key to a reduce Ode

Apply data transformations to events at

each reduce node to determine a resuit
to the join request

US 2014/O181174 A1

Patent Application Publication Jun. 26, 2014 Sheet 4 of 7 US 2014/O181174 A1

Receive a plurality of related
M efeS M

Amend a state of related
WS

A30

Determine an error margin based on/
M the arrended State

AA;

update a current data transformation /
based on the amended state and

error fragin

Patent Application Publication Jun. 26, 2014 Sheet 5 of 7 US 2014/O181174 A1

Obtain a
pit ratity of

S35

Apply a reduce
function to key K

Determine a
finaires it

ERetermine
error Yargin

Betermine an/
iteri in rest it

Patent Application Publication Jun. 26, 2014 Sheet 6 of 7 US 2014/O181174 A1

SO

Obtain an
3. 88:

M SO

. r MdM C O

53
Deterine a hash
Waie, , based on

the key

80

Route eyeft to
fed ice de

SS

Recca fogie - Oitains a? a went

Cout based on at east the key

Reduce fode adds 3.3

to the event Count

Sf
Reduce node

Save Curriative
M 8w Sibtracts from the Waities

eye; CO:

Patent Application Publication Jun. 26, 2014 Sheet 7 of 7 US 2014/O181174 A1

M A

Oita if an
awa

Ssssssssssssssssssssssssssssssssssssss 2O

K Service Y

3.
eterrie a has

Wade, , based of
the key

Af

Route eyeft to
Red Ce Code

Reduce node H obtains a current a
average M

f6

Reduce node adjusts
Current average

F7

Reduce node H sets error /
margii to zero

S{

Reduce mode -
MX XXXX XXX XXXX XXX XXXX XXX u}ciates value if

Cache

US 2014/0181.174 A1

DISTRIBUTED PROCESSING OF STREAM
DATA ON AN EVENT PROTOCOL

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/974,113, filed on Oct. 11, 2007,
entitled: “Distributed Processing of Streaming Data on an
Event Protocol and is hereby incorporated herein by refer
ence in its entirety for all purposes.

BACKGROUND

0002 MapReduce is a well-known programming model
that enables development of scalable parallel applications to
process a large amount of data on clusters of commodity
computing machines. In general, through an interface with
two functions, a map function and a reduce function, the
MapReduce model can facilitate parallel implementation of
many real-world tasks such as data processing for search
engines.
0003. A commodity machine (or a portion of a commodity
machine) performing map functions may be referred to as a
map node. Likewise, a commodity machine (or a portion of a
commodity machine) performing reduce functions may be
referred to as a reduce node. It is possible for a commodity
machine to perform both map functions and reduce functions,
depending on the required computations and the capacity of
the machine. Typically, each map node has a one-to-one con
nection with a corresponding first-level reduce node. Mul
tiple levels of reduce nodes are generally required for pro
cessing large data sets.
0004 An initial large dataset to be processed in a MapRe
duce model is generally a fixed or static data set. A large fixed
dataset is first divided into smaller data sets by the map nodes.
The smaller data sets are then sent to first level reduce nodes
for performing a reduce function on the Smaller data sets. The
reduce functions generate a smaller set of values which will
be re-reduced at the next levels until a final result or measure
ment is attained. A visual representation of a MapReduce
architecture may comprise nodes arranged in a funnel shape
wherein an initial data set is incrementally reduced at each
level until a final result exits the tip of the funnel.
0005. It would be beneficial to provide a system capable of
distributed processing of dynamic or streaming data without
needing multiple levels of reduce nodes.

SUMMARY

0006 An exemplary method for distributed processing of
streaming data on an event protocol comprises receiving a
plurality of related events from the streaming data at a node,
amending a state of the related events, determining an error
margin based on the amended State, and updating a current
data transformation based on the amended state and error
margin, thereby enabling real time analysis of streaming data.
0007. Other exemplary embodiments and implementa
tions are disclosed herein.

