

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/073864 A1

(43) International Publication Date

21 May 2015 (21.05.2015)

(51) International Patent Classification:

C07C 229/56 (2006.01)

(21) International Application Number:

PCT/US2014/065765

(22) International Filing Date:

14 November 2014 (14.11.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/904,555 15 November 2013 (15.11.2013) US

(71) Applicant: THE WISAR INSTITUTE OF ANATOMY AND BIOLOGY [US/US]; 3601 Spruce Street, Philadelphia, PA 19104 (US).

(72) Inventors: MESSICK, Troy, E.; 145 S. Pennock Avenue, Upper Darby, PA 19082 (US). SMITH, Garry, R.; 110 Rosemont Lane, Royersford, PA 19468 (US). REITZ, Allen, B.; 109 Greenbriar Road, Lansdale, PA 19446 (US). LIEBERMAN, Paul, M.; 545 Manor Lane, Wynnewood, PA 19096 (US).

(74) Agents: HOLOWACZ, Elizabeth, F. et al.; Fitzpatrick, Cella, Harper & Scinto, 1290 Avenue of the Americas, New York, NY 10104-3800 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

WO 2015/073864 A1

(54) Title: EBNA1 INHIBITORS AND THEIR METHOD OF USE

(57) Abstract: Pharmaceutical compositions of the invention comprise EBNA1 inhibitors useful for the treatment of diseases caused by EBNA1 activity such as cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis. Pharmaceutical compositions of the invention also comprise EBNA1 inhibitors useful for the treatment of diseases caused by latent Epstein-Barr Virus (EBV) infection. Pharmaceutical compositions of the invention also comprise EBNA1 inhibitors useful for the treatment of diseases caused by lytic Epstein-Barr Virus (EBV) infection.

- 1 -

EBNA1 INHIBITORS AND THEIR METHOD OF USE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No. 61/904,555, filed November 15, 2013, which is herein incorporated by reference in its entirety.

STATEMENT OF FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under grant number 5R43AI079928, awarded by the National Institutes of Health (NIAID) to Vironika, LLC; and grant number 1R21NS063906, awarded by the National Institutes of Health (NINDS) to The Wistar Institute. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Field of the Invention

[0003] The present invention describes compounds and methods useful as EBNA1 inhibitors, e.g., useful for the treatment of diseases caused by EBNA1 activity. The present invention also describes compounds and methods useful as EBNA1 inhibitors, e.g., useful for the treatment of diseases caused by the Epstein-Barr Virus (EBV).

Related Art

[0004] EBV is a human gamma-herpesvirus that infects over 90% of the adult population worldwide [Young, L.S. and A.B. Rickinson, *Epstein-Barr virus: 40 years on*, Nat. Rev. Cancer, 2004, 4:757-68; Rickinson, A.B. and E. Kieff, *Epstein-Barr Virus*, in *Fields Virology, Third Edition*, 1996, Lippincott-Raven Publishers, pp. 2397-446]. In combination with known and unknown cofactors, especially immunosuppression, EBV infection constitutes a high carcinogenic risk. EBV has been classified by the World Health Organization as a class I human carcinogen because of its causal association with Burkitt's lymphoma, nasopharyngeal carcinoma, ~50% of all Hodgkin's lymphoma, gastric carcinoma, angiocentric T/NK lymphoma, and lymphoproliferative disorders of the immunosuppressed. It has been estimated that EBV is responsible for ~1% of all human cancers worldwide [Parkin, D.M., F. Bray, J. Ferlay, and P. Pisani (2005) *Global Cancer Statistics, 2002*, Cancer J. Clin. 55:75-108]. The oncogenic potential of EBV is readily demonstrated *in vitro* by its capacity to immortalize primary B-lymphocytes in culture and *in vivo* by its ability to drive infected B-cells into aggressive lymphoblastic lymphomas in immunocompromised hosts.

[0005] EBV, like other herpesviruses, has a latent and lytic replication cycle. While the EBV lytic cycle is essential for viral transmission and increases risk of EBV-associated malignancy, it is the latent viral infection that is oncogenic [Thorley-Lawson, D.A. and A. Gross, *Persistence of the Epstein-Barr virus and the origins of associated lymphomas*, N. Engl. J. Med., 2004, 350:1328-37]. The latent virus expresses a limited set of viral genes that stimulate cellular proliferation and survival. Clinically available inhibitors of herpesvirus DNA polymerases, including variants of acyclovir (e.g. ganciclovir) and phosphonoacetic acid (e.g. foscarnet), have at least partial inhibitory activity against EBV lytic replication. However, none of the available herpesvirus antivirals are effective at blocking the virus from progressing to a latent infection or eliminating latent infection. Primary infections with EBV can evoke a robust, sometimes debilitating, immune response referred to as infectious mononucleosis (IM) [Vetsika, E.K. and M. Callan, *Infectious mononucleosis and Epstein-Barr virus*, Expert Rev. Mol. Med., 2004, 6:1-16]. Despite this robust immune reaction, the virus efficiently establishes latent infection in B-lymphocytes, where

the virus can reside in long-lived memory B-cells [Babcock, G.J., L.L. Decker, M. Volk, and D.A. Thorley-Lawson, EBV persistence in memory B cells in vivo, *Immunity*, 1998, 9:395-404]. In some circumstances, latent infection can also be established in T-lymphocytes and epithelial cells. During latency, the virus does not produce infectious particles, and viral gene expression is limited to a subset of transcripts with growth-transforming and anti-apoptotic functions that contribute to EBV carcinogenesis. Thus, no existing anti-viral drug or immunological response can block the establishment of an EBV latent infection, which has the potential to drive lymphoid and epithelial cell oncogenic growth transformation.

[0006] Numerous studies have demonstrated that Epstein-Barr Nuclear Antigen 1 (EBNA1) is an ideal target for elimination of latent infection and treatment of EBV-associated disease. First, EBNA1 is expressed in all EBV-positive tumors [Leight, E.R. and B. Sugden, EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus, *Rev. Med. Virol.*, 2000, 10:83-100; Altmann, M., D. Pich, R. Ruiss, J. Wang, B. Sugden, and W. Hammerschmidt, Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes, *Proc. Natl. Acad. Sci. USA*, 2006, 103:14188-93]. Second, EBNA1 is required for immortalization of primary B-lymphocytes and for the stable maintenance of the EBV genome in latently infected cells [Humme, S., G. Reisbach, R. Feederle, H.J. Delecluse, K. Bousset, W. Hammerschmidt, and A. Schepers, *The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousand-fold*, *Proc. Natl. Acad. Sci. USA*, 2003, 100:10989-94]. Third, genetic disruption of EBNA1 blocks the ability of EBV to immortalize primary human B-lymphocytes and causes loss of cell viability in previously established EBV-positive cell lines [Lee, M.A., M.E. Diamond, and J.L. Yates, *Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus*, *J. Virol.*, 1999, 73:2974-82]. Fourth, biochemical disruption of EBNA1 folding blocks the establishment of EBV latent infection. HSP90 inhibitors cause the selective killing of EBV⁺ B-cells and block lymphomagenesis in mouse models [Sun, X., E.A. Barlow, S. Ma S.R. Hagemeier, S.J. Duellman, R.R. Burgess, J. Tellam, R. Khanna, and S.C. Kenney, 2010, Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an

EBNA1-dependent mechanism, *Proc. Natl. Acad. Sci. USA*, 107:3146-51]. Fifth, EBNA1 is a noncellular viral oncoprotein that is functionally and structurally well characterized. The three-dimensional structure of EBNA1 bound to its cognate DNA sequence has been solved by X-ray crystallography [Bochkarev, A., J.A. Barwell, R.A. Pfuetzner, E. Bochkareva, L. Frappier, and A.M. Edwards, Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA, *Cell*, 1996, 84:791-800; Bochkarev, A., J.A. Barwell, R.A. Pfuetzner, W. Furey, A.M. Edwards, and L. Frappier, *Crystal structure of the DNA binding domain of the Epstein-Barr virus origin binding protein EBNA-1*, *Cell*, 1995, 83:39-46; Bochkarev A, Bochkareva E, Frappier L, Edwards AM. *The 2.2 Å structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1*. *J Mol Biol*, 1998. 284:1273-78]. Analysis of the DNA binding domain reveals that EBNA1 protein is druggable, with several deep pockets and channels within the DNA binding domain that are predicted to disrupt DNA binding when bound to small molecules. Sixth, targeting a non-self viral-encoded protein for inhibition mitigates the potential risk of inherent toxicity. EBNA1 has a unique structural fold that is distinct from all known cellular DNA binding and replication proteins [Sun X, Barlow EA, Ma S, Hagemeier SR, Duellman SJ, Burgess RR, Tellam J, Khanna R, Kenney SC. (2010) Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. *Proc Natl Acad Sci USA* 107:3146-51; Bochkarev A, Barwell JA, Pfuetzner RA, Bochkareva E, Frappier L, Edwards AM. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. *Cell*, 1996. 84:791-800; Bochkarev A, Barwell JA, Pfuetzner RA, Furey W, Edwards AM, Frappier L. Crystal structure of the DNA binding domain of the Epstein-Barr virus origin binding protein EBNA-1. *Cell*, 1995. 83:39-46]. Finally, the EBNA1 DNA binding function is essential for all known EBNA1 functions, including genome maintenance, DNA replication, transcription regulation, and host-cell survival [Leight, E.R. and B. Sugden, EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. *Rev Med Virol*, 2000. 10:83-100. Altmann M, Pich D, Ruiss R, Wang J, Sugden B, Hammerschmidt W. Transcriptional activation by EBV nuclear antigen 1 is

essential for the expression of EBV's transforming genes. *Proc Natl Acad Sci USA*, 2006. 103:14188-93; Rawlins DR, Milman G, Hayward SD, Hayward GS. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. *Cell*, 1985. 42:859-68; Ritzi M, Tillack K, Gerhardt J, Ott E, Humme S, Kremmer E, Hammerschmidt W, Schepers A. Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. *J Cell Sci*, 2003. 116:3971-84; Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. *EMBO J*, 2001. 20:4588-602]. Collectively, these studies demonstrate that EBNA1-DNA binding domain is an ideal and validated target for inhibition of EBV-latent infection and treatment of EBV-associated malignancies.

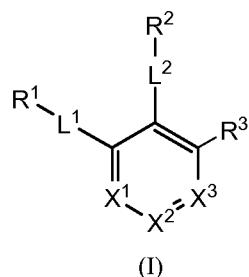
[0007] EBV plays a causative role in the tumorigenesis for a number of cancers including nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma (anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulositis, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy), leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer. EBV has been classified as a class I human carcinogen responsible for at least 1% of all human cancer by the World Health Organization. EBV-associated malignancies account for more than 100,000 new cancer cases each year in the United States. An inhibitor of EBNA1 would change current clinical practice and be valuable for therapeutic treatment of EBV-associated diseases. Currently, nucleoside analogues (aciclovir, ganciclovir, foscarnet) can be used to treat lytic EBV infection and pathologies

related to lytic EBV infection. However, these general anti-viral drugs are not specific for lytic EBV infection, and carry the risk of severe adverse effects. To date, no effective treatments exist for latent EBV infection, no treatment exists for pathologies related to latent EBV infection, and no treatments exist for the treatment of diseases associated with EBNA1.

[0008] EBV infection and EBNA1 have also been implicated in infectious mononucleosis [Henle W, Henle G. Epstein-Barr virus and infectious mononucleosis, *N Engl J Med.* 1973. 288:263-64; Vetsika EK, Callan M. Infectious mononucleosis and Epstein-Barr virus, *Expert Rev Mol Med.* 2004 6:1-16], chronic fatigue syndrome (CFS) [Watt T, Oberfoell S, Balise R, Lunn MR, Kar AK, Merrihew L, Bhangoo MS, Montoya JG. Response to valganciclovir in chronic fatigue syndrome patients with human herpesvirus 6 and Epstein-Barr virus IgG antibody titers. *J Med Virol.* 2012, 84:1967-74; Natelson BH, Ye N, Moul DE, Jenkins FJ, Oren DA, Tapp WN, Cheng YC. High titers of anti-Epstein-Barr virus DNA polymerase are found in patients with severe fatiguing illness. *J Med Virol.* 1994. 42:42-6; Wallace HL 2nd, Natelson B, Gause W, Hay J. Human herpesviruses in chronic fatigue syndrome. *Clin Diagn Lab Immunol.* 1999 6:216-23], multiple sclerosis [Tselis A. Epstein-Barr virus cause of multiple sclerosis, *Curr Opin Rheumatol.* 2012. 24:424-28; Lucas RM, Hughes AM, Lay ML, Ponsonby AL, Dwyer DE, Taylor BV, Pender MP. Epstein-Barr virus and multiple sclerosis, *J Neurol Neurosurg Psychiatry.* 2011. 82:1142-48; Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review, *J Neuroimmune Pharmacol.* 2010. 3:271-77], systemic lupus erythematosus [Draborg AH, Duus K, Houen G. Epstein-Barr virus and systemic lupus erythematosus, *Clin Dev Immunol.* 2012: 370516; Doria A, Canova M, Tonon M, Zen M, Rampudda E, Bassi N, Atzeni F, Zampieri S, Ghirardello A. Infections as triggers and complications of systemic lupus erythematosus, *Autoimmun Rev.* 2008. 8:24-28; Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. *Autoimmunity.* 2006 39:63-70], and rheumatoid arthritis [Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. *Viruses.* 2012. 4:3701-30; Balandraud N, Roudier J, Roudier C.

Epstein-Barr virus and rheumatoid arthritis, *Autoimmun Rev.* 2004 3:362-67; Oliver JE, Silman AJ. Risk factors for the development of rheumatoid arthritis. *Scand J Rheumatol.* 2006. 35:169-74]. Treatment with compounds that prevent EBV infection would provide therapeutic relief to patients suffering from infectious mononucleosis, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. Further, treatment with compounds that prevent lytic EBV infection would provide therapeutic relief to patients suffering from infectious mononucleosis, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. Further, treatment with compounds that prevent latent EBV infection would provide therapeutic relief to patients suffering from infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. Treatment with compounds that inhibit EBNA1 would provide therapeutic relief for suffering from infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. To date, however, no effective specific treatments exist for lytic EBV infection and no specific treatment exists for pathologies related to lytic EBV infection. In addition, to date, however, no effective treatments exist for latent EBV infection, no treatment exists for pathologies related to latent EBV infection, and no treatments exist for the treatment of diseases associated with EBNA1.

[0009] There is a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for diseases and conditions associated with EBV infection such as nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulositis, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid

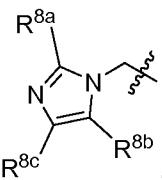

granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer. There is also a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for infectious mononucleosis. There is also a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for chronic fatigues syndrome. There is also a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for multiple sclerosis. There is also a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for systemic lupus erythematosus. There is also a long felt need for new treatments that are both disease-modifying and effective in treating patients that are refractory to current treatments for rheumatoid arthritis. There is also a clear and present need for the treatment of EBV infection, and there is a long felt need for treatments that can specifically block lytic EBV infection. There is a long felt need for treatments that can block latent EBV infection. There is also a clear and present need for new treatments that are both disease-modifying and effective in treating diseases associated with EBNA1.

[0010] The present invention addresses the need to identify new treatments for diseases and conditions associated with EBV infection such as infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, and cancer, including nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma (anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulositis, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary

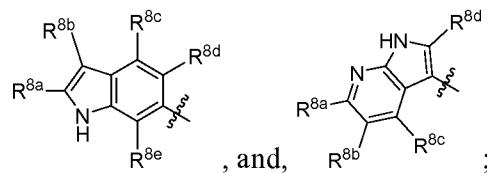
effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy), leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma, and breast cancer by identifying novel EBNA1 inhibitors useful as therapeutic agents and in therapeutic compositions.

BRIEF SUMMARY OF THE INVENTION

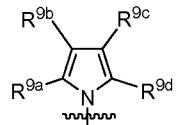
[0011] The present invention is directed toward EBNA1 inhibitors of the formula (I),

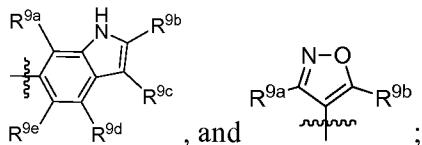

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein:

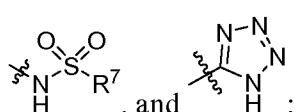
X^1 is selected from the group consisting of CR^{4a} and N;


X^2 is selected from the group consisting of CR^{4b} and N;

X^3 is selected from the group consisting of CR^{4c} and N;


R^1 is selected from the group consisting of optionally substituted C_{1-6} linear alkyl, optionally substituted C_{3-6} branched alkyl, optionally substituted C_{3-6} cyclic alkyl, optionally substituted phenyl, optionally substituted heteroaryl, optionally substituted benzyl, optionally substituted heteroaryl methyl, R^{8c} ,


substituted benzyl, optionally substituted heteroaryl methyl, R^{8c} ,


R^2 is selected from the group consisting of hydrogen, $NR^{10a}R^{10b}$, fluorine,

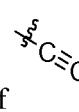
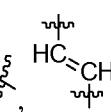
optionally substituted phenyl, optionally substituted heteroaryl,

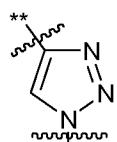
R^3 is selected from the group consisting of CO_2R^{4d} , , , ,

R^{4a} , R^{4b} , and R^{4c} are each independently selected from the group consisting of fluorine, chlorine, bromine, iodine, and hydrogen;

R^{4d} is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^5 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;



R^6 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

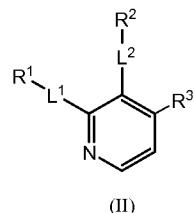

R^7 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{8a} , R^{8b} , R^{8c} , R^{8d} , and R^{8e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{9a} , R^{9b} , R^{9c} , R^{9d} , and R^{9e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

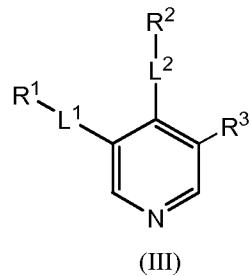
R^{10a} , and R^{10b} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{1-6} branched alkyl;

L^1 is selected from the group consisting of , , and $(CH_2)_n$;

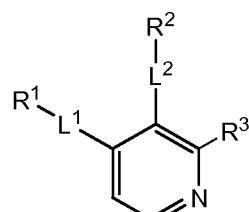

L^2 is selected from a group consisting of NH , $(CH_2)_m$, and

indicates the point of attachment for R^2 ;

n is 0, 1, 2, or 3; and

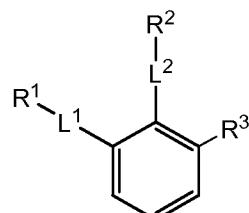

m is 0, 1, 2, or 3.

[0012] The compounds of the present invention include compounds having formula (II):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof. Substituents for this formula and subsequent formulas are as noted above for formula (I), unless otherwise specified.

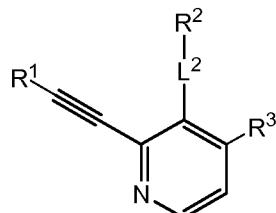
[0013] The compounds of the present invention include compounds having formula (III):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0014] The compounds of the present invention include compounds having formula (IV):

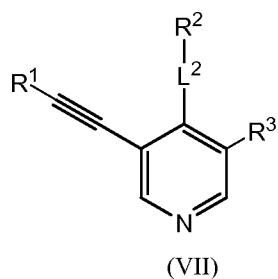
(IV)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

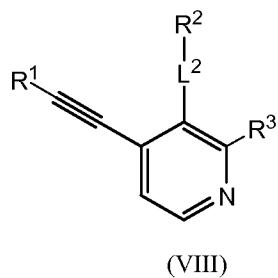

[0015] The compounds of the present invention include compounds having formula (V):

(V)

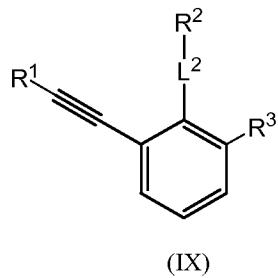
including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0016] The compounds of the present invention include compounds having formula (VI):

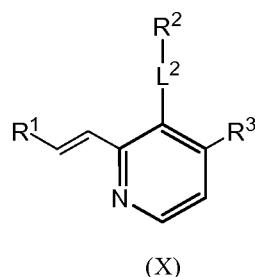
(VI)


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

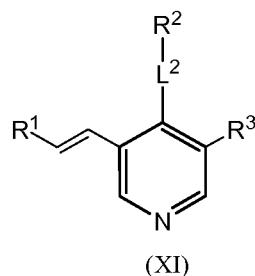
[0017] The compounds of the present invention include compounds having formula (VII):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

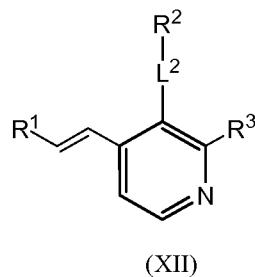
[0018] The compounds of the present invention include compounds having formula (VIII):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

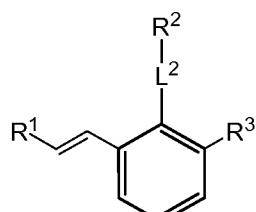
[0019] The compounds of the present invention include compounds having formula (IX):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0020] The compounds of the present invention include compounds having formula (X):

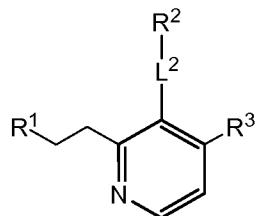

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0021] The compounds of the present invention include compounds having formula (XI):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

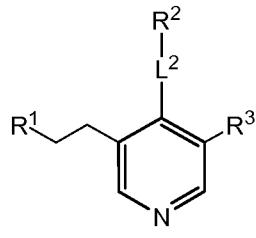
[0022] The compounds of the present invention include compounds having formula (XII):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0023] The compounds of the present invention include compounds having formula (XIII):

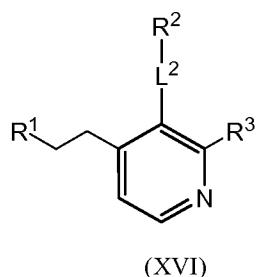
(XIII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

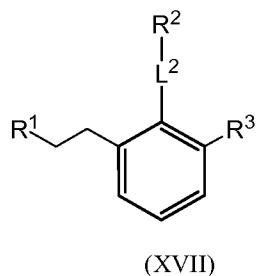

[0024] The compounds of the present invention include compounds having formula (XIV):

(XIV)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0025] The compounds of the present invention include compounds having formula (XV):

(XV)


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0026] The compounds of the present invention include compounds having formula (XVI):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0027] The compounds of the present invention include compounds having formula (XVII):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0028] The present invention further relates to compositions comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0029] The present invention also relates to a method for treating or preventing diseases or conditions caused by EBNA1 activity, the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0030] The present invention yet further relates to a method for treating or preventing diseases or conditions caused by EBNA1 activity, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0031] The present invention also relates to methods for treating or preventing disease or conditions associated with EBNA1 activity. The methods comprise

administering to a subject an effective amount of a compound or composition according to the present invention.

[0032] The present invention yet further relates to a method for treating or preventing disease or conditions associated with EBNA1 activity, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0033] The present invention also relates to a method for treating or preventing EBV infection, the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0034] The present invention yet further relates to a method for treating or preventing EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0035] The present invention also relates to methods for treating or preventing disease or conditions associated with EBV infection. The methods comprise administering to a subject an effective amount of a compound or composition according to the present invention.

[0036] The present invention yet further relates to a method for treating or preventing disease or conditions associated with EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0037] The present invention also relates to a method for treating or preventing lytic EBV infection, the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0038] The present invention yet further relates to a method for treating or preventing lytic EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0039] The present invention also relates to methods for treating or preventing disease or conditions associated with lytic EBV infection. The methods comprise

administering to a subject an effective amount of a compound or composition according to the present invention.

[0040] The present invention yet further relates to a method for treating or preventing disease or conditions associated with lytic EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0041] The present invention also relates to a method for treating or preventing latent EBV infection, the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0042] The present invention yet further relates to a method for treating or preventing latent EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0043] The present invention also relates to methods for treating or preventing disease or conditions associated with latent EBV infection. The methods comprise administering to a subject an effective amount of a compound or composition according to the present invention.

[0044] The present invention yet further relates to a method for treating or preventing disease or conditions associated with latent EBV infection, wherein the method comprises administering to a subject a composition comprising an effective amount of one or more compounds according to the present invention and an excipient.

[0045] The present invention yet further relates to a method for treating or preventing cancer, particularly nasopharyngeal carcinoma, gastric carcinomas, non-Hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulos, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal

m marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer.

[0046] The present invention yet further relates to a method for treating of preventing cancer, particularly nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulos, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0047] The present invention yet further relates to a method for treating of preventing cancer particularly nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulos, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-

linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention and an excipient.

[0048] The present invention yet further relates to a method for treating or preventing infectious mononucleosis.

[0049] The present invention yet further relates to a method for treating of infectious mononucleosis wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0050] The present invention yet further relates to a method for treating of preventing infectious mononucleosis wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention and an excipient.

[0051] The present invention yet further relates to a method for treating or preventing chronic fatigue syndrome.

[0052] The present invention yet further relates to a method for treating of chronic fatigue syndrome wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0053] The present invention yet further relates to a method for treating of preventing chronic fatigue syndrome wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention and an excipient.

[0054] The present invention yet further relates to a method for treating or preventing multiple sclerosis.

[0055] The present invention yet further relates to a method for treating of multiple sclerosis wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0056] The present invention yet further relates to a method for treating of preventing multiple sclerosis wherein the method comprising administering to a

subject an effective amount of a compound or composition according to the present invention and an excipient.

[0057] The present invention yet further relates to a method for treating or preventing systemic lupus erythematosus.

[0058] The present invention yet further relates to a method for treating of systemic lupus erythematosus wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0059] The present invention yet further relates to a method for treating of preventing systemic lupus erythematosus wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention and an excipient.

[0060] The present invention yet further relates to a method for treating or preventing rheumatoid arthritis.

[0061] The present invention yet further relates to a method for treating of rheumatoid arthritis wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention.

[0062] The present invention yet further relates to a method for treating of preventing rheumatoid arthritis wherein the method comprising administering to a subject an effective amount of a compound or composition according to the present invention and an excipient.

[0063] The present invention further relates to a process for preparing the EBNA1-inhibitors of the present invention.

[0064] These and other objects, features, and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C) unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0065] The EBNA1-inhibitors of the present invention are capable of treating and preventing diseases or conditions caused by EBNA1 activity. In addition, compounds of the disclosure are capable of treating and preventing disease or conditions associated with EBNA1 activity. Further, compounds of the disclosure are also capable of treating or preventing EBV infection. In addition, compounds of the disclosure are capable of treating or preventing disease or conditions associated with EBV infection. Further, compounds of the disclosure are also capable of treating or preventing lytic EBV infection. Compounds of the disclosure are also capable of treating or preventing latent EBV infection. In addition, compounds of the disclosure are also capable of treating or preventing disease or conditions associated with lytic EBV infection. Further, compounds of the disclosure are also capable of treating or preventing disease or conditions associated with latent EBV infection. Without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled, cancer, particularly nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulositis, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma and breast cancer. Further, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled infectious mononucleosis. Further, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent,

reverse, or otherwise cause to be controlled infectious mononucleosis. Further, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled chronic fatigue syndrome. Further, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled multiple sclerosis. In addition, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled systemic lupus erythematosus. In addition, without wishing to be limited by theory, it is believed that the EBNA1-inhibitors of the present invention can ameliorate, abate, prevent, reverse, or otherwise cause to be controlled and rheumatoid arthritis.

[0066] Throughout the description, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including, or comprising specific process steps, it is contemplated that compositions of the present teachings also consist essentially of, or consist of, the recited components, and that the processes of the present teachings also consist essentially of, or consist of, the recited processing steps.

[0067] In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components and can be selected from a group consisting of two or more of the recited elements or components.

[0068] The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. In addition, where the use of the term "about" is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise.

[0069] It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present teachings remain operable. Moreover, two or more steps or actions can be conducted simultaneously.

[0070] As used herein, the term "halogen" shall mean chlorine, bromine, fluorine and iodine.

[0071] As used herein, unless otherwise noted, “alkyl” and “aliphatic” whether used alone or as part of a substituent group refers to straight and branched carbon chains having 1 to 20 carbon atoms or any number within this range, for example 1 to 6 carbon atoms or 1 to 4 carbon atoms. Designated numbers of carbon atoms (e.g. C₁₋₆) shall refer independently to the number of carbon atoms in an alkyl moiety or to the alkyl portion of a larger alkyl-containing substituent. Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, and the like. Alkyl groups can be optionally substituted. Non-limiting examples of substituted alkyl groups include hydroxymethyl, chloromethyl, trifluoromethyl, aminomethyl, 1-chloroethyl, 2-hydroxyethyl, 1,2-difluoroethyl, 3-carboxypropyl, and the like. In substituent groups with multiple alkyl groups such as (C₁₋₆alkyl)₂amino, the alkyl groups may be the same or different.

[0072] As used herein, “cycloalkyl,” whether used alone or as part of another group, refers to a non-aromatic carbon-containing ring including cyclized alkyl, alkenyl, and alkynyl groups, e.g., having from 3 to 14 ring carbon atoms, preferably from 3 to 7 or 3 to 6 ring carbon atoms, or even 3 to 4 ring carbon atoms, and optionally containing one or more (e.g., 1, 2, or 3) double or triple bond. Cycloalkyl groups can be monocyclic (e.g., cyclohexyl) or polycyclic (e.g., containing fused, bridged, and/or spiro ring systems), wherein the carbon atoms are located inside or outside of the ring system. Any suitable ring position of the cycloalkyl group can be covalently linked to the defined chemical structure. Cycloalkyl rings can be optionally substituted. Nonlimiting examples of cycloalkyl groups include: cyclopropyl, 2-methyl-cyclopropyl, cyclopropenyl, cyclobutyl, 2,3-dihydroxycyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctanyl, decalinyl, 2,5-dimethylcyclopentyl, 3,5-dichlorocyclohexyl, 4-hydroxycyclohexyl, 3,3,5-trimethylcyclohex-1-yl, octahydropentalenyl, octahydro-1H-indenyl, 3a,4,5,6,7,7a-hexahydro-3H-inden-4-yl, decahydroazulenyl; bicyclo[6.2.0]decanyl, decahydronaphthalenyl, and dodecahydro-1H-fluorenyl. The term “cycloalkyl” also includes carbocyclic rings which are bicyclic hydrocarbon rings, non-limiting examples of which include, bicyclo-

[2.1.1]hexanyl, bicyclo[2.2.1]heptanyl, bicyclo[3.1.1]heptanyl, 1,3-dimethyl[2.2.1]heptan-2-yl, bicyclo[2.2.2]octanyl, and bicyclo[3.3.3]undecanyl.

[0073] “Haloalkyl” is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen. Haloalkyl groups include perhaloalkyl groups, wherein all hydrogens of an alkyl group have been replaced with halogens (e.g., -CF₃, CF₂CF₃). Haloalkyl groups can optionally be substituted with one or more substituents in addition to halogen. Examples of haloalkyl groups include, but are not limited to, fluoromethyl, dichloroethyl, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl groups.

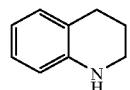
[0074] The term “alkoxy” refers to the group -O-alkyl, wherein the alkyl group is as defined above. Alkoxy groups optionally may be substituted. The term C₃-C₆ cyclic alkoxy refers to a ring containing 3 to 6 carbon atoms and at least one oxygen atom (e.g., tetrahydrofuran, tetrahydro-2H-pyran). C₃-C₆ cyclic alkoxy groups optionally may be substituted.

