发明名称
含有免疫球蛋白 Fc 的多肽的液体制剂

摘要
本发明涉及一种液体制剂，该多肽含有免疫球蛋白 Fc 结构域，该液体制剂被稳定化以便维持含有 Fc 结构域的多肽的活性持续延长的时期。
1. 一种依那西普的水性、耐热的药物制剂，包括天冬氨酸、钠－钾磷酸盐缓冲剂、赖氨酸、氯化钠、蔗糖、聚山梨醇 20 以及乙二胺四乙酸二钠，其中依那西普以 10mg/ml 到 100mg/ml 的浓度存在。

2. 如权利要求 1 所述的水性、耐热的药物制剂，包含 25mg/ml 到 50mg/ml 的依那西普、1mM 到 50mM 的天冬氨酸、1mM 到 50mM 的赖氨酸、10mM 到 50mM 的磷酸钠－磷酸钾、0.75%到 3%的蔗糖、50mM 到 150mM 的 NaCl、0.1mM 到 2mM 的 EDTA、0.05mg/ml 到 1.0mg/ml 的聚山梨醇 20，pH 为 6.0 到 7.0。

3. 如权利要求 1 所述的水性、耐热的药物制剂，包含 50mg/ml 的依那西普、1.3mg/ml 的天冬氨酸、1.5mg/ml 的赖氨酸、1.5mg/ml 的磷酸二氢钠、3.3mg/ml 的磷酸氢二钾、20mg/ml 的蔗糖、5.8mg/ml 的 NaCl、0.37mg/ml 的 EDTA 二钠、0.1mg/ml 的聚山梨醇 20，pH 为 6.3。
含有免疫球蛋白 Fc 的多肽的液体制剂