BRIEF DESCRIPTION OF THE FIGURES

0008 FIG. 1 illustrates an exemplary system for distrib
uted processing of streaming data.
0009 FIG. 2 illustrates an exemplary reduce node for dis
tributed processing of streaming data.

Jun. 26, 2014

0010 FIG. 3 illustrates an exemplary process for distrib
uted processing of streaming data.
0011 FIG. 4 illustrates an exemplary process performed
by a reduce node.
0012 FIG. 5 illustrates an exemplary process performed
by a reduce node which receives related events to multiple
keys.
0013 FIG. 6 illustrates an exemplary implementation.
0014 FIG. 7 illustrates another exemplary implementa
tion.

DETAILED DESCRIPTION

0015 The following description is presented to enable any
person skilled in the art to make and use the invention, and is
provided in the context of particular applications of the inven
tion and their requirements. Various modifications to the dis
closed embodiments will be readily apparent to those skilled
in the art and the general principles defined herein may be
applied to other embodiments and applications without
departing from the scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi
ments shown, but is to be accorded the widest scope consis
tent with the principles and features disclosed herein.

I. Overview

0016 Section II describes exemplary systems for distrib
uted processing of streaming data.
0017 Section III describes exemplary processes for dis
tributed processing of streaming data.
0018 Section IV describes exemplary implementations.
0019 Section V describes an exemplary computing envi
rOnment.

II. Exemplary Systems for Distributed Processing of
Streaming Data
0020 FIG. 1 illustrates an exemplary system 100 for dis
tributed processing of streaming data. The exemplary system
100 includes a service 110, a plurality of storages 120a-120c,
a plurality of data services 130a-130c, a plurality of map
nodes 140a-140c, a plurality of reduce nodes 150a-150c, an
aggregate node 160, and consumers 170. For ease of illustra
tion and explanation, representative components are illus
trated in FIG.1. One skilled in the art will recognize that more
or fewer components may be added or removed depending on
specific implementations.
0021. The service 110 may be any entity which generates
or otherwise obtains data that can be processed to determine
a useful result or measurement. For example, without limita
tion, a service may be a call center which continuously
receives call related data such as customer data, operator
performance data, product data, sales data, etc. Data stream
ing into the service 110 can be divided into events using an
event protocol. Any event protocol known in the art can be
implemented to process the streaming data. Exemplary event
protocols include, without limitation, Java Message Service
(JMS), Syslog, and Simple Mail Transfer Protocol (SMTP).
In general, events are related by a key function (e.g., Key=f
(Event)). Thus, events are related if they have the same key.
Key calculations based on an event protocol are well known in
the art and need not be described in more detail herein.
0022 Storages 120 may be any form of storage, for
example, databases, disk drives, read-only-memories, and so
forth. Data services 130 are services configured to fetch data

US 2014/0181.174 A1

from the data storages 120. In an exemplary implementation,
a data service 130 typically has a web server enabled to obtain
data over a communication network (e.g., the Internet) from
one or more data storages 120 depending on a particular result
to be achieved.
0023 For each execution of the data-processing algo
rithm, Map nodes 140 are configured to process data received
from different data services as events and map the events into
a format that is appropriate for the data processing and accept
able by the reduce nodes 150. In an exemplary implementa
tion, events are mapped on a line-by-line basis into a limited
number of formats. In addition, for each event received at a
map node 140, the map node 140 determines a key for the
event and sends related events (i.e., events having the same
key) to the same reduce node 150. The map node 140 may or
may not compute the key for each event.
0024. In an exemplary implementation, the map nodes 140
are cross connected to the reduce nodes 150. That is, each
map node 140 may connect to some or all reduce nodes 150 so
that each map node 140 is enabled to send related events to the
same reduce node 150. The map nodes 140 determine which
reduce node to send each event based on the keys of the
eVentS.