[0075] The term “aryl,” wherein used alone or as part of another group, is defined herein as an unsaturated, aromatic monocyclic ring of 6 carbon members or to an unsaturated, aromatic polycyclic ring of from 10 to 14 carbon members. Aryl rings can be, for example, phenyl or naphthyl ring each optionally substituted with one or more moieties capable of replacing one or more hydrogen atoms. Non-limiting examples of aryl groups include: phenyl, naphthyl-1-yl, naphthyl-2-yl, 4-fluorophenyl, 2-hydroxyphenyl, 3-methylphenyl, 2-amino-4-fluorophenyl, 2-(N,N-diethylamino)phenyl, 2-cyanophenyl, 2,6-di-tert-butylphenyl, 3-methoxyphenyl, 8-hydroxynaphthyl-2-yl 4,5-dimethoxynaphthyl-1-yl, and 6-cyano-naphthyl-1-yl. Aryl groups also include, for example, phenyl or naphthyl rings fused with one or more saturated or partially saturated carbon rings (e.g., bicyclo[4.2.0]octa-1,3,5-trienyl, indanyl), which can be substituted at one or more carbon atoms of the aromatic and/or saturated or partially saturated rings.

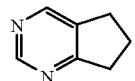
[0076] The term “arylalkyl” or “aralkyl” refers to the group -alkyl-aryl, where the alkyl and aryl groups are as defined herein. Aralkyl groups of the present invention are optionally substituted. Examples of arylalkyl groups include, for

example, benzyl, 1-phenylethyl, 2-phenylethyl, 3-phenylpropyl, 2-phenylpropyl, fluorenylmethyl and the like.

[0077] The terms “heterocyclic” and/or “heterocycle” and/or “heterocyl,” whether used alone or as part of another group, are defined herein as one or more ring having from 3 to 20 atoms wherein at least one atom in at least one ring is a heteroatom selected from nitrogen (N), oxygen (O), or sulfur (S), and wherein further the ring that includes the heteroatom is non-aromatic. In heterocycle groups that include 2 or more fused rings, the non-heteroatom bearing ring may be aryl (e.g., indolinyl, tetrahydroquinolinyl, chromanyl). Exemplary heterocycle groups have from 3 to 14 ring atoms of which from 1 to 5 are heteroatoms independently selected from nitrogen (N), oxygen (O), or sulfur (S). One or more N or S atoms in a heterocycle group can be oxidized. Heterocycle groups can be optionally substituted.

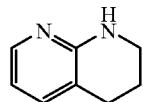

[0078] Non-limiting examples of heterocyclic units having a single ring include: diazirinyl, aziridinyl, urazolyl, azetidinyl, pyrrolyl, thiophenyl, furanyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolidinyl, isothiazolyl, isothiazolinyl, oxathiazolidinonyl, oxazolidinonyl, hydantoinyl, tetrahydrofuranyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl, dihydropyranyl, tetrahydropyranyl, piperidin-2-onyl (valerolactam), 2,3,4,5-tetrahydro-1H-azepinyl, 2,3-dihydro-1H-indole, and 1,2,3,4-tetrahydro-quinoline. Non-limiting examples of heterocyclic units having 2 or more rings include: hexahydro-1H-pyrrolizinyl, 3a,4,5,6,7,7a-hexahydro-1H-benzo[d]imidazolyl, 3a,4,5,6,7,7a-hexahydro-1H-indolyl, 1,2,3,4-tetrahydroquinolinyl, chromanyl, isochromanyl, indolinyl, isoindolinyl, and decahydro-1H-cycloocta[b]pyrrolyl.

[0079] The term “heteroaryl,” whether used alone or as part of another group, is defined herein as one or more rings having from 5 to 20 atoms wherein at least one atom in at least one ring is a heteroatom chosen from nitrogen (N), oxygen (O), or sulfur (S), and wherein further at least one of the rings that includes a heteroatom is aromatic. In heteroaryl groups that include 2 or more fused rings, the non-heteroatom bearing ring may be a carbocycle (e.g., 6,7-dihydro-5H-cyclopentapyrimidine) or aryl (e.g., benzofuranyl, benzothiophenyl, indolyl). Exemplary heteroaryl groups have from 5 to 14 ring atoms and contain from 1 to


5 ring heteroatoms independently selected from nitrogen (N), oxygen (O), or sulfur (S). One or more N or S atoms in a heteroaryl group can be oxidized. Heteroaryl groups can be substituted. Non-limiting examples of heteroaryl rings containing a single ring include: 1,2,3,4-tetrazolyl, [1,2,3]triazolyl, [1,2,4]triazolyl, triazinyl, thiazolyl, 1H-imidazolyl, oxazolyl, furanyl, thiophenyl, pyrimidinyl, 2-phenylpyrimidinyl, pyridinyl, 3-methylpyridinyl, and 4-dimethylaminopyridinyl. Non-limiting examples of heteroaryl rings containing 2 or more fused rings include: benzofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, cinnolinyl, naphthyridinyl, phenanthridinyl, 7H-purinyl, 9H-purinyl, 6-amino-9H-purinyl, 5H-pyrrolo[3,2-d]pyrimidinyl, 7H-pyrrolo[2,3-d]pyrimidinyl, pyrido[2,3-d]pyrimidinyl, benzo[d]thiazolyl, 1H-indolyl, 4,5,6,7-tetrahydro-1H-indolyl, quinoxalinyl, 5-methylquinoxalinyl, quinazolinyl, quinolinyl, 8-hydroxy-quinolinyl, and isoquinolinyl.

[0080] Unless otherwise noted, when two substituents are taken together to form a ring having a specified number of ring atoms (e.g., R² and R³ taken together with the nitrogen (N) to which they are attached to form a ring having from 3 to 7 ring members), the ring can have carbon atoms and optionally one or more (e.g., 1 to 3) additional heteroatoms independently selected from nitrogen (N), oxygen (O), or sulfur (S). The ring can be saturated or partially saturated and can be optionally substituted.

[0081] For the purposes of the present invention, fused ring units, as well as spirocyclic rings, bicyclic rings and the like, which comprise a single heteroatom will be considered to belong to the cyclic family corresponding to the heteroatom containing ring. For example, 1,2,3,4-tetrahydroquinoline having the formula:



is, for the purposes of the present invention, considered a heterocyclic unit. 6,7-Dihydro-5H-cyclopentapyrimidine having the formula:

is, for the purposes of the present invention, considered a heteroaryl unit. When a fused ring unit contains heteroatoms in both a saturated and an aryl ring, the aryl

ring will predominate and determine the type of category to which the ring is assigned. For example, 1,2,3,4-tetrahydro-[1,8]naphthyridine having the formula:

is, for the purposes of the present invention, considered a heteroaryl unit.

[0082] Whenever a term or either of their prefix roots appear in a name of a substituent the name is to be interpreted as including those limitations provided herein. For example, whenever the term “alkyl” or “aryl” or either of their prefix roots appear in a name of a substituent (e.g., arylalkyl, alkylamino) the name is to be interpreted as including those limitations given above for “alkyl” and “aryl.”

[0083] The term “substituted” is used throughout the specification. The term “substituted” is defined herein as a moiety, whether acyclic or cyclic, which has one or more hydrogen atoms replaced by a substituent or several (e.g., 1 to 10) substituents as defined herein below. The substituents are capable of replacing one or two hydrogen atoms of a single moiety at a time. In addition, these substituents can replace two hydrogen atoms on two adjacent carbons to form said substituent, new moiety or unit. For example, a substituted unit that requires a single hydrogen atom replacement includes halogen, hydroxyl, and the like. A two hydrogen atom replacement includes carbonyl, oximino, and the like. A two hydrogen atom replacement from adjacent carbon atoms includes epoxy, and the like. The term “substituted” is used throughout the present specification to indicate that a moiety can have one or more of the hydrogen atoms replaced by a substituent. When a moiety is described as “substituted” any number of the hydrogen atoms may be replaced. For example, difluoromethyl is a substituted C₁ alkyl; trifluoromethyl is a substituted C₁ alkyl; 4-hydroxyphenyl is a substituted aromatic ring; (N,N-dimethyl-5-amino)octanyl is a substituted C₈ alkyl; 3-guanidinopropyl is a substituted C₃ alkyl; and 2-carboxypyridinyl is a substituted heteroaryl.

[0084] The variable groups defined herein, e.g., alkyl, cycloalkyl, alkoxy, aryloxy, aryl, heterocycle and heteroaryl groups defined herein, whether used alone or as part of another group, can be optionally substituted. Optionally substituted groups will be so indicated.

[0085] The following are non-limiting examples of substituents which can substitute for hydrogen atoms on a moiety: halogen (chlorine (Cl), bromine (Br), fluorine (F) and iodine(I)), $-\text{CN}$, $-\text{NO}_2$, oxo ($=\text{O}$), $-\text{OR}^{10}$, $-\text{SR}^{10}$, $-\text{N}(\text{R}^{10})_2$, $-\text{NR}^{10}\text{C}(\text{O})\text{R}^{10}$, $-\text{SO}_2\text{R}^{10}$, $-\text{SO}_2\text{OR}^{10}$, $-\text{SO}_2\text{N}(\text{R}^{10})_2$, $-\text{C}(\text{O})\text{R}^{10}$, $-\text{C}(\text{O})\text{OR}^{10}$, $-\text{C}(\text{O})\text{N}(\text{R}^{10})_2$, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-14} cycloalkyl, aryl, heterocycle, or heteroaryl, wherein each of the alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, aryl, heterocycle, and heteroaryl groups is optionally substituted with 1-10 (e.g., 1-6 or 1-4) groups selected independently from halogen, $-\text{CN}$, $-\text{NO}_2$, oxo, and R^{10} ; wherein R^{10} , at each occurrence, independently is hydrogen, $-\text{OR}^{11}$, $-\text{SR}^{11}$, $-\text{C}(\text{O})\text{R}^{11}$, $-\text{C}(\text{O})\text{OR}^{11}$, $-\text{C}(\text{O})\text{N}(\text{R}^{11})_2$, $-\text{SO}_2\text{R}^{11}$, $-\text{S}(\text{O})_2\text{OR}^{11}$, $-\text{N}(\text{R}^{11})_2$, $-\text{NR}^{11}\text{C}(\text{O})\text{R}^{11}$, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cycloalkyl (e.g., C_{3-6} cycloalkyl), aryl, heterocycle, or heteroaryl, or two R^{10} units taken together with the atom(s) to which they are bound form an optionally substituted carbocycle or heterocycle wherein said carbocycle or heterocycle has 3 to 7 ring atoms; wherein R^{11} , at each occurrence, independently is hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cycloalkyl (e.g., C_{3-6} cycloalkyl), aryl, heterocycle, or heteroaryl, or two R^{11} units taken together with the atom(s) to which they are bound form an optionally substituted carbocycle or heterocycle wherein said carbocycle or heterocycle preferably has 3 to 7 ring atoms.

[0086] In some embodiments, the substituents are selected from

- i) $-\text{OR}^{12}$; for example, $-\text{OH}$, $-\text{OCH}_3$, $-\text{OCH}_2\text{CH}_3$, $-\text{OCH}_2\text{CH}_2\text{CH}_3$;
- ii) $-\text{C}(\text{O})\text{R}^{12}$; for example, $-\text{COCH}_3$, $-\text{COCH}_2\text{CH}_3$, $-\text{COCH}_2\text{CH}_2\text{CH}_3$;
- iii) $-\text{C}(\text{O})\text{OR}^{12}$; for example, $-\text{CO}_2\text{CH}_3$, $-\text{CO}_2\text{CH}_2\text{CH}_3$, $-\text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3$;
- iv) $-\text{C}(\text{O})\text{N}(\text{R}^{12})_2$; for example, $-\text{CONH}_2$, $-\text{CONHCH}_3$, $-\text{CON}(\text{CH}_3)_2$;
- v) $-\text{N}(\text{R}^{12})_2$; for example, $-\text{NH}_2$, $-\text{NHCH}_3$, $-\text{N}(\text{CH}_3)_2$, $-\text{NH}(\text{CH}_2\text{CH}_3)$;
- vi) halogen: $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, and $-\text{I}$;
- vii) $-\text{CH}_e\text{X}_g$; wherein X is halogen, m is from 0 to 2, $e+g=3$; for example, $-\text{CH}_2\text{F}$, $-\text{CHF}_2$, $-\text{CF}_3$, $-\text{CCl}_3$, or $-\text{CBr}_3$;
- viii) $-\text{SO}_2\text{R}^{12}$; for example, $-\text{SO}_2\text{H}$; $-\text{SO}_2\text{CH}_3$; $-\text{SO}_2\text{C}_6\text{H}_5$;
- ix) C_{1-6} linear, branched, or cyclic alkyl;
- x) Cyano

- xi) Nitro;
- xii) $N(R^{12})C(O)R^{12}$;
- xiii) Oxo (=O);
- xiv) Heterocycle; and
- xv) Heteroaryl.

wherein each R^{12} is independently hydrogen, optionally substituted C₁-C₆ linear or branched alkyl (e.g., optionally substituted C₁-C₄ linear or branched alkyl), or optionally substituted C₃-C₆ cycloalkyl (e.g. optionally substituted C₃-C₄ cycloalkyl); or two R^{12} units can be taken together to form a ring comprising 3-7 ring atoms. In certain aspects, each R^{12} is independently hydrogen, C₁-C₆ linear or branched alkyl optionally substituted with halogen or C₃-C₆ cycloalkyl or C₃-C₆ cycloalkyl.

[0087] At various places in the present specification, substituents of compounds are disclosed in groups or in ranges. It is specifically intended that the description include each and every individual subcombination of the members of such groups and ranges. For example, the term “C₁₋₆ alkyl” is specifically intended to individually disclose C₁, C₂, C₃, C₄, C₅, C₆, C₁-C₆, C₁-C₅, C₁-C₄, C₁-C₃, C₁-C₂, C₂-C₆, C₂-C₅, C₂-C₄, C₂-C₃, C₃-C₆, C₃-C₅, C₃-C₄, C₄-C₆, C₄-C₅, and C₅-C₆, alkyl.

[0088] For the purposes of the present invention the terms “compound,” “analog,” and “composition of matter” stand equally well for the prodrug agent described herein, including all enantiomeric forms, diastereomeric forms, salts, and the like, and the terms “compound,” “analog,” and “composition of matter” are used interchangeably throughout the present specification.

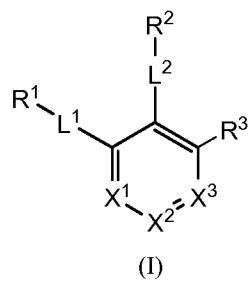
[0089] Compounds described herein can contain an asymmetric atom (also referred as a chiral center), and some of the compounds can contain one or more asymmetric atoms or centers, which can thus give rise to optical isomers (enantiomers) and diastereomers. The present teachings and compounds disclosed herein include such enantiomers and diastereomers, as well as the racemic and resolved, enantiomerically pure R and S stereoisomers, as well as other mixtures of the R and S stereoisomers and pharmaceutically acceptable salts thereof. Optical isomers can be obtained in pure form by standard procedures known to those skilled in the art, which include, but are not limited to,

diastereomeric salt formation, kinetic resolution, and asymmetric synthesis. The present teachings also encompass cis and trans isomers of compounds containing alkenyl moieties (e.g., alkenes and imines). It is also understood that the present teachings encompass all possible regioisomers, and mixtures thereof, which can be obtained in pure form by standard separation procedures known to those skilled in the art, and include, but are not limited to, column chromatography, thin-layer chromatography, and high-performance liquid chromatography.

[0090] Pharmaceutically acceptable salts of compounds of the present teachings, which can have an acidic moiety, can be formed using organic and inorganic bases. Both mono and polyanionic salts are contemplated, depending on the number of acidic hydrogens available for deprotonation. Suitable salts formed with bases include metal salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, or magnesium salts; ammonia salts and organic amine salts, such as those formed with morpholine, thiomorpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine (e.g., ethyl-tert-butyl-, diethyl-, diisopropyl-, triethyl-, tributyl- or dimethylpropylamine), or a mono-, di-, or trihydroxy lower alkylamine (e.g., mono-, di- or triethanolamine). Specific non-limiting examples of inorganic bases include NaHCO_3 , Na_2CO_3 , KHCO_3 , K_2CO_3 , Cs_2CO_3 , LiOH , NaOH , KOH , NaH_2PO_4 , Na_2HPO_4 , and Na_3PO_4 . Internal salts also can be formed. Similarly, when a compound disclosed herein contains a basic moiety, salts can be formed using organic and inorganic acids. For example, salts can be formed from the following acids: acetic, propionic, lactic, benzenesulfonic, benzoic, camphorsulfonic, citric, tartaric, succinic, dichloroacetic, ethenesulfonic, formic, fumaric, gluconic, glutamic, hippuric, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, malonic, mandelic, methanesulfonic, mucic, napthalenesulfonic, nitric, oxalic, pamoic, pantothenic, phosphoric, phthalic, propionic, succinic, sulfuric, tartaric, toluenesulfonic, and camphorsulfonic as well as other known pharmaceutically acceptable acids.

[0091] When any variable occurs more than one time in any constituent or in any formula, its definition in each occurrence is independent of its definition at every other occurrence (e.g., in $\text{N}(\text{R}^{10})_2$, each R^{10} may be the same or different than the other). Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

[0092] The terms “treat” and “treating” and “treatment” as used herein, refer to partially or completely alleviating, inhibiting, ameliorating and/or relieving a condition from which a patient is suspected to suffer.

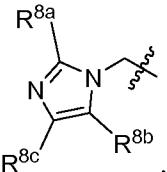

[0093] As used herein, “therapeutically effective” and “effective dose” refer to a substance or an amount that elicits a desirable biological activity or effect.

[0094] As used herein, the term “EBNA1 inhibitor” shall mean a compound that inhibits EBNA1.

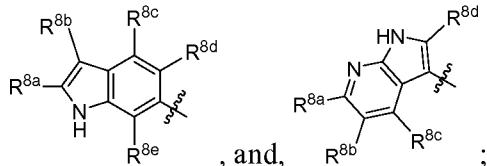
[0095] Except when noted, the terms “subject” or “patient” are used interchangeably and refer to mammals such as human patients and non-human primates, as well as experimental animals such as rabbits, rats, and mice, and other animals. Accordingly, the term “subject” or “patient” as used herein means any mammalian patient or subject to which the compounds of the invention can be administered. In an exemplary embodiment of the present invention, to identify subject patients for treatment according to the methods of the invention, accepted screening methods are employed to determine risk factors associated with a targeted or suspected disease or condition or to determine the status of an existing disease or condition in a subject. These screening methods include, for example, conventional work-ups to determine risk factors that may be associated with the targeted or suspected disease or condition. These and other routine methods allow the clinician to select patients in need of therapy using the methods and compounds of the present invention.

The EBNA1 inhibitors:

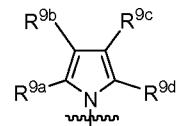
[0096] The EBNA1 inhibitors of the present invention include all enantiomeric and diastereomeric forms and pharmaceutically accepted salts thereof having the formula (I):

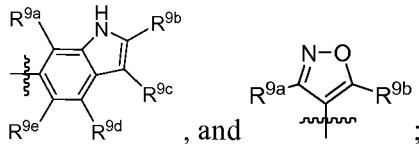

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein:

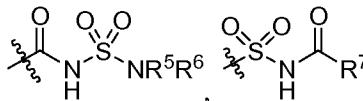
X^1 is selected from the group consisting of CR^{4a} and N ;

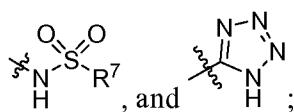

X^2 is selected from the group consisting of CR^{4b} and N ;

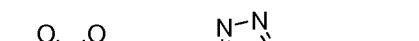
X^3 is selected from the group consisting of CR^{4c} and N ;


R^1 is selected from the group consisting of optionally substituted C_{1-6} linear alkyl, optionally substituted C_{3-6} branched alkyl, optionally substituted C_{3-6} cyclic alkyl, optionally substituted phenyl, optionally substituted heteroaryl, optionally substituted benzyl, optionally substituted heteroaryl methyl, R^{8c} ,

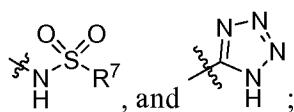

substituted benzyl, optionally substituted heteroaryl methyl, R^{8c} ,


, and,


optionally substituted phenyl, optionally substituted heteroaryl,


R^2 is selected from the group consisting of hydrogen, $NR^{10a}R^{10b}$, fluorine, optionally substituted phenyl, optionally substituted heteroaryl, R^{9b} , R^{9c} , R^{9d} ,

optionally substituted phenyl, optionally substituted heteroaryl,

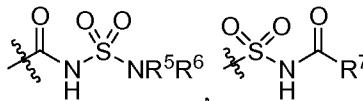
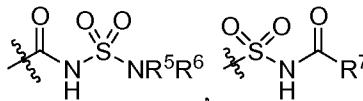
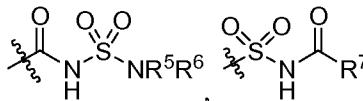
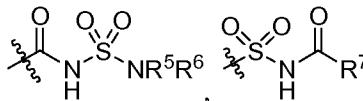
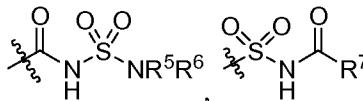
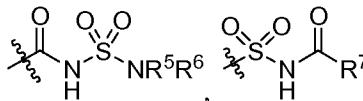
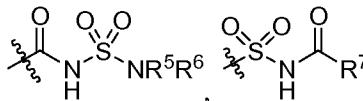
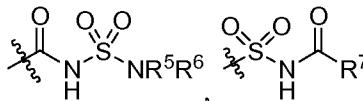
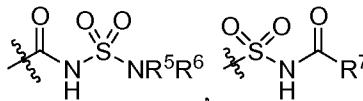
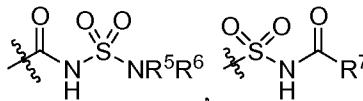
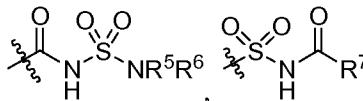
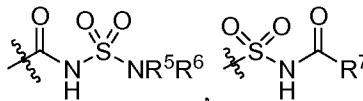
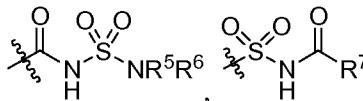
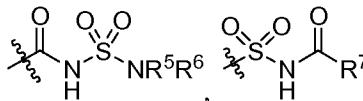
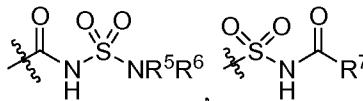
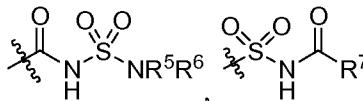
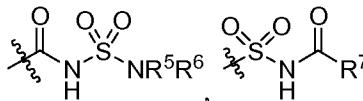
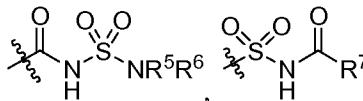
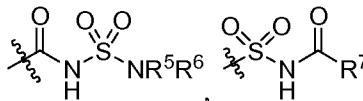
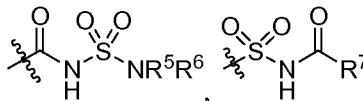
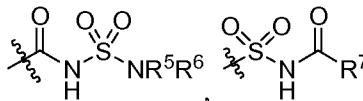
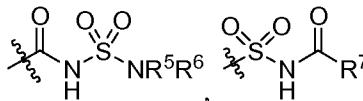
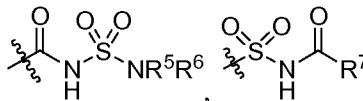
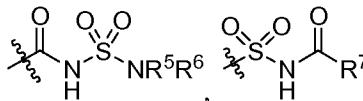
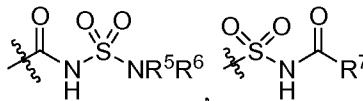
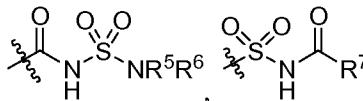
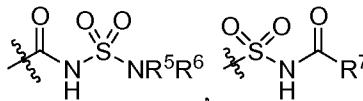
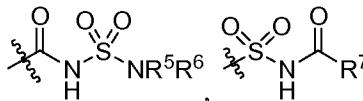
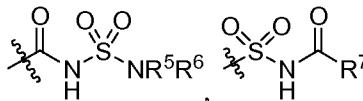
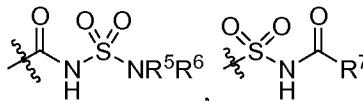
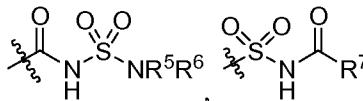
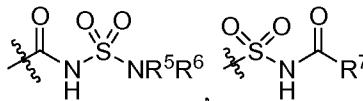
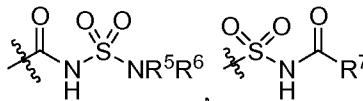
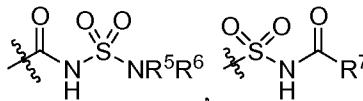
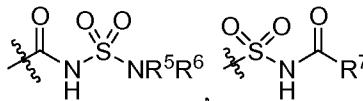
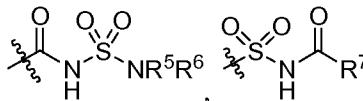
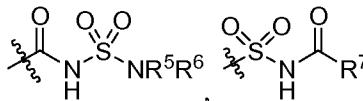
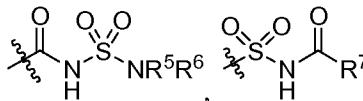
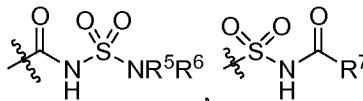
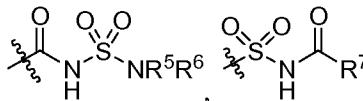
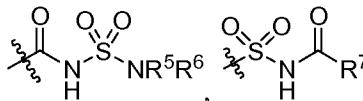
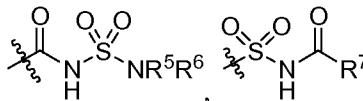
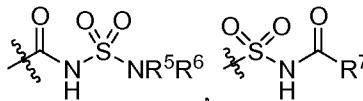
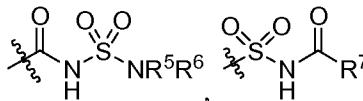
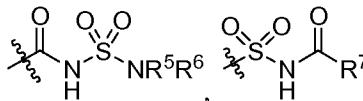
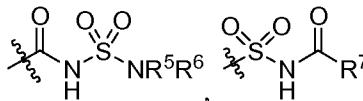
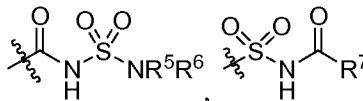
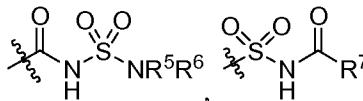
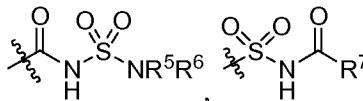
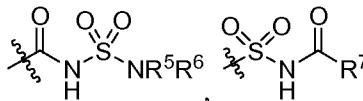
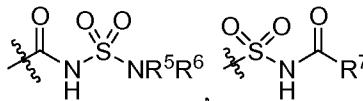
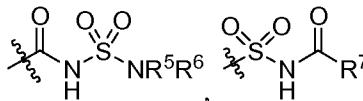
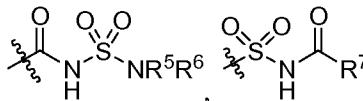
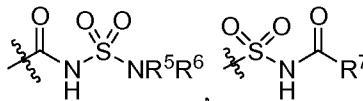
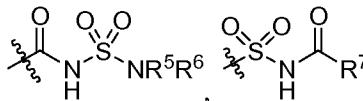
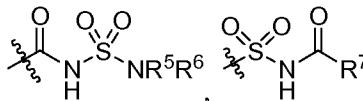
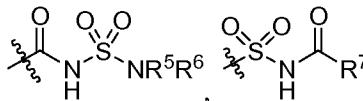
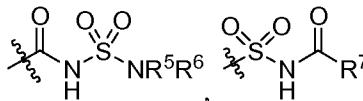
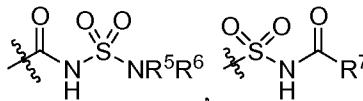
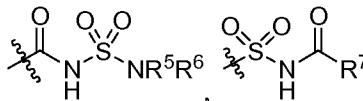
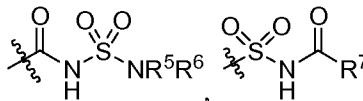
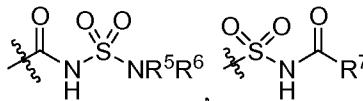
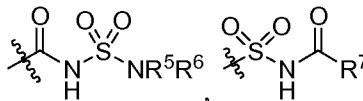
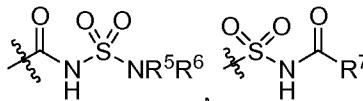
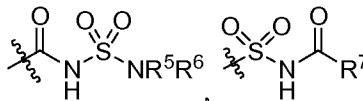
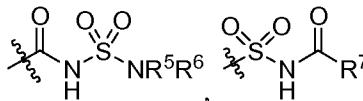
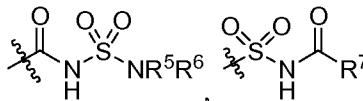
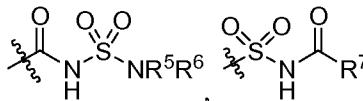
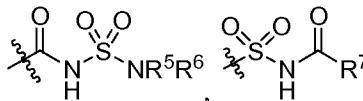
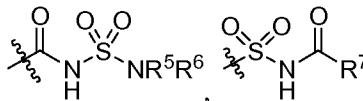
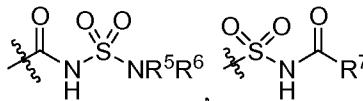
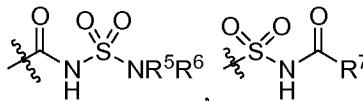
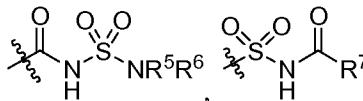
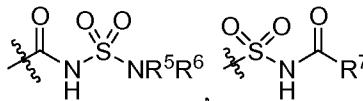
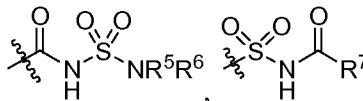
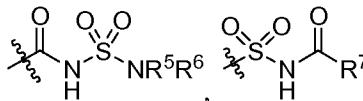


, and

;

R^3 is selected from the group consisting of CO_2R^{4d} , R^{9b} , R^{9c} , R^{9d} ,

, and

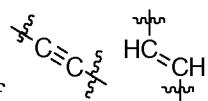













































































;

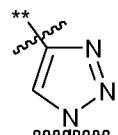
R^{4a} , R^{4b} , and R^{4c} are each independently selected from the group consisting of fluorine, chlorine, bromine, iodine, and hydrogen;

R^{4d} is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^5 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;


R^6 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

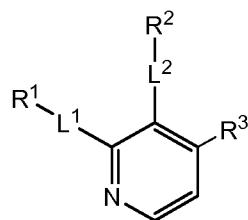
R^7 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;


R^{8a} , R^{8b} , R^{8c} , R^{8d} , and R^{8e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{9a} , R^{9b} , R^{9c} , R^{9d} , and R^{9e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{10a} , and R^{10b} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{1-6} branched alkyl;

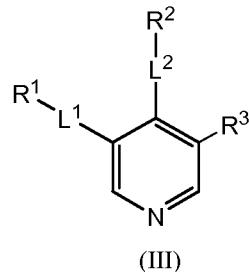
L^1 is selected from the group consisting of



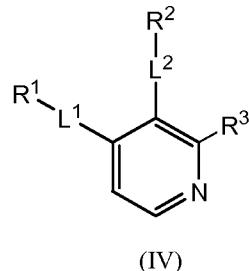
L^2 is selected from a group consisting of NH , $(CH_2)_m$, and $\text{---}^{**}\text{---}$, wherein “**” indicates the point of attachment for R^2 ;

n is 0, 1, 2, or 3; and

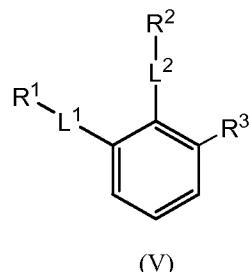
m is 0, 1, 2, or 3.