发明领域
[0001] 本发明涉及一种包含 TNFR:Fc 的水性制剂、该组合物的制造方法、给药方法以及含有该组合物的试剂盒。
[0002] 发明背景
[0003] 肿瘤坏死因子是一种涉及炎症和急性期反应的多肽细胞因子。TNF-α 大量存在于患有类风湿性关节炎或克罗恩病的人中。通过生物制剂进行 TNF-α 的直接抑制在类风湿性关节炎的治疗中已经取得显著进步，并且这种诱导细胞因子的细胞外抑制已经被确认为一种有效的治疗。一种这样的生物制剂是依那西普。
[0004] 依那西普（TNFR:Fc）是一种二聚体融合蛋白，该二聚体融合蛋白是由连接到人 IgG1 的 Fc 部分的人 75 千道尔顿 (p75) 肿瘤坏死因子受体 (TNFR) 的细胞外配体结合部分组成。依那西普的 Fc 部分由 CH1 结构域、CH2 结构域以及铰链区组成，而 CH1 结构域是缺乏的。它是在中国仓鼠卵巢哺乳动物细胞表达系统中通过重组 DNA 技术产生的。它由 934 个氨基酸组成，并且具有至少 150 千道尔顿的表达分子量。
[0005] 通常，蛋白质具有非常短的半寿期，并且在暴露于各种因素（如不适宜温度、水 - 气界面、高压、物理 / 机械应力、有机溶剂和微生物污染）之后经历变性（如聚集、解离和吸附在容器表面）。因此，变性蛋白失去内在的理化性质和生理活性。蛋白质的变性通常是不可逆的，因此蛋白质一旦变性，它们的天然性质可能不会恢复到初始状态。
[0006] 在生物制药行业中，使用重组 DNA 技术制备的蛋白质在水性制剂中的长期储存通常是一项困难的任务。为了克服水性制剂中的蛋白质的稳定性问题，通过冻干（冷冻干燥）制备了更加稳定的治疗性蛋白产品。冻干产品通常伴随有用于复原的无菌水性介质。恢复后，这些制剂中可能有短的有效贮存寿命，即使在低温（例如，5℃）下保存时也是如此。在市场上可得到的生冻干形式的 TNF-α 抑制剂的实例包括 Enbrel® 和 Remicade®，并且这两种组合物应当在使用之前复原。
[0007] 提高多肽稳定性的典型实践可以通过改变制剂中的要素的浓度来解决，或者通过添加赋形剂来改变制备。
[0008] US5580856 公开了一种通过在干燥蛋白质溶液中添加复原稳定剂来稳定制备剂中干的蛋白质以防止生物活性的损失。此方法描述了一种用于通过将该干燥组合物溶解于一种包含该复原稳定剂的溶液中来生产一种稳定的制备剂的试剂盒。
[0009] US6171586 公开了一种用于混合的水性药物制剂，该药物制剂包括未经事先冻干的治疗有效量的一种抗原，将 pH 保持在大约 4.5 到大约 6.0 的范围内一种缓冲剂，一种表面活性剂以及一种多元醇，同时还公开了这种制剂的用途。
[0011] EP1478394 公开了以下发明，该发明涉及含有免疫球蛋白的 Fc 结构域的多肽的适合于长期储存的一种水性药物组合物、制造方法、给药方法以及含有该组合物的试剂
盒。
[0012] 因此, 令人希望的是提供在冷藏下具有增强的稳定性并且在正常室温下具有至少中等的稳定性的 TNFR:Fc 的液体制剂, 从而避免来自复原原因的不便和错误的可能性。
[0013] 发明概述
[0014] 本发明提供了一种包含 TNFR:Fc 的新颖的液体制剂, 它在 4℃和室温下呈现出长期稳定性。
[0015] 在一个方面, 本发明提供了一种由含有免疫球蛋白的 Fc 结构域的多肽以及聚集抑制剂组成的制剂, 其中该聚集抑制剂选自下组, 该组由以下各项组成: 天冬氨酸、苯丙氨酸、谷氨酸、丙氨酸、组氨酸以及赖氨酸。
[0016] 在另一个方面, 该制剂包含一种含有免疫球蛋白的 Fc 结构域的多肽、聚集抑制剂、缓冲剂、非离子型表面活性剂、多元醇、稳定剂、渗透压调节剂 (tonicity modifier)、以及整合剂。
[0017] 这种新颖的制剂的缓冲系统选自下组, 该组由以下各项组成: 磷酸钠、组氨酸、磷酸钾、柠檬酸钠或柠檬酸钾、马来酸、乙酸铵、三羟甲基氨基甲烷 (tris)、乙酸盐以及二乙醇胺或它们的组合。
[0018] 在又另一个方面, 该制剂包括选自下组的非离子型表面活性剂, 该组由以下各项组成: 基于聚山梨酯的非离子型表面活性剂以及基于泊洛沙姆的非离子型表面活性剂或它们的组合。
[0019] 该制剂的多元醇进一步选自下组, 该组由以下各项组成: 蔗糖、海藻糖、麦芽糖、甘露醇、木糖醇、麦芽糖醇以及山梨醇或它们的组合。
[0020] 该制剂的稳定剂选自下组, 该组由以下各项组成: EDTA (乙二胺四乙酸)、HEDTA (羟乙基二胺三乙酸)、NTA (次氮基三乙酸)、DTPA (二乙烯三胺五乙酸) 以及柠檬酸或它们的组合。
[0021] 此外, 该制剂提供了一种选自下组的渗透压调节剂, 该组由以下各项组成: 氯化钠、氯化钾、硫酸钠或者它们的组合。
[0022] 在另一个方面, 本发明提供了一种含有免疫球蛋白的 Fc 结构域的多肽, 该免疫球蛋白选自下组, 该组由以下各项组成: 单克隆抗体、融合蛋白以及 TNFR:Fc。
[0023] 本发明的制剂包含 TNFR:Fc, 还包含天冬氨酸、磷酸钠 - 磷酸钾缓冲剂、赖氨酸、氯化钠、蔗糖、聚山梨酯 20 以及乙二胺四乙酸二钠, 其中 TNFR:Fc 是以 10mg/ml 到 100mg/ml 的浓度存在。
[0024] 附图简要说明
[0025] 图 1a (非还原) 以及图 1b (还原) 显示了在零点时在 40℃下保存的具有不同的聚集抑制剂的依那西普制剂的降解模式的比较。
[0026] 条带 1: 参照药用产品
[0027] 条带 2: 如在表 1 中给出的 F-1
[0028] 条带 3: 如在表 1 中给出的 F-2
[0029] 条带 4: 如在表 1 中给出的 F-3
[0030] 条带 5: 如在表 1 中给出的 F-4
[0031] 图 2a (非还原) 以及图 2b (还原) 显示了在 40℃下保存 1 个月的具有不同的聚集
抑制剂的依那普利制剂的降解模式的比较。