0025. For each key, a reduce node 150 applies a data
transformation (e.g., a reduce function) to the related events
to generate a result. The result may or may not be a final result.
If the result is not final, an error margin may be calculated
using any suitable error function known in the art. An interim
result can be determined based on the error margin. Exem
plary processes performed by a reduce node 150 are
described below with reference to FIGS. 4 and 5.
0026. The aggregate node 160 may nor may not reside in
the same computing device as the other nodes (i.e., map nodes
or reduce nodes). In an exemplary implementation, the aggre
gate node 160 is configured to collect all the data from the
reduce nodes 150 (e.g., from a cache) and provide an aggre
gated result to a requesting consumer 170.
0027. In an exemplary implementation, a feedback loop is
provided to enable any consumer feedback to the service 110.
0028 FIG. 2 illustrates an exemplary reduce node 150.
The exemplary reduce node 150 includes a data transforma
tion module 210, a cache 220, an error calculation module
230 and a result generation module 240. Related events hav
ing the same key are received by the data transformation
module 210. The data transformation module 210 fetches a
current state (e.g., using the key) from the cache 220 and
amends the state based on the received events, if necessary. If
all the data for a given key have been received, then a final
result is generated by the result generation module 240 based
on an amended State associated with the key. If it is deter
mined that more data will be received for a given key, then an
error margin is calculated by the error calculation module
230. An interim result is generated by the result generation
module 240 based on an amended State and an error margin
associated with the key. The result, final or interim, is pro
vided as an output from the reduce node 150.

III. Exemplary Processes for Distributed Processing of
Streaming Data
0029 FIG. 3 illustrates an exemplary process for distrib
uted processing of streaming databased on an event protocol.
0030. At step 310, streaming data are obtained by a service
110.
0031. At step 320, the data are stored in data storages 120.

Jun. 26, 2014

0032. At step 330, a job request from a consumer is
received. In an exemplary implementation, any authorized
entity may make a job request. The job request may be sent to
one or more of the service 110, the map node 140, and/or any
other components in the system 100, depending on design
choice. In an exemplary implementation, a job request
includes a data filter, a map task, and a reduce task. The data
filter enables the map nodes 140 to obtain the particular data
needed to satisfy the job request. The map task identifies the
map function to be performed at the map nodes 140 to map
data into a common format. The reduce task identifies the data
transformation function(s) to be applied at a reduce node 150
that receives all (or substantially all) related events having the
same key. The mechanics for composing a job request is well
known in the art and need not be described in more detail
herein.
0033. At step 340, events are obtained from data storages
120 by data services 130 and sent to map nodes 140.
0034. At step 350, the fetched data are divided into events
in accordance with an event protocol and mapped to a com
mon format by the map nodes 140.
0035. At step 360, keys are determined for related events.
Events are related if they have a commonkey. In an exemplary
implementation, the map nodes 140 determine the keys based
on the job request, the content of the events, and/or other
information associated with the events. In another exemplary
implementation, the map nodes 140 may obtain the keys from
any other entity (not shown).
0036. At step 370, related events are sent to the same
reduce node 150. In general, events that are related have the
same key. In an exemplary implementation, the map nodes
apply a hash function (e.g., a distributed hash function or
d-hash) to determine ahash value based on each key. The hash
value determines which reduce node to send each event. As a
result, events having the same key are routed to the same
reduce node.
0037. At step 380, data transformations are applied by the
reduce nodes 150 to related events to determine a result. In an
exemplary implementation, the result may be a final result. In
another exemplary implementation, an interim result may be
provided if additional streaming data are still to be received
for a given key. One skilled in the art will recognize that the
mathematical function to be applied as a data transformation
depends on the nature of a job request (e.g., via problems
involving cumulative transitive functions or transitive sum
mary functions, etc.). Exemplary data transformations
include, without limitation, OLAP cubes, probability distri
bution functions, threshold monitoring, etc.
0038 FIG. 4 illustrates an exemplary process performed
by a reduce node to update a current data transformation of
related events sharing the same key.
0039. At step 410, a reduce node 150 receives aplurality of
related events. In an exemplary implementation, the related
events are sent from one or more map nodes 140 that are cross
connected to the reduce node 150.