[0097] The compounds of the present invention include compounds having formula (II):

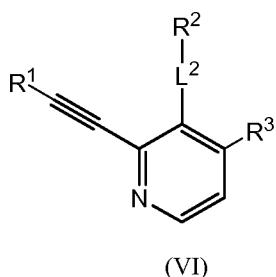
(II)


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof. Substituents for this formula and subsequent formulas are as noted above for formula (I), unless otherwise specified.

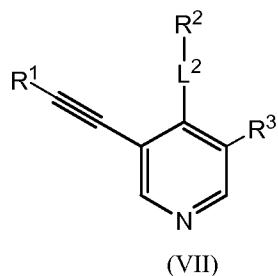
[0098] The compounds of the present invention include compounds having formula (III):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

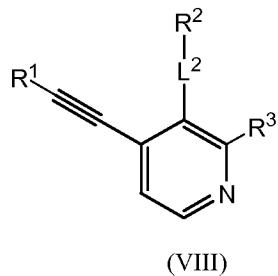
[0099] The compounds of the present invention include compounds having formula (IV):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

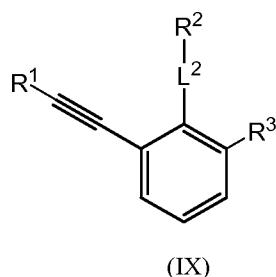
[00100] The compounds of the present invention include compounds having formula (V):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

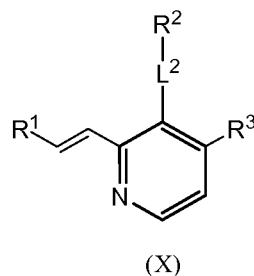
[0100] The compounds of the present invention include compounds having formula (VI):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

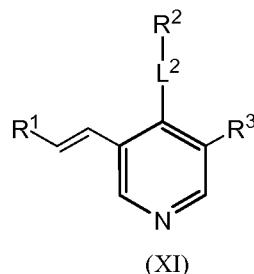
[0101] The compounds of the present invention include compounds having formula (VII):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

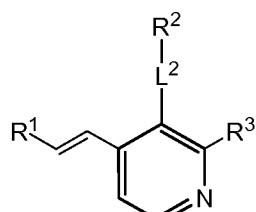
[0102] The compounds of the present invention include compounds having formula (VIII):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0103] The compounds of the present invention include compounds having formula (IX):

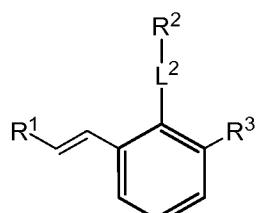

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0104] The compounds of the present invention include compounds having formula (X):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

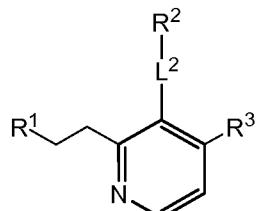
[0105] The compounds of the present invention include compounds having formula (XI):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0106] The compounds of the present invention include compounds having formula (XII):

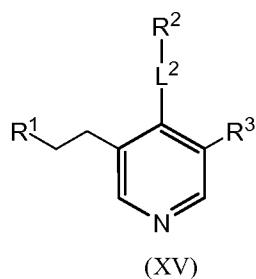
(XII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

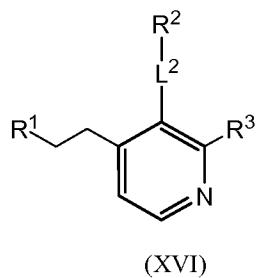

[0107] The compounds of the present invention include compounds having formula (XIII):

(XIII)

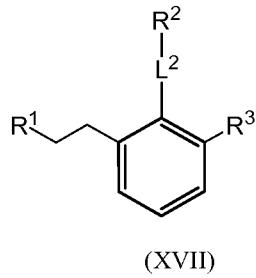
including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


[0108] The compounds of the present invention include compounds having formula (XIV):

(XIV)


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0109] The compounds of the present invention include compounds having formula (XV):


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0110] The compounds of the present invention include compounds having formula (XVI):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0111] The compounds of the present invention include compounds having formula (XVII):

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

[0112] In some embodiments X¹ is CR^{4a}.

[0113] In some embodiments X¹ is N.

[0114] In some embodiments X² is CR^{4a}.

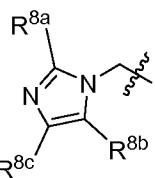
[0115] In some embodiments X² is N.

[0116] In some embodiments X³ is CR^{4a}.

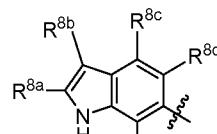
[0117] In some embodiments X³ is N.

[0118] In some embodiments R¹ is optionally substituted C₁₋₆ linear alkyl.

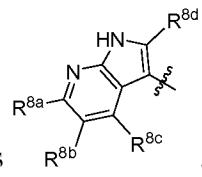
[0119] In some embodiments R¹ is optionally substituted C₃₋₆ branched alkyl.


[0120] In some embodiments R¹ is optionally substituted C₃₋₆ cyclic alkyl.

[0121] In some embodiments R¹ is optionally substituted heteroaryl methyl.


[0122] In some embodiments R¹ is optionally substituted phenyl.

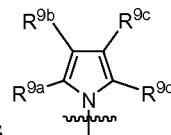
[0123] In some embodiments R¹ is optionally substituted heteroaryl.


[0124] In some embodiments R¹ is optionally substituted benzyl.

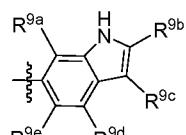
[0125] In some embodiments R¹ is R^{8c}.

[0126] In some embodiments R¹ is .

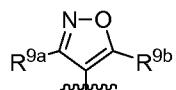
[0127] In some embodiments R¹ is .


[0128] In some embodiments R² is hydrogen.

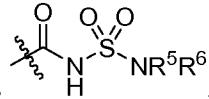
[0129] In some embodiments R² is NR^{10a}R^{10b}.


[0130] In some embodiments R² is fluorine.

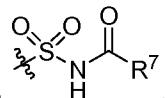
[0131] In some embodiments R² is optionally substituted phenyl.


[0132] In some embodiments R² is optionally substituted heteroaryl.

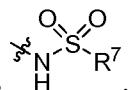
[0133] In some embodiments R² is .

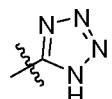


[0134] In some embodiments R² is .



[0135] In some embodiments R² is .


[0136] In some embodiments R³ is CO₂R^{4d}.


[0137] In some embodiments R³ is .

[0138] In some embodiments R³ is .

[0139] In some embodiments R³ is .

[0140] In some embodiments R³ is .

[0141] In some embodiments R^{4a} is fluorine.

[0142] In some embodiments R^{4a} is chlorine.

[0143] In some embodiments R^{4a} is bromine.

[0144] In some embodiments R^{4a} is iodine.

[0145] In some embodiments R^{4a} is hydrogen.

[0146] In some embodiments R^{4b} is fluorine.

[0147] In some embodiments R^{4b} is chlorine.

[0148] In some embodiments R^{4b} is bromine.

[0149] In some embodiments R^{4b} is iodine.

[0150] In some embodiments R^{4b} is hydrogen.

[0151] In some embodiments R^{4c} is fluorine.

[0152] In some embodiments R^{4c} is chlorine.

[0153] In some embodiments R^{4c} is bromine.

[0154] In some embodiments R^{4c} is iodine.

[0155] In some embodiments R^{4c} is hydrogen.

[0156] In some embodiments R^{4d} is hydrogen.

[0157] In some embodiments R^{4d} is optionally substituted C₁₋₆ linear alkyl.

[0158] In some embodiments R^{4d} is optionally substituted C₃₋₆ branched alkyl.

[0159] In some embodiments R⁵ is hydrogen.

- [0160] In some embodiments R⁵ is optionally substituted C₁₋₆ linear alkyl.
- [0161] In some embodiments R⁵ is optionally substituted C₃₋₆ branched alkyl.
- [0162] In some embodiments R⁶ is hydrogen.
- [0163] In some embodiments R⁶ is optionally substituted C₁₋₆ linear alkyl.
- [0164] In some embodiments R⁶ is optionally substituted C₃₋₆ branched alkyl.
- [0165] In some embodiments R⁷ is hydrogen.
- [0166] In some embodiments R⁷ is optionally substituted C₁₋₆ linear alkyl.
- [0167] In some embodiments R⁷ is optionally substituted C₃₋₆ branched alkyl.
- [0168] In some embodiments R^{8a} is hydrogen.
- [0169] In some embodiments R^{8a} is optionally substituted C₁₋₆ linear alkyl.
- [0170] In some embodiments R^{8a} is optionally substituted C₃₋₆ branched alkyl.
- [0171] In some embodiments R^{8b} is hydrogen.
- [0172] In some embodiments R^{8b} is optionally substituted C₁₋₆ linear alkyl.
- [0173] In some embodiments R^{8b} is optionally substituted C₃₋₆ branched alkyl.
- [0174] In some embodiments R^{8c} is hydrogen.
- [0175] In some embodiments R^{8c} is optionally substituted C₁₋₆ linear alkyl.
- [0176] In some embodiments R^{8c} is optionally substituted C₃₋₆ branched alkyl.
- [0177] In some embodiments R^{8d} is hydrogen.
- [0178] In some embodiments R^{8d} is optionally substituted C₁₋₆ linear alkyl.
- [0179] In some embodiments R^{8d} is optionally substituted C₃₋₆ branched alkyl.
- [0180] In some embodiments R^{9a} is hydrogen.

[0181] In some embodiments R^{9a} is optionally substituted C₁₋₆ linear alkyl.

[0182] In some embodiments R^{9a} is optionally substituted C₃₋₆ branched alkyl.

[0183] In some embodiments R^{9b} is hydrogen.

[0184] In some embodiments R^{9b} is optionally substituted C₁₋₆ linear alkyl.

[0185] In some embodiments R^{9b} is optionally substituted C₃₋₆ branched alkyl.

[0186] In some embodiments R^{9c} is hydrogen.

[0187] In some embodiments R^{9c} is optionally substituted C₁₋₆ linear alkyl.

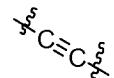
[0188] In some embodiments R^{9c} is optionally substituted C₃₋₆ branched alkyl.

[0189] In some embodiments R^{9d} is hydrogen.

[0190] In some embodiments R^{9d} is optionally substituted C₁₋₆ linear alkyl.

[0191] In some embodiments R^{9d} is optionally substituted C₃₋₆ branched alkyl.

[0192] In some embodiments R^{10a} is hydrogen.


[0193] In some embodiments R^{10a} is optionally substituted C₁₋₆ linear alkyl.

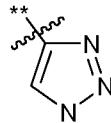
[0194] In some embodiments R^{10a} is optionally substituted C₃₋₆ branched alkyl.

[0195] In some embodiments R^{10b} is hydrogen.

[0196] In some embodiments R^{10b} is optionally substituted C₁₋₆ linear alkyl.

[0197] In some embodiments R^{10b} is optionally substituted C₃₋₆ branched alkyl.

[0198] In some embodiments L¹ is



[0199] In some embodiments L¹ is

[0200] In some embodiments L¹ is (CH₂)_n.

[0201] In some embodiments L² is NH.

[0202] In some embodiments L² is (CH₂)_m.

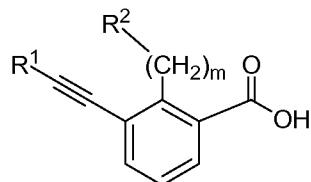
[0203] In some embodiments L² is , wherein “**” indicates the point of attachment for R².

[0204] In some embodiments m is 0.

[0205] In some embodiments m is 1.

[0206] In some embodiments m is 2.

[0207] In some embodiments m is 3.


[0208] In some embodiments n is 0.

[0209] In some embodiments n is 1.

[0210] In some embodiments n is 2.

[0211] In some embodiments n is 3.

[0212] Exemplary embodiments include compounds having the formula (XVIII) or a pharmaceutically acceptable salt form thereof:

(XVIII)

wherein non-limiting examples of R¹, R², and m are defined herein below in Table 1.

Table 1:

Entry	R ¹	R ²	m
1	phenyl	N-pyrrolyl	0
2	2-fluorophenyl	N-pyrrolyl	0
3	3-fluorophenyl	N-pyrrolyl	0

4	4-fluorophenyl	N-pyrrolyl	0
5	2,3-difluorophenyl	N-pyrrolyl	0
6	2,4-difluorophenyl	N-pyrrolyl	0
7	3,4-difluorophenyl	N-pyrrolyl	0
8	3,5-difluorophenyl	N-pyrrolyl	0
9	2,6-difluorophenyl	N-pyrrolyl	0
10	2,4,6-trifluorophenyl	N-pyrrolyl	0
11	2-chlorophenyl	N-pyrrolyl	0
12	3-chlorophenyl	N-pyrrolyl	0
13	4-chlorophenyl	N-pyrrolyl	0
14	2,3-dichlorophenyl	N-pyrrolyl	0
15	2,4-dichlorophenyl	N-pyrrolyl	0
16	3,4-dichlorophenyl	N-pyrrolyl	0
17	3,5-dichlorophenyl	N-pyrrolyl	0
18	2,6-dichlorophenyl	N-pyrrolyl	0
19	3-chloro-5-fluorophenyl	N-pyrrolyl	0
20	2-hydroxyphenyl	N-pyrrolyl	0
21	3-hydroxyphenyl	N-pyrrolyl	0
22	4-hydroxyphenyl	N-pyrrolyl	0
23	3-fluoro-4-hydroxyphenyl	N-pyrrolyl	0
24	3-fluoro-5-hydroxyphenyl	N-pyrrolyl	0
25	3-chloro-4-hydroxyphenyl	N-pyrrolyl	0
26	3-chloro-5-hydroxyphenyl	N-pyrrolyl	0
27	2-methoxyphenyl	N-pyrrolyl	0
28	3-methoxyphenyl	N-pyrrolyl	0
29	4-methoxyphenyl	N-pyrrolyl	0
30	2-methoxy-4-fluorophenyl	N-pyrrolyl	0
31	2-methoxy-5-fluorophenyl	N-pyrrolyl	0
32	3-methoxy-5-fluorophenyl	N-pyrrolyl	0
33	2-methoxy-4-chlorophenyl	N-pyrrolyl	0
34	2-methoxy-5-chlorophenyl	N-pyrrolyl	0
35	3-methoxy-5-chlorophenyl	N-pyrrolyl	0

36	3-hydroxy-5-methoxyphenyl	N-pyrrolyl	0
37	3-carboxamidophenyl	N-pyrrolyl	0
38	3-carboxamido-4-fluorophenyl	N-pyrrolyl	0
39	3-carboxamido-5-fluorophenyl	N-pyrrolyl	0
40	3-carboxamido-4-hydroxyphenyl	N-pyrrolyl	0
41	3-carboxamido-5-hydroxyphenyl	N-pyrrolyl	0
42	3-carboxamido-4-methoxyphenyl	N-pyrrolyl	0
43	3-carboxamido-5-methoxyphenyl	N-pyrrolyl	0
44	4-carboxamidophenyl	N-pyrrolyl	0
45	3-fluoro-4-carboxamidephenyl	N-pyrrolyl	0
46	3-chloro-4-carboxamidephenyl	N-pyrrolyl	0
47	3-hydroxy-4-carboxamidephenyl	N-pyrrolyl	0
48	3-methoxy-4-carboxamidephenyl	N-pyrrolyl	0
49	2-trifluoromethylphenyl	N-pyrrolyl	0
50	3-trifluoromethylphenyl	N-pyrrolyl	0
51	4-trifluoromethylphenyl	N-pyrrolyl	0
52	2-trifluoromethoxyphenyl	N-pyrrolyl	0
53	3-trifluoromethoxyphenyl	N-pyrrolyl	0
54	4-trifluoromethoxyphenyl	N-pyrrolyl	0
55	2-difluoromethoxyphenyl	N-pyrrolyl	0
56	3-difluoromethoxyphenyl	N-pyrrolyl	0
57	4-difluoromethoxyphenyl	N-pyrrolyl	0
58	2-methylphenyl	N-pyrrolyl	0
59	3-methylphenyl	N-pyrrolyl	0
60	4-methylphenyl	N-pyrrolyl	0
61	2,4-dimethylphenyl	N-pyrrolyl	0
62	3,4-dimethylphenyl	N-pyrrolyl	0
63	3,5-dimethylphenyl	N-pyrrolyl	0
64	2-hydroxymethylphenyl	N-pyrrolyl	0
65	3-hydroxymethylphenyl	N-pyrrolyl	0
66	3-(2-hydroxyprop-2-yl)phenyl	N-pyrrolyl	0
67	4-hydroxymethylphenyl	N-pyrrolyl	0

68	2-carboxyphenyl	N-pyrrolyl	0
69	3-carboxyphenyl	N-pyrrolyl	0
70	4-carboxyphenyl	N-pyrrolyl	0
71	3-aminomethylphenyl	N-pyrrolyl	0
72	4-aminomethylphenyl	N-pyrrolyl	0
73	3-cyclopropanesulfonamidomethylphenyl	N-pyrrolyl	0
74	3-benzenesulfonamidomethyl	N-pyrrolyl	0
75	3-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	N-pyrrolyl	0
76	4-cyclopropanesulfonamidomethylphenyl	N-pyrrolyl	0
77	4-benzenesulfonamidomethylphenyl	N-pyrrolyl	0
78	4-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	N-pyrrolyl	0
79	4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl	N-pyrrolyl	0
80	3-dimethylsulfamoylphenyl	N-pyrrolyl	0
81	3-methylsulfamoylphenyl	N-pyrrolyl	0
82	3-sulfamoylphenyl	N-pyrrolyl	0
83	3-methanesulfonamidophenyl	N-pyrrolyl	0
84	4-dimethylsulfamoylphenyl	N-pyrrolyl	0
85	4-methylsulfamoylphenyl	N-pyrrolyl	0
86	4-sulfamoylphenyl	N-pyrrolyl	0
87	4-methanesulfonamidophenyl	N-pyrrolyl	0
88	3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl	N-pyrrolyl	0
89	3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl	N-pyrrolyl	0
90	4-acetylaminophenyl	N-pyrrolyl	0
91	3-acetylaminophenyl	N-pyrrolyl	0
92	phenyl	1H-indol-5-yl	0

93	2-fluorophenyl	1H-indol-5-yl	0
94	3-fluorophenyl	1H-indol-5-yl	0
95	4-fluorophenyl	1H-indol-5-yl	0
96	2,3-difluorophenyl	1H-indol-5-yl	0
97	2,4-difluorophenyl	1H-indol-5-yl	0
98	3,4-difluorophenyl	1H-indol-5-yl	0
99	3,5-difluorophenyl	1H-indol-5-yl	0
100	2,6-difluorophenyl	1H-indol-5-yl	0
101	2,4,6-trifluorophenyl	1H-indol-5-yl	0
102	2-chlorophenyl	1H-indol-5-yl	0
103	3-chlorophenyl	1H-indol-5-yl	0
104	4-chlorophenyl	1H-indol-5-yl	0
105	2,3-dichlorophenyl	1H-indol-5-yl	0
106	2,4-dichlorophenyl	1H-indol-5-yl	0
107	3,4-dichlorophenyl	1H-indol-5-yl	0
108	3,5-dichlorophenyl	1H-indol-5-yl	0
109	2,6-dichlorophenyl	1H-indol-5-yl	0
110	3-chloro-5-fluorophenyl	1H-indol-5-yl	0
111	2-hydroxyphenyl	1H-indol-5-yl	0
112	3-hydroxyphenyl	1H-indol-5-yl	0
113	4-hydroxyphenyl	1H-indol-5-yl	0
114	3-fluoro-4-hydroxyphenyl	1H-indol-5-yl	0
115	3-fluoro-5-hydroxyphenyl	1H-indol-5-yl	0
116	3-chloro-4-hydroxyphenyl	1H-indol-5-yl	0
117	3-chloro-5-hydroxyphenyl	1H-indol-5-yl	0
118	2-methoxyphenyl	1H-indol-5-yl	0
119	3-methoxyphenyl	1H-indol-5-yl	0
120	4-methoxyphenyl	1H-indol-5-yl	0
121	2-methoxy-4-fluorophenyl	1H-indol-5-yl	0
122	2-methoxy-5-fluorophenyl	1H-indol-5-yl	0
123	3-methoxy-5-fluorophenyl	1H-indol-5-yl	0
124	2-methoxy-4-chlorophenyl	1H-indol-5-yl	0

125	2-methoxy-5-chlorophenyl	1H-indol-5-yl	0
126	3-methoxy-5-chlorophenyl	1H-indol-5-yl	0
127	3-hydroxy-5-methoxyphenyl	1H-indol-5-yl	0
128	3-carboxamidophenyl	1H-indol-5-yl	0
129	3-carboxamido-4-fluorophenyl	1H-indol-5-yl	0
130	3-carboxamido-5-fluorophenyl	1H-indol-5-yl	0
131	3-carboxamido-4-hydroxyphenyl	1H-indol-5-yl	0
132	3-carboxamido-5-hydroxyphenyl	1H-indol-5-yl	0
133	3-carboxamido-4-methoxyphenyl	1H-indol-5-yl	0
134	3-carboxamido-5-methoxyphenyl	1H-indol-5-yl	0
135	4-carboxamidophenyl	1H-indol-5-yl	0
136	3-fluoro-4-carboxamidephenyl	1H-indol-5-yl	0
137	3-chloro-4-carboxamidephenyl	1H-indol-5-yl	0
138	3-hydroxy-4-carboxamidephenyl	1H-indol-5-yl	0
139	3-methoxy-4-carboxamidephenyl	1H-indol-5-yl	0
140	2-trifluoromethylphenyl	1H-indol-5-yl	0
141	3-trifluoromethylphenyl	1H-indol-5-yl	0
142	4-trifluoromethylphenyl	1H-indol-5-yl	0
143	2-trifluoromethoxyphenyl	1H-indol-5-yl	0
144	3-trifluoromethoxyphenyl	1H-indol-5-yl	0
145	4-trifluoromethoxyphenyl	1H-indol-5-yl	0
146	2-difluoromethoxyphenyl	1H-indol-5-yl	0
147	3-difluoromethoxyphenyl	1H-indol-5-yl	0
148	4-difluoromethoxyphenyl	1H-indol-5-yl	0
149	2-methylphenyl	1H-indol-5-yl	0
150	3-methylphenyl	1H-indol-5-yl	0
151	4-methylphenyl	1H-indol-5-yl	0
152	2,4-dimethylphenyl	1H-indol-5-yl	0
153	3,4-dimethylphenyl	1H-indol-5-yl	0
154	3,5-dimethylphenyl	1H-indol-5-yl	0
155	2-hydroxymethylphenyl	1H-indol-5-yl	0
156	3-hydroxymethylphenyl	1H-indol-5-yl	0

157	3-(2-hydroxyprop-2-yl)phenyl	1H-indol-5-yl	0
158	4-hydroxymethylphenyl	1H-indol-5-yl	0
159	2-carboxyphenyl	1H-indol-5-yl	0
160	3-carboxyphenyl	1H-indol-5-yl	0
161	4-carboxyphenyl	1H-indol-5-yl	0
162	3-aminomethylphenyl	1H-indol-5-yl	0
163	4-aminomethylphenyl	1H-indol-5-yl	0
164	3-cyclopropanesulfonamidomethylphenyl	1H-indol-5-yl	0
165	3-benzenesulfonamidomethylphenyl	1H-indol-5-yl	0
166	3-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	1H-indol-5-yl	0
167	4-cyclopropanesulfonamidomethylphenyl	1H-indol-5-yl	0
168	4-benzenesulfonamidomethylphenyl	1H-indol-5-yl	0
169	4-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	1H-indol-5-yl	0
170	4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl	1H-indol-5-yl	0
171	3-dimethylsulfamoylphenyl	1H-indol-5-yl	0
172	3-methylsulfamoylphenyl	1H-indol-5-yl	0
173	3-sulfamoylphenyl	1H-indol-5-yl	0
174	3-methanesulfonamidophenyl	1H-indol-5-yl	0
175	4-dimethylsulfamoylphenyl	1H-indol-5-yl	0
176	4-methylsulfamoylphenyl	1H-indol-5-yl	0
177	4-sulfamoylphenyl	1H-indol-5-yl	0
178	4-methanesulfonamidophenyl	1H-indol-5-yl	0
179	3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl	1H-indol-5-yl	0
180	3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl	1H-indol-5-yl	
181	4-acetylaminophenyl	1H-indol-5-yl	0

182	3-acetylaminophenyl	1H-indol-5-yl	0
183	phenyl	3-hydroxyphenyl	0
184	2-fluorophenyl	3-hydroxyphenyl	0
185	3-fluorophenyl	3-hydroxyphenyl	0
186	4-fluorophenyl	3-hydroxyphenyl	0
187	2,3-difluorophenyl	3-hydroxyphenyl	0
188	2,4-difluorophenyl	3-hydroxyphenyl	0
189	3,4-difluorophenyl	3-hydroxyphenyl	0
190	3,5-difluorophenyl	3-hydroxyphenyl	0
191	2,6-difluorophenyl	3-hydroxyphenyl	0
192	2,4,6-trifluorophenyl	3-hydroxyphenyl	0
193	2-chlorophenyl	3-hydroxyphenyl	0
194	3-chlorophenyl	3-hydroxyphenyl	0
195	4-chlorophenyl	3-hydroxyphenyl	0
196	2,3-dichlorophenyl	3-hydroxyphenyl	0
197	2,4-dichlorophenyl	3-hydroxyphenyl	0
198	3,4-dichlorophenyl	3-hydroxyphenyl	0
199	3,5-dichlorophenyl	3-hydroxyphenyl	0
200	2,6-dichlorophenyl	3-hydroxyphenyl	0
201	3-chloro-5-fluorophenyl	3-hydroxyphenyl	0
202	2-hydroxyphenyl	3-hydroxyphenyl	0
203	3-hydroxyphenyl	3-hydroxyphenyl	0
204	4-hydroxyphenyl	3-hydroxyphenyl	0
205	3-fluoro-4-hydroxyphenyl	3-hydroxyphenyl	0
206	3-fluoro-5-hydroxyphenyl	3-hydroxyphenyl	0
207	3-chloro-4-hydroxyphenyl	3-hydroxyphenyl	0
208	3-chloro-5-hydroxyphenyl	3-hydroxyphenyl	0
209	2-methoxyphenyl	3-hydroxyphenyl	0
210	3-methoxyphenyl	3-hydroxyphenyl	0
211	4-methoxyphenyl	3-hydroxyphenyl	0
212	2-methoxy-4-fluorophenyl	3-hydroxyphenyl	0
213	2-methoxy-5-fluorophenyl	3-hydroxyphenyl	0

214	3-methoxy-5-fluorophenyl	3-hydroxyphenyl	0
215	2-methoxy-4-chlorophenyl	3-hydroxyphenyl	0
216	2-methoxy-5-chlorophenyl	3-hydroxyphenyl	0
217	3-methoxy-5-chlorophenyl	3-hydroxyphenyl	0
218	3-hydroxy-5-methoxyphenyl	3-hydroxyphenyl	0
219	3-carboxamidophenyl	3-hydroxyphenyl	0
220	3-carboxamido-4-fluorophenyl	3-hydroxyphenyl	0
221	3-carboxamido-5-fluorophenyl	3-hydroxyphenyl	0
222	3-carboxamido-4-hydroxyphenyl	3-hydroxyphenyl	0
223	3-carboxamido-5-hydroxyphenyl	3-hydroxyphenyl	0
224	3-carboxamido-4-methoxyphenyl	3-hydroxyphenyl	0
225	3-carboxamido-5-methoxyphenyl	3-hydroxyphenyl	0
226	4-carboxamidophenyl	3-hydroxyphenyl	0
227	3-fluoro-4-carboxamidephenyl	3-hydroxyphenyl	0
228	3-chloro-4-carboxamidephenyl	3-hydroxyphenyl	0
229	3-hydroxy-4-carboxamidephenyl	3-hydroxyphenyl	0
230	3-methoxy-4-carboxamidephenyl	3-hydroxyphenyl	0
231	2-trifluoromethylphenyl	3-hydroxyphenyl	0
232	3-trifluoromethylphenyl	3-hydroxyphenyl	0
233	4-trifluoromethylphenyl	3-hydroxyphenyl	0
234	2-trifluoromethoxyphenyl	3-hydroxyphenyl	0
235	3-trifluoromethoxyphenyl	3-hydroxyphenyl	0
236	4-trifluoromethoxyphenyl	3-hydroxyphenyl	0
237	2-difluoromethoxyphenyl	3-hydroxyphenyl	0
238	3-difluoromethoxyphenyl	3-hydroxyphenyl	0
239	4-difluoromethoxyphenyl	3-hydroxyphenyl	0
240	2-methylphenyl	3-hydroxyphenyl	0
241	3-methylphenyl	3-hydroxyphenyl	0
242	4-methylphenyl	3-hydroxyphenyl	0
243	2,4-dimethylphenyl	3-hydroxyphenyl	0
244	3,4-dimethylphenyl	3-hydroxyphenyl	0
245	3,5-dimethylphenyl	3-hydroxyphenyl	0

246	2-hydroxymethylphenyl	3-hydroxyphenyl	0
247	3-hydroxymethylphenyl	3-hydroxyphenyl	0
248	3-(2-hydroxyprop-2-yl)phenyl	3-hydroxyphenyl	0
249	4-hydroxymethylphenyl	3-hydroxyphenyl	0
250	2-carboxyphenyl	3-hydroxyphenyl	0
251	3-carboxyphenyl	3-hydroxyphenyl	0
252	4-carboxyphenyl	3-hydroxyphenyl	0
253	3-aminomethylphenyl	3-hydroxyphenyl	0
254	4-aminomethylphenyl	3-hydroxyphenyl	0
255	3-cyclopropanesulfonamidomethylphenyl	3-hydroxyphenyl	0
256	3-benzenesulfonamidomethylphenyl	3-hydroxyphenyl	0
257	3-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	3-hydroxyphenyl	0
258	4-cyclopropanesulfonamidomethylphenyl	3-hydroxyphenyl	0
259	4-benzenesulfonamidomethylphenyl	3-hydroxyphenyl	0
260	4-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	3-hydroxyphenyl	0
261	4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl	3-hydroxyphenyl	0
262	3-dimethylsulfamoylphenyl	3-hydroxyphenyl	0
263	3-methylsulfamoylphenyl	3-hydroxyphenyl	0
264	3-sulfamoylphenyl	3-hydroxyphenyl	0
265	3-methanesulfonamidophenyl	3-hydroxyphenyl	0
266	4-dimethylsulfamoylphenyl	3-hydroxyphenyl	0
267	4-methylsulfamoylphenyl	3-hydroxyphenyl	0
268	4-sulfamoylphenyl	3-hydroxyphenyl	0
269	4-methanesulfonamidophenyl	3-hydroxyphenyl	0
270	3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl	3-hydroxyphenyl	0

271	3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl	3-hydroxyphenyl	
272	4-acetylaminophenyl	3-hydroxyphenyl	0
273	3-acetylaminophenyl	3-hydroxyphenyl	0
274	phenyl	F	0
275	2-fluorophenyl	F	0
276	3-fluorophenyl	F	0
277	4-fluorophenyl	F	0
278	2,3-difluorophenyl	F	0
279	2,4-difluorophenyl	F	0
280	3,4-difluorophenyl	F	0
281	3,5-difluorophenyl	F	0
282	2,6-difluorophenyl	F	0
283	2,4,6-trifluorophenyl	F	0
284	2-chlorophenyl	F	0
285	3-chlorophenyl	F	0
286	4-chlorophenyl	F	0
287	2,3-dichlorophenyl	F	0
288	2,4-dichlorophenyl	F	0
289	3,4-dichlorophenyl	F	0
290	3,5-dichlorophenyl	F	0
291	2,6-dichlorophenyl	F	0
292	3-chloro-5-fluorophenyl	F	0
293	2-hydroxyphenyl	F	0
294	3-hydroxyphenyl	F	0
295	4-hydroxyphenyl	F	0
296	3-fluoro-4-hydroxyphenyl	F	0
297	3-fluoro-5-hydroxyphenyl	F	0
298	3-chloro-4-hydroxyphenyl	F	0
299	3-chloro-5-hydroxyphenyl	F	0
300	2-methoxyphenyl	F	0
301	3-methoxyphenyl	F	0