[0032] 条带1：参照药用产品
[0033] 条带2：如在表1中给出的F-1
[0034] 条带3：如在表1中给出的F-2
[0035] 条带4：如在表1中给出的F-3
[0036] 条带5：如在表1中给出的F-4
[0037] 图3a（非还原）以及图3b（还原）显示了在47℃下保存16小时的具有不同的聚集抑制剂的依那普利制剂的降解模式的比较。
[0038] 条带1：参照药用产品
[0039] 条带2：如在表1中给出的F-3
[0040] 条带3：如在表1中给出的F-1
[0041] 条带4：标记
[0042] 图4显示了在55℃下保存24小时的具有不同的聚集抑制剂的依那普利制剂的降解模式的比较。
[0043] 条带1：参照药用产品
[0044] 条带2：如在表1中给出的F-3
[0045] 条带3：如在表1中给出的F-1
[0046] 条带4：标记
[0047] 图5a（非还原）以及图5b（还原）显示了在40℃下保存7天的具有作为稳定剂的赖氨酸的依那普利制剂的降解模式的比较。
[0048] 条带1：参照药用产品
[0049] 条带2：如在表1中给出的F-5
[0050] 条带3：如在表1中给出的F-3
[0051] 条带4：标记
[0052] 图6a（非还原）以及图6b（还原）显示了用于检查EDTA的影响的在零时在40℃下保存的依那普利制剂的降解模式的比较。
[0053] 条带1：没有EDTA
[0054] 条带2：有EDTA
[0055] 条带3：标记
[0056] 图7a（非还原）以及图7b（还原）显示了在40℃下保存3天的依那普利制剂的降解模式的比较。
[0057] 条带1：没有EDTA
[0058] 条带2：有EDTA
[0059] 条带3：标记
[0060] 图8a、图8b以及图8c显示了具有不同的缓冲剂和它们的盐的依那普利制剂的DSC特征曲线。
[0061] 图9显示了多种制剂的比较过渡中点（comparative transition midpoint）（F6到F8）。
[0062] 图10显示了最终配制的体积以及RMP的比较生物活性。
[0063] 图11显示了在F6、F8以及RMP中经由SE＝HPLC的比较降解。
[0064] 图12显示了在-20℃下保存3个月的F8和RMP的比较HIC特征曲线。
[0065] 图13显示了在5±3℃下保存3个月的F8和RMP的比较HIC特征曲线。
[0066] 图14显示了在25±2℃下保存3个月的F8和RMP的比较HIC特征曲线。
[0067] 图15显示了在40℃下保存3个月的F8和RMP的比较HIC特征曲线。
[0068] 本发明的说明。
[0069] 本发明的药物制剂包括一种纯化的多肽、缓冲剂、聚集体抑制剂、渗透压调节剂、稳定剂、表面活性剂、螯合剂，以及任选地防腐剂，它们呈适当的组合。
[0070] 针对治疗用途，单克隆抗体以高浓度使用，并且已知高浓度的蛋白质会增加聚集。在一个方面，在制剂组合物中需要聚集体抑制剂来使产品保持在天然状态并且是具有生物活性的，具有延长的保质期和更强的储存条件。存在着通过增加表面张力，优先结合或水合以及优先相互作用而充当聚集体抑制剂的氨基酸。
[0071] 聚集体抑制剂降低多肽的形成聚集体的趋向。氨基酸（如天冬氨酸、苯丙氨酸、谷氨酸、丙氨酸、组氨酸以及赖氨酸）长时间地减少制剂中含有的Fc结构域的多肽的聚集并且是本发明的优先实施方案。
[0072] 在另一个方面，需要缓冲剂来维持制剂的pH值。本发明的缓冲系统包括磷酸缓冲剂、碳酸氢盐缓冲剂、丁二酸盐缓冲剂、乙酸盐缓冲剂、柠檬酸盐缓冲剂、氨基酸类、以及Tris缓冲剂，它们单独地或者以适当的组合而使用，提供所希望的从5.5到7.5范围的pH值。
[0073] 在本发明中，表面活性剂用来防止TNFR-Fc吸附在小瓶、安瓿瓶、圆柱状管（carpoule）、药瓶、或注射器的表面上。表面活性剂降低蛋白质溶液的表面张力，从而防止其吸附或聚集体在一个水相表面上。本发明的优选表面活性剂包括基于聚山梨醇酯的非离子型表面活性剂、聚氧乙烯共聚物、以及聚氧乙烯基吡咯烷酮，它们单独地或组合使用。
[0074] 在一个实施方案中，在本发明中使用的稳定剂自下而上，该组由以下各项组成：氨基酸类，如甘氨酸、丙氨酸、赖氨酸、脯氨酸、丝氨酸、等等以及其他的盐，它们单独地或组合使用；单糖，如葡萄糖和甘露糖以及它们的类似物，它们单独地或组合使用；二糖类，如蔗糖、海藻糖、麦芽糖和它们的类似物，它们单独地或组合使用；糖醇类，如甘露糖醇、山梨糖醇以及它们的类似物，它们单独地或组合使用；以及多糖类，如葡聚糖、聚乙二醇以及它们的类似物，它们单独地或组合使用。
[0075] 渗透压调节剂被理解为是一种促成溶液的克分子渗透压浓度的分子。优选地，一种药物组合物的克分子渗透压浓度被调节以便最大限度地提高活性成分的稳定性，同时将给药时患者的不适降低至最低限度。适用于改变克分子渗透压浓度的渗透压调节剂的实施例包括，但不限于，氨基酸（精氨酸、半胱氨酸、组氨酸，等等）、盐类（氯化钠、氯化钾、氯化钙等）和/或糖类（蔗糖、葡萄糖、甘露醇以及它们的类似物）。
[0076] 依那西普在储存过程中倾向于片段化，所以需要一些片段化抑制剂来制造针对依那西普的最佳制剂组合物。已知对防止在许多产品（如干扰素、阿仑单抗，等等）中的片段化有影响的EDTA被用于本制剂中。
[0077] 整合剂稳定或防止自由金属离子与感兴趣的蛋白质反应。可以用于本发明中的整合剂的实例包括，但不限于，EDTA（乙二胺四乙酸）、HEEDTA（羟乙基乙二胺三乙酸）、NTA（
说明书

