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DISTRIBUTED PROCESSING OF STREAM 
DATA ON AN EVENT PROTOCOL 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/974,113, filed on Oct. 11, 2007, 
entitled: “Distributed Processing of Streaming Data on an 
Event Protocol and is hereby incorporated herein by refer 
ence in its entirety for all purposes. 

BACKGROUND 

0002 MapReduce is a well-known programming model 
that enables development of scalable parallel applications to 
process a large amount of data on clusters of commodity 
computing machines. In general, through an interface with 
two functions, a map function and a reduce function, the 
MapReduce model can facilitate parallel implementation of 
many real-world tasks such as data processing for search 
engines. 
0003. A commodity machine (or a portion of a commodity 
machine) performing map functions may be referred to as a 
map node. Likewise, a commodity machine (or a portion of a 
commodity machine) performing reduce functions may be 
referred to as a reduce node. It is possible for a commodity 
machine to perform both map functions and reduce functions, 
depending on the required computations and the capacity of 
the machine. Typically, each map node has a one-to-one con 
nection with a corresponding first-level reduce node. Mul 
tiple levels of reduce nodes are generally required for pro 
cessing large data sets. 
0004 An initial large dataset to be processed in a MapRe 
duce model is generally a fixed or static data set. A large fixed 
dataset is first divided into smaller data sets by the map nodes. 
The smaller data sets are then sent to first level reduce nodes 
for performing a reduce function on the Smaller data sets. The 
reduce functions generate a smaller set of values which will 
be re-reduced at the next levels until a final result or measure 
ment is attained. A visual representation of a MapReduce 
architecture may comprise nodes arranged in a funnel shape 
wherein an initial data set is incrementally reduced at each 
level until a final result exits the tip of the funnel. 
0005. It would be beneficial to provide a system capable of 
distributed processing of dynamic or streaming data without 
needing multiple levels of reduce nodes. 

SUMMARY 

0006 An exemplary method for distributed processing of 
streaming data on an event protocol comprises receiving a 
plurality of related events from the streaming data at a node, 
amending a state of the related events, determining an error 
margin based on the amended State, and updating a current 
data transformation based on the amended state and error 
margin, thereby enabling real time analysis of streaming data. 
0007. Other exemplary embodiments and implementa 
tions are disclosed herein. 

BRIEF DESCRIPTION OF THE FIGURES 

0008 FIG. 1 illustrates an exemplary system for distrib 
uted processing of streaming data. 
0009 FIG. 2 illustrates an exemplary reduce node for dis 
tributed processing of streaming data. 
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0010 FIG. 3 illustrates an exemplary process for distrib 
uted processing of streaming data. 
0011 FIG. 4 illustrates an exemplary process performed 
by a reduce node. 
0012 FIG. 5 illustrates an exemplary process performed 
by a reduce node which receives related events to multiple 
keys. 
0013 FIG. 6 illustrates an exemplary implementation. 
0014 FIG. 7 illustrates another exemplary implementa 
tion. 

DETAILED DESCRIPTION 

0015 The following description is presented to enable any 
person skilled in the art to make and use the invention, and is 
provided in the context of particular applications of the inven 
tion and their requirements. Various modifications to the dis 
closed embodiments will be readily apparent to those skilled 
in the art and the general principles defined herein may be 
applied to other embodiments and applications without 
departing from the scope of the present invention. Thus, the 
present invention is not intended to be limited to the embodi 
ments shown, but is to be accorded the widest scope consis 
tent with the principles and features disclosed herein. 

I. Overview 

0016 Section II describes exemplary systems for distrib 
uted processing of streaming data. 
0017 Section III describes exemplary processes for dis 
tributed processing of streaming data. 
0018 Section IV describes exemplary implementations. 
0019 Section V describes an exemplary computing envi 
rOnment. 