302	4-methoxyphenyl	F	0
303	2-methoxy-4-fluorophenyl	F	0
304	2-methoxy-5-fluorophenyl	F	0
305	3-methoxy-5-fluorophenyl	F	0
306	2-methoxy-4-chlorophenyl	F	0
307	2-methoxy-5-chlorophenyl	F	0
308	3-methoxy-5-chlorophenyl	F	0
309	3-hydroxy-5-methoxyphenyl	F	0
310	3-carboxamidophenyl	F	0
311	3-carboxamido-4-fluorophenyl	F	0
312	3-carboxamido-5-fluorophenyl	F	0
313	3-carboxamido-4-hydroxyphenyl	F	0
314	3-carboxamido-5-hydroxyphenyl	F	0
315	3-carboxamido-4-methoxyphenyl	F	0
316	3-carboxamido-5-methoxyphenyl	F	0
317	4-carboxamidophenyl	F	0
318	3-fluoro-4-carboxamidephenyl	F	0
319	3-chloro-4-carboxamidephenyl	F	0
320	3-hydroxy-4-carboxamidephenyl	F	0
321	3-methoxy-4-carboxamidephenyl	F	0
322	2-trifluoromethylphenyl	F	0
323	3-trifluoromethylphenyl	F	0
324	4-trifluoromethylphenyl	F	0
325	2-trifluoromethoxyphenyl	F	0
326	3-trifluoromethoxyphenyl	F	0
327	4-trifluoromethoxyphenyl	F	0
328	2-difluoromethoxyphenyl	F	0
329	3-difluoromethoxyphenyl	F	0
330	4-difluoromethoxyphenyl	F	0
331	2-methylphenyl	F	0
332	3-methylphenyl	F	0
333	4-methylphenyl	F	0

334	2,4-dimethylphenyl	F	0
335	3,4-dimethylphenyl	F	0
336	3,5-dimethylphenyl	F	0
337	2-hydroxymethylphenyl	F	0
338	3-hydroxymethylphenyl	F	0
339	3-(2-hydroxyprop-2-yl)phenyl	F	0
340	4-hydroxymethylphenyl	F	0
341	2-carboxyphenyl	F	0
342	3-carboxyphenyl	F	0
343	4-carboxyphenyl	F	0
344	3-aminomethylphenyl	F	0
345	4-aminomethylphenyl	F	0
346	3-cyclopropanesulfonamidomethylphenyl	F	0
347	3-benzenesulfonamidomethyl	F	0
348	3-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	F	0
349	4-cyclopropanesulfonamidomethylphenyl	F	0
350	4-benzenesulfonamidomethylphenyl	F	0
351	4-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	F	0
352	4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl	F	0
353	3-dimethylsulfamoylphenyl	F	0
354	3-methylsulfamoylphenyl	F	0
355	3-sulfamoylphenyl	F	0
356	3-methanesulfonamidophenyl	F	0
357	4-dimethylsulfamoylphenyl	F	0
358	4-methylsulfamoylphenyl	F	0
359	4-sulfamoylphenyl	F	0
360	4-methanesulfonamidophenyl	F	0

361	3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl	F	0
362	3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl	F	0
363	4-acetyl amidophenyl	F	0
364	3-acetyl amidophenyl	F	0
365	phenyl	NH ₂	0
366	2-fluorophenyl	NH ₂	0
367	3-fluorophenyl	NH ₂	0
368	4-fluorophenyl	NH ₂	0
369	2,3-difluorophenyl	NH ₂	0
370	2,4-difluorophenyl	NH ₂	0
371	3,4-difluorophenyl	NH ₂	0
372	3,5-difluorophenyl	NH ₂	0
373	2,6-difluorophenyl	NH ₂	0
374	2,4,6-trifluorophenyl	NH ₂	0
375	2-chlorophenyl	NH ₂	0
376	3-chlorophenyl	NH ₂	0
377	4-chlorophenyl	NH ₂	0
378	2,3-dichlorophenyl	NH ₂	0
379	2,4-dichlorophenyl	NH ₂	0
380	3,4-dichlorophenyl	NH ₂	0
381	3,5-dichlorophenyl	NH ₂	0
382	2,6-dichlorophenyl	NH ₂	0
383	3-chloro-5-fluorophenyl	NH ₂	0
384	2-hydroxyphenyl	NH ₂	0
385	3-hydroxyphenyl	NH ₂	0
386	4-hydroxyphenyl	NH ₂	0
387	3-fluoro-4-hydroxyphenyl	NH ₂	0
388	3-fluoro-5-hydroxyphenyl	NH ₂	0
389	3-chloro-4-hydroxyphenyl	NH ₂	0
390	3-chloro-5-hydroxyphenyl	NH ₂	0

391	2-methoxyphenyl	NH ₂	0
392	3-methoxyphenyl	NH ₂	0
393	4-methoxyphenyl	NH ₂	0
394	2-methoxy-4-fluorophenyl	NH ₂	0
395	2-methoxy-5-fluorophenyl	NH ₂	0
396	3-methoxy-5-fluorophenyl	NH ₂	0
397	2-methoxy-4-chlorophenyl	NH ₂	0
398	2-methoxy-5-chlorophenyl	NH ₂	0
399	3-methoxy-5-chlorophenyl	NH ₂	0
400	3-hydroxy-5-methoxyphenyl	NH ₂	0
401	3-carboxamidophenyl	NH ₂	0
402	3-carboxamido-4-fluorophenyl	NH ₂	0
403	3-carboxamido-5-fluorophenyl	NH ₂	0
404	3-carboxamido-4-hydroxyphenyl	NH ₂	0
405	3-carboxamido-5-hydroxyphenyl	NH ₂	0
406	3-carboxamido-4-methoxyphenyl	NH ₂	0
407	3-carboxamido-5-methoxyphenyl	NH ₂	0
408	4-carboxamidophenyl	NH ₂	0
409	3-fluoro-4-carboxamidephenyl	NH ₂	0
410	3-chloro-4-carboxamidephenyl	NH ₂	0
411	3-hydroxy-4-carboxamidephenyl	NH ₂	0
412	3-methoxy-4-carboxamidephenyl	NH ₂	0
413	2-trifluoromethylphenyl	NH ₂	0
414	3-trifluoromethylphenyl	NH ₂	0
415	4-trifluoromethylphenyl	NH ₂	0
416	2-trifluoromethoxyphenyl	NH ₂	0
417	3-trifluoromethoxyphenyl	NH ₂	0
418	4-trifluoromethoxyphenyl	NH ₂	0
419	2-difluoromethoxyphenyl	NH ₂	0
420	3-difluoromethoxyphenyl	NH ₂	0
421	4-difluoromethoxyphenyl	NH ₂	0
422	2-methylphenyl	NH ₂	0

423	3-methylphenyl	NH ₂	0
424	4-methylphenyl	NH ₂	0
425	2,4-dimethylphenyl	NH ₂	0
426	3,4-dimethylphenyl	NH ₂	0
427	3,5-dimethylphenyl	NH ₂	0
428	2-hydroxymethylphenyl	NH ₂	0
429	3-hydroxymethylphenyl	NH ₂	0
430	3-(2-hydroxyprop-2-yl)phenyl	NH ₂	0
431	4-hydroxymethylphenyl	NH ₂	0
432	2-carboxyphenyl	NH ₂	0
433	3-carboxyphenyl	NH ₂	0
434	4-carboxyphenyl	NH ₂	0
435	3-aminomethylphenyl	NH ₂	0
436	4-aminomethylphenyl	NH ₂	0
437	3-cyclopropanesulfonamidomethylphenyl	NH ₂	0
438	3-benzenesulfonamidomethyl	NH ₂	0
439	3-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	NH ₂	0
440	4-cyclopropanesulfonamidomethylphenyl	NH ₂	0
441	4-benzenesulfonamidomethylphenyl	NH ₂	0
442	4-(3,5-difluoro-benzenesulfonamidomethyl)phenyl	NH ₂	0
443	4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl	NH ₂	0
444	3-dimethylsulfamoylphenyl	NH ₂	0
445	3-methylsulfamoylphenyl	NH ₂	0
446	3-sulfamoylphenyl	NH ₂	0
447	3-methanesulfonamidophenyl	NH ₂	0
448	4-dimethylsulfamoylphenyl	NH ₂	0
449	4-methylsulfamoylphenyl	NH ₂	0

450	4-sulfamoylphenyl	NH ₂	0
451	4-methanesulfonamidophenyl	NH ₂	0
452	3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl	NH ₂	0
453	3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl	NH ₂	0
454	4-acetylaminophenyl	NH ₂	0
455	3-acetylaminophenyl	NH ₂	0
456	Phenyl	2,5-dimethylpyrrol-1-yl	0
457	4-methylphenyl	2,5-dimethylpyrrol-1-yl	0
458	Phenyl	4,5-dimethyl-1,2oxazol-4-yl	0
459	Phenyl	1H-pyrazol-4-yl	0
460	Phenyl	1-methyl-1H-pyrazol-4-yl	0
461	Phenyl	pyrimidin-5-yl	0
462	Phenyl	pyrimidin-2-yl	0
463	Phenyl	pyrimidin-4-yl	0
464	Phenyl	pyridin-2-yl	0
465	Phenyl	pyridin-3-yl	0
466	Phenyl	pyridin-4-yl	0
467	Phenyl	5-hydroxy-pyridin-3-yl	0
468	Phenyl	5-methoxy-pyridin-3-yl	0
469	Phenyl	3-hydroxy-pyridin-4-yl	0
470	Phenyl	3-methoxy-pyridin-4-yl	0
471	Phenyl	2-methoxy-pyridin-5-yl	0
472	Phenyl	N,N-dimethylaminopyridin-5-yl	0
473	Phenyl	4-methanesulfonylphenyl	0
474	Phenyl	3-methanesulfonylphenyl	0
475	Phenyl	N,N-dimethylaminomethylphenyl	0
476	Phenyl	2-methoxyphenyl	0
477	Phenyl	3-methoxyphenyl	0
478	Phenyl	4-methoxyphenyl	0
479	Phenyl	3,5-dimethoxyphenyl	0

480	Phenyl	3,4-dimethoxyphenyl	0
481	Phenyl	3-hydroxy-4-methoxyphenyl	0
482	Phenyl	3-hydroxy-5-methoxyphenyl	0
483	Phenyl	quinolin-3-yl	0
484	Phenyl	cyclopropyl	0
485	Phenyl	3-hydroxymethylphenyl	0
486	Phenyl	4-hydroxymethylphenyl	0
487	Phenyl	1-benzofuran-5-yl	0
488	Phenyl	1-benzothiophen-5-yl	0
489	Phenyl	1H-indol-6-yl	0
490	Phenyl	1H-indol-3-yl	0
491	Phenyl	1-methyl-1H-indol-5-yl	0
492	Phenyl	1-methyl-1H-indol-6-yl	0
493	Phenyl	1H-indazol-5-yl	0
494	Phenyl	1H-indazol-6-yl	0
495	Phenyl	1-methyl-1H-indazol-5-yl	0
496	Phenyl	1-methyl-1H-indazol-6-yl	0
497	Phenyl	2-methyl-1,3-benzothiazol-5-yl	0
498	Phenyl	N,N-dimethylaminophen-4-yl	0
499	Phenyl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
500	Phenyl	benzimidazol-5-yl	0
501	Phenyl	3-acetyl-1H-indol-6-yl	0
502	Phenyl	phenyl	0
503	Phenyl	4-hydroxyphenyl	0
504	Phenyl	3-fluoro-5-hydroxyphenyl	0
505	Phenyl	3-chloro-5-hydroxyphenyl	0
506	Phenyl	2-phenoxyphenyl	0
507	Phenyl	3-phenoxyphenyl	0
508	Phenyl	4-phenoxyphenyl	0
509	Phenyl	4-phenyl-1H-1,2,3-triazol-1-yl	0

510	Phenyl	3-methoxyphenyl)-1H-1,2,3-triazol-1-yl	0
511	Phenyl	4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl	0
512	Phenyl	3-hydroxypropyl)-1H-1,2,3-triazol-1-yl	0
513	Phenyl	benzylamino	0
514	Phenyl	benzyloxy	0
515	Phenyl	piperazin-1-yl	0
516	Phenyl	pyrrolidin-1-yl	0
517	Phenyl	3-hydroxypyrrolidin-1-yl	0
518	Phenyl	3-carboxypyrrolidin-1-yl	0
519	Phenyl	3-(dimethylamino)pyrrolidin-1-yl	0
520	Phenyl	2-phenylpyrrolidin-1-yl	0
521	Phenyl	1,2,3,6-tetrahydropyridin-4-yl	0
522	Phenyl	3-(methoxycarbonyl)-1H-indol-6-yl]	0
523	Phenyl	4-(cyclopropylcarbamoyl)phenyl	0
524	Phenyl	2-[(2-hydroxyethyl)sulfamoyl]phenyl	0
525	Phenyl	naphthalen-2-yl	0
526	Phenyl	4-methylphenyl	0
527	Phenyl	3-methanesulfonamidophenyl	0
528	3-hydroxyphenyl	2,5-dimethylpyrrol-1-yl	0
529	3-hydroxyphenyl	4,5-dimethyl-1,2oxazol-4-yl	0
530	3-hydroxyphenyl	1H-pyrazol-4-yl	0
531	3-hydroxyphenyl	1-methyl-1H-pyrazol-4-yl	0
532	3-hydroxyphenyl	pyrimidin-5-yl	0
533	3-hydroxyphenyl	pyrimidin-2-yl	0
534	3-hydroxyphenyl	pyrimidin-4-yl	0
535	3-hydroxyphenyl	pyridin-2-yl	0
536	3-hydroxyphenyl	pyridin-3-yl	0

537	3-hydroxyphenyl	pyridin-4-yl	0
538	3-hydroxyphenyl	5-hydroxy-pyridin-3-yl	0
539	3-hydroxyphenyl	5-methoxy-pyridin-3-yl	0
540	3-hydroxyphenyl	3-hydroxy-pyridin-4-yl	0
541	3-hydroxyphenyl	3-methoxy-pyridin-4-yl	0
542	3-hydroxyphenyl	N,N-dimethylaminopyridin-5-yl	0
543	3-hydroxyphenyl	4-methanesulfonylphenyl	0
544	3-hydroxyphenyl	3-methanesulfonylphenyl	0
545	3-hydroxyphenyl	N,N-dimethylaminomethylphenyl	0
546	3-hydroxyphenyl	2-methoxyphenyl	0
547	3-hydroxyphenyl	3-methoxyphenyl	0
548	3-hydroxyphenyl	4-methoxyphenyl	0
549	3-hydroxyphenyl	3,5-dimethoxyphenyl	0
550	3-hydroxyphenyl	3,4-dimethoxyphenyl	0
551	3-hydroxyphenyl	3-hydroxy-4-methoxyphenyl	0
552	3-hydroxyphenyl	3-hydroxy-5-methoxyphenyl	0
553	3-hydroxyphenyl	quinolin-3-yl	0
554	3-hydroxyphenyl	cyclopropyl	0
555	3-hydroxyphenyl	3-hydroxymethylphenyl	0
556	3-hydroxyphenyl	4-hydroxymethylphenyl	0
557	3-hydroxyphenyl	1-benzofuran-5-yl	0
558	3-hydroxyphenyl	1-benzothiophen-5-yl	0
559	3-hydroxyphenyl	1H-indol-6-yl	0
560	3-hydroxyphenyl	1H-indol-3-yl	0
561	3-hydroxyphenyl	1-methyl-1H-indol-5-yl	0
562	3-hydroxyphenyl	1-methyl-1H-indol-6-yl	0
563	3-hydroxyphenyl	1H-indazol-5-yl	0
564	3-hydroxyphenyl	1H-indazol-6-yl	0
565	3-hydroxyphenyl	1-methyl-1H-indazol-5-yl	0
566	3-hydroxyphenyl	1-methyl-1H-indazol-6-yl	0
567	3-hydroxyphenyl	2-methyl-1,3-benzothiazol-5-yl	0
568	3-hydroxyphenyl	N,N-dimethylaminophen-4-yl	0

569	3-hydroxyphenyl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
570	3-hydroxyphenyl	benzimidazol-5-yl	0
571	3-hydroxyphenyl	3-acetyl-1H-indol-6-yl	0
572	3-hydroxyphenyl	phenyl	0
573	3-hydroxyphenyl	4-hydroxyphenyl	0
574	3-hydroxyphenyl	3-fluoro-5-hydroxyphenyl	0
575	3-hydroxyphenyl	3-chloro-5-hydroxyphenyl	0
576	3-hydroxyphenyl	2-phenoxyphenyl	0
577	3-hydroxyphenyl	3-phenoxyphenyl	0
578	3-hydroxyphenyl	4-phenoxyphenyl	0
579	3-fluorophenyl	2,5-dimethylpyrrol-1-yl	0
580	3-fluorophenyl	4,5-dimethyl-1,2oxazol-4-yl	0
581	3-fluorophenyl	1H-pyrazol-4-yl	0
582	3-fluorophenyl	1-methyl-1H-pyrazol-4-yl	0
583	3-fluorophenyl	pyrimidin-5-yl	0
584	3-fluorophenyl	pyrimidin-2-yl	0
585	3-fluorophenyl	pyrimidin-4-yl	0
586	3-fluorophenyl	pyridin-2-yl	0
587	3-fluorophenyl	pyridin-3-yl	0
588	3-fluorophenyl	pyridin-4-yl	0
589	3-fluorophenyl	5-hydroxy-pyridin-3-yl	0
590	3-fluorophenyl	5-methoxy-pyridin-3-yl	0
591	3-fluorophenyl	3-hydroxy-pyridin-4-yl	0
592	3-fluorophenyl	3-methoxy-pyridin-4-yl	0
593	3-fluorophenyl	N,N-dimethylaminopyridin-5-yl	0
594	3-fluorophenyl	4-methanesulfonylphenyl	0
595	3-fluorophenyl	3-methanesulfonylphenyl	0
596	3-fluorophenyl	N,N-dimethylaminomethylphenyl	0
597	3-fluorophenyl	2-methoxyphenyl	0
598	3-fluorophenyl	3-methoxyphenyl	0
599	3-fluorophenyl	4-methoxyphenyl	0

600	3-fluorophenyl	3,5-dimethoxyphenyl	0
601	3-fluorophenyl	3,4-dimethoxyphenyl	0
602	3-fluorophenyl	3-hydroxy-4-methoxyphenyl	0
603	3-fluorophenyl	3-hydroxy-5-methoxyphenyl	0
604	3-fluorophenyl	quinolin-3-yl	0
605	3-fluorophenyl	cyclopropyl	0
606	3-fluorophenyl	3-hydroxymethylphenyl	0
607	3-fluorophenyl	4-hydroxymethylphenyl	0
608	3-fluorophenyl	1-benzofuran-5-yl	0
609	3-fluorophenyl	1-benzothiophen-5-yl	0
610	3-fluorophenyl	1H-indol-6-yl	0
611	3-fluorophenyl	1H-indol-3-yl	0
612	3-fluorophenyl	1-methyl-1H-indol-5-yl	0
613	3-fluorophenyl	1-methyl-1H-indol-6-yl	0
614	3-fluorophenyl	1H-indazol-5-yl	0
615	3-fluorophenyl	1H-indazol-6-yl	0
616	3-fluorophenyl	1-methyl-1H-indazol-5-yl	0
617	3-fluorophenyl	1-methyl-1H-indazol-6-yl	0
618	3-fluorophenyl	2-methyl-1,3-benzothiazol-5-yl	0
619	3-fluorophenyl	N,N-dimethylaminophen-4-yl	0
620	3-fluorophenyl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
621	3-fluorophenyl	benzimidazol-5-yl	0
622	3-fluorophenyl	3-acetyl-1H-indol-6-yl	0
623	3-fluorophenyl	phenyl	0
624	3-fluorophenyl	4-hydroxyphenyl	0
625	3-fluorophenyl	3-fluoro-5-hydroxyphenyl	0
626	3-fluorophenyl	3-chloro-5-hydroxyphenyl	0
627	3-fluorophenyl	2-phenoxyphenyl	0
628	3-fluorophenyl	3-phenoxyphenyl	0
629	3-fluorophenyl	4-phenoxyphenyl	0
630	3-fluorophenyl	4-(cyclopropylcarbamoyl)phenyl	0

631	pyridin-2-yl	N-pyrrolyl	0
632	pyridin-3-yl	N-pyrrolyl	0
633	5-hydroxy-pyridin-3-yl	N-pyrrolyl	0
634	5-methoxy-pyridin-3-yl	N-pyrrolyl	0
635	pyridin-4-yl	N-pyrrolyl	0
636	2-hydroxy-pyridin-4-yl	N-pyrrolyl	0
637	2-methoxy-pyridin-4-yl	N-pyrrolyl	0
638	pyrimid-2-yl	N-pyrrolyl	0
639	pyrimid-4-yl	N-pyrrolyl	0
640	pyrimid-5-yl	N-pyrrolyl	0
641	indol-3-yl	N-pyrrolyl	0
642	indol-4-yl	N-pyrrolyl	0
643	indol-5-yl	N-pyrrolyl	0
644	indol-6-yl	N-pyrrolyl	0
645	indol-7-yl	N-pyrrolyl	0
646	indazol-3-yl	N-pyrrolyl	0
647	indazol-4-yl	N-pyrrolyl	0
648	indazol-5-yl	N-pyrrolyl	0
649	indazol-6-yl	N-pyrrolyl	0
650	indazol-7-yl	N-pyrrolyl	0
651	benzimidazol-4-yl	N-pyrrolyl	0
652	benzimidazol-5-yl	N-pyrrolyl	0
653	7-azaindol-3-yl	N-pyrrolyl	0
654	7-azaindol-4-yl	N-pyrrolyl	0
655	7-azaindol-5-yl	N-pyrrolyl	0
656	7-azaindol-6-yl	N-pyrrolyl	0
657	N-methyl-indolin-4-yl	N-pyrrolyl	0
658	N-methyl-indolin-5-yl	N-pyrrolyl	0
659	N-methyl-indolin-6-yl	N-pyrrolyl	0
660	N-methyl-indolin-7-yl	N-pyrrolyl	0
661	1-benzothiophene-5-yl	N-pyrrolyl	0
662	1-benzothiophene-6-yl	N-pyrrolyl	0

663	imidazo[1,2a]pyridin-6-yl	N-pyrrolyl	0
664	imidazo[1,2a]pyridin-5-yl	N-pyrrolyl	0
665	imidazo[1,2a]pyridin-3-yl	N-pyrrolyl	0
666	imidazo[1,2a]pyrazin-3-yl	N-pyrrolyl	0
667	[1,2,4]triazolo[1,5a]pyridin-7-yl	N-pyrrolyl	0
668	benzyl	N-pyrrolyl	0
669	phenethyl	N-pyrrolyl	0
670	phenylmethanol	N-pyrrolyl	0
671	2-hydroxy-prop-2-yl	N-pyrrolyl	0
672	3-hydroxy-prop-1-yl	N-pyrrolyl	0
673	2-hydroxy-3-methyl-prop-2-yl	N-pyrrolyl	0
674	2-amino-prop-2-yl	N-pyrrolyl	0
675	2-methyl-prop-2-yl	N-pyrrolyl	0
676	1-hydroxy-cyclohex-1-yl	N-pyrrolyl	0
677	1-amino-cyclohex-1-yl	N-pyrrolyl	0
678	thiazol-4-yl	N-pyrrolyl	0
679	thiazol-5-yl	N-pyrrolyl	0
680	1-methyl-imidazol-2-yl	N-pyrrolyl	0
681	1-methyl-imidazol-5-yl	N-pyrrolyl	0
682	1,2-dimethyl-imidazol-4-yl	N-pyrrolyl	0
683	1-methyl-pyrazol-4-yl	N-pyrrolyl	0
684	1-imidazol-methyl	N-pyrrolyl	0
685	N-benzyl-N-methyl-aminomethyl	N-pyrrolyl	0
686	2,3-dihydro-1H-indol-6-yl	N-pyrrolyl	0
687	cyclopropyl	N-pyrrolyl	0
688	dimethylaminomethyl	N-pyrrolyl	0
689	pyridin-2-yl	1H-indol-5-yl	0
690	pyridin-3-yl	1H-indol-5-yl	0
691	5-hydroxy-pyridin-3-yl	1H-indol-5-yl	0
692	5-methoxy-pyridin-3-yl	1H-indol-5-yl	0
693	pyridin-4-yl	1H-indol-5-yl	0
694	2-hydroxy-pyridin-4-yl	1H-indol-5-yl	0

695	2-methoxy-pyridin-4-yl	1H-indol-5-yl	0
696	pyrimid-2-yl	1H-indol-5-yl	0
697	pyrimid-4-yl	1H-indol-5-yl	0
698	pyrimid-5-yl	1H-indol-5-yl	0
699	indol-3-yl	1H-indol-5-yl	0
700	indol-4-yl	1H-indol-5-yl	0
701	indol-5-yl	1H-indol-5-yl	0
702	indol-6-yl	1H-indol-5-yl	0
703	indol-7-yl	1H-indol-5-yl	0
704	indazol-3-yl	1H-indol-5-yl	0
705	indazol-4-yl	1H-indol-5-yl	0
706	indazol-5-yl	1H-indol-5-yl	0
707	indazol-6-yl	1H-indol-5-yl	0
708	indazol-7-yl	1H-indol-5-yl	0
709	benzimidazol-4-yl	1H-indol-5-yl	0
710	benzimidazol-5-yl	1H-indol-5-yl	0
711	7-azaindol-3-yl	1H-indol-5-yl	0
712	7-azaindol-4-yl	1H-indol-5-yl	0
713	7-azaindol-5-yl	1H-indol-5-yl	0
714	7-azaindol-6-yl	1H-indol-5-yl	0
715	N-methyl-indolin-4-yl	1H-indol-5-yl	0
716	N-methyl-indolin-5-yl	1H-indol-5-yl	0
717	N-methyl-indolin-6-yl	1H-indol-5-yl	0
718	N-methyl-indolin-7-yl	1H-indol-5-yl	0
719	1-benzothiophene-5-yl	1H-indol-5-yl	0
720	1-benzothiophene-6-yl	1H-indol-5-yl	0
721	imidazo[1,2a]pyridin-6-yl	1H-indol-5-yl	0
722	imidazo[1,2a]pyridin-5-yl	1H-indol-5-yl	0
723	imidazo[1,2a]pyridin-3-yl	1H-indol-5-yl	0
724	imidazo[1,2a]pyrazin-3-yl	1H-indol-5-yl	0
725	[1,2,4]triazolo[1,5a]pyridin-7-yl	1H-indol-5-yl	0
726	benzyl	1H-indol-5-yl	0

727	phenethyl	1H-indol-5-yl	0
728	2-hydroxy-prop-2-yl	1H-indol-5-yl	0
729	3-hydroxy-prop-1-yl	1H-indol-5-yl	0
730	2-hydroxy-3-methyl-prop-2-yl	1H-indol-5-yl	0
731	2-amino-prop-2-yl	1H-indol-5-yl	0
732	2-methyl-prop-2-yl	1H-indol-5-yl	0
733	1-hydroxy-cyclohex-1-yl	1H-indol-5-yl	0
734	1-amino-cyclohex-1-yl	1H-indol-5-yl	0
735	thiazol-4-yl	1H-indol-5-yl	0
736	thiazol-5-yl	1H-indol-5-yl	0
737	1-methyl-imidazol-2-yl	1H-indol-5-yl	0
738	1-methyl-imidazol-5-yl	1H-indol-5-yl	0
739	1,2-dimethyl-imidazol-4-yl	1H-indol-5-yl	0
740	1-methyl-pyrazol-4-yl	1H-indol-5-yl	0
741	1-imidazol-methyl	1H-indol-5-yl	0
742	N-benzyl-N-methyl-aminomethyl	1H-indol-5-yl	0
743	2,3-dihydro-1H-indol-6-yl	1H-indol-5-yl	0
744	cyclopropyl	1H-indol-5-yl	0
745	dimethylaminomethyl	1H-indol-5-yl	0
746	pyridin-2-yl	3-hydroxphenyl	0
747	pyridin-3-yl	3-hydroxphenyl	0
748	5-hydroxy-pyridin-3-yl	3-hydroxphenyl	0
749	5-methoxy-pyridin-3-yl	3-hydroxphenyl	0
750	pyridin-4-yl	3-hydroxphenyl	0
751	2-hydroxy-pyridin-4-yl	3-hydroxphenyl	0
752	2-methoxy-pyridin-4-yl	3-hydroxphenyl	0
753	pyrimid-2-yl	3-hydroxphenyl	0
754	pyrimid-4-yl	3-hydroxphenyl	0
755	pyrimid-5-yl	3-hydroxphenyl	0
756	indol-3-yl	3-hydroxphenyl	0
757	indol-4-yl	3-hydroxphenyl	0
758	indol-5-yl	3-hydroxphenyl	0

759	indol-6-yl	3-hydroxphenyl	0
760	indol-7-yl	3-hydroxphenyl	0
761	indazol-3-yl	3-hydroxphenyl	0
762	indazol-4-yl	3-hydroxphenyl	0
763	indazol-5-yl	3-hydroxphenyl	0
764	indazol-6-yl	3-hydroxphenyl	0
765	indazol-7-yl	3-hydroxphenyl	0
766	benzimidazol-4-yl	3-hydroxphenyl	0
767	benzimidazol-5-yl	3-hydroxphenyl	0
768	7-azaindol-3-yl	3-hydroxphenyl	0
769	7-azaindol-4-yl	3-hydroxphenyl	0
770	7-azaindol-5-yl	3-hydroxphenyl	0
771	7-azaindol-6-yl	3-hydroxphenyl	0
772	N-methyl-indolin-4-yl	3-hydroxphenyl	0
773	N-methyl-indolin-5-yl	3-hydroxphenyl	0
774	N-methyl-indolin-6-yl	3-hydroxphenyl	0
775	N-methyl-indolin-7-yl	3-hydroxphenyl	0
776	1-benzothiophene-5-yl	3-hydroxphenyl	0
777	1-benzothiophene-6-yl	3-hydroxphenyl	0
778	imidazo[1,2a]pyridin-6-yl	3-hydroxphenyl	0
779	imidazo[1,2a]pyridin-5-yl	3-hydroxphenyl	0
780	imidazo[1,2a]pyridin-3-yl	3-hydroxphenyl	0
781	imidazo[1,2a]pyrazin-3-yl	3-hydroxphenyl	0
782	benzyl	3-hydroxphenyl	0
783	phenethyl	3-hydroxphenyl	0
784	2-hydroxy-prop-2-yl	3-hydroxphenyl	0
785	3-hydroxy-prop-1-yl	3-hydroxphenyl	0
786	2-hydroxy-3-methyl-prop-2-yl	3-hydroxphenyl	0
787	2-amino-prop-2-yl	3-hydroxphenyl	0
788	2-methyl-prop-2-yl	3-hydroxphenyl	0
789	1-hydroxy-cyclohex-1-yl	3-hydroxphenyl	0
790	1-amino-cyclohex-1-yl	3-hydroxphenyl	0

791	thiazol-4-yl	3-hydroxphenyl	0
792	thiazol-5-yl	3-hydroxphenyl	0
793	1-methyl-imidazol-2-yl	3-hydroxphenyl	0
794	1-methyl-imidazol-5-yl	3-hydroxphenyl	0
795	1,2-dimethyl-imidazol-4-yl	3-hydroxphenyl	0
796	1-methyl-pyrazol-4-yl	3-hydroxphenyl	0
797	1-imidazol-methyl	3-hydroxphenyl	0
798	N-benzyl-N-methyl-aminomethyl	3-hydroxphenyl	0
799	2,3-dihydro-1H-indol-6-yl	3-hydroxphenyl	0
800	cyclopropyl	3-hydroxphenyl	0
801	dimethylaminomethyl	3-hydroxphenyl	0
802	pyridin-2-yl	F	0
803	pyridin-3-yl	F	0
804	5-hydroxy-pyridin-3-yl	F	0
805	5-methoxy-pyridin-3-yl	F	0
806	pyridin-4-yl	F	0
807	2-hydroxy-pyridin-4-yl	F	0
808	2-methoxy-pyridin-4-yl	F	0
809	pyrimid-2-yl	F	0
810	pyrimid-4-yl	F	0
811	pyrimid-5-yl	F	0
812	indol-3-yl	F	0
813	indol-4-yl	F	0
814	indol-5-yl	F	0
815	indol-6-yl	F	0
816	indol-7-yl	F	0
817	indazol-3-yl	F	0
818	indazol-4-yl	F	0
819	indazol-5-yl	F	0
820	indazol-6-yl	F	0
821	indazol-7-yl	F	0
822	benzimidazol-4-yl	F	0