氨三乙酸、DTPA（乙二稀三胺五乙酸）以及柠檬酸。

【0078】 防腐剂是指添加到制剂中作为一种抑制剂的组合物或物质。优选地，本发明的含有保藏的TNFR:Fc的制剂成分防腐剂效果的法定或监管规则，以作为一种商业上可行的多用途产品。优选的是用于人类。本发明中使用的防腐剂选自下组，该组由以下各项组成：苯酚、间甲酚、对甲酚、邻甲酚、氯甲酚、烷基对羟基苯甲酸酯（对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯，等等）、苯氧氯铵、脱氯乙酸钠或硫柳汞，它们单独地或组合使用。然而，在本发明中，防腐剂的使用是任选的，并且在设计多剂量制剂时是优选的。

【0079】在本发明中所描述的TNFR:Fc的新颖的，耐热的水性制剂具有以下优点：

【0080】1. 涉及聚集抑制剂的使用，防止融合蛋白在长期储存过程中的聚集。

【0081】2. 涉及一种稳定剂的使用，防止在长期储存过程中不希望的裂解。

【0082】3. 为该水性制剂提供了更好的稳定性以便长期地维持它的活性，从而保证合理的保质期。

【0083】4. 即使在高温下也为该水性制剂提供了更好的稳定性。

【0084】以下实例展示了在本发明中描述的药物组合物以及进行本发明以获得稳定的TNFR:Fc的水性药物制剂的方式。这些实例绝不应当被解释为对本发明的范围的限制。

【0085】实例1

【0086】聚集抑制剂的筛选和选择

【0087】在40°C下筛选聚集抑制剂

【0088】研究了具有不同的聚集抑制剂（如赖氨酸、天冬氨酸、甘氨酸和脯氨酸）的依那西普制剂。这些制剂还含有其他的按照在表1中所给出的详情的赋形剂。样品和RMP在40°C下孵育一个月，然后通过SDS-PAGE进行分析。SDS-PAGE被用作一种分析技术，可以根据分子量从天然蛋白质中分离出游离的和高分子量的种类。由于在高浓度的单克隆抗体和融合蛋白的情况下具有高的聚集倾向，非还原SDS-PAGE被用来评定共价聚合体。由于在融合蛋白以及单克隆抗体中存在许多二硫键，在还原SDS-PAGE下检查蛋白质的片段化。

【0089】不同制剂的SDS-PAGE凝胶（图1a、1b、2a以及2b）显示了在40°C下储存一个月后依那西普的聚集和片段化。

【0090】表1：聚集抑制剂的鉴定

<table>
<thead>
<tr>
<th>序号</th>
<th>成分</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>依那西普</td>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>2.</td>
<td>蔗糖</td>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>3.</td>
<td>磷酸盐缓冲剂</td>
<td>25 mM</td>
<td>25 mM</td>
<td>25 mM</td>
<td>25 mM</td>
</tr>
<tr>
<td>4.</td>
<td>DL-天冬氨酸</td>
<td>20 mM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>L-脯氨酸—水合物</td>
<td>-</td>
<td>20 mM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>甘氨酸</td>
<td>-</td>
<td>-</td>
<td>20 mM</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>脯氨酸</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 mM</td>
</tr>
<tr>
<td>8.</td>
<td>氯化钠</td>
<td>100 mM</td>
<td>100 mM</td>
<td>100 mM</td>
<td>100 mM</td>
</tr>
</tbody>
</table>
[0093] 发现聚集体和片段化而言 F2 和 F4 具有更多的降解，但是就针对 F1 和 F3 所观察到的聚集体和片段而言没有重大差异。由于在此温度下没有观察到杂质的显著性差异，在较高的温度下进一步研究这两个制剂 (F1 和 F3) 来增加降解动力学以及降解物。

[0094] 在 47℃和 55℃下聚集抑制剂的筛选

[0095] 为了天冬氨酸 (F1) 和甘氨酸 (F3) 之间找出最佳的聚集抑制剂，使这两个制剂均在 47℃以及 55℃下带电。结果表明与天冬氨酸 (F1) 相比，甘氨酸 (F3) 在两种测试温度下（即在 47℃下 16h（图 3a 和图 3b）以及在 55℃下 24h（图 4））就聚集和片段化而言显示出更高的降解。含有甘氨酸的制剂在 47℃下 16h 的还原条件下同样显示出一个额外的片段带（图 3b）。