II. Exemplary Systems for Distributed Processing of 
Streaming Data 
0020 FIG. 1 illustrates an exemplary system 100 for dis 
tributed processing of streaming data. The exemplary system 
100 includes a service 110, a plurality of storages 120a-120c, 
a plurality of data services 130a-130c, a plurality of map 
nodes 140a-140c, a plurality of reduce nodes 150a-150c, an 
aggregate node 160, and consumers 170. For ease of illustra 
tion and explanation, representative components are illus 
trated in FIG.1. One skilled in the art will recognize that more 
or fewer components may be added or removed depending on 
specific implementations. 
0021. The service 110 may be any entity which generates 
or otherwise obtains data that can be processed to determine 
a useful result or measurement. For example, without limita 
tion, a service may be a call center which continuously 
receives call related data such as customer data, operator 
performance data, product data, sales data, etc. Data stream 
ing into the service 110 can be divided into events using an 
event protocol. Any event protocol known in the art can be 
implemented to process the streaming data. Exemplary event 
protocols include, without limitation, Java Message Service 
(JMS), Syslog, and Simple Mail Transfer Protocol (SMTP). 
In general, events are related by a key function (e.g., Key=f 
(Event)). Thus, events are related if they have the same key. 
Key calculations based on an event protocol are well known in 
the art and need not be described in more detail herein. 
0022 Storages 120 may be any form of storage, for 
example, databases, disk drives, read-only-memories, and so 
forth. Data services 130 are services configured to fetch data 
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from the data storages 120. In an exemplary implementation, 
a data service 130 typically has a web server enabled to obtain 
data over a communication network (e.g., the Internet) from 
one or more data storages 120 depending on a particular result 
to be achieved. 
0023 For each execution of the data-processing algo 
rithm, Map nodes 140 are configured to process data received 
from different data services as events and map the events into 
a format that is appropriate for the data processing and accept 
able by the reduce nodes 150. In an exemplary implementa 
tion, events are mapped on a line-by-line basis into a limited 
number of formats. In addition, for each event received at a 
map node 140, the map node 140 determines a key for the 
event and sends related events (i.e., events having the same 
key) to the same reduce node 150. The map node 140 may or 
may not compute the key for each event. 
0024. In an exemplary implementation, the map nodes 140 
are cross connected to the reduce nodes 150. That is, each 
map node 140 may connect to some or all reduce nodes 150 so 
that each map node 140 is enabled to send related events to the 
same reduce node 150. The map nodes 140 determine which 
reduce node to send each event based on the keys of the 
eVentS. 

0025. For each key, a reduce node 150 applies a data 
transformation (e.g., a reduce function) to the related events 
to generate a result. The result may or may not be a final result. 
If the result is not final, an error margin may be calculated 
using any suitable error function known in the art. An interim 
result can be determined based on the error margin. Exem 
plary processes performed by a reduce node 150 are 
described below with reference to FIGS. 4 and 5. 
0026. The aggregate node 160 may nor may not reside in 
the same computing device as the other nodes (i.e., map nodes 
or reduce nodes). In an exemplary implementation, the aggre 
gate node 160 is configured to collect all the data from the 
reduce nodes 150 (e.g., from a cache) and provide an aggre 
gated result to a requesting consumer 170. 
0027. In an exemplary implementation, a feedback loop is 
provided to enable any consumer feedback to the service 110. 
0028 FIG. 2 illustrates an exemplary reduce node 150. 
The exemplary reduce node 150 includes a data transforma 
tion module 210, a cache 220, an error calculation module 
230 and a result generation module 240. Related events hav 
ing the same key are received by the data transformation 
module 210. The data transformation module 210 fetches a 
current state (e.g., using the key) from the cache 220 and 
amends the state based on the received events, if necessary. If 
all the data for a given key have been received, then a final 
result is generated by the result generation module 240 based 
on an amended State associated with the key. If it is deter 
mined that more data will be received for a given key, then an 
error margin is calculated by the error calculation module 
230. An interim result is generated by the result generation 
module 240 based on an amended State and an error margin 
associated with the key. The result, final or interim, is pro 
vided as an output from the reduce node 150. 

III. Exemplary Processes for Distributed Processing of 
Streaming Data 
0029 FIG. 3 illustrates an exemplary process for distrib 
uted processing of streaming databased on an event protocol. 
0030. At step 310, streaming data are obtained by a service 
110. 
0031. At step 320, the data are stored in data storages 120. 
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0032. At step 330, a job request from a consumer is 
received. In an exemplary implementation, any authorized 
entity may make a job request. The job request may be sent to 
one or more of the service 110, the map node 140, and/or any 
other components in the system 100, depending on design 
choice. In an exemplary implementation, a job request 
includes a data filter, a map task, and a reduce task. The data 
filter enables the map nodes 140 to obtain the particular data 
needed to satisfy the job request. The map task identifies the 
map function to be performed at the map nodes 140 to map 
data into a common format. The reduce task identifies the data 
transformation function(s) to be applied at a reduce node 150 
that receives all (or substantially all) related events having the 
same key. The mechanics for composing a job request is well 
known in the art and need not be described in more detail 
herein. 
0033. At step 340, events are obtained from data storages 
120 by data services 130 and sent to map nodes 140. 
0034. At step 350, the fetched data are divided into events 
in accordance with an event protocol and mapped to a com 
mon format by the map nodes 140. 
0035. At step 360, keys are determined for related events. 
Events are related if they have a commonkey. In an exemplary 
implementation, the map nodes 140 determine the keys based 
on the job request, the content of the events, and/or other 
information associated with the events. In another exemplary 
implementation, the map nodes 140 may obtain the keys from 
any other entity (not shown). 
0036. At step 370, related events are sent to the same 
reduce node 150. In general, events that are related have the 
same key. In an exemplary implementation, the map nodes 
apply a hash function (e.g., a distributed hash function or 
d-hash) to determine ahash value based on each key. The hash 
value determines which reduce node to send each event. As a 
result, events having the same key are routed to the same 
reduce node. 
0037. At step 380, data transformations are applied by the 
reduce nodes 150 to related events to determine a result. In an 
exemplary implementation, the result may be a final result. In 
another exemplary implementation, an interim result may be 
provided if additional streaming data are still to be received 
for a given key. One skilled in the art will recognize that the 
mathematical function to be applied as a data transformation 
depends on the nature of a job request (e.g., via problems 
involving cumulative transitive functions or transitive sum 
mary functions, etc.). Exemplary data transformations 
include, without limitation, OLAP cubes, probability distri 
bution functions, threshold monitoring, etc. 
0038 FIG. 4 illustrates an exemplary process performed 
by a reduce node to update a current data transformation of 
related events sharing the same key. 
0039. At step 410, a reduce node 150 receives aplurality of 
related events. In an exemplary implementation, the related 
events are sent from one or more map nodes 140 that are cross 
connected to the reduce node 150. 