823	benzimidazol-5-yl	F	0
824	7-azaindol-3-yl	F	0
825	7-azaindol-4-yl	F	0
826	7-azaindol-5-yl	F	0
827	7-azaindol-6-yl	F	0
828	N-methyl-indolin-4-yl	F	0
829	N-methyl-indolin-5-yl	F	0
830	N-methyl-indolin-6-yl	F	0
831	N-methyl-indolin-7-yl	F	0
832	1-benzothiophene-5-yl	F	0
833	1-benzothiophene-6-yl	F	0
834	imidazo[1,2a]pyridin-6-yl	F	0
835	imidazo[1,2a]pyridin-5-yl	F	0
836	imidazo[1,2a]pyridin-3-yl	F	0
837	imidazo[1,2a]pyrazin-3-yl	F	0
838	benzyl	F	0
839	phenethyl	F	0
840	2-hydroxy-prop-2-yl	F	0
841	3-hydroxy-prop-1-yl	F	0
842	2-hydroxy-3-methyl-prop-2-yl	F	0
843	2-amino-prop-2-yl	F	0
844	2-methyl-prop-2-yl	F	0
845	1-hydroxy-cyclohex-1-yl	F	0
846	1-amino-cyclohex-1-yl	F	0
847	thiazol-4-yl	F	0
848	thiazol-5-yl	F	0
849	1-methyl-imidazol-2-yl	F	0
850	1-methyl-imidazol-5-yl	F	0
851	1,2-dimethyl-imidazol-4-yl	F	0
852	1-methyl-pyrazol-4-yl	F	0
853	1-imidazol-methyl	F	0
854	N-benzyl-N-methyl-aminomethyl	F	0

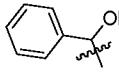
855	2,3-dihydro-1H-indol-6-yl	F	0
856	cyclopropyl	F	0
857	dimethylaminomethyl	F	0
858	pyridin-2-yl	NH ₂	0
859	pyridin-3-yl	NH ₂	0
860	5-hydroxy-pyridin-3-yl	NH ₂	0
861	5-methoxy-pyridin-3-yl	NH ₂	0
862	pyridin-4-yl	NH ₂	0
863	2-hydroxy-pyridin-4-yl	NH ₂	0
864	2-methoxy-pyridin-4-yl	NH ₂	0
865	pyrimid-2-yl	NH ₂	0
866	pyrimid-4-yl	NH ₂	0
867	pyrimid-5-yl	NH ₂	0
868	indol-3-yl	NH ₂	0
869	indol-4-yl	NH ₂	0
870	indol-5-yl	NH ₂	0
871	indol-6-yl	NH ₂	0
872	indol-7-yl	NH ₂	0
873	indazol-3-yl	NH ₂	0
874	indazol-4-yl	NH ₂	0
875	indazol-5-yl	NH ₂	0
876	indazol-6-yl	NH ₂	0
877	indazol-7-yl	NH ₂	0
878	benzimidazol-4-yl	NH ₂	0
879	benzimidazol-5-yl	NH ₂	0
880	7-azaindol-3-yl	NH ₂	0
881	7-azaindol-4-yl	NH ₂	0
882	7-azaindol-5-yl	NH ₂	0
883	7-azaindol-6-yl	NH ₂	0
884	N-methyl-indolin-4-yl	NH ₂	0
885	N-methyl-indolin-5-yl	NH ₂	0
886	N-methyl-indolin-6-yl	NH ₂	0

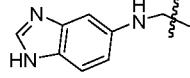
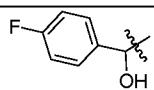
887	N-methyl-indolin-7-yl	NH ₂	0
888	1-benzothiophene-5-yl	NH ₂	0
889	1-benzothiophene-6-yl	NH ₂	0
890	imidazo[1,2a]pyridin-6-yl	NH ₂	0
891	imidazo[1,2a]pyridin-5-yl	NH ₂	0
892	imidazo[1,2a]pyridin-3-yl	NH ₂	0
893	imidazo[1,2a]pyrazin-3-yl	NH ₂	0
894	benzyl	NH ₂	0
895	phenethyl	NH ₂	0
896	2-hydroxy-prop-2-yl	NH ₂	0
897	3-hydroxy-prop-1-yl	NH ₂	0
898	2-hydroxy-3-methyl-prop-2-yl	NH ₂	0
899	2-amino-prop-2-yl	NH ₂	0
900	2-methyl-prop-2-yl	NH ₂	0
901	1-hydroxy-cyclohex-1-yl	NH ₂	0
902	1-amino-cyclohex-1-yl	NH ₂	0
903	thiazol-4-yl	NH ₂	0
904	thiazol-5-yl	NH ₂	0
905	1-methyl-imidazol-2-yl	NH ₂	0
906	1-methyl-imidazol-5-yl	NH ₂	0
907	1,2-dimethyl-imidazol-4-yl	NH ₂	0
908	1-methyl-pyrazol-4-yl	NH ₂	0
909	1-imidazol-methyl	NH ₂	0
910	N-benzyl-N-methyl-aminomethyl	NH ₂	0
911	2,3-dihydro-1H-indol-6-yl	NH ₂	0
912	cyclopropyl	NH ₂	0
913	dimethylaminomethyl	NH ₂	0
914	4-pyridyl	2,5-dimethylpyrrol-1-yl	0
915	4-pyridyl	4,5-dimethyl-1,2oxazol-4-yl	0
916	4-pyridyl	1H-pyrazol-4-yl	0
917	4-pyridyl	1-methyl-1H-pyrazol-4-yl	0
918	4-pyridyl	pyrimidin-5-yl	0

919	4-pyridyl	pyrimidin-2-yl	0
920	4-pyridyl	pyrimidin-4-yl	0
921	4-pyridyl	pyridin-2-yl	0
922	4-pyridyl	pyridin-3-yl	0
923	4-pyridyl	pyridin-4-yl	0
924	4-pyridyl	5-hydroxy-pyridin-3-yl	0
925	4-pyridyl	5-methoxy-pyridin-3-yl	0
926	4-pyridyl	3-hydroxy-pyridin-4-yl	0
927	4-pyridyl	3-methoxy-pyridin-4-yl	0
928	4-pyridyl	N,N-dimethylaminopyridin-5-yl	0
929	4-pyridyl	4-methanesulfonylphenyl	0
930	4-pyridyl	3-methanesulfonylphenyl	0
931	4-pyridyl	N,N-dimethylaminomethylphenyl	0
932	4-pyridyl	2-methoxyphenyl	0
933	4-pyridyl	3-methoxyphenyl	0
934	4-pyridyl	4-methoxyphenyl	0
935	4-pyridyl	3,5-dimethoxyphenyl	0
936	4-pyridyl	3,4-dimethoxyphenyl	0
937	4-pyridyl	3-hydroxy-4-methoxyphenyl	0
938	4-pyridyl	3-hydroxy-5-methoxyphenyl	0
939	4-pyridyl	quinolin-3-yl	0
940	4-pyridyl	cyclopropyl	0
941	4-pyridyl	3-hydroxymethylphenyl	0
942	4-pyridyl	4-hydroxymethylphenyl	0
943	4-pyridyl	1-benzofuran-5-yl	0
944	4-pyridyl	1-benzothiophen-5-yl	0
945	4-pyridyl	1H-indol-6-yl	0
946	4-pyridyl	1H-indol-3-yl	0
947	4-pyridyl	1-methyl-1H-indol-5-yl	0
948	4-pyridyl	1-methyl-1H-indol-6-yl	0
949	4-pyridyl	1H-indazol-5-yl	0
950	4-pyridyl	1H-indazol-6-yl	0

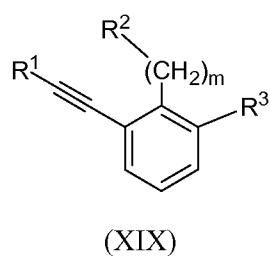
951	4-pyridyl	1-methyl-1H-indazol-5-yl	0
952	4-pyridyl	1-methyl-1H-indazol-6-yl	0
953	4-pyridyl	2-methyl-1,3-benzothiazol-5-yl	0
954	4-pyridyl	N,N-dimethylaminophen-4-yl	0
955	4-pyridyl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
956	4-pyridyl	benzimidazol-5-yl	0
957	4-pyridyl	3-acetyl-1H-indol-6-yl	0
958	4-pyridyl	phenyl	0
959	4-pyridyl	4-hydroxyphenyl	0
960	4-pyridyl	3-fluoro-5-hydroxyphenyl	0
961	4-pyridyl	3-chloro-5-hydroxyphenyl	0
962	4-pyridyl	2-phenoxyphenyl	0
963	4-pyridyl	3-phenoxyphenyl	0
964	4-pyridyl	4-phenoxyphenyl	0
965	7-azaindol-3-yl	2,5-dimethylpyrrol-1-yl	0
966	7-azaindol-3-yl	4,5-dimethyl-1,2oxazol-4-yl	0
967	7-azaindol-3-yl	1H-pyrazol-4-yl	0
968	7-azaindol-3-yl	1-methyl-1H-pyrazol-4-yl	0
969	7-azaindol-3-yl	pyrimidin-5-yl	0
970	7-azaindol-3-yl	pyrimidin-2-yl	0
971	7-azaindol-3-yl	pyrimidin-4-yl	0
972	7-azaindol-3-yl	pyridin-2-yl	0
973	7-azaindol-3-yl	pyridin-3-yl	0
974	7-azaindol-3-yl	pyridin-4-yl	0
975	7-azaindol-3-yl	5-hydroxy-pyridin-3-yl	0
976	7-azaindol-3-yl	5-methoxy-pyridin-3-yl	0
977	7-azaindol-3-yl	3-hydroxy-pyridin-4-yl	0
978	7-azaindol-3-yl	3-methoxy-pyridin-4-yl	0
979	7-azaindol-3-yl	N,N-dimethylaminopyridin-5-yl	0
980	7-azaindol-3-yl	4-methanesulfonylphenyl	0
981	7-azaindol-3-yl	3-methanesulfonylphenyl	0

982	7-azaindol-3-yl	N,N-dimethylaminomethylphenyl	0
983	7-azaindol-3-yl	2-methoxyphenyl	0
984	7-azaindol-3-yl	3-methoxyphenyl	0
985	7-azaindol-3-yl	4-methoxyphenyl	0
986	7-azaindol-3-yl	3,5-dimethoxyphenyl	0
987	7-azaindol-3-yl	3,4-dimethoxyphenyl	0
988	7-azaindol-3-yl	3-hydroxy-4-methoxyphenyl	0
989	7-azaindol-3-yl	3-hydroxy-5-methoxyphenyl	0
990	7-azaindol-3-yl	quinolin-3-yl	0
991	7-azaindol-3-yl	cyclopropyl	0
992	7-azaindol-3-yl	3-hydroxymethylphenyl	0
993	7-azaindol-3-yl	4-hydroxymethylphenyl	0
994	7-azaindol-3-yl	1-benzofuran-5-yl	0
995	7-azaindol-3-yl	1-benzothiophen-5-yl	0
996	7-azaindol-3-yl	1H-indol-6-yl	0
997	7-azaindol-3-yl	1H-indol-3-yl	0
998	7-azaindol-3-yl	1-methyl-1H-indol-5-yl	0
999	7-azaindol-3-yl	1-methyl-1H-indol-6-yl	0
1000	7-azaindol-3-yl	1H-indazol-5-yl	0
1001	7-azaindol-3-yl	1H-indazol-6-yl	0
1002	7-azaindol-3-yl	1-methyl-1H-indazol-5-yl	0
1003	7-azaindol-3-yl	1-methyl-1H-indazol-6-yl	0
1004	7-azaindol-3-yl	2-methyl-1,3-benzothiazol-5-yl	0
1005	7-azaindol-3-yl	N,N-dimethylaminophen-4-yl	0
1006	7-azaindol-3-yl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
1007	7-azaindol-3-yl	benzimidazol-5-yl	0
1008	7-azaindol-3-yl	3-acetyl-1H-indol-6-yl	0
1009	7-azaindol-3-yl	phenyl	0
1010	7-azaindol-3-yl	4-hydroxyphenyl	0
1011	7-azaindol-3-yl	3-fluoro-5-hydroxyphenyl	0
1012	7-azaindol-3-yl	3-chloro-5-hydroxyphenyl	0


1013	7-azaindol-3-yl	2-phenoxyphenyl	0
1014	7-azaindol-3-yl	3-phenoxyphenyl	0
1015	7-azaindol-3-yl	4-phenoxyphenyl	0
1016	thiazol-4-yl	2,5-dimethylpyrrol-1-yl	0
1017	thiazol-4-yl	4,5-dimethyl-1,2oxazol-4-yl	0
1018	thiazol-4-yl	1H-pyrazol-4-yl	0
1019	thiazol-4-yl	1-methyl-1H-pyrazol-4-yl	0
1020	thiazol-4-yl	pyrimidin-5-yl	0
1021	thiazol-4-yl	pyrimidin-2-yl	0
1022	thiazol-4-yl	pyrimidin-4-yl	0
1023	thiazol-4-yl	pyridin-2-yl	0
1024	thiazol-4-yl	pyridin-3-yl	0
1025	thiazol-4-yl	pyridin-4-yl	0
1026	thiazol-4-yl	5-hydroxy-pyridin-3-yl	0
1027	thiazol-4-yl	5-methoxy-pyridin-3-yl	0
1028	thiazol-4-yl	3-hydroxy-pyridin-4-yl	0
1029	thiazol-4-yl	3-methoxy-pyridin-4-yl	0
1030	thiazol-4-yl	N,N-dimethylaminopyridin-5-yl	0
1031	thiazol-4-yl	4-methanesulfonylphenyl	0
1032	thiazol-4-yl	3-methanesulfonylphenyl	0
1033	thiazol-4-yl	N,N-dimethylaminomethylphenyl	0
1034	thiazol-4-yl	2-methoxyphenyl	0
1035	thiazol-4-yl	3-methoxyphenyl	0
1036	thiazol-4-yl	4-methoxyphenyl	0
1037	thiazol-4-yl	3,5-dimethoxyphenyl	0
1038	thiazol-4-yl	3,4-dimethoxyphenyl	0
1039	thiazol-4-yl	3-hydroxy-4-methoxyphenyl	0
1040	thiazol-4-yl	3-hydroxy-5-methoxyphenyl	0
1041	thiazol-4-yl	quinolin-3-yl	0
1042	thiazol-4-yl	cyclopropyl	0
1043	thiazol-4-yl	3-hydroxymethylphenyl	0
1044	thiazol-4-yl	4-hydroxymethylphenyl	0



1045	thiazol-4-yl	1-benzofuran-5-yl	0
1046	thiazol-4-yl	1-benzothiophen-5-yl	0
1047	thiazol-4-yl	1H-indol-6-yl	0
1048	thiazol-4-yl	1H-indol-3-yl	0
1049	thiazol-4-yl	1-methyl-1H-indol-5-yl	0
1050	thiazol-4-yl	1-methyl-1H-indol-6-yl	0
1051	thiazol-4-yl	1H-indazol-5-yl	0
1052	thiazol-4-yl	1H-indazol-6-yl	0
1053	thiazol-4-yl	1-methyl-1H-indazol-5-yl	0
1054	thiazol-4-yl	1-methyl-1H-indazol-6-yl	0
1055	thiazol-4-yl	2-methyl-1,3-benzothiazol-5-yl	0
1056	thiazol-4-yl	N,N-dimethylaminophen-4-yl	0
1057	thiazol-4-yl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
1058	thiazol-4-yl	benzimidazol-5-yl	0
1059	thiazol-4-yl	3-acetyl-1H-indol-6-yl	0
1060	thiazol-4-yl	phenyl	0
1061	thiazol-4-yl	4-hydroxyphenyl	0
1062	thiazol-4-yl	3-fluoro-5-hydroxyphenyl	0
1063	thiazol-4-yl	3-chloro-5-hydroxyphenyl	0
1064	thiazol-4-yl	2-phenoxyphenyl	0
1065	thiazol-4-yl	3-phenoxyphenyl	0
1066	thiazol-4-yl	4-phenoxyphenyl	0
1067	indol-6-yl	2,5-dimethylpyrrol-1-yl	0
1068	indol-6-yl	4,5-dimethyl-1,2oxazol-4-yl	0
1069	indol-6-yl	1H-pyrazol-4-yl	0
1070	indol-6-yl	1-methyl-1H-pyrazol-4-yl	0
1071	indol-6-yl	pyrimidin-5-yl	0
1072	indol-6-yl	pyrimidin-2-yl	0
1073	indol-6-yl	pyrimidin-4-yl	0
1074	indol-6-yl	pyridin-2-yl	0
1075	indol-6-yl	pyridin-3-yl	0

1076	indol-6-yl	pyridin-4-yl	0
1077	indol-6-yl	5-hydroxy-pyridin-3-yl	0
1078	indol-6-yl	5-methoxy-pyridin-3-yl	0
1079	indol-6-yl	3-hydroxy-pyridin-4-yl	0
1080	indol-6-yl	3-methoxy-pyridin-4-yl	0
1081	indol-6-yl	N,N-dimethylaminopyridin-5-yl	0
1082	indol-6-yl	4-methanesulfonylphenyl	0
1083	indol-6-yl	3-methanesulfonylphenyl	0
1084	indol-6-yl	N,N-dimethylaminomethylphenyl	0
1085	indol-6-yl	2-methoxyphenyl	0
1086	indol-6-yl	3-methoxyphenyl	0
1087	indol-6-yl	4-methoxyphenyl	0
1088	indol-6-yl	3,5-dimethoxyphenyl	0
1089	indol-6-yl	3,4-dimethoxyphenyl	0
1090	indol-6-yl	3-hydroxy-4-methoxyphenyl	0
1091	indol-6-yl	3-hydroxy-5-methoxyphenyl	0
1092	indol-6-yl	quinolin-3-yl	0
1093	indol-6-yl	cyclopropyl	0
1094	indol-6-yl	3-hydroxymethylphenyl	0
1095	indol-6-yl	4-hydroxymethylphenyl	0
1096	indol-6-yl	1-benzofuran-5-yl	0
1097	indol-6-yl	1-benzothiophen-5-yl	0
1098	indol-6-yl	1H-indol-6-yl	0
1099	indol-6-yl	1H-indol-3-yl	0
1100	indol-6-yl	1-methyl-1H-indol-5-yl	0
1101	indol-6-yl	1-methyl-1H-indol-6-yl	0
1102	indol-6-yl	1H-indazol-5-yl	0
1103	indol-6-yl	1H-indazol-6-yl	0
1104	indol-6-yl	1-methyl-1H-indazol-5-yl	0
1105	indol-6-yl	1-methyl-1H-indazol-6-yl	0
1106	indol-6-yl	2-methyl-1,3-benzothiazol-5-yl	0
1107	indol-6-yl	N,N-dimethylaminophen-4-yl	0


1108	indol-6-yl	4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl	0
1109	indol-6-yl	benzimidazol-5-yl	0
1110	indol-6-yl	3-acetyl-1H-indol-6-yl	0
1111	indol-6-yl	phenyl	0
1112	indol-6-yl	4-hydroxyphenyl	0
1113	indol-6-yl	3-fluoro-5-hydroxyphenyl	0
1114	indol-6-yl	3-chloro-5-hydroxyphenyl	0
1115	indol-6-yl	2-phenoxyphenyl	0
1116	indol-6-yl	3-phenoxyphenyl	0
1117	indol-6-yl	4-phenoxyphenyl	0
1118	pyrrolidin-1-yl-methyl	phenyl	0
1119	4-phenylpiperazin-1-yl-methyl	phenyl	0
1120	3-(1H-imidazol-1-yl)propylaminomethyl	phenyl	0
1121	benzylaminomethyl	phenyl	0
1122	hydroxymethyl	phenyl	0
1123	imidazo[1,2-a]pyrazin-3-yl	quinolin-3-yl	0
1124	3-hydroxy-prop-1-yl	quinolin-3-yl	0
1125	4-carboxy-1H-indol-6-yl	Hydrogen	0
1126	4-carboxamide-1H-indol-6-yl	Hydrogen	0
1127	3-benzamidyl	Hydrogen	0
1128	1-benzenesulfonyl-1H-indol-3-yl	Hydrogen	0
1129	1H-indol-3-yl	Hydrogen	0
1130	3-carbomethoxy-phenyl	Hydrogen	0
1131	3-carbamoyl-5-methoxy-phenyl	Hydrogen	0
1132	4-pyridyl	1H-pyrazol-3-yl	0
1133	Phenyl	1,3,5-trimethyl-1H-pyrazol-4-yl	0
1134	1-hydroxy-1-methyl-ethyl	2,5-dimethyl-pyrrol-1-yl	0
1135	3-carbamoyl-phenyl	2,5-dimethyl-pyrrol-1-yl	0
1136	3-carboxy-phenyl	2,5-dimethyl-pyrrol-1-yl	0
1137	3-hydroxymethyl-phenyl	2,5-dimethyl-pyrrol-1-yl	0

1138	Phenyl-hydroxymethyl	2,5-dimethyl-pyrrol-1-yl	0
1139	3-acetylamino-phenyl	2,5-dimethyl-pyrrol-1-yl	0
1140	Cyclopropyl	2,5-dimethyl-pyrrol-1-yl	0
1141	3-methoxy-phenyl	2,5-dimethyl-pyrrol-1-yl	0
1142	Phenyl	Benzo[1,3]dioxol-5-yl-3-phenyl	0
1143	Phenyl	Isoquinolin-6-yl	0
1144	Phenyl	Benzofuran-2-yl	0
1145	Phenyl	Quinolin-8-yl	0
1146	Phenyl	2-amino-pyrimidin-5-yl	0
1147	4-amino-phenyl	1H-indol-6-yl	0
1148	4-carboxy-phenyl	1H-indol-6-yl	0
1149	4-methoxy-phenyl	1H-indol-6-yl	0
1150	4-carbamoyl-phenyl	1H-indol-6-yl	0
1151	4-(piperazine-1-carbonyl)-phenyl	1H-indol-6-yl	0
1152	4-acetylamino-phenyl	1H-indol-6-yl	0
1153	4-[(pyridine-3-carbonyl)-amino]-phenyl	1H-indol-6-yl	0
1154	4-methanesulfonylamino-phenyl	1H-indol-6-yl	0
1155	4-(thiophene-2-sulfonylamino)-phenyl	1H-indol-6-yl	0
1156	thiazol-4-yl	3-(Methoxycarbonyl)-1H-indol-6-yl	0
1157	3-hydroxyphenyl	3-chloro-1H-indol-6-yl	0
1158	3-hydroxyphenyl	3-(2-acetamidoethyl)-1H-indol-6-yl	0
1159	3-(N,N-dimethylsulfamoyl)phenyl	Fluoro	0
1160	4-(tetrahydro-2H-pyran-4-yloxy)phenyl	1H-indol-6-yl	0
1161	4-morpholinophenyl	1H-indol-6-yl	0
1162	3-carbamoylphenyl	1H-indol-6-yl	0
1163	4-Fluorophenyl	1H-indol-6-yl	0
1164	2,4-Difluorophenyl	1H-indol-6-yl	0

1165	3-Acetamidophenyl	1H-indol-6-yl	0
1166	3-(nicotinamido)phenyl	1H-indol-6-yl	0
1167	3-(3-chloro-4-fluorophenylsulfonamido)phenyl	1H-indol-6-yl	0
1168	3-aminophenyl	1H-indol-6-yl	0
1169	3-(methylsulfonamido)phenyl	1H-indol-6-yl	0
1170	3-(thiophene-2-sulfonamido)phenyl	1H-indol-6-yl	0
1171	3-acetamido-5-fluorophenyl	1H-indol-6-yl	0
1172	Phenyl	indolin-6-yl	0
1173	3-hydroxyphenyl	indolin-6-yl	0
1174	6-aminopyridin-2-yl	1H-indol-6-yl	0
1175	2-aminopyridin-4-yl	1H-indol-6-yl	0
1176	3-hydroxyphenyl	benzo[d][1,3]dioxol-5-yl	0
1177	3-hydroxyphenyl	4-amino-3-methoxyphenyl	0
1178	2-hydroxyethyl	1H-indol-6-yl	0
1179	1-amino-1-methyl-ethyl	1H-indol-6-yl	0
1180		1H-indol-6-yl	0
1181	1-hydroxy-1-methyl-ethyl	1H-indol-6-yl	0
1182	3-(hydroxymethyl)phenyl	1H-indol-6-yl	0
1183	Phenyl	2-carboxy-1H-indol-6-yl	0
1184	Phenyl	2-(ethylcarboxy)-1H-indol-6-yl	0
1185	3-carbamoyl-5-methoxyphenyl	1H-indol-6-yl	0
1186	3-hydroxyphenyl	2-carboxy-1H-indol-6-yl	0
1187	4-methoxyphenyl	2-carboxy-1H-indol-6-yl	0
1188	4-fluoro-3-(tetrahydro-2H-pyran-4-yloxy)phenyl	1H-indol-6-yl	0
1189	Phenyl	3-acetamidophenyl	0
1190	5-amino-1H-1,3-benzodiazol-1-yl methyl	Phenyl	0
1191	pyridin-4-yl	4-methylphenyl	0
1192	3-hydroxyphenyl	4-methyl phenyl	0

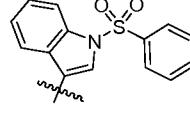
1193		Phenyl	0
1194	3-hydroxyphenyl	3-methane sulfonamidophenyl	0
1195	3-hydroxyphenyl	3-carbamoylphenyl	0
1196	3-hydroxyphenyl	1-(benzenesulfonyl)-1H-indol-3-yl	0
1197		3-hydroxyphenyl	0
1198	3-carbamoylphenyl	NH ₂	0
1190	3-carboxyphenyl	NH ₂	0
1191	3-(morpholine-4-carbonyl)-phenyl	H	0
1192	3-methylcarbamoyl-phenyl	H	0
1193	3-dimethylcarbamoyl-phenyl	H	0
1194	3-(4-methyl-piperazine-1-carbonyl)-phenyl	H	0
1195	3-(4-phenyl-piperazine-1-carbonyl)-phenyl	H	0
1196	4-pyridyl	indol-1-yl	0
1197	4-pyridyl	imidazol-1-yl	0
1198	4-pyridyl	[1,2,4]triazol-1-yl	0
1199	Phenyl	Imidazol-1-yl	0
1200	Phenyl	Pyrazol-1-yl	0
1201	Phenyl	[1,2,4]triazol-1-yl	0
1202	Phenyl	Benzoimidazol-1-yl	0
1203	Phenyl	Indazol-1-yl	0
1204	Phenyl	Indol-1-yl	0
1205	4-pyridyl	benzoimidazol-1-yl	0

[0213] Exemplary embodiments include compounds having the formula (XIX) or a pharmaceutically acceptable salt form thereof:

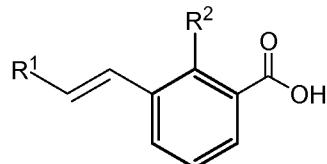
wherein non-limiting examples of R¹, R², R³ and m are defined herein below in Table 2.