[0096] 天冬氨酸被证明在所有温度下对于防止聚集以及片段化是有效的，与参照药用产品 (RMP) 相比没有任何额外的带出现。在含有甘氨酸的制剂中观察到的额外的带可能是引起免疫原性的原因。

[0097] 赋形剂的组合（赖氨酸 + 天冬氨酸）

[0098] 为了维持含有天冬氨酸（在如上看到的被证明在所有温度下都是有效的）的 F3 制剂的 pH，添加了赖氨酸缓冲剂。赖氨酸和天冬氨酸都以 10mM 的浓度被使用，因为预期这些氨基酸在等摩尔浓度下具有较高的稳定性。该制剂组合物在表 1a 中提及：

[0099] 表 1a F5 的制剂

<table>
<thead>
<tr>
<th>序号</th>
<th>成分</th>
<th>组合物 F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>依那西普</td>
<td>50 mg</td>
</tr>
<tr>
<td>2.</td>
<td>糖代糖</td>
<td>20 mg</td>
</tr>
<tr>
<td>3.</td>
<td>磷酸盐缓冲剂</td>
<td>25 mM</td>
</tr>
<tr>
<td>4.</td>
<td>天冬氨酸</td>
<td>10 mM</td>
</tr>
<tr>
<td>5.</td>
<td>赖氨酸-水合物</td>
<td>10 mM</td>
</tr>
<tr>
<td>6.</td>
<td>氯化钠</td>
<td>100 mM</td>
</tr>
<tr>
<td>7.</td>
<td>聚山梨酯 20</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>8.</td>
<td>EDTA-二钠</td>
<td>1 mM</td>
</tr>
</tbody>
</table>

[0101] 如图 5a 和 5b 所示，与不含赖氨酸的制剂 (F3) 相比，含有赖氨酸与天冬氨酸组合的制剂显示出较少的裂解。

[0102] 实例 2

[0103] EDTA 的作用

[0104] 检查了 EDTA 在 F3 制剂中的作用（在 40℃下持续 3 天），并且通过 SE-HPLC 进行分析，用尺寸排阻色谱法分离蛋白质及其有关杂质（基于它们的尺寸）。这一技术对于检测依那西普的聚集和片段化是有用的，并且结果在下面的表 2 中给出。

[0105] SDS PAGE 同样被用来比较聚集体和片段类型。（图 5a, 5b, 6a 和 6b）

[0106] 表 2：显示出 EDTA 影响的制剂的 SE-HPLC 结果

[0107]
[0108] 尤其是就片段而言，按照 SE-HPLC 结果，与没有 EDTA 的制剂相比，发现 F3 具有较低的降解率。

[0109] 通过 SDS PAGE，发现 F3 在样品于 40℃下暴露 3 天之后具有较少的低分子量带。因此，EDTA 在防止依那西普的片段化中起重要作用。

[0110] 实例 3

[0111] 缓冲剂的作用

[0112] 如在表 3(F6 和 F7) 中给出的具有磷酸盐缓冲剂和组氨酸缓冲剂的依那西普制剂在 50℃下带电 2 天，然后通过 SE-HPLC 和差示扫描量热法 (DSC) 进行分析。DSC 是用于测定蛋白质的热力学稳定性的一种技术。依那西普有三个过渡，Tm 1 相应于 TNFR，Tm 2 相应于 Fc 部分的 CH2 结构域并且 Tm 3 相应于 Fc 部分的 CH3 结构域 (较高的 Tm 表示较高的稳定性)。

[0113] 表 3：缓冲剂成分的鉴定

<table>
<thead>
<tr>
<th>序号</th>
<th>成分</th>
<th>F6</th>
<th>F7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>蔗糖</td>
<td>20 mg</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>海藻糖</td>
<td>-</td>
<td>20 mg</td>
</tr>
<tr>
<td>3</td>
<td>酸氨酸—水合物</td>
<td>10 mM</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>甘氨酸</td>
<td>-</td>
<td>25 mM</td>
</tr>
<tr>
<td>5</td>
<td>天冬氨酸</td>
<td>10 mM</td>
<td>5 mM</td>
</tr>
<tr>
<td>6</td>
<td>氯化钠</td>
<td>100 mM</td>
<td>100 mM</td>
</tr>
<tr>
<td>7</td>
<td>洗山梨酯 20</td>
<td>0.2 mg</td>
<td>0.2 mg</td>
</tr>
<tr>
<td>8</td>
<td>EDTA 二钠</td>
<td>1 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>9</td>
<td>磷酸盐缓冲剂</td>
<td>25 mM</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>组氨酸</td>
<td>-</td>
<td>10 mM</td>
</tr>
</tbody>
</table>