0040. At step 420, the reduce node 150 amends a state of 
the related events. In an exemplary implementation, the 
reduce node 150 uses the common key of the related events to 
fetch a current state from a local or remote cache 220. The 
reduce node 150 then determines, based on the content of 
each related event, whether to amend the current state to an 
amended State. 

0041 At step 430, the reduce node 150 determines an error 
margin based on the amended State. Any known error func 
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tions may be applied, depending design choice and/or the 
nature of the job request, to determine a distribution of error. 
0042. At step 440, the reduce node 150 updates a current 
data transformation based on the amended state and the error 
margin. In an exemplary implementation, the reduce node 
150 determines a result, final or interim, as the new data 
transformation and updates the current data transformation 
based on the new result. 
0043 FIG. 5 illustrates an exemplary process performed 
by a reduce node receiving multiple sets of related events, 
wherein each set of events shares the same key. 
0044. At step 510, a plurality of keys is obtained. 
0045. At step 520, the first key, K, is set to equal to 
0046. At step 530, a data transformation is applied to the 
events having the key K. In an exemplary implementation, a 
data transformation is applied to determine one or more val 
ues germane to a job request. For example, the result of a data 
transformation may be an amended State for the key K. 
0047. At step 540, whether or not all events having the 
same key K have been received is determined. 
0048 If yes, at step 550, a final result is determined based 
on the data transformation and reduce function the process 
continues at step 580. 
0049. If no, at step 560, an error margin is determined 
based on the applied data transformation. All data transfor 
mations have known error margin functions. Exemplary error 
margin functions include, without limitation, weighted dis 
tance determinators and breadth first leveling. 
0050. At step 570, an interim result is determined based on 
the data transformation and the error margin. 
0051. At step 580, whether events for all keys have been 
processed is determined. 
0052. If yes, the process ends. 
0053. If not, at step 590, K is set to equal to K and the 
process repeats at step 530 for all events having the key K. 

IV. Exemplary Implementations 
0054 FIGS. 6-7 illustrate exemplary implementations for 
distributed processing of streaming data to obtain useful 
results. 
0055 1. First Exemplary Implementation 
0056 FIG. 6 illustrates an exemplary process for distrib 
uted processing of streaming data for obtaining a result for a 
problem that does not require keeping a state of related events 
(e.g., problems involving cumulative transitive functions). 
0057. At step 610, an event is obtained at a map node. In an 
exemplary implementation, the event is fetched by the map 
node in response to a job request from a consumer. In this 
exemplary implementation, the consumer may wish to deter 
mine, for a given campaign, how many simultaneous calls are 
occurring at any moment. The campaign may have an asso 
ciated product identifier. 
0058 At step 620, a key is determined. In an exemplary 
implementation, the map node may use the product identifier 
as the key. 
0059. At step 630, a hash value, H, is determined based on 
the key. Hash functions are well known in the art and need not 
be described in more detail herein. 
0060. At step 640, the event is routed to a reduce node 
identified by the hash value H (reduce node H). In an exem 
plary implementation, related events having the same key are 
routed to the same reduce node. 
0061. At step 650, based on the key of the event, the reduce 
node H obtains an event count from a cache. 
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0062. At step 660, the reduce node H determines whether 
the event is a stop event (i.e., whether the call associated with 
the event has ended). 
0063. If yes, at step 670, the reduce node H subtracts 1 
from the event count. 
0064. If no, at step 680, the reduce node Hadds 1 to the 
event COunt. 