0040. At step 420, the reduce node 150 amends a state of
the related events. In an exemplary implementation, the
reduce node 150 uses the common key of the related events to
fetch a current state from a local or remote cache 220. The
reduce node 150 then determines, based on the content of
each related event, whether to amend the current state to an
amended State.

0041 At step 430, the reduce node 150 determines an error
margin based on the amended State. Any known error func

US 2014/0181.174 A1

tions may be applied, depending design choice and/or the
nature of the job request, to determine a distribution of error.
0042. At step 440, the reduce node 150 updates a current
data transformation based on the amended state and the error
margin. In an exemplary implementation, the reduce node
150 determines a result, final or interim, as the new data
transformation and updates the current data transformation
based on the new result.
0043 FIG. 5 illustrates an exemplary process performed
by a reduce node receiving multiple sets of related events,
wherein each set of events shares the same key.
0044. At step 510, a plurality of keys is obtained.
0045. At step 520, the first key, K, is set to equal to
0046. At step 530, a data transformation is applied to the
events having the key K. In an exemplary implementation, a
data transformation is applied to determine one or more val
ues germane to a job request. For example, the result of a data
transformation may be an amended State for the key K.
0047. At step 540, whether or not all events having the
same key K have been received is determined.
0048 If yes, at step 550, a final result is determined based
on the data transformation and reduce function the process
continues at step 580.
0049. If no, at step 560, an error margin is determined
based on the applied data transformation. All data transfor
mations have known error margin functions. Exemplary error
margin functions include, without limitation, weighted dis
tance determinators and breadth first leveling.
0050. At step 570, an interim result is determined based on
the data transformation and the error margin.
0051. At step 580, whether events for all keys have been
processed is determined.
0052. If yes, the process ends.
0053. If not, at step 590, K is set to equal to K and the
process repeats at step 530 for all events having the key K.

IV. Exemplary Implementations
0054 FIGS. 6-7 illustrate exemplary implementations for
distributed processing of streaming data to obtain useful
results.
0055 1. First Exemplary Implementation
0056 FIG. 6 illustrates an exemplary process for distrib
uted processing of streaming data for obtaining a result for a
problem that does not require keeping a state of related events
(e.g., problems involving cumulative transitive functions).
0057. At step 610, an event is obtained at a map node. In an
exemplary implementation, the event is fetched by the map
node in response to a job request from a consumer. In this
exemplary implementation, the consumer may wish to deter
mine, for a given campaign, how many simultaneous calls are
occurring at any moment. The campaign may have an asso
ciated product identifier.
0058 At step 620, a key is determined. In an exemplary
implementation, the map node may use the product identifier
as the key.
0059. At step 630, a hash value, H, is determined based on
the key. Hash functions are well known in the art and need not
be described in more detail herein.
0060. At step 640, the event is routed to a reduce node
identified by the hash value H (reduce node H). In an exem
plary implementation, related events having the same key are
routed to the same reduce node.
0061. At step 650, based on the key of the event, the reduce
node H obtains an event count from a cache.

Jun. 26, 2014

0062. At step 660, the reduce node H determines whether
the event is a stop event (i.e., whether the call associated with
the event has ended).
0063. If yes, at step 670, the reduce node H subtracts 1
from the event count.
0064. If no, at step 680, the reduce node Hadds 1 to the
event COunt.