Table 2:

Entry	R ¹	R ²	R ³	m
1	Phenyl	N-pyrrolyl	1H-tetrazol-5-yl	0
2	3-hydroxyphenyl	N-pyrrolyl	1H-tetrazol-5-yl	0
3	3-fluorophenyl	N-pyrrolyl	1H-tetrazol-5-yl	0
4	indol-6-yl	N-pyrrolyl	1H-tetrazol-5-yl	0
5	pyridin-4-yl	N-pyrrolyl	1H-tetrazol-5-yl	0
6	7-azaindol-3-yl	N-pyrrolyl	1H-tetrazol-5-yl	0
7	thiazol-4-yl	N-pyrrolyl	1H-tetrazol-5-yl	0
8	Phenyl	indol-6-yl	1H-tetrazol-5-yl	0
9	3-hydroxyphenyl	indol-6-yl	1H-tetrazol-5-yl	0
10	3-fluorophenyl	indol-6-yl	1H-tetrazol-5-yl	0
11	indol-6-yl	indol-6-yl	1H-tetrazol-5-yl	0
12	pyridin-4-yl	indol-6-yl	1H-tetrazol-5-yl	0
13	7-azaindol-3-yl	indol-6-yl	1H-tetrazol-5-yl	0
14	thiazol-4-yl	indol-6-yl	1H-tetrazol-5-yl	0
15	Phenyl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
16	3-hydroxyphenyl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
17	3-fluorophenyl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
18	indol-6-yl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
19	pyridin-4-yl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
20	7-azaindol-3-yl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
21	thiazol-4-yl	3-hydroxyphenyl	1H-tetrazol-5-yl	0
22	Phenyl	N-pyrrolyl	methanesulfonamidocarbonyl	0


23	3-hydroxyphenyl	N-pyrrolyl	methanesulfonamidocarbonyl	0
24	3-fluorophenyl	N-pyrrolyl	methanesulfonamidocarbonyl	0
25	indol-6-yl	N-pyrrolyl	methanesulfonamidocarbonyl	0
26	pyridin-4-yl	N-pyrrolyl	methanesulfonamidocarbonyl	0
27	7-azaindol-3-yl	N-pyrrolyl	methanesulfonamidocarbonyl	0
28	thiazol-4-yl	N-pyrrolyl	methanesulfonamidocarbonyl	0
29	Phenyl	indol-6-yl	methanesulfonamidocarbonyl	0
30	3-hydroxyphenyl	indol-6-yl	methanesulfonamidocarbonyl	0
31	3-fluorophenyl	indol-6-yl	methanesulfonamidocarbonyl	0
32	indol-6-yl	indol-6-yl	methanesulfonamidocarbonyl	0
33	pyridin-4-yl	indol-6-yl	methanesulfonamidocarbonyl	0
34	7-azaindol-3-yl	indol-6-yl	methanesulfonamidocarbonyl	0
35	thiazol-4-yl	indol-6-yl	methanesulfonamidocarbonyl	0
36	Phenyl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
37	3-hydroxyphenyl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
38	3-fluorophenyl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
39	indol-6-yl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
40	pyridin-4-yl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
41	7-azaindol-3-yl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
42	thiazol-4-yl	3-hydroxyphenyl	methanesulfonamidocarbonyl	0
43	Phenyl	N-pyrrolyl	aminosulfonamidocarbonyl	0
44	3-hydroxyphenyl	N-pyrrolyl	aminosulfonamidocarbonyl	0
45	3-fluorophenyl	N-pyrrolyl	aminosulfonamidocarbonyl	0
46	indol-6-yl	N-pyrrolyl	aminosulfonamidocarbonyl	0
47	pyridin-4-yl	N-pyrrolyl	aminosulfonamidocarbonyl	0
48	7-azaindol-3-yl	N-pyrrolyl	aminosulfonamidocarbonyl	0
49	thiazol-4-yl	N-pyrrolyl	aminosulfonamidocarbonyl	0
50	Phenyl	indol-6-yl	aminosulfonamidocarbonyl	0
51	3-hydroxyphenyl	indol-6-yl	aminosulfonamidocarbonyl	0
52	3-fluorophenyl	indol-6-yl	aminosulfonamidocarbonyl	0
53	indol-6-yl	indol-6-yl	aminosulfonamidocarbonyl	0
54	pyridin-4-yl	indol-6-yl	aminosulfonamidocarbonyl	0

55	7-azaindol-3-yl	indol-6-yl	aminosulfonamidocarbonyl	0
56	thiazol-4-yl	indol-6-yl	aminosulfonamidocarbonyl	0
57	Phenyl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
58	3-hydroxyphenyl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
59	3-fluorophenyl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
60	indol-6-yl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
61	pyridin-4-yl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
62	7-azaindol-3-yl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
63	thiazol-4-yl	3-hydroxyphenyl	aminosulfonamidocarbonyl	0
64	Phenyl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
65	3-hydroxyphenyl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
66	3-fluorophenyl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
67	indol-6-yl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
68	pyridin-4-yl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
69	7-azaindol-3-yl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
70	thiazol-4-yl	N-pyrrolyl	morpholin-4-yl- sulfonamidocarbonyl	0
71	Phenyl	indol-6-yl	morpholin-4-yl- sulfonamidocarbonyl	0
72	3-hydroxyphenyl	indol-6-yl	morpholin-4-yl- sulfonamidocarbonyl	0
73	3-fluorophenyl	indol-6-yl	morpholin-4-yl- sulfonamidocarbonyl	0
74	indol-6-yl	indol-6-yl	morpholin-4-yl- sulfonamidocarbonyl	0
75	pyridin-4-yl	indol-6-yl	morpholin-4-yl-	0


			sulfonamidocarbonyl	
76	7-azaindol-3-yl	indol-6-yl	morpholin-4-yl-sulfonamidocarbonyl	0
77	thiazol-4-yl	indol-6-yl	morpholin-4-yl-sulfonamidocarbonyl	0
78	Phenyl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
79	3-hydroxyphenyl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
80	3-fluorophenyl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
81	indol-6-yl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
82	pyridin-4-yl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
83	7-azaindol-3-yl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
84	thiazol-4-yl	3-hydroxyphenyl	morpholin-4-yl-sulfonamidocarbonyl	0
85	Phenyl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
86	3-hydroxyphenyl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
87	3-fluorophenyl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
88	indol-6-yl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
89	pyridin-4-yl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
90	7-azaindol-3-yl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
91	thiazol-4-yl	N-pyrrolyl	1,1-dioxo-4-thiomorpholin-4-yl-	0

			sulfonamidocarbonyl	
92	Phenyl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
93	3-hydroxyphenyl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
94	3-fluorophenyl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
95	indol-6-yl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
96	pyridin-4-yl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
97	7-azaindol-3-yl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
98	thiazol-4-yl	indol-6-yl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
99	Phenyl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
100	3-hydroxyphenyl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
101	3-fluorophenyl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
102	indol-6-yl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
103	pyridin-4-yl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
104	7-azaindol-3-yl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
105	thiazol-4-yl	3-hydroxyphenyl	1,1-dioxo-4-thiomorpholin-4-yl-sulfonamidocarbonyl	0
106	Phenyl	N-pyrrolyl	sulfonamide	0
107	3-hydroxyphenyl	N-pyrrolyl	sulfonamide	0
108	3-fluorophenyl	N-pyrrolyl	sulfonamide	0

109	indol-6-yl	N-pyrrolyl	sulfonamide	0
110	pyridin-4-yl	N-pyrrolyl	sulfonamide	0
111	7-azaindol-3-yl	N-pyrrolyl	sulfonamide	0
112	thiazol-4-yl	N-pyrrolyl	sulfonamide	0
113	Phenyl	indol-6-yl	sulfonamide	0
114	3-hydroxyphenyl	indol-6-yl	sulfonamide	0
115	3-fluorophenyl	indol-6-yl	sulfonamide	0
116	indol-6-yl	indol-6-yl	sulfonamide	0
117	pyridin-4-yl	indol-6-yl	sulfonamide	0
118	7-azaindol-3-yl	indol-6-yl	sulfonamide	0
119	thiazol-4-yl	indol-6-yl	sulfonamide	0
120	Phenyl	3-hydroxyphenyl	sulfonamide	0
121	3-hydroxyphenyl	3-hydroxyphenyl	sulfonamide	0
122	3-fluorophenyl	3-hydroxyphenyl	sulfonamide	0
123	indol-6-yl	3-hydroxyphenyl	sulfonamide	0
124	pyridin-4-yl	3-hydroxyphenyl	sulfonamide	0
125	7-azaindol-3-yl	3-hydroxyphenyl	sulfonamide	0
126	thiazol-4-yl	3-hydroxyphenyl	sulfonamide	0
127	Phenyl	N-pyrrolyl	N-acetyl-sulfonamido	0
128	3-hydroxyphenyl	N-pyrrolyl	N-acetyl-sulfonamido	0
129	3-fluorophenyl	N-pyrrolyl	N-acetyl-sulfonamido	0
130	indol-6-yl	N-pyrrolyl	N-acetyl-sulfonamido	0
131	pyridin-4-yl	N-pyrrolyl	N-acetyl-sulfonamido	0
132	7-azaindol-3-yl	N-pyrrolyl	N-acetyl-sulfonamido	0
133	thiazol-4-yl	N-pyrrolyl	N-acetyl-sulfonamido	0
134	Phenyl	indol-6-yl	N-acetyl-sulfonamido	0
135	3-hydroxyphenyl	indol-6-yl	N-acetyl-sulfonamido	0
136	3-fluorophenyl	indol-6-yl	N-acetyl-sulfonamido	0
137	indol-6-yl	indol-6-yl	N-acetyl-sulfonamido	0
138	pyridin-4-yl	indol-6-yl	N-acetyl-sulfonamido	0
139	7-azaindol-3-yl	indol-6-yl	N-acetyl-sulfonamido	0
140	thiazol-4-yl	indol-6-yl	N-acetyl-sulfonamido	0

141	Phenyl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
142	3-hydroxyphenyl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
143	3-fluorophenyl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
144	indol-6-yl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
145	pyridin-4-yl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
146	7-azaindol-3-yl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
147	thiazol-4-yl	3-hydroxyphenyl	N-acetyl-sulfonamido	0
148	5-1H-indolyl	H	1H-tetrazol-5-yl	0
149	3-1H-pyrrolo[2,3-b]pyridine	H	1H-tetrazol-5-yl	0
150	6-1H-indolyl	H	1H-tetrazol-5-yl	0
151		H	1H-tetrazol-5-yl	0
152	3-1H-indolyl	H	1H-tetrazol-5-yl	0
153	2-hydroxymethylphenyl	H	1H-tetrazol-5-yl	0

[0214] Exemplary embodiments include compounds having the formula (XX) or a pharmaceutically acceptable salt form thereof:

(XX)

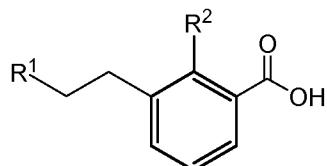
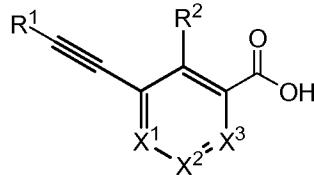

wherein non-limiting examples of R¹ and R² are defined herein below in Table 3.

Table 3:

Entry	R ¹	R ²	Entry	R ¹	R ²
1	phenyl	N-pyrrolyl	9	phenyl	3-hydroxyphenyl
2	4-fluorophenyl	N-pyrrolyl	10	4-fluorophenyl	3-hydroxyphenyl
3	methoxymethyl	N-pyrrolyl	11	methoxymethyl	3-hydroxyphenyl

4	indol-6-yl	N-pyrrolyl	12	indol-6-yl	3-hydroxyphenyl
5	phenyl	indol-6-yl	13	phenyl	N-pyrrolidinyl
6	4-fluorophenyl	indol-6-yl	14	4-fluorophenyl	N-pyrrolidinyl
7	methoxymethyl	indol-6-yl	15	methoxymethyl	N-pyrrolidinyl
8	indol-6-yl	indol-6-yl	16	indol-6-yl	N-pyrrolidinyl

[0215] Exemplary embodiments include compounds having the formula (XXI) or a pharmaceutically acceptable salt form thereof:


(XXI)

wherein non-limiting examples of R¹ and R² are defined herein below in Table 4.

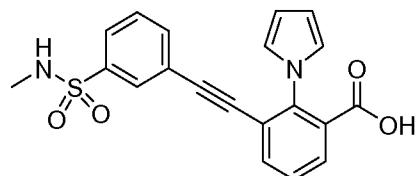
Table 4:

Entr y	R ¹	R ²	Entry	R ¹	R ²
1	phenyl	N-pyrrolyl	9	phenyl	3-hydroxyphenyl
2	4-fluorophenyl	N-pyrrolyl	10	4-fluorophenyl	3-hydroxyphenyl
3	methoxymethyl	N-pyrrolyl	11	methoxymethyl	3-hydroxyphenyl
4	indol-6-yl	N-pyrrolyl	12	indol-6-yl	3-hydroxyphenyl
5	phenyl	indol-6-yl	13	phenyl	N-pyrrolidinyl
6	4-fluorophenyl	indol-6-yl	14	4-fluorophenyl	N-pyrrolidinyl
7	methoxymethyl	indol-6-yl	15	methoxymethyl	N-pyrrolidinyl
8	indol-6-yl	indol-6-yl	16	indol-6-yl	N-pyrrolidinyl

[0216] Exemplary embodiments include compounds having the formula (XXII) or a pharmaceutically acceptable salt form thereof:

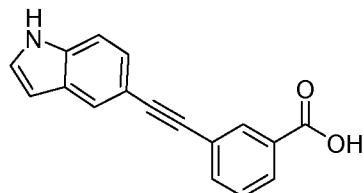
(XXII)

wherein non-limiting examples of R¹, R², X¹, X², and X³ are defined herein below in Table 5.

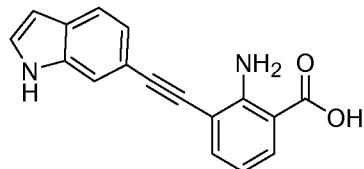

Table 5:

Entry	R ¹	R ²	X ¹	X ²	X ³
1	phenyl	N-pyrrolyl	CH	N	CH
2	4-fluorophenyl	N-pyrrolyl	CH	N	CH
3	3-methoxyphenyl	N-pyrrolyl	CH	N	CH
4	indol-6-yl	N-pyrrolyl	CH	N	CH
5	2-hydroxy-prop-2-yl	N-pyrrolyl	CH	N	CH
6	phenyl	indol-6-yl	CH	N	CH
7	4-fluorophenyl	indol-6-yl	CH	N	CH
8	3-methoxyphenyl	indol-6-yl	CH	N	CH
9	indol-6-yl	indol-6-yl	CH	N	CH
10	2-hydroxy-prop-2-yl	indol-6-yl	CH	N	CH
11	phenyl	N-pyrrolyl	CF	CH	CH
12	4-fluorophenyl	N-pyrrolyl	CF	CH	CH
13	3-methoxyphenyl	N-pyrrolyl	CF	CH	CH
14	indol-6-yl	N-pyrrolyl	CF	CH	CH
15	2-hydroxy-prop-2-yl	N-pyrrolyl	CF	CH	CH
16	phenyl	indol-6-yl	CF	CH	CH
17	4-fluorophenyl	indol-6-yl	CF	CH	CH
18	3-methoxyphenyl	indol-6-yl	CF	CH	CH
19	indol-6-yl	indol-6-yl	CF	CH	CH
20	2-hydroxy-prop-2-yl	indol-6-yl	CF	CH	CH

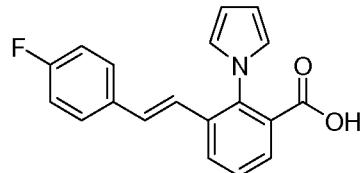
21	phenyl	N-pyrrolyl	CH	CF	CH
22	4-fluorophenyl	N-pyrrolyl	CH	CF	CH
23	3-methoxyphenyl	N-pyrrolyl	CH	CF	CH
24	indol-6-yl	N-pyrrolyl	CH	CF	CH
25	2-hydroxy-prop-2-yl	N-pyrrolyl	CH	CF	CH
26	phenyl	indol-6-yl	CH	CF	CH
27	4-fluorophenyl	indol-6-yl	CH	CF	CH
28	3-methoxyphenyl	indol-6-yl	CH	CF	CH
29	indol-6-yl	indol-6-yl	CH	CF	CH
30	2-hydroxy-prop-2-yl	indol-6-yl	CH	CF	CH
31	phenyl	N-pyrrolyl	CH	CCl	CH
32	4-fluorophenyl	N-pyrrolyl	CH	CCl	CH
33	3-methoxyphenyl	N-pyrrolyl	CH	CCl	CH
34	indol-6-yl	N-pyrrolyl	CH	CCl	CH
35	2-hydroxy-prop-2-yl	N-pyrrolyl	CH	CCl	CH
36	phenyl	indol-6-yl	CH	CCl	CH
37	4-fluorophenyl	indol-6-yl	CH	CCl	CH
38	3-methoxyphenyl	indol-6-yl	CH	CCl	CH
39	indol-6-yl	indol-6-yl	CH	CCl	CH
40	2-hydroxy-prop-2-yl	indol-6-yl	CH	CCl	CH


[0217] For the purposes of the present invention, a compound depicted by the racemic formula will stand equally well for either of the two enantiomers or mixtures thereof, or in the case where a second chiral center is present, all diastereomers.

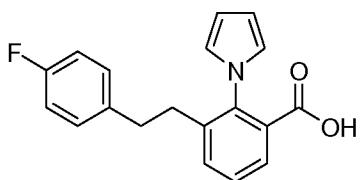
[0218] For the purposes of demonstrating the manner in which the compounds of the present invention are named and referred to herein, the compound having the formula:


has the chemical name 3-(3-Methylsulfamoyl-phenylethynyl)-2-pyrrol-1-ylbenzoic acid.

[0219] For the purposes of demonstrating the manner in which the compounds of the present invention are named and referred to herein, the compound having the formula:


has the chemical name 3-[2-(1H-indol-5-yl)ethynyl]benzoic acid.

[0220] For the purposes of demonstrating the manner in which the compounds of the present invention are named and referred to herein, the compound having the formula:


has the chemical name 2-amino-3-[2-(1H-indol-6-yl)ethynyl]benzoic acid.

[0221] For the purposes of demonstrating the manner in which the compounds of the present invention are named and referred to herein, the compound having the formula:

has the chemical name 3-[(E)-2-(4-fluorophenyl)ethenyl]-2-(1H-pyrrol-1-yl)benzoic acid.

[0222] For the purposes of demonstrating the manner in which the compounds of the present invention are named and referred to herein, the compound having the formula:

has the chemical name 3-[2-(4-fluorophenyl)ethyl]-2-(1H-pyrrol-1-yl)benzoic acid.

[0223] For the purposes of the present invention, a compound depicted by the racemic formula will stand equally well for either of the two enantiomers having the formula or mixtures thereof, or in the case where a second chiral center is present, all diastereomers.

[0224] In all of the embodiments provided herein, examples of suitable optional substituents are not intended to limit the scope of the claimed invention. The compounds of the invention may contain any of the substituents, or combinations of substituents, provided herein.

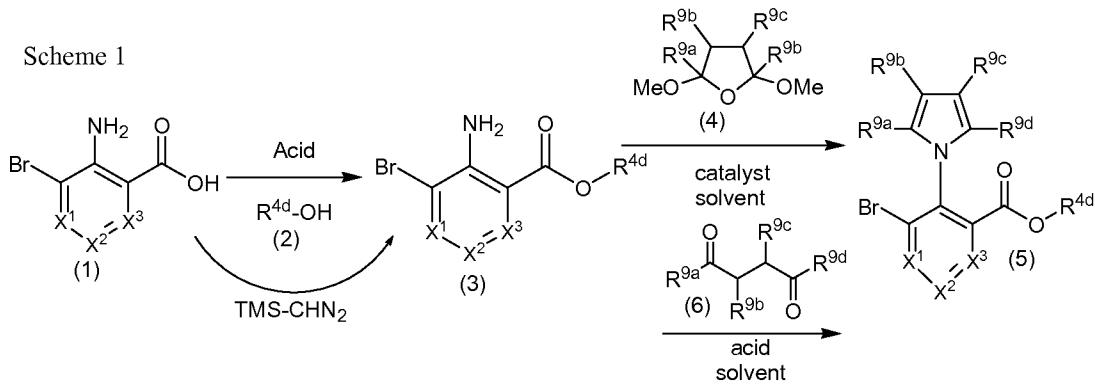
PROCESS

[0225] Compounds of the present teachings can be prepared in accordance with the procedures outlined herein, from commercially available starting materials, compounds known in the literature, or readily prepared intermediates, by employing standard synthetic methods and procedures known to those skilled in the art. Standard synthetic methods and procedures for the preparation of organic molecules and functional group transformations and manipulations can be readily obtained from the relevant scientific literature or from standard textbooks in the field. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions can vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures. Those skilled in the art of organic synthesis will recognize that the nature and order of the synthetic steps presented can be varied for the purpose of optimizing the formation of the compounds described herein.

[0226] The processes described herein can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., ^1H or ^{13}C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatography such as high pressure liquid chromatography (HPLC), gas chromatography (GC), gel-permeation chromatography (GPC), or thin layer chromatography (TLC).

[0227] Preparation of the compounds can involve protection and deprotection of various chemical groups. The need for protection and deprotection and the selection of appropriate protecting groups can be readily determined by one skilled in the art. The chemistry of protecting groups can be found, for example, in Greene et al., *Protective Groups in Organic Synthesis*, 2d. Ed. (Wiley & Sons, 1991), and subsequent editions, the entire disclosure of which is incorporated by reference herein for all purposes.

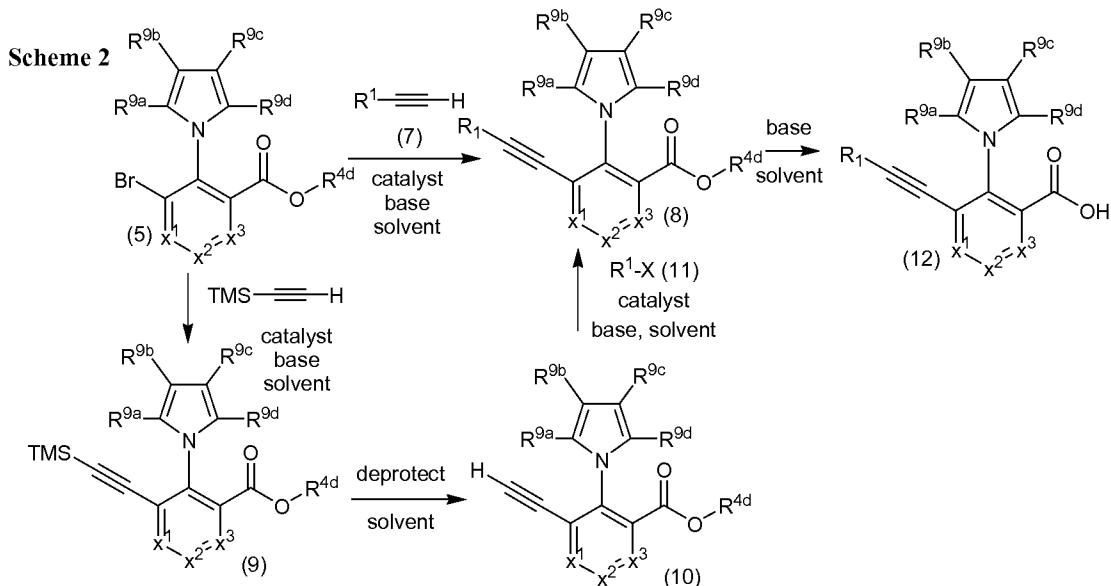
[0228] The reactions or the processes described herein can be carried out in suitable solvents which can be readily selected by one skilled in the art of organic synthesis. Suitable solvents typically are substantially nonreactive with the reactants, intermediates, and/or products at the temperatures at which the reactions are carried out, i.e., temperatures that can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected.


[0229] The compounds of these teachings can be prepared by methods known in the art of organic chemistry. The reagents used in the preparation of the compounds of these teachings can be either commercially obtained or can be prepared by standard procedures described in the literature. For example, compounds of the present invention can be prepared according to the method illustrated in the General Synthetic Schemes:

GENERAL SYNTHETIC SCHEMES FOR PREPARATION OF COMPOUNDS

[0230] The reagents used in the preparation of the compounds of this invention can be either commercially obtained or can be prepared by standard procedures described in the literature. In accordance with this invention, compounds in the genus may be produced by one of the following reaction schemes.

[0231] Compounds of formula (I) may be prepared according to the process outlined in schemes 1-21.

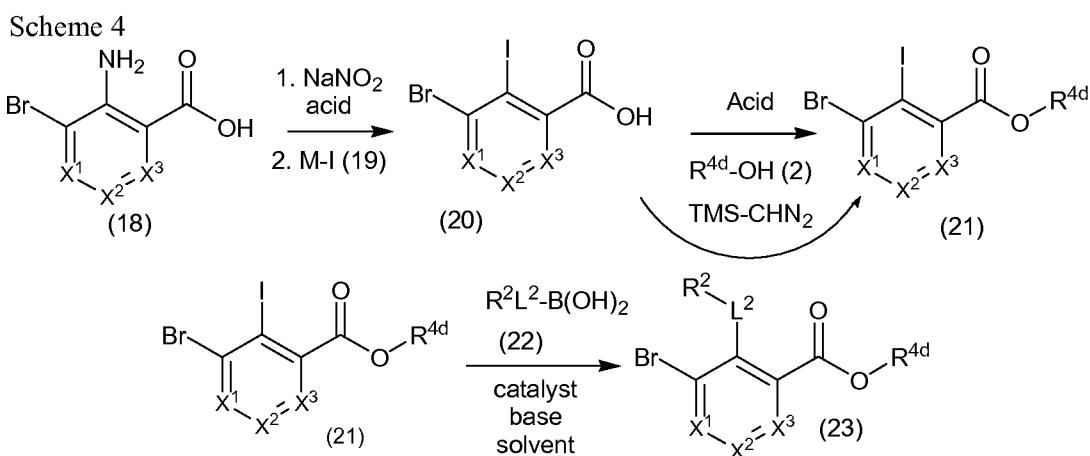

Scheme 1

[0232] Accordingly, a suitably substituted compound of the formula (1), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of the formula (2), a known compound or compound prepared by known methods, in the presence of an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (3). Alternatively, a compound of the formula (1) may be reacted with trimethylsilyldiazomethane in an organic solvent such as methylene chloride, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, and the like to provide a compound of the formula (3). A compound of the formula (3) is then reacted with a compound of the formula (4), a known compound or compound prepared by known methods, in the presence of a catalyst, such as 4-chloropyridine hydrochloride, in an organic solvent such as

methylene chloride, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (5).

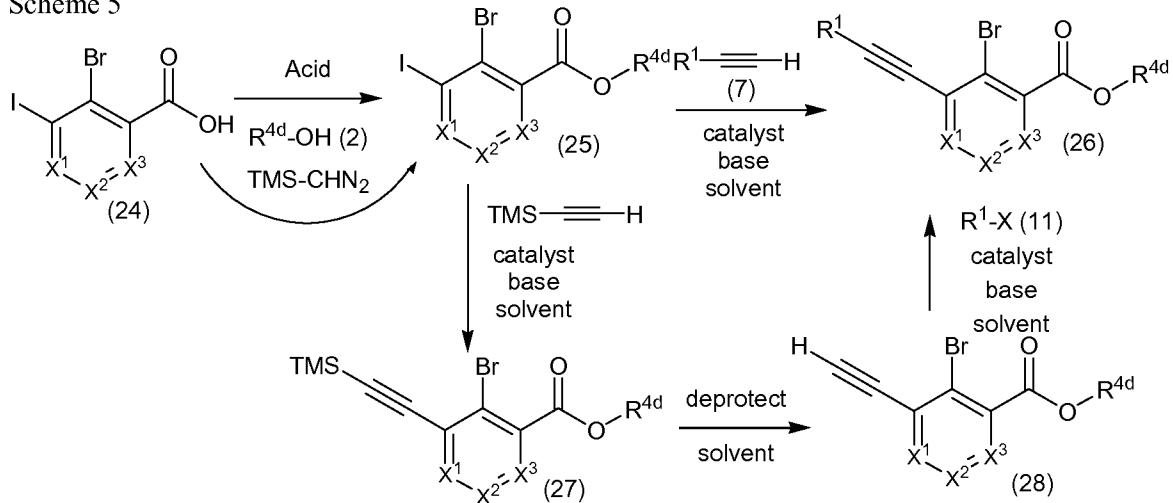
Alternatively, a compound of the formula (3) reacted with a compound of the formula (6), a known compound or compound prepared by known methods, in the presence of an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, acetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (5).

[0233] A compound of the formula (5) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane,


methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (8). Alternatively, a compound of the formula (5) is reacted with trimethylsilyl acetylene in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (9). A compound of the formula (9) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (9) with a fluoride source such as tetrabutylammonium fluoride, and the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like to provide a compound of the formula (10). A compound of the formula (10) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (8). A compound of the formula (8) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in

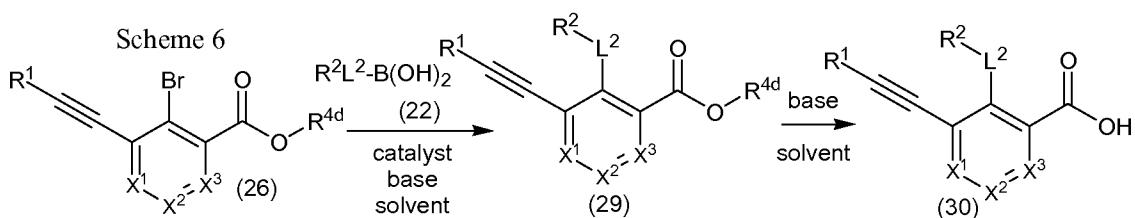
an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (12).

[0234] A compound of the formula (13) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (14). Alternatively, a compound of the formula (13) is reacted with trimethylsilyl acetylene in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent


such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (15). A compound of the formula (15) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (15) with a fluoride source such as tetrabutylammonium fluoride, the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like to provide a compound of the formula (16). A compound of the formula (16) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (14). A compound of the formula (14) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (17).

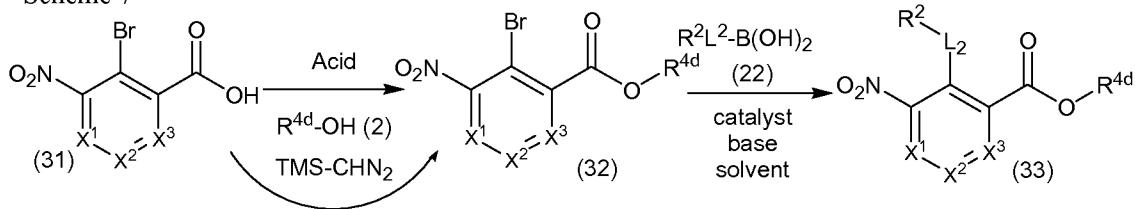
[0235] A compound of the formula (18) a known compound or compound prepared by known methods, is reacted with sodium nitrite in the presence of an acid such as hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation. Further reaction with a compound of the formula (19) wherein M is a metal such as sodium, potassium, and the like in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (20). A compound of the formula (20) is reacted with a suitably substituted compound of the formula (2), a known compound or compound prepared by known methods, in the presence of an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (21). Alternatively, a compound of the formula (20) may be reacted with trimethylsilyldiazomethane in an organic solvent such as methylene chloride, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, and the like to provide a compound of the formula (21). A compound of the formula (21) is reacted with a compound of the formula (22), a known

compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (23).


Scheme 5

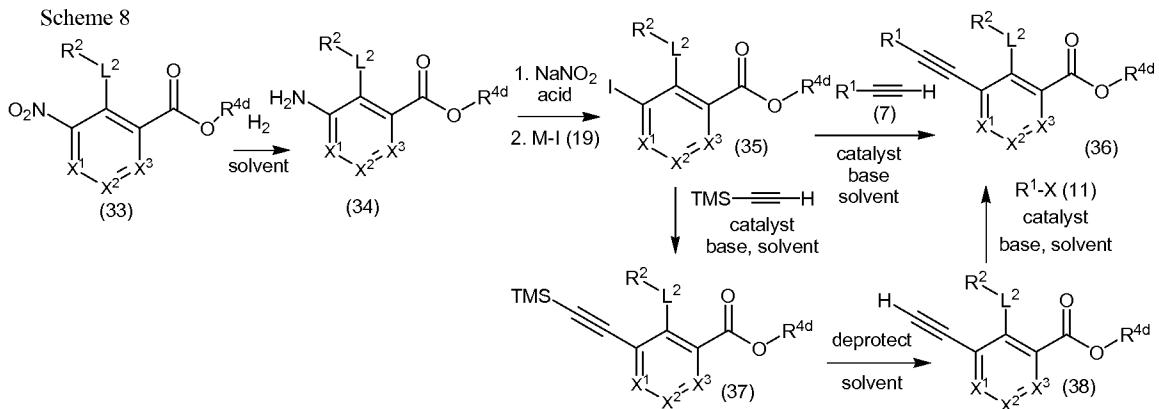
[0236] A compound of the formula (24), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of the formula (2), a known compound or compound prepared by known methods, in the presence of an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (25). Alternatively, a compound of the

formula (24) may be reacted with trimethylsilyldiazomethane in an organic solvent such as methylene chloride, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, and the like to provide a compound of the formula (25). A compound of the formula (25) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine) palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (26). Alternatively, a compound of the formula (25) is reacted with trimethylsilyl acetylene in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (27). A compound of the formula (27) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (27) with a fluoride source such as tetrabutylammonium fluoride, and the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like to provide a compound of the formula (28). A compound of the formula (28) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like


in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (26).

[0237] A compound of the formula (26), is reacted with a compound of the formula (22), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (29). A compound of the formula (29) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the

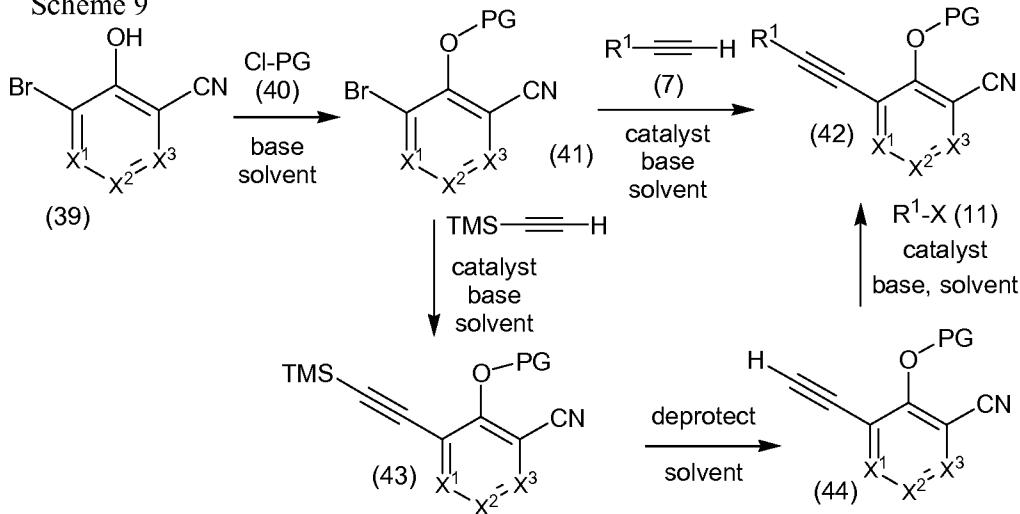
like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (30).