[0115] 表 4：缓冲剂成分鉴定的 SE-HPLC 结果

<table>
<thead>
<tr>
<th>制剂号</th>
<th>聚集体%</th>
<th>片段%</th>
<th>纯度%</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6-0 天</td>
<td>1.4</td>
<td>0</td>
<td>98.6</td>
</tr>
<tr>
<td>F7-0 天</td>
<td>1.6</td>
<td>0.1</td>
<td>98.3</td>
</tr>
<tr>
<td>F6-2 天</td>
<td>12.5</td>
<td>0</td>
<td>87.5</td>
</tr>
<tr>
<td>F7-2 天</td>
<td>21.6</td>
<td>0</td>
<td>78.4</td>
</tr>
</tbody>
</table>

[0117] 按照 SE-HPLC 结果，与含有组氨酸缓冲剂的制剂相比，具有作为缓冲剂的磷酸盐缓冲剂的组合物具有高纯度以及较少的聚集体。

[0118] 按照 DSC 分析，磷酸盐缓冲剂的第一和第二过渡峰的过渡中点分别比组氨酸缓冲
剂制剂分别高大约 1℃ 和 2℃。在两种缓冲剂中的第一个过渡峰的中点几乎是相似的。

[0119] 由于与组氨酸缓冲剂相比，观察到磷酸盐缓冲剂具有较低的降解率（如 SE-HPLC 结果所证明的）以及高的热力学稳定性（通过 DSC 分析所证明的），磷酸盐缓冲剂被优选地作为适合的缓冲系统。

[0120] 实例 4

[0121] 缓冲盐的鉴定

[0122] 从缓冲盐（钠和钾）中筛选出在稳定性方面最适合的候选物。

[0123] 针对所希望的蛋白质的稳定性，使用了与其盐（即钠、钾）组合的磷酸盐缓冲剂。表 5 总结了用于选择最好的制剂候选物的组合集。

[0124] 表 5：组合缓冲盐及其浓度的鉴定

<table>
<thead>
<tr>
<th>序号</th>
<th>成分</th>
<th>F6</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>蔗糖</td>
<td>20mg</td>
<td>20mg</td>
</tr>
<tr>
<td>2</td>
<td>组氨酸一水合物</td>
<td>10mM</td>
<td>10mM</td>
</tr>
<tr>
<td>3</td>
<td>天冬氨酸</td>
<td>10mM</td>
<td>10mM</td>
</tr>
<tr>
<td>4</td>
<td>氯化钠</td>
<td>100mM</td>
<td>100mM</td>
</tr>
<tr>
<td>5</td>
<td>磷酸二氢钠</td>
<td>0.2mg</td>
<td>0.2mg</td>
</tr>
<tr>
<td>6</td>
<td>EDTA 二钠</td>
<td>1mM</td>
<td>1mM</td>
</tr>
<tr>
<td>7</td>
<td>磷酸二氢钠</td>
<td>11mM</td>
<td>11mM</td>
</tr>
<tr>
<td>8</td>
<td>磷酸氢二钠</td>
<td>13mM</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>磷酸氢二钾</td>
<td>-</td>
<td>19mM</td>
</tr>
</tbody>
</table>

[0126] 用 DSC 方法鉴定来组合物的热力学稳定性。通过 SE-HPLC 方法评定了在储存过程中的聚集和片段化。结果报告于表 6 和表 7 中。

[0127] 表 6：选择的组合的实验性 DSC 结果

<table>
<thead>
<tr>
<th>序号</th>
<th>制剂</th>
<th>Tm1</th>
<th>Tm2</th>
<th>Tm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RMP</td>
<td>57.5</td>
<td>70.4</td>
<td>82.3</td>
</tr>
<tr>
<td>2</td>
<td>F6</td>
<td>57.7</td>
<td>70.1</td>
<td>82.7</td>
</tr>
<tr>
<td>3</td>
<td>F8</td>
<td>58.3</td>
<td>70.1</td>
<td>82.3</td>
</tr>
</tbody>
</table>

[0129] 表 7：缓冲盐优化的 SE-HPLC 结果

[0130] 按照 SE-HPLC 结果，与含有钠盐的制剂相比，具有钾盐的组合物具有高纯度。

[0132] 按照 DSC 分析，钾盐的第一过渡峰的过渡中点只比钠盐组合物的第一过渡峰的过渡中点高大约 1℃。在这两种盐中，第二和第三过渡峰的中点几乎是相似的。

[0133] 由于与单独的钠盐相比，观察到钠－钾盐组合具有较低的降解率（如 SE-HPLC 结果所证明的）以及高热力学稳定性（通过 DSC 分析所证明的），钠－钾盐组合被优选地作为适合的缓冲系统。