0065. At step 690, the reduce node updates an error margin 
and saves the cumulative count value in the cache. An error 
margin is calculated based on any known error function 
which calculates the change between complete and incom 
plete call sessions. In an exemplary implementation, the 
cache is accessible to an aggregator node which may output 
results to a consumer. 
0066. The process described above is merely exemplary. 
One skilled in the art will recognize that other results or 
measurements may be obtained by processing the streaming 
data. For example, a consumer may be able to determine the 
minimum, maximum and/or average counts of calls over any 
period of time. In this example, a reduce node may adjust a 
timestamp average as new events arrive. 
0067 2. Second Exemplary Implementation 
0068 FIG. 7 illustrates an exemplary process for distrib 
uted processing of streaming data for obtaining a result for a 
problem that requires keeping a state of related events (e.g., 
problems involving transitive Summary functions). 
0069. At step 710, an event is obtained at a map node. In an 
exemplary implementation, the event is fetched by the map 
node in response to a job request from a consumer. In this 
exemplary implementation, the consumer may wish to deter 
mine, for a given service, what is the average completed call 
sessions over a period of time T. 
0070. At step 720, a key is determined. In an exemplary 
implementation, the map node may use the service name as 
the key. 
0071. At step 730, a hash value, H, is determined based on 
the key. Hash functions are well known in the art and need not 
be described in more detail herein. 
0072 At step 740, the event is routed to a reduce node 
identified by the hash value H (reduce node H). In an exem 
plary implementation, related events having the same key are 
routed to the same reduce node. 
(0073. At step 750, based on the key of the event, the reduce 
node H obtains current average completed call sessions over 
time T from a cache. 
0074 At step 760, the reduce node adjusts the average and 
time based on the event. 
(0075. In this particular example, at step 770, the error 
margin is set to Zero because there is no uncertainty at any 
given time whether a call is on-going or has completed. 
0076. At step 780, the reduce node saves the average value 
and time in the cache. In an exemplary implementation, the 
cache is accessible to an aggregator node which may output 
results to a consumer. 
0077. The process described above is merely exemplary. 
One skilled in the art will recognize that other results or 
measurements may be obtained by processing the streaming 
data. 
0078. 3. Other Exemplary Implementations 
007.9 The exemplary implementations described above 
are merely illustrative. One skilled in the art will recognize 
that other applications may be implemented to generate 
results based on distributed processing of streaming data. For 
example, in a call center service scenario, the system can be 
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used to solve problems relating to monitoring, real time bill 
ing, real time analysis, dynamic service, real time quality 
assurance, dynamic load balancing, Script comparison, per 
formance analysis, and/or other problems that involve data 
processing. 
0080. Of course, the invention is not limited to call center 
services. It may be implemented in any service wherein real 
time analysis is useful for Supporting operations and/or busi 
ness objectives. For example, the system may be imple 
mented to compute entire body systemic changes during an 
on-going Surgery, detect heat changes by faults to predict 
earthquakes, determine stock trending, and/or other imple 
mentations. 

V. Exemplary Operating Environments 

0081. The program environment in which a present 
embodiment of the invention is executed illustratively incor 
porates a general-purpose computer or a special purpose 
device such as a hand-held computer. Details of such devices 
(e.g., processor, memory, data storage, display) may be omit 
ted for the sake of clarity. 
0082 It should also be understood that the techniques of 
the present invention may be implemented using a variety of 
technologies. For example, the methods described herein 
may be implemented in Software executing on a computer 
system, or implemented in hardware utilizing either a com 
bination of microprocessors or other specially designed 
application specific integrated circuits, programmable logic 
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devices, or various combinations thereof. In particular, the 
methods described herein may be implemented by a series of 
computer-executable instructions residing on a Suitable com 
puter-readable medium. Suitable computer-readable media 
may include Volatile (e.g., RAM) and/or non-volatile (e.g., 
ROM, disk) memory. 
I0083. The foregoing embodiments of the invention have 
been presented for purposes of illustration and description 
only. They are not intended to be exhaustive or to limit the 
invention to the forms disclosed. Accordingly, the scope of 
the invention is defined by the appended claims, not the 
preceding disclosure. 
What is claimed is: 
1. A method for distributed processing of streaming data on 

an event protocol, comprising: 
(a) receiving a plurality of related events from said stream 

ing data at a node, said streaming data including data 
being dynamically collected while the data are being 
processed; 

(b) amending a state of said related events based on a 
common key function of the related events; 

(c) determining an error margin based on the amended 
state, said error margin representing an uncertainty in 
the streaming data as a result of a portion of said data 
being from on-going phone calls; and 

(d) updating a current data transformation based on the 
amended State and error margin, thereby enabling real 
time analysis of streaming data. 

k k k k k 