Scheme 7

[0238] A compound of the formula (31), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of the formula (2), a known compound or compound prepared by known methods, in the presence of an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (32). Alternatively, a compound of the formula (31) may be reacted with trimethylsilyldiazomethane in an organic solvent such as methylene chloride, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, and the like to provide a compound of the formula (32). A compound of the formula (32) is reacted with a compound of the formula (22), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane

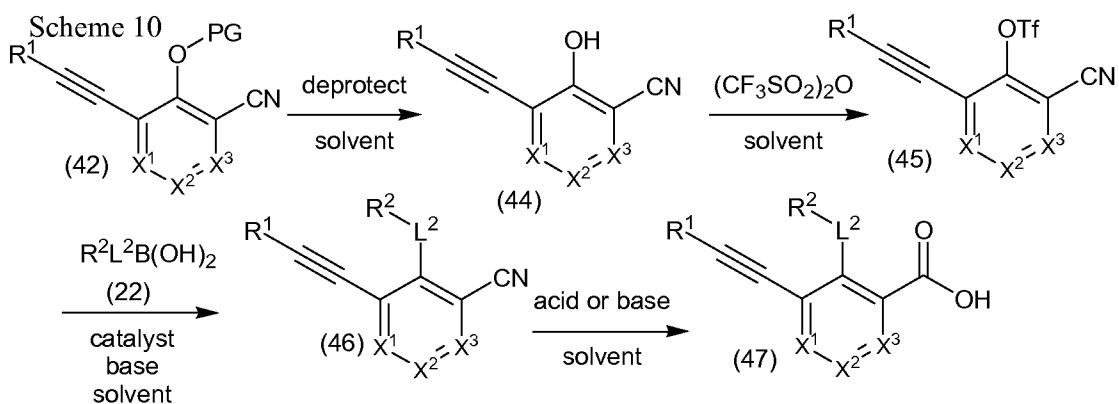
and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (33).

Scheme 8



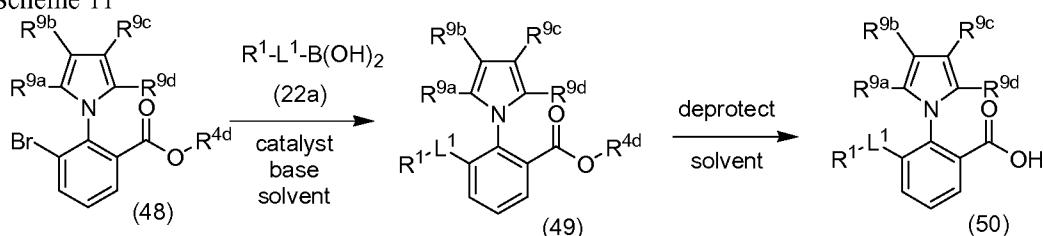
[0239] A compound of the formula (33) is reacted with hydrogen in the presence of a catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like to provide a compound of the formula (34). A compound of the formula (34) is reacted with sodium nitrite in the presence of an acid such as hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, and the like in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation. Further reaction with a compound of the formula (19) wherein M is a metal such as sodium, potassium, and the like in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (35). A compound of the formula (35) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0),

dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (36). Alternatively, a compound of the formula (35) is reacted with trimethylsilyl acetylene in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (37). A compound of the formula (37) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (37) with a fluoride source such as tetrabutylammonium fluoride, and the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like to provide a compound of the formula (38). A compound of the formula (38) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated,

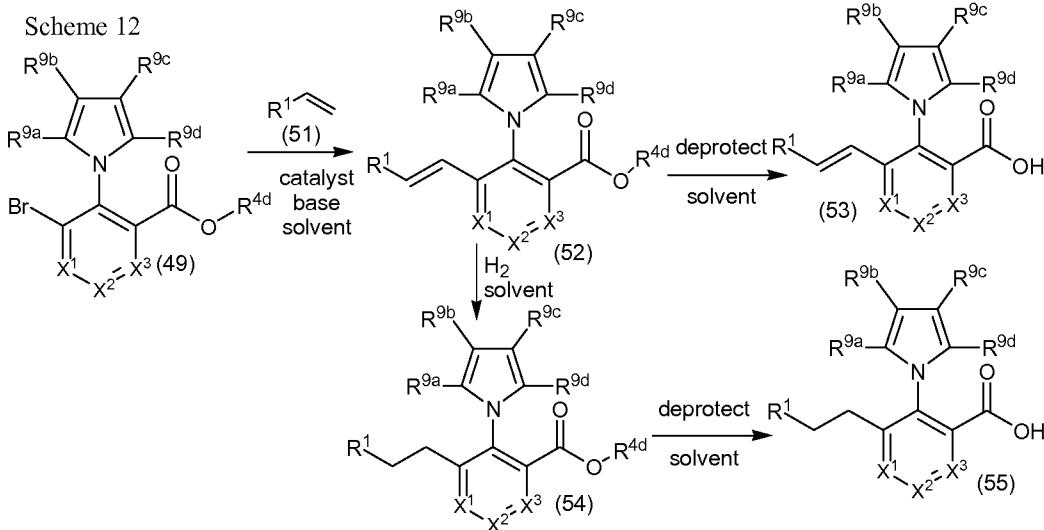

optionally heated with microwave irradiation to provide a compound of the formula (36).

Scheme 9

[0240] [0241] A compound of the formula (39), a known compound or compound prepared by known methods, is reacted with a compound of the formula (40) wherein PG is tert-butyldimethylsilyl, tert-butyldiphenylsilyl, acetyl, benzoyl and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, to provide a compound of the formula (41). A compound of the formula (41) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (42). Alternatively, a compound of the formula (41) is

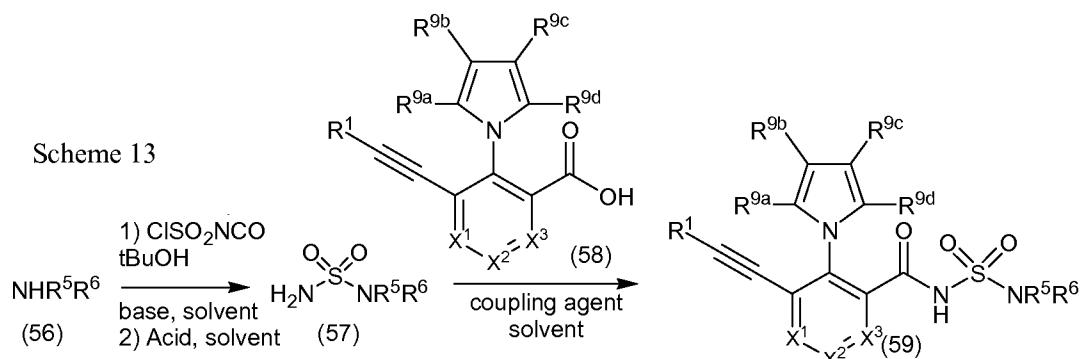

reacted with trimethylsilyl acetylene in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (43). A compound of the formula (43) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (43) with an fluoride source such as tetrabutylammonium fluoride, and the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like to provide a compound of the formula (44). A compound of the formula (44) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (42).

[0241] A compound of the formula (42) is deprotected by a fluoride source such as tetrabutylammonium fluoride and the like or a base such as aqueous sodium carbonate, potassium carbonate, cesium carbonate and the like, in an organic solvent such as methanol, ethanol, in an organic solvent such as tetrahydrofuran, 1,4-dioxane, and the like to provide a compound of the formula (44). A compound of the formula (44) is reacted with trifluoromethanesulfonic anhydride, in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, N, N-dimethylformamide, and the like, optionally in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like, to provide a compound of the formula (45). A compound of the formula (45) is reacted with a compound of the formula (22), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (46). A compound of the formula (46) is then reacted with an acid such as hydrochloric acid,


sulfuric acid, and the like, in a solvent such as water, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (47). Alternatively, a compound of the formula (46) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, and the like, in a solvent such as water, methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (47).

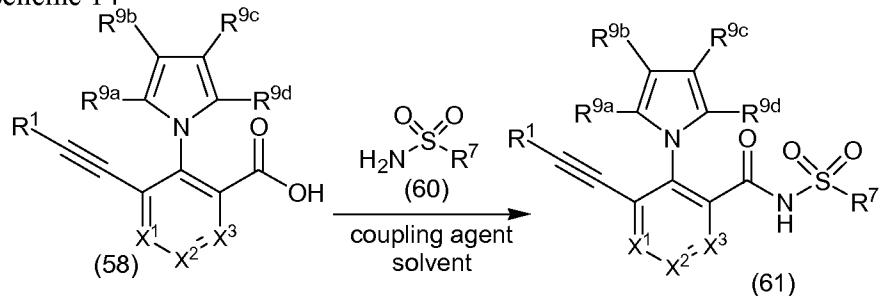
Scheme 11

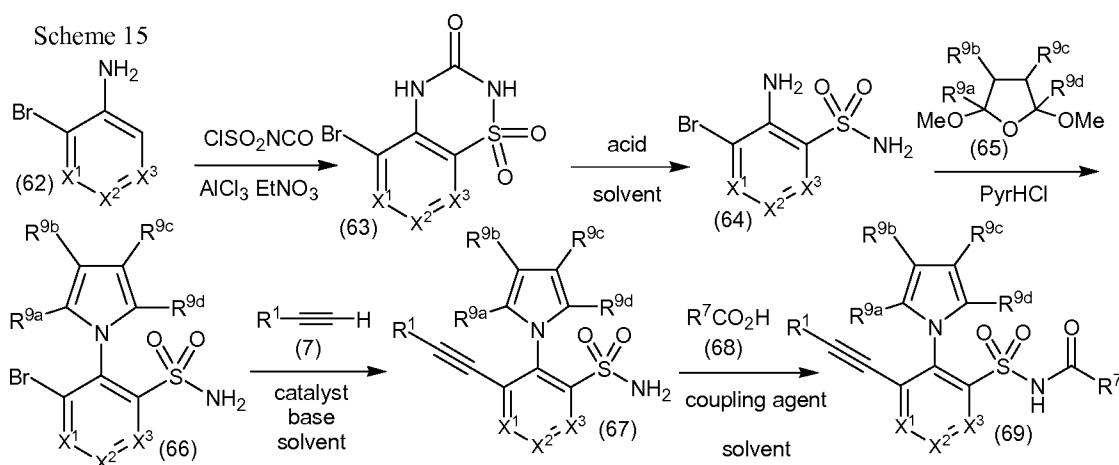
[0242] A compound of the formula (48) is reacted with a compound of the formula (22a), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (49). A compound of the formula (49) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like


optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (50).

[0243] A compound of the formula (49) is reacted with a compound of the formula (51), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (52). A compound of the formula (52) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (53). Alternatively, a compound of the formula (52) is reacted with hydrogen in the presence of a catalyst such as

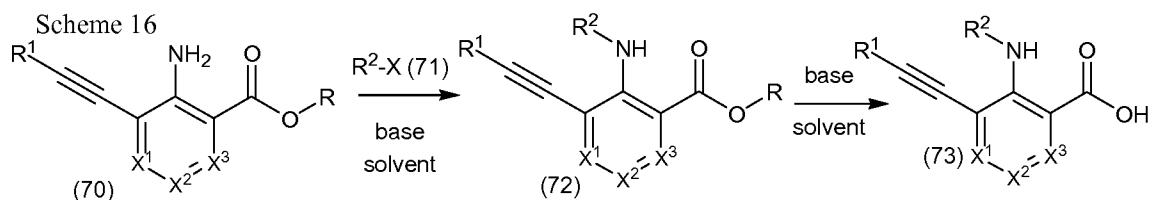
palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like to provide a compound of the formula (54). A compound of the formula (54) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (55).


Scheme 13


[0244] A compound of the formula (56), a known compound or compound prepared by known methods, is first, reacted with chlorosulfonylisocyanate and tert-butanol in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in a solvent such as methylene chloride, 1,2-dichloroethane, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like, and second, is deprotected by treatment with an acid such as hydrogen chloride, trifluoroacetic acid, and the like in an organic solvent such as ethyl acetate, methylene chloride and the like to provide a compound of the formula (57). A compound of the formula (57) is reacted with a compound of the formula (58) in the presence of coupling agent such as such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N,N'-Dicyclohexylcarbodiimide, O-Benzotriazole-N,N,N',N'-tetramethyluronium-hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-

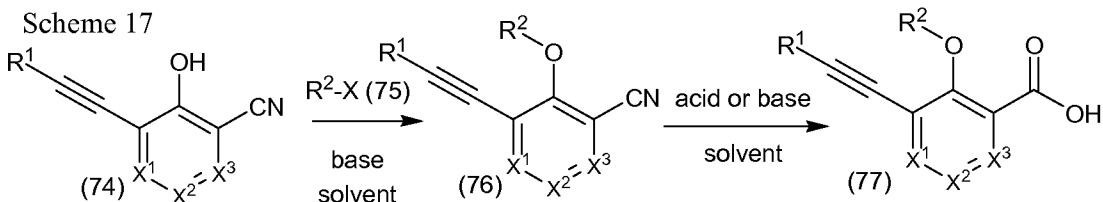
tetramethyluronium hexafluorophosphate, Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, dichloroethane, methanol, ethanol, and the like, optionally in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, and the like, optionally in the presence of 4-N,N-dimethylaminopyridine, to provide a compound of the formula (59).

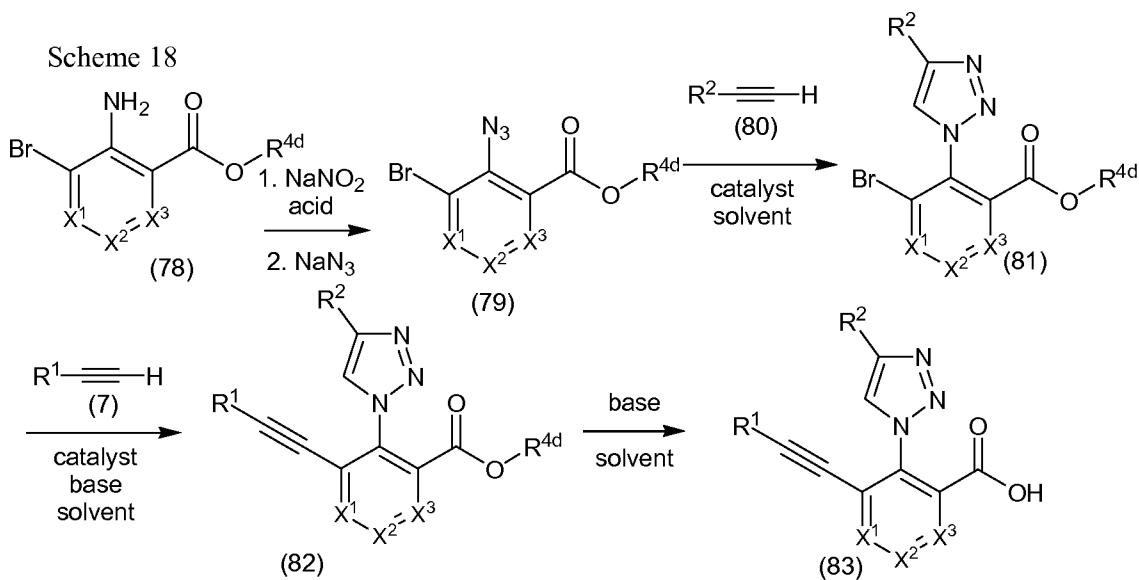
Scheme 14



[0245] Alternatively, a compound of the formula (58) is reacted with a compound of the formula (60) in the presence of coupling agent such as such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N,N'-Dicyclohexylcarbodiimide, O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, dichloroethane, methanol, ethanol, and the like, optionally in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, and the like, optionally in the presence of 4-N,N-dimethylaminopyridine, to provide a compound of the formula (61).

[0246] A compound of the formula (62), a known compound or compound prepared by known methods, is reacted with chlorosulfonylisocyanate in the presence of aluminum trichloride in nitroethane to provide a compound of the formula (63). A compound of the formula (63) is reacted with an acid such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, acetic acid, and the like, optionally in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, dichloroethane, methanol, ethanol, and the like, to provide a compound of the formula (64). A compound of the formula (64) is reacted with a compound of the formula (65) in the presence of pyridine hydrochloride, optionally in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, 1,2-dichloroethane, methanol, ethanol, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (66). A compound of the formula (66) is reacted with a compound of the formula (7) a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis (triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated,


optionally heated with microwave irradiation to provide a compound of the formula (67). A compound of the formula (67) is reacted with a compound of the formula (68), a known compound or compound prepared by known methods, in the presence of coupling agent such as such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N,N'-Dicyclohexylcarbodiimide, O-Benzotriazole-N,N,N',N'-tetramethyluronium-hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, dichloroethane, methanol, ethanol, and the like, optionally in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, and the like, optionally in the presence of 4-N,N-dimethylaminopyridine, to provide a compound of the formula (69).


[0247] A compound of the formula (70) is reacted with a compound of the formula (71), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, 1,2-dichloroethane, and the like, to provide a compound of the formula (72). A compound of the formula (72) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide,

tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (73).

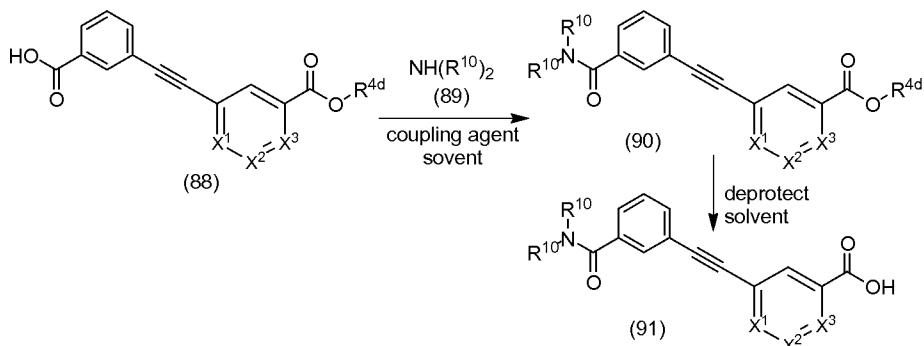
Scheme 17

[0248] A compound of the formula (74) is reacted with a compound of the formula (75), a known compound or compound prepared by known methods wherein X is a chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, 1,2-dichloroethane, and the like, to provide a compound of the formula (76). A compound of the formula (76) is then reacted with an acid such as hydrochloric acid, sulfuric acids, and the like, in a solvent such as water, methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (77). Alternatively, a compound of the formula (76) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, and the like, in a solvent such as water, methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (77).

[0249] A compound of the formula (78), a known compound or compound prepared by known methods, is reacted with sodium nitrite in the presence of an acid such as hydrochloric acid, sulfuric acid, tetrafluoroboric acid, and the like, optionally in a solvent such as water, methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like, followed by reaction with sodium azide in a solvent such as water, methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like to provide a compound of the formula (79). A compound of the formula (79) is reacted with a compound of the formula (80), a known compound or compound prepared by known methods, in the presence of a catalyst such as sodium ascorbate and copper sulfate and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (81). A compound of the formula (81) is reacted with a compound of the formula (7), a known compound or compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon,

bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (82). A compound of the formula (82) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (83).

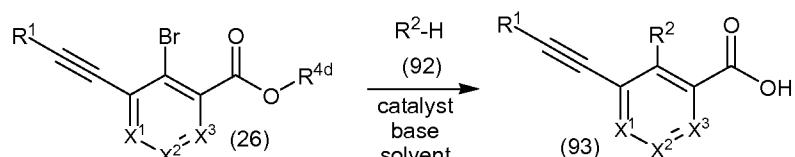
Scheme 19



[0251] A compound of the formula (84), a known compound or a compound prepared by known methods, is reacted with a compound of the formula (7), a known compound or a compound prepared by known methods, in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like, in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (85). Alternatively, a compound of the formula (84) is reacted with trimethylsilyl acetylene in the presence of a

base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (86). A compound of the formula (86) is then deprotected by removal of the trimethylsilyl moiety by reacting a compound of the formula (86) with an fluoride source such as tetrabutylammonium fluoride, and the like in an organic solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, N, N-dimethylformamide, and the like to provide a compound of the formula (87). Alternatively, a compound of the formula (86) is reacted with hydrogen fluoride in the presence of a base such as pyridine, 2,6-dimethylpyridine, triethyl amine, and the like, optionally in a solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, N, N-dimethylformamide, and the like to provide a compound of the formula (87). Alternatively, a compound of the formula (86) is reacted with a base such as aqueous sodium hydroxide, potassium hydroxide, lithium hydroxide and the like, in a solvent such as tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-dichloroethane, N, N-dimethylformamide, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (87). A compound of the formula (87) is reacted with a compound of the formula (11), a known compound or compound prepared by known methods wherein X is a leaving group such as chloride, bromide, iodide, methanesulfonate, trifluoromethanesulfonate, tosylate, and the like in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-dimethylpyridine, and the like in the presence of a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride, 1,2-

dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (85).


Scheme 20

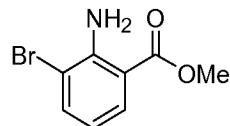
A compound of the formula (88), a known compound or compound prepared by known methods, is reacted with a compound of the formula (89), a known compound or compound prepared by known means, in the presence of coupling agent such as such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N,N'-Dicyclohexylcarbodiimide, O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate, benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate, and the like, in an organic solvent such as tetrahydronfuran, 1,4-dioxane, dimethylformamide, methylene chloride, dichloroethane, methanol, ethanol, and the like, optionally in the presence of a base such as triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, and the like, optionally in the presence of 4-N,N-dimethylaminopyridine, to provide a compound of the formula (90). A compound of the formula (90) is reacted with a base such as sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, and the like, in an organic solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, and the like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (91). Alternatively, a compound of the formula (90) is reacted with an acid such as trifluoroacetic acid, hydrochloric acid, sulfuric acid, and the like, optionally in the presence of a solvent such as methanol, ethanol, N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, methylene chloride and the

like optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (91).

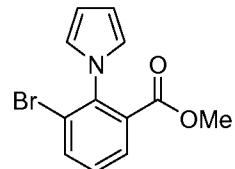
Scheme 21

A compound of the formula (26), a known compound or compound prepared by known methods, is reacted with a compound of the formula (92), a known compound or a compound prepared by known methods, in the presence of a base such as potassium phosphate, cesium carbonate, potassium carbonate sodium carbonate, sodium tert-butoxide and the like in the presence of a copper catalyst such as copper iodide and the like, or a palladium catalyst such as palladium (II) acetate, tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II), palladium on carbon, bis(acetonitrile)dichloropalladium(II), and the like, in an organic solvent such as N, N-dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, 1,2-dichloroethane, and the like, optionally heated, optionally heated with microwave irradiation to provide a compound of the formula (93).

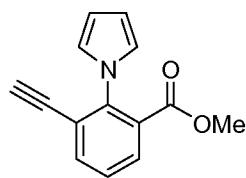
[0250] The examples provided below provide representative methods for preparing exemplary compounds of the present invention. The skilled practitioner will know how to substitute the appropriate reagents, starting materials and purification methods known to those skilled in the art, in order to prepare the compounds of the present invention.

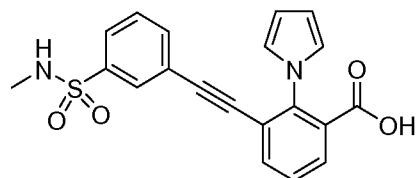

[0251] ^1H -NMR spectra were obtained on a Varian Mercury 300-MHz NMR. Purity (%) and mass spectral data were determined with a Waters Alliance 2695 HPLC/MS (Waters Symmetry C18, 4.6 x 75 mm, 3.5 μm) with a 2996 diode array detector from 210-400 nm.

EXAMPLES

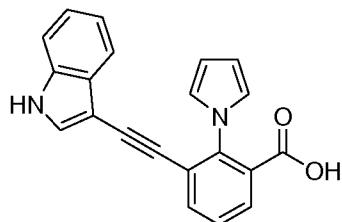

[0252] Examples 1-177 provide a method for preparing representative compound of formula (I). The skilled practitioner will know how to substitute the appropriate reagents, starting materials and purification methods known to those

skilled in the art, in order to prepare additional compounds of the present invention. Preparative HPLC purification utilizes a gradient of 5-95% Acetonitrile in water (with 0.1% trifluoroacetic acid) over 15 minutes.

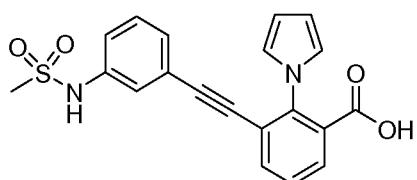

[0253] Example 1: Synthesis of 3-(3-methylsulfamoyl-phenylethynyl)-2-pyrrol-1-yl-benzoic acid


[0254] 2-Amino-3-bromo-benzoic acid methyl ester: 2-Amino-3-bromo-benzoic acid (5 g, 23 mmol) was dissolved in methanol (30 mL), concentrated sulfuric acid (1 mL) was added dropwise and the reaction mixture was refluxed at 80 °C for 24 hours, allowed to cool to ambient temperature and then concentrated at reduced pressure. The residue was diluted by water (10 mL) and basified with saturated sodium bicarbonate solution, extracted by ethyl acetate (20 mL x 3). The organic layer was dried (anhydrous magnesium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (10%) to give the product as a colorless oil (5 g, 95%).

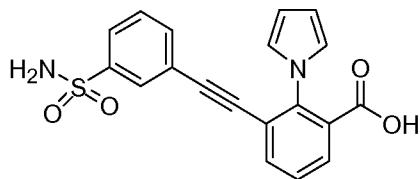
[0255] 3-Bromo-2-pyrrol-1-yl-benzoic acid methyl ester. 2,5-Dimethoxytetrahydrofuran (1.7 g, 13 mmol) and 4-chloropyridine HCl salt (2 g, 13 mmol) were mixed in anhydrous 1,4-dioxane (30 mL) and stirred at room temperature for 15 minutes. To the solution was added 2-amino-3-bromo-benzoic acid methyl ester (3 g, 13 mmol) and the reaction mixture was refluxed at 120 °C for 2 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with ethyl acetate. The filtrate was concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (10% - 20%) to give the product as a white solid (3.2 g, 87%).


[0256] 3-Ethynyl-2-pyrrol-1-yl-benzoic acid methyl ester. To a pressure flask was loaded a mixture of 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester (4 g, 14.2 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (501 mg, 0.71 mmol) and CuI (270 mg, 1.42 mmol) in triethylamine (40 mL), the mixture was degassed with N_2 for 10 minutes, trimethylsilylacetylene (10 mL) was added and the mixture was further degassed for 3 minutes. The flask was sealed with a PTFE plug and heated at 86 °C for 17 hour. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (5% - 20%) to give a solid intermediate. The solid intermediate was dissolved in tetrahydrofuran (20 mL), tetrabutylammonium fluoride (1 N in THF, 20 mL, 20 mmol) was added and the reaction mixture was stirred for 10 minutes and concentrated. The residue was purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (10 - 20%) to give the product as a white solid (1.7 g, 53% for 2 steps)

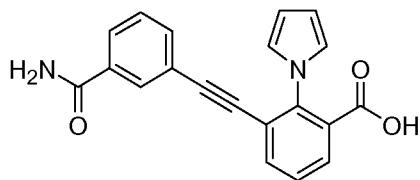
[0257] 3-(3-Methylsulfamoyl-phenylethynyl)-2-pyrrol-1-yl-benzoic acid. A mixture of 3-ethynyl-2-pyrrol-1-yl-benzoic acid methyl ester (40 mg, 0.18 mmol), 3-bromo-N-methyl-benzenesulfonamide (90 mg, 0.36 mmol), palladium tetrakis-triphenylphosphine (21 mg, 0.018 mmol) and copper iodide (6.8 mg, 0.036 mmol), potassium carbonate (50 mg, 0.36 mmol) in 1,2-dimethoxyethane/water (1 mL/0.2 mL) was degassed with N_2 for 5 minutes and then heated at 60 °C for 4 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by preparative thin layered chromatography


eluting with ethyl acetate/hexane (30%) to give the ester intermediate. To the ester intermediate in tetrahydrofuran/ methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 19 mg (28% for 2 steps) of the pure product as a white solid. ^1H NMR (CDCl_3) δ 7.87 (dd, J = 7.8, 1.6 Hz, 1H), 7.82-7.72 (m, 3H), 7.49-7.30 (m, 3H), 6.88 (t, J = 2.2 Hz, 2H), 6.34 (t, J = 2.2 Hz, 2H), 2.6 (s, 3H). MS (ESI) m/z 380.9 ($\text{M}+1$) $^+$.

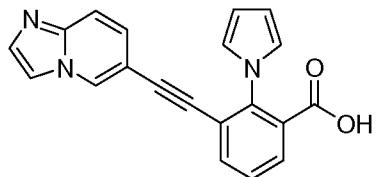
[0258] Example 2: Synthesis of 3-(1H-indol-3-ylethynyl)-2-pyrrol-1-yl-benzoic acid:


[0259] 3-(1H-Indol-3-ylethynyl)-2-pyrrol-1-yl-benzoic acid was prepared by the same procedure as example 1. ^1H NMR (CDCl_3) δ 7.87 (dd, J = 7.8, 1.6 Hz, 1H), 7.82-7.72 (m, 3H), 7.49-7.30 (m, 3H), 6.88 (t, J = 2.2 Hz, 2H), 6.34 (t, J = 2.2 Hz, 2H), 2.6 (s, 3H). MS (ESI) m/z 380.9 ($\text{M}+1$) $^+$.

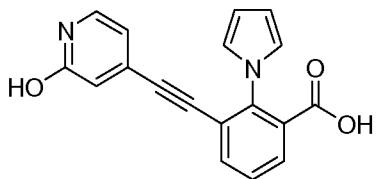
[0260] Example 3: Synthesis of 3-[2-(3-methanesulfonamidophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0261] 3-[2-(3-methanesulfonamidophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.84 (dd, J =1.6, 7.8 Hz, 1H), 7.74 (dd, J =1.5, 7.6 Hz, 1H), 7.44 (t, J =7.8 Hz, 1H), 7.28 – 7.08 (m, 4H), 6.88 ((t, J =2.1 Hz, 2H), 6.33 (t, J =2.1 Hz, 2H), 2.65 (s, 3H). MS (ESI) m/z 380.9 ($\text{M}+1$) $^+$.

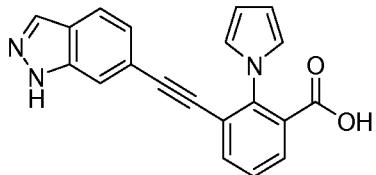
[0262] Example 4: Synthesis of 2-(1H-pyrrol-1-yl)-3-[2-(3-sulfamoylphenyl)ethynyl]benzoic acid:


[0263] 2-(1H-pyrrol-1-yl)-3-[2-(3-sulfamoylphenyl)ethynyl]benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.97 - 7.82 (m, 3H), 7.75 (d, J =8.8 Hz, 1H), 7.56 - 7.38 (m, 3H), 6.89 (t, J =2.1 Hz, 2H), 6.35 (t, J =2.1 Hz, 2H). MS (ESI) m/z 366.9 ($\text{M}+1$) $^+$.

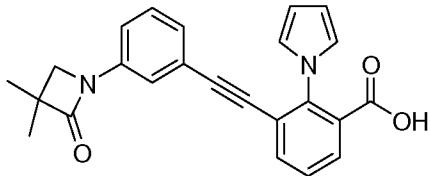
[0264] Example 5: Synthesis of 3-[2-(3-carbamoylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0265] 3-[2-(3-carbamoylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.84 (dd, J =1.6, 7.8 Hz, 1H), 7.82 - 7.72 (m, 3H), 7.50 - 7.25 (m, 3H), 6.88 ((t, J =2.1 Hz, 2H), 6.33 (t, J =2.1 Hz, 2H). MS (ESI) m/z 330.9 ($\text{M}+1$) $^+$.

[0266] Example 6: Synthesis of 3-(2-{imidazo[1,2-a]pyridin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

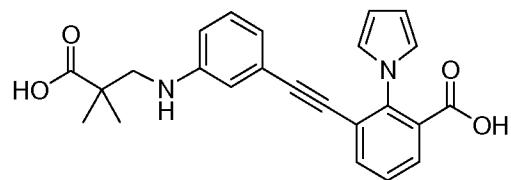

[0267] 3-(2-{imidazo[1,2-a]pyridin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.24 (s, 1H), 8.05 (d, J =9.1 Hz, 1H), 7.92 - 7.83 (m, 2H), 7.74 - 7.64 (m, 2H), 7.51 - 7.43 (m, 2H), 6.85 (t, J =2.1 Hz, 2H), 6.33 (t, J =2.1 Hz, 2H). MS (ESI) m/z 328.0 ($\text{M}+1$) $^+$.