[0134] 实例 5
具有聚集抑制剂 L- 天冬氨酸和赖氨酸的 TNFR:Fc 融合蛋白的制备

除了聚山梨酯 20 外，在表 8 中给出的所有组分均溶解在 80% 的水中，并且通过连续搅拌将它们充分地混合。在该溶液中加入聚山梨酯 20，使最终浓度为 0.2mg/ml。用水将制剂缓冲剂的体积调到 90%。用任何适合的酸 / 碱将 pH 值调节到 6.3，并且用水将体积补足到 100%。将该制剂缓冲剂过滤，并用这个过滤过的制剂缓冲剂将依那西普稀释成所需的浓度。在~20℃、5±3℃和 25±2℃下储存 1,2 以及 3 个月之后，在零时间通过 SE–HPLC、SDS–PAGE 及 HIC 分析依那西普制剂。HIC 基于疏水性来分离蛋白质。HIC 中的峰 1 确定片段，峰 2 相应于依那西普的活性二聚体，并且峰 3 相应于聚集体。在一些情况下观察到的前峰 1 相应于截短杂质 (truncated impurities)。

还检查了样品的生物活性。该方法是基于细胞毒性效应的中和原理。TNF-α 对 L929（小鼠结缔组织）细胞系产生细胞毒性效应。TNF:Fc 以一种剂量依赖的方式特异性地中和 TNF-α 的细胞毒性。RMP 的生物活性为每毫克 170 万单位。这些结果报告于表 9 中。

如上所述，通过向纯化的多肽添加聚集抑制剂来制备本发明的药物制剂。此外，必要时可以添加一种缓冲剂、渗透压调节剂、表面活性剂、片段化抑制剂以及一种另外的赋形剂。任何本领域的普通技术人员将会理解的是，将被包括在组合物中的各种组分的组合可以以任何适当的顺序来完成，即，可以首先添加、在中间添加或在最后添加缓冲剂，并且也以可首先添加、在中间添加或在最后添加渗透压调节剂。同样，本领域的普通技术人员将会理解的是，在某些组合中这些化学物质中的一些是不相容的，并且因此，它们可以容易地被具有相似性质但在有关混合物中是相容的不同化学物质取代。

<table>
<thead>
<tr>
<th>序号</th>
<th>成分</th>
<th>浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TNFR:Fc</td>
<td>50.0mg/ml</td>
</tr>
<tr>
<td>2</td>
<td>磷酸二氢钠</td>
<td>1.5mg/ml</td>
</tr>
<tr>
<td>3</td>
<td>磷酸氢二钾</td>
<td>3.3mg/ml</td>
</tr>
<tr>
<td>4</td>
<td>赖氨酸</td>
<td>1.5mg/ml</td>
</tr>
<tr>
<td>5</td>
<td>氯化钠</td>
<td>5.8mg/ml</td>
</tr>
<tr>
<td>6</td>
<td>聚山梨酯 20</td>
<td>0.1mg/ml</td>
</tr>
<tr>
<td>7</td>
<td>蔗糖</td>
<td>20mg/ml</td>
</tr>
<tr>
<td>8</td>
<td>天冬氨酸</td>
<td>1.3mg/ml</td>
</tr>
<tr>
<td>9</td>
<td>EDTA 二钠</td>
<td>0.37mg/ml</td>
</tr>
</tbody>
</table>

a) TNFR:Fc 水性制剂的稳定性试验

这些生物学检验按照欧洲药典的规范进行。

• SDS PAGE【聚集（非还原）和片段化（还原）】

由于在高浓度的单克隆抗体和融合蛋白的情况下具有高的聚集倾向，非还原 SDS–PAGE 被用来评定共价聚集体。由于 TNF 通过二硫键结合到 Fc 的铰链区并且因为在 Fc 和 TNF 中存在许多二硫键，在还原 SDS–PAGE 下检查蛋白质的片段化。

• SE–HPLC（聚集和片段化）

用尺寸排阻色谱法分离蛋白质及其有关杂质（基于它们的尺寸），上述技术对于检测依那西普的聚集和片段化是有用的。

• HIC（聚集、片段化、截短和错折叠）
[0148] HIC 基于疏水性来分离蛋白质。HIC 中的峰 1 确定片段，峰 2 相应于依那西普的活性二聚体，并且峰 3 相应于聚集体。在一些情况下观察到的前峰 1 相应于截短杂质。在图 12（在 -20℃ 下 3 个月之后）, 图 13（在 5±3℃ 下 3 个月之后）, 图 14（在 25±2℃ 下 3 个月之后）中给出了定义峰 1, 峰 2 以及峰 3 的 HIC 的参考特征曲线。

[0149] 以差示扫描量热法 (DSC)

[0150] DSC 是一种用来测定蛋白质的热力学稳定性的技术。依那西普具有三个过渡，并且图 9 表示 Tm 1 相应于 TNFR。Tm 2 相应于 Fc 部分的 CH2 结构域并且 Tm 3 相应于 Fc 部分的 CH3 结构域（较高的 Tm 决定了较高的稳定性）。