0065. At step 690, the reduce node updates an error margin
and saves the cumulative count value in the cache. An error
margin is calculated based on any known error function
which calculates the change between complete and incom
plete call sessions. In an exemplary implementation, the
cache is accessible to an aggregator node which may output
results to a consumer.
0066. The process described above is merely exemplary.
One skilled in the art will recognize that other results or
measurements may be obtained by processing the streaming
data. For example, a consumer may be able to determine the
minimum, maximum and/or average counts of calls over any
period of time. In this example, a reduce node may adjust a
timestamp average as new events arrive.
0067 2. Second Exemplary Implementation
0068 FIG. 7 illustrates an exemplary process for distrib
uted processing of streaming data for obtaining a result for a
problem that requires keeping a state of related events (e.g.,
problems involving transitive Summary functions).
0069. At step 710, an event is obtained at a map node. In an
exemplary implementation, the event is fetched by the map
node in response to a job request from a consumer. In this
exemplary implementation, the consumer may wish to deter
mine, for a given service, what is the average completed call
sessions over a period of time T.
0070. At step 720, a key is determined. In an exemplary
implementation, the map node may use the service name as
the key.
0071. At step 730, a hash value, H, is determined based on
the key. Hash functions are well known in the art and need not
be described in more detail herein.
0072 At step 740, the event is routed to a reduce node
identified by the hash value H (reduce node H). In an exem
plary implementation, related events having the same key are
routed to the same reduce node.
(0073. At step 750, based on the key of the event, the reduce
node H obtains current average completed call sessions over
time T from a cache.
0074 At step 760, the reduce node adjusts the average and
time based on the event.
(0075. In this particular example, at step 770, the error
margin is set to Zero because there is no uncertainty at any
given time whether a call is on-going or has completed.
0076. At step 780, the reduce node saves the average value
and time in the cache. In an exemplary implementation, the
cache is accessible to an aggregator node which may output
results to a consumer.
0077. The process described above is merely exemplary.
One skilled in the art will recognize that other results or
measurements may be obtained by processing the streaming
data.
0078. 3. Other Exemplary Implementations
007.9 The exemplary implementations described above
are merely illustrative. One skilled in the art will recognize
that other applications may be implemented to generate
results based on distributed processing of streaming data. For
example, in a call center service scenario, the system can be

US 2014/0181.174 A1

used to solve problems relating to monitoring, real time bill
ing, real time analysis, dynamic service, real time quality
assurance, dynamic load balancing, Script comparison, per
formance analysis, and/or other problems that involve data
processing.
0080. Of course, the invention is not limited to call center
services. It may be implemented in any service wherein real
time analysis is useful for Supporting operations and/or busi
ness objectives. For example, the system may be imple
mented to compute entire body systemic changes during an
on-going Surgery, detect heat changes by faults to predict
earthquakes, determine stock trending, and/or other imple
mentations.

V. Exemplary Operating Environments

0081. The program environment in which a present
embodiment of the invention is executed illustratively incor
porates a general-purpose computer or a special purpose
device such as a hand-held computer. Details of such devices
(e.g., processor, memory, data storage, display) may be omit
ted for the sake of clarity.
0082 It should also be understood that the techniques of
the present invention may be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in Software executing on a computer
system, or implemented in hardware utilizing either a com
bination of microprocessors or other specially designed
application specific integrated circuits, programmable logic

Jun. 26, 2014

devices, or various combinations thereof. In particular, the
methods described herein may be implemented by a series of
computer-executable instructions residing on a Suitable com
puter-readable medium. Suitable computer-readable media
may include Volatile (e.g., RAM) and/or non-volatile (e.g.,
ROM, disk) memory.
I0083. The foregoing embodiments of the invention have
been presented for purposes of illustration and description
only. They are not intended to be exhaustive or to limit the
invention to the forms disclosed. Accordingly, the scope of
the invention is defined by the appended claims, not the
preceding disclosure.
What is claimed is:
1. A method for distributed processing of streaming data on

an event protocol, comprising:
(a) receiving a plurality of related events from said stream

ing data at a node, said streaming data including data
being dynamically collected while the data are being
processed;

(b) amending a state of said related events based on a
common key function of the related events;

(c) determining an error margin based on the amended
state, said error margin representing an uncertainty in
the streaming data as a result of a portion of said data
being from on-going phone calls; and

(d) updating a current data transformation based on the
amended State and error margin, thereby enabling real
time analysis of streaming data.

k k k k k