[0151] 以体外生物测定（生物活性）

[0152] 该方法是基于细胞毒性效应的中和原理。TNF-α 对 L929（小鼠结缔组织）细胞系产生细胞毒性效应。TNFR:Fc 以一种剂量依赖的方式特异性地中和 TNF-α 的细胞毒活性（图 10）。RMP 的生物活性为每毫克 170 万单位。

[0153] 关于水性制剂的稳定性的方面收集在表 9 中。
表 9 - 在 5°C、25°C 和 -20°C 下储存 1、2 和 3 个月之后以及在零时间的依那西普的水性制剂的分析参数

<table>
<thead>
<tr>
<th>测定</th>
<th>零时间</th>
<th>1 个月</th>
<th>2 个月</th>
<th>3 个月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20°C</td>
<td>5±3°C</td>
<td>25±2°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的聚集</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的片段化</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>HIC 峰 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>未测出未测出</td>
</tr>
<tr>
<td>HIC 峰 2c</td>
<td>93.7%</td>
<td>93.7%</td>
<td>93.7%</td>
<td>未测出未测出</td>
</tr>
<tr>
<td>HIC 峰 3c</td>
<td>6.3%</td>
<td>6.3%</td>
<td>6.3%</td>
<td>未测出未测出</td>
</tr>
</tbody>
</table>
[0157] 制备了包含具有在表 8 中给出的组成的依那西普的液体制剂。配制的溶液在空气层流下用 0.2 μm 过滤器灭菌并在 40℃下储存 1 个月。在 40℃下储存零时间、7 天、15 天、21 天和 1 个月之后通过 SE-HPLC、SDS-PAGE 和 HIC (图 15) 分析该制剂并且检查其生物活性。结果报告于表 10 中。

[0158] 表 10: 依那西普制剂的稳定性试验结果

<table>
<thead>
<tr>
<th>测定</th>
<th>零时间</th>
<th>7 天</th>
<th>15 天</th>
<th>21 天</th>
<th>1 个月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40℃</td>
<td>40℃</td>
<td>40℃</td>
<td>40℃</td>
<td>40℃</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的聚集</td>
<td>1.4%</td>
<td>1.9%</td>
<td>2.4%</td>
<td>3.7%</td>
<td>5.7%</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的片段化</td>
<td>0%</td>
<td>0.3%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>1.1%</td>
</tr>
<tr>
<td>HIC 峰 1</td>
<td>0%</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
</tr>
<tr>
<td>HIC 峰 2</td>
<td>93.7%</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
</tr>
<tr>
<td>HIC 峰 3</td>
<td>6.3%</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
<td>未测出</td>
</tr>
</tbody>
</table>

[0160] 实例 7

[0161] 在 50℃ 下 TNFR:Fc 液体制剂的稳定性试验

[0162] 制备了包含具有在表 8 中给出的组成的依那西普的液体制剂。配制的溶液在空气层流下用 0.2 μm 过滤器灭菌并在 50℃下储存 3 天。在零时间以及在 50℃下储存 2 天和 3 天之后通过 SE-HPLC、SDS-PAGE 和 HIC 分析该制剂。结果报告于表 11 中。

[0163] 表 11: 依那西普制剂的稳定性试验的结果（50℃）

<table>
<thead>
<tr>
<th>测定</th>
<th>零时间</th>
<th>2 天</th>
<th>3 天</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50℃</td>
<td>50℃</td>
<td>50℃</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的聚集</td>
<td>1.4%</td>
<td>12.5%</td>
<td>19.1%</td>
</tr>
<tr>
<td>通过 SE-HPLC 测定的片段化</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HIC 峰 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HIC 峰 2</td>
<td>93.7%</td>
<td>92.6%</td>
<td>84.9%</td>
</tr>
<tr>
<td>HIC 峰 3</td>
<td>6.3%</td>
<td>7.4%</td>
<td>15.1%</td>
</tr>
</tbody>
</table>

[0165] 使用适合的缓冲剂、聚集抑制剂、渗透压调节剂、稳定剂、表面活性剂、螯合剂的组合（并且任选地在它们的适当的组合中具有防腐剂）来制备这些新颖的融合蛋白制剂。

[0166] 通过所述发明制备的制剂包含有效量的生物活性 TNFR:Fc，其用于治疗人的炎症疾病。它们优选地作为注射用水性溶液而被使用。
图8b

图8c

图9

<table>
<thead>
<tr>
<th>过渡中点</th>
<th>F7</th>
<th>F6</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tm1</td>
<td>56.31</td>
<td>57.37</td>
<td>58.31</td>
</tr>
<tr>
<td>Tm2</td>
<td>67.76</td>
<td>70.12</td>
<td>70.14</td>
</tr>
<tr>
<td>Tm3</td>
<td>81.90</td>
<td>82.65</td>
<td>82.28</td>
</tr>
</tbody>
</table>
图 10

依那西普的生物活性

图 11

在50℃下的纯度