[0268] Example 7: Synthesis of 3-[2-(2-hydroxypyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:

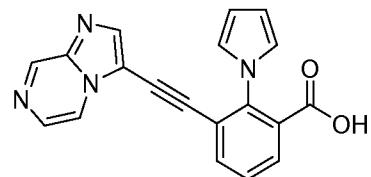

[0269] 3-[2-(2-hydroxypyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.19 (br. s., 1H), 8.03 (br. s., 1H), 7.90 (d, J =7.7 Hz, 1H), 7.75 (d, J =7.5 Hz, 1H), 7.48 (t, J =7.7 Hz, 1H), 7.31 - 7.28 (m, 1H), 6.86 (t, J =2.1 Hz, 2H), 6.34 (t, J =2.1 Hz, 2H). MS (ESI) m/z 305.0 ($\text{M}+1$) $^+$.

[0270] Example 8: Synthesis of 3-[2-(1H-indazol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:

[0271] 3-[2-(1H-indazol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.02 (br. S., 1H), 7.85 (dd, J =1.8, 7.8 Hz, 1H), 7.78 (dd, J =1.5, 7.7 Hz, 1H), 7.70 - 7.59 (m, 3H), 7.46 (t, J =7.9 Hz, 1H), 7.12 (d, J =8.2 Hz, 1H), 6.93 (t, J =2.1 Hz, 2H), 6.37 (t, J =2.1 Hz, 2H). MS (ESI) m/z 328.0 ($\text{M}+1$) $^+$.


[0272] Example 9: Synthesis of 3-{2-[3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:

[0273] 3-{2-[3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid: To a pressure tube was added a mixture of 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester (50 mg, 0.18 mmol), 1-(3-ethynyl-phenyl)-3,3-dimethyl-azetidin-2-one (71 mg, 0.28 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (12.6 mg, 0.018 mmol) and CuI (6.9 mg, 0.036 mmol) in triethylamine (1 mL). The mixture was degassed with N_2 for 10 minutes and then heated at 90 $^{\circ}\text{C}$ for 17 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and

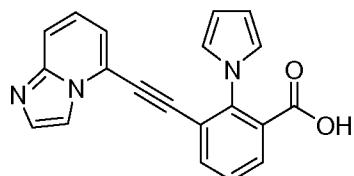

washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through preparative thin layer chromatography eluting with ethyl acetate/hexane (30%) to give a solid intermediate. To the solid intermediate in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 12 mg (17% for 2 steps) of the pure product as a yellow solid. ^1H NMR (300MHz, CDCl_3) δ = 7.85 (dd, J =1.6, 7.8 Hz, 1H), 7.74 (dd, J =1.6, 7.8 Hz, 1H), 7.53 - 7.35 (m, 2H), 7.34 - 7.22 (m, 1H), 7.15 (t, J =5.0 Hz, 1H), 7.05 (d, J =7.6 Hz, 1H), 6.89 (t, J =2.1 Hz, 2H), 6.35 (t, J =2.1 Hz, 2H), 3.44 (s, 2H), 2.56 (s, 6H). MS (ESI) m/z 385.1 ($\text{M}+1$) $^+$.

[0274] Example 10: Synthesis of 3-(2-{3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

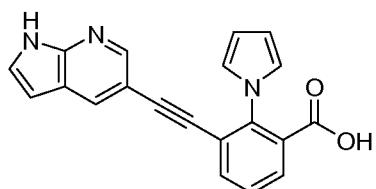
[0275] 3-(2-{3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was isolated as a second product in purifying example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.82 (d, J =7.6 Hz, 1H), 7.72 (d, J =7.7 Hz, 1H), 7.42 (t, J =7.8 Hz, 1H), 7.08 (t, J =7.7 Hz, 1H), 6.88 (t, J =2.1 Hz, 2H), 6.75 - 6.58 (m, 3H), 6.33 (t, J =2.1 Hz, 2H), 3.22 (s, 2H), 1.30 (s, 6H). MS (ESI) m/z 403.1 ($\text{M}+1$) $^+$.

[0276] Example 11: Synthesis of 3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

[0277] 3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, DMSO) δ = 13.1 (br. s., 1H), 9.15 (d, J =1.5 Hz, 1H), 8.12 - 8.04 (m, 2H), 7.95 -

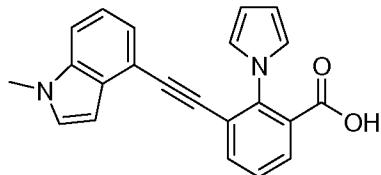

7.89 (m, 2H), 7.82 (d, $J=7.6$ Hz, 1H), 7.61 (t, $J=7.7$ Hz, 1H), 6.97 (t, $J=2.2$ Hz, 2H), 6.30 (t, $J=2.2$ Hz, 2H). MS (ESI) m/z 328.9 (M+1)⁺.

[0278] Example 12: Synthesis of 3-(2-{imidazo[1,2-a]pyridin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

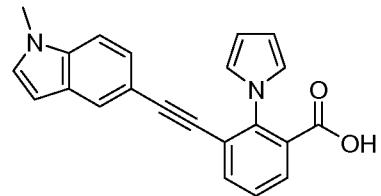

[0279] 3-(2-{imidazo[1,2-a]pyridin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 7.94 (dd, $J=1.6$, 7.8 Hz, 1H), 7.91 - 7.84 (m, 2H), 7.81 (dd, $J=1.5$, 7.9 Hz, 1H), 7.76 - 7.70 (m, 1H), 7.58 - 7.50 (m, 2H), 7.07 (t, $J=6.9$ Hz, 1H), 6.89 (t, $J=2.1$ Hz, 2H), 6.40 (t, $J=2.1$ Hz, 2H). MS (ESI) m/z 328.0 (M+1)⁺.

[0280] Example 13: Synthesis of 3-(2-{imidazo[1,2-a]pyridin-5-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

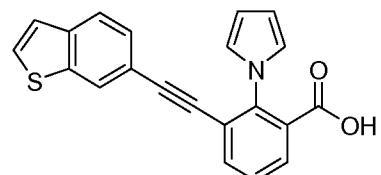
[0281] 3-(2-{imidazo[1,2-a]pyridin-5-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 8.14 (d, $J=9.1$ Hz, 1H), 8.03 (dd, $J=1.5$, 7.9 Hz, 1H), 7.89 (dd, $J=1.6$, 7.8 Hz, 1H), 7.81 (d, $J=4.1$ Hz, 1H), 7.66 - 7.56 (m, 2H), 7.38 - 7.30 (m, 2H), 6.89 (t, $J=2.0$ Hz, 2H), 6.41 (t, $J=2.0$ Hz, 2H). MS (ESI) m/z 328.0 (M+1)⁺.


[0282] Example 14: Synthesis of 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-5-yl}ethynyl)benzoic acid:

[0283] 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-5-yl}ethynyl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 8.15 (br. s., 1H), 8.01 (s, 1H), 7.87 (s, 1H), 7.74 (dd, $J=1.6$, 7.6 Hz,

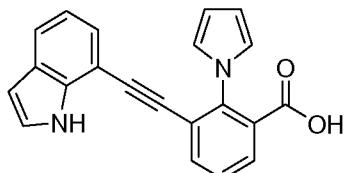

1H), 7.67 (dd, $J=1.6$, 7.9 Hz, 1H), 7.31 (t, $J=7.8$ Hz, 1H), 7.31 - 7.23 (m, 1H), 6.83 (t, $J=2.2$ Hz, 2H), 6.46 - 6.31 (m, 1H), 6.27 (t, $J=2.2$ Hz, 2H). MS (ESI) m/z 328.0 ($M+1$)⁺.

[0284] Example 15: Synthesis of 3-[2-(1-methyl-1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:

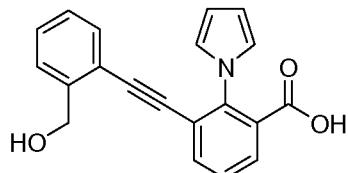

[0285] 3-[2-(1-methyl-1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 7.81 (dt, $J=1.5$, 7.8 Hz, 2H), 7.44 (t, $J=7.8$ Hz, 1H), 7.22 - 7.07 (m, 3H), 6.94 (t, $J=2.2$ Hz, 2H), 6.43 (d, $J=3.2$ Hz, 2H), 6.35 (t, $J=2.2$ Hz, 2H), 3.79 (s, 3H). MS (ESI) m/z 341.0 ($M+1$)⁺.

[0286] Example 16: Synthesis of 3-[2-(1-methyl-1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:

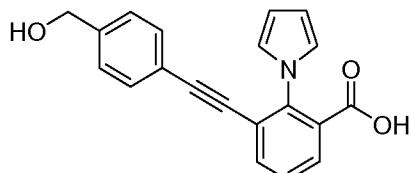
[0287] 3-[2-(1-methyl-1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 7.87 - 7.55 (m, 3H), 7.53 - 7.40 (m, 1H), 7.27 - 7.19 (m, 2H), 7.05 (d, $J=2.9$ Hz, 1H), 7.00 - 6.85 (m, 2H), 6.46 (d, $J=2.9$ Hz, 1H), 6.40 - 6.25 (m, 2H), 3.78 (s, 3H). MS (ESI) m/z 341.0 ($M+1$)⁺.


[0288] Example 17: Synthesis of 3-[2-(1-benzothiophen-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:

[0289] 3-[2-(1-benzothiophen-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ =


7.90 (dd, $J=1.6$, 7.8 Hz, 1H), 7.82 - 7.75 (m, 3H), 7.52 - 7.41 (m, 2H), 7.32 - 7.28 (m, 2H), 6.91 (t, $J=2.1$ Hz, 2H), 6.40 (t, $J=2.2$ Hz, 2H). MS (ESI) m/z 344.0 ($M+1$)⁺.

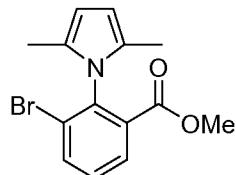
[0290] Example 18: Synthesis of 3-[2-(1H-indol-7-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid


[0291] 3-[2-(1H-indol-7-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. 1 H NMR (300MHz, CDCl₃) δ = 8.24 (br. s., 1H), 7.89 (dd, $J=1.6$, 7.8 Hz, 1H), 7.83 (dd, $J=1.6$, 7.8 Hz, 1H), 7.62 (d, $J=7.9$ Hz, 1H), 7.51 (t, $J=7.9$ Hz, 1H), 7.35 - 7.26 (m, 1H), 7.18 (t, $J=2.8$ Hz, 1H), 7.04 (t, $J=7.7$ Hz, 1H), 6.97 (t, $J=2.2$ Hz, 2H), 6.56 - 6.43 (m, 3H). MS (ESI) m/z 327.0 ($M+1$)⁺.

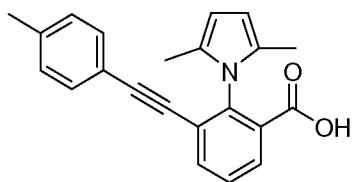
[0292] Example 19: Synthesis of 3-{2-[2-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:

[0293] 3-{2-[2-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. 1 H NMR (300MHz, DMSO) δ = 7.81 (dd, $J=1.6$, 7.8 Hz, 1H), 7.74 (dd, $J=1.4$, 7.6 Hz, 1H), 7.60 - 7.34 (m, 3H), 7.30 - 7.19 (m, 2H), 6.87 (t, $J=2.2$ Hz, 2H), 6.20 (t, $J=2.2$ Hz, 2H), 5.18 (t, $J=5.6$ Hz, 1H), 4.45 (d, $J=5.0$ Hz, 2H). MS (ESI) m/z 317.9 ($M+1$)⁺.

[0294] Example 20: Synthesis of 3-{2-[4-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:

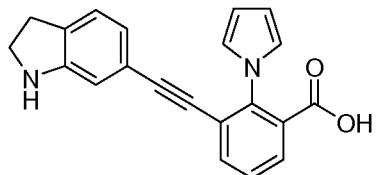


[0295] 3-{2-[4-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.82 (dd, J =1.6, 7.8 Hz, 1H), 7.73 (dd, J =1.6, 7.8 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.35 – 7.27 (m, 4H), 6.88 (t, J =2.1 Hz, 2H), 6.33 (t, J =2.1 Hz, 2H), 4.64 (s, 2H). MS (ESI) m/z 317.9 ($\text{M}+1$) $^+$.

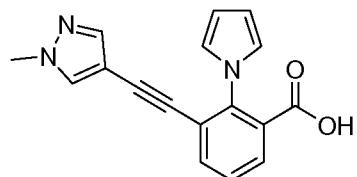

[0296] Example 21: Synthesis of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(4-methylphenyl)ethynyl] benzoic acid:

[0297] 3-Bromo-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid: A mixture of 2-amino-3-bromo-benzoic acid (2 g, 9.26 mmol) in hexane-2, 5-dione (20 mL) was heated at 100 °C for 3 days, allowed to cool to ambient temperature and then partitioned between water and ethyl acetate. The organic layer was dried (anhydrous magnesium sulfate), concentrated and purified by HPLC to give the product as a solid (1.6 g, 59%).

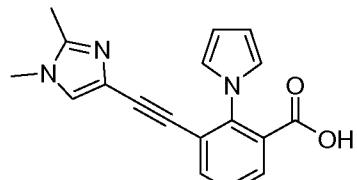
[0298] 3-Bromo-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid methyl ester. To a solution of 3-bromo-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid (1.4 g, 4.8 mmol) in ether (30 mL) and methanol (10 mL) at 0 °C was added trimethylsilyldiazomethane (2 M in hexane, 4.8 mL, 9.5 mmol) dropwise. After addition the reaction mixture was stirred at room temperature for 30 minutes. Acetic acid (0.2 mL) was added to quench the reaction and the solution was concentrated and purified by column chromatography through eluting with ethyl acetate/hexane (10%) to give the desired product 3-Bromo-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid methyl ester as a solid.


[0299] 2-(2,5-dimethyl-pyrrol-1-yl)-3-p-tolylethynyl-benzoic acid: To a pressure tube was loaded a mixture of 3-bromo-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid methyl ester (40 mg, 0.13 mmol), 1-ethynyl-4-methyl-benzene (75 mg, 0.65 mmol), Pd(PPh₃)₂Cl₂ (9.1 mg, 0.013 mmol) and CuI (5 mg, 0.026 mmol) in triethylamine (1 mL). The mixture was degassed with N₂ for 10 minutes and then heated at 90 °C for 17 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through preparative thin layer chromatography eluting with ethyl acetate/hexane (20%) to give a solid. To solid in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 6 mg (14% for 2 steps) of the pure product as a brown solid. ¹H NMR (300MHz, CDCl₃) δ = 8.07 (dd, *J*=1.8, 7.9 Hz, 1H), 7.80 (dd, *J*=1.5, 7.9 Hz, 1H), 7.52 (t, *J*=7.8 Hz, 1H), 7.26 - 7.07 (m, 4H), 5.98 (s, 2H), 3.98 (s, 2H), 2.33 (s, 3H), 1.97 (s, 6H). MS (ESI) *m/z* 330.0 (M+1)⁺.

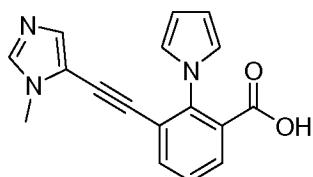
[0300] Example 22: Synthesis of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(3-hydroxyphenyl)ethynyl] benzoic acid:


[0301] 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid was prepared by the same procedure as example 21. ¹H NMR (300MHz, CDCl₃) δ = 8.06 (dd, *J*=1.5, 7.6 Hz, 1H), 7.80 (dd, *J*=1.5, 7.6 Hz, 1H), 7.52 (t, *J*=7.8 Hz, 1H), 7.15 (t, *J*=7.9 Hz, 1H), 6.91 - 6.70 (m, 3H), 5.98 (s, 2H), 5.61 (br. s., 1H), 1.97 (s, 6H). MS (ESI) *m/z* 332.1 (M+1)⁺.

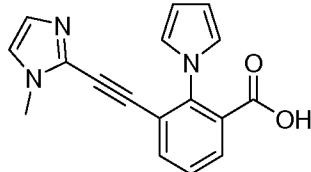
[0302] Example 23: Synthesis of 3-[2-(2,3-dihydro-1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


3-[2-(2,3-dihydro-1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 332.1 ($M-H_2O$)⁺.

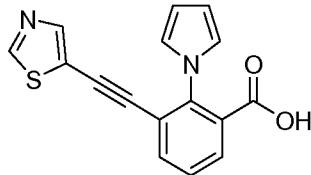
[0303] Example 24: Synthesis of 3-[2-(1-methyl-1H-pyrazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0304] 3-[2-(1-methyl-1H-pyrazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 292.0 ($M+1$)⁺.

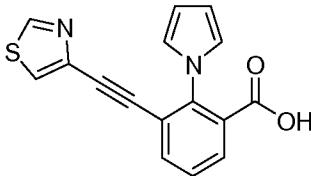
[0305] Example 25: Synthesis of 3-[2-(1,2-dimethyl-1H-imidazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0306] 3-[2-(1,2-dimethyl-1H-imidazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 306.1 ($M+1$)⁺.

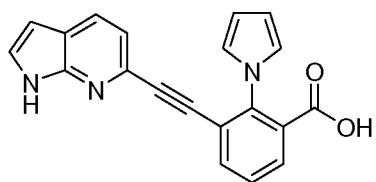
[0307] Example 26: Synthesis of 3-[2-(1-methyl-1H-imidazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0308] 3-[2-(1-methyl-1H-imidazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 292.1 ($M+1$)⁺.

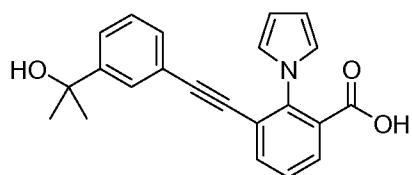
[0309] Example 27: Synthesis of 3-[2-(1-methyl-1H-imidazol-2-yl)ethynyl]-2-(1H-pyrrol-1-yl) benzoic acid:


[0310] 3-[2-(1-methyl-1H-imidazol-2-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 292.1 ($M+1$)⁺.

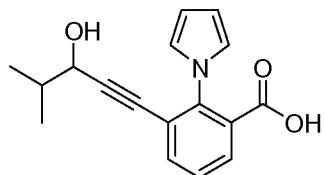
[0311] Example 28: Synthesis of 2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-5-yl)ethynyl]benzoic acid:


[0312] 2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-5-yl)ethynyl]benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 295.0 ($M+1$)⁺.

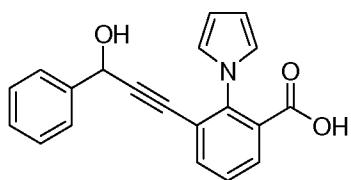
[0313] Example 29: Synthesis of 2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid:


[0314] 2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 295.0 ($M+1$)⁺.

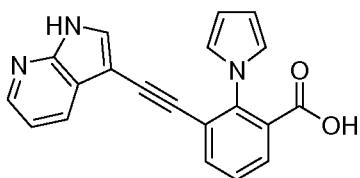
[0315] Example 30: Synthesis of 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-6-yl}ethynyl) benzoic acid:


[0316] 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-6-yl}ethynyl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 328.0 ($M+1$)⁺.

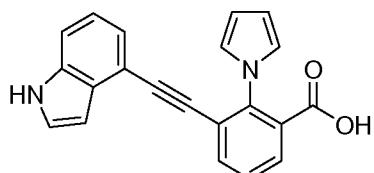
[0317] Example 31: Synthesis of 3-{2-[3-(2-hydroxypropan-2-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:


[0318] 3-{2-[3-(2-hydroxypropan-2-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ¹H NMR (300MHz, CDCl₃) δ = 7.84 (dd, J =1.6, 7.6 Hz, 1H), 7.74 (dd, J =1.6, 7.8 Hz, 1H), 7.50 - 7.41 (m, 2H), 7.34 - 7.17 (m, 3H), 6.89 (t, J =2.1 Hz, 2H), 6.34 (t, J =2.1 Hz, 2H), 1.56 (s, 6H). MS (ESI) m/z 346.1 ($M+1$)⁺.

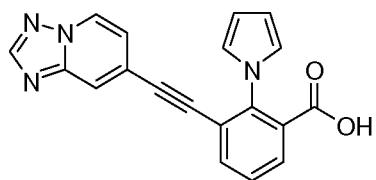
[0319] Example 32: Synthesis of 3-(3-hydroxy-4-methylpent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0320] 3-(3-hydroxy-4-methylpent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ¹H NMR (300MHz, CDCl₃) δ = 7.87 (dd, J =1.5, 7.9 Hz, 1H), 7.67 (dd, J =1.5, 7.6 Hz, 1H), 7.42 (t, J =7.7 Hz, 1H), 6.76 (t, J =2.1 Hz, 2H), 6.28 (t, J =2.1 Hz, 2H), 4.22 (dd, J =5.7, 12.2 Hz, 1H), 2.01 - 1.73 (m, 1H), 0.89 (d, J =6.7 Hz, 6H). MS (ESI) m/z 266.1 ($M-H_2O$)⁺.

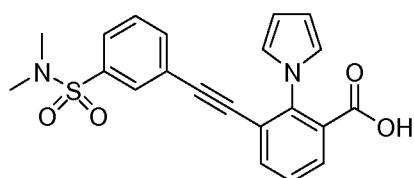
[0321] Example 33: Synthesis of 3-(3-hydroxy-3-phenylprop-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0322] 3-(3-hydroxy-3-phenylprop-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.84 (d, J =7.5 Hz, 1H), 7.68 (dd, J =1.6, 7.8 Hz, 1H), 7.44 - 7.19 (m, 6H), 6.83 (t, J =2.2 Hz, 2H), 6.31 (t, J =2.2 Hz, 2H), 5.48 (s, 1H). MS (ESI) m/z 300.0 ($\text{M}-\text{H}_2\text{O}$) $^+$.

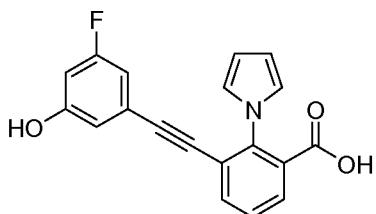
[0323] Example 34: Synthesis of 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid:


[0324] 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, DMSO) δ = 12.14 (br. s., 1H), 8.26 (d, J =3.5 Hz, 1H), 7.79 - 7.70 (m, 3H), 7.68 (dd, J =1.6, 7.8 Hz, 1H), 7.52 (t, J =7.8 Hz, 1H), 7.13 (dd, J =4.7, 7.9 Hz, 1H), 6.92 (t, J =2.2 Hz, 2H), 6.24 (t, J =2.2 Hz, 2H). MS (ESI) m/z 328.0 ($\text{M}+\text{H}$) $^+$.

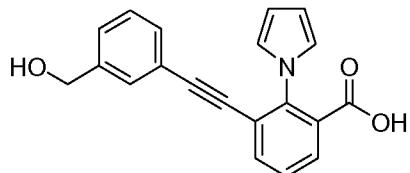
[0325] Example 35: Synthesis of 3-[2-(1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0326] 3-[2-(1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.85 - 7.79 (m, 2H), 7.44 (t, J =8.0 Hz, 1H), 7.39 - 7.35 (m, 1H), 7.24 - 7.18 (m, 2H), 7.11 (t, J =7.9 Hz, 1H), 6.95 (t, J =2.2 Hz, 2H), 6.51 - 6.47 (m, 1H), 6.36 (t, J =2.2 Hz, 2H). MS (ESI) m/z 327.0 ($\text{M}+\text{H}$) $^+$.

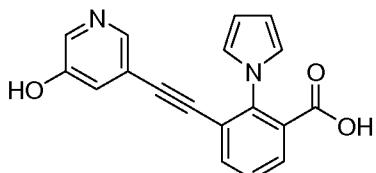
[0327] Example 36: Synthesis of 2-(1H-pyrrol-1-yl)-3-(2-{{[1,2,4]triazolo[1,5-a]pyridin-7-yl}ethynyl}benzoic acid:


[0328] 2-(1H-pyrrol-1-yl)-3-(2-{{1,2,4}triazolo[1,5-a]pyridin-7-yl}ethynyl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.51 (d, J =7.0 Hz, 1H), 8.38 (s, 1H), 7.93 (dd, J =1.6, 7.8 Hz, 1H), 7.79 (d, J =7.8 Hz, 1H), 7.75 (s, 1H), 7.49 (t, J =7.9 Hz, 1H), 6.93 - 6.87 (m, 3H), 6.37 (t, J =2.1 Hz, 2H). MS (ESI) m/z 329.1 ($\text{M}+\text{H}$) $^+$.

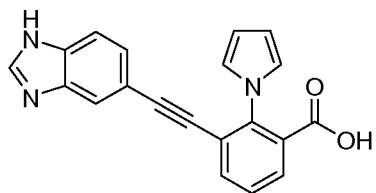
[0329] Example 37: Synthesis of 3-{2-[3-(dimethylsulfamoyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:


[0330] 3-{2-[3-(dimethylsulfamoyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.89 (dd, J =1.6, 7.8 Hz, 1H), 7.82 - 7.64 (m, 3H), 7.50 - 7.42 (m, 3H), 6.89 (t, J =2.1 Hz, 2H), 6.34 (t, J =2.1 Hz, 2H), 2.76 (s, 6H). MS (ESI) m/z 395.1 ($\text{M}+\text{H}$) $^+$.

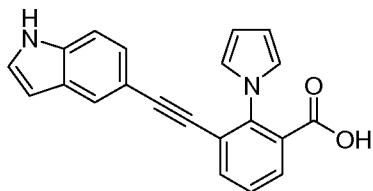
[0331] Example 38: Synthesis of 3-[2-(3-fluoro-5-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0332] 3-[2-(3-fluoro-5-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.84 (dd, J =1.6, 7.8 Hz, 1H), 7.72 (dd, J =1.6, 7.8 Hz, 1H), 7.43 (t, J =7.8 Hz, 1H), 6.87 (t, J =2.2 Hz, 2H), 6.64 - 6.47 (m, 3H), 6.33 (t, J =2.2 Hz, 2H). MS (ESI) m/z 322.0 ($\text{M}+\text{H}$) $^+$.

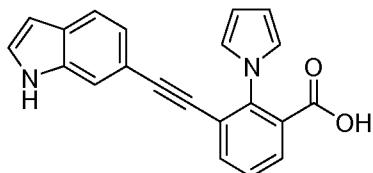
[0333] Example 39: Synthesis of 3-{2-[3-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid:


[0334] 3-{2-[3-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.83 (d, $J=8.0$ Hz, 1H), 7.73 (d, $J=7.7$ Hz, 1H), 7.43 (t, $J=7.9$ Hz, 1H), 7.36 - 7.23 (m, 4H), 6.89 (t, $J=2.1$ Hz, 2H), 6.33 (t, $J=2.1$ Hz, 2H), 4.63 (s, 2H). MS (ESI) m/z 318.0 ($\text{M}+\text{H}$) $^+$.

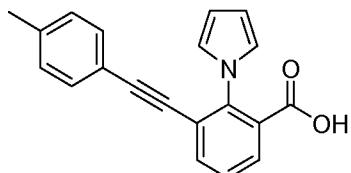
[0335] Example 40: Synthesis of 3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0336] 3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.15 (s, 1H), 8.02 (s, 1H), 7.89 (dd, $J=1.6, 7.8$ Hz, 1H), 7.75 (dd, $J=1.6, 7.8$ Hz, 1H), 7.47 (t, $J=7.7$ Hz, 1H), 7.25 - 7.22 (m, 1H), 6.87 (t, $J=2.2$ Hz, 2H), 6.34 (t, $J=2.2$ Hz, 2H). MS (ESI) m/z 305.1 ($\text{M}+\text{H}$) $^+$.

[0337] Example 41: Synthesis of 3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0338] 3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. MS (ESI) m/z 328.1 ($\text{M}+\text{H}$) $^+$.

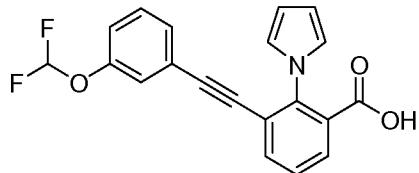
[0339] Example 42: Synthesis of 3-[2-(1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0340] 3-[2-(1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 8.03 (s, 1 H), 7.82 (dd, J =1.6, 7.8 Hz, 1H), 7.79 - 7.73 (m, 2H), 7.47 - 7.40 (m, 2H), 7.34 - 7.28 (m, 1H), 6.92 (t, J =2.2 Hz, 2H), 6.37 (t, J =2.1 Hz, 2H). MS (ESI) m/z 328.1 ($\text{M}+\text{H}$) $^+$.

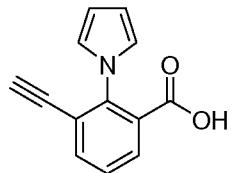
[0341] Example 43: Synthesis of 3-[2-(1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0342] 3-[2-(1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, DMSO) δ = 11.29 (br. s., 1H), 7.79 (dd, J =1.5, 7.7 Hz, 1H), 7.69 (dd, J =1.6, 7.8 Hz, 1H), 7.51 (t, J =7.6 Hz, 2H), 7.44 (t, J =2.8 Hz, 1H), 7.37 (s, 1H), 6.95 - 6.90 (m, 3H), 6.46 - 6.42 (m, 1H), 6.24 (t, J =2.2 Hz, 2H). MS (ESI) m/z 327.0 ($\text{M}+\text{H}$) $^+$.

[0343] Example 44: Synthesis of 3-[2-(4-methylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid

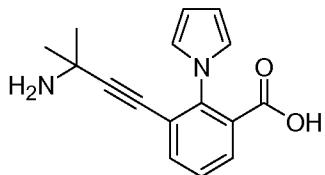

[0344] 3-[2-(4-methylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.88 (dd, J =1.6, 7.8 Hz, 1H), 7.77 (dd, J =1.5, 7.6 Hz, 1H), 7.47 (t, J =7.8 Hz, 1H), 7.20 (d, J =7.5 Hz, 2H), 7.10 (d, J =7.5 Hz, 2H), 6.88 (t, J =2.2 Hz, 2H), 6.37 (t, J =2.1 Hz, 2H), 2.34 (s, 3H). MS (ESI) m/z 302.0 ($\text{M}+\text{H}$) $^+$.

[0345] Example 45: Synthesis of 3-[2-(3,5-difluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid

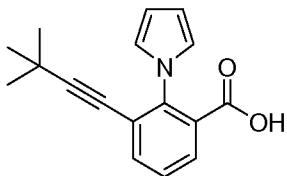

[0346] 3-[2-(3,5-difluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.95 (d, J =8.0 Hz, 1H), 7.78 (d, J =7.7 Hz, 1H), 7.48 (t, J =7.8 Hz, 1H), 6.87 - 6.74 (m, 5H), 6.39 (t, J =2.1 Hz, 2H). MS (ESI) m/z 323.2 ($\text{M}-\text{H}_2\text{O}$) $^+$.

[0347] Example 46: Synthesis of 3-{2-[3-(difluoromethoxy)phenyl]ethynyl}-2-(1H-pyrrol-1-yl) benzoic acid

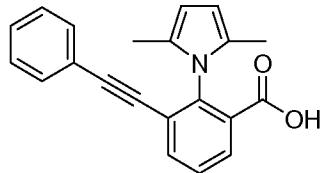
[0348] 3-{2-[3-(difluoromethoxy)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 1. ^1H NMR (300MHz, CDCl_3) δ = 7.92 (dd, J =1.8,7.8 Hz, 1H), 7.78 (dd, J =1.6, 7.8 Hz, 1H), 7.47 (t, J =7.8 Hz, 1H), 7.33 - 7.22 (m, 1H), 7.19 - 7.14 (m, 1H), 7.10 – 7.04 (m, 2H), 6.86 (t, J =2.2 Hz, 2H), 6.49 (t, J =73.6 Hz, 1H), 6.37 (t, J =2.2 Hz, 2H). MS (ESI) m/z 354.1 ($\text{M}+\text{H}$) $^+$.


[0349] Example 47: Synthesis of 3-ethynyl-2-(1H-pyrrol-1-yl)benzoic acid:

[0350] To 3-ethynyl-2-pyrrol-1-yl-benzoic acid methyl ester (50 mg, 0.22 mmol) in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 43 mg (92%) of the pure product as a white solid. ^1H NMR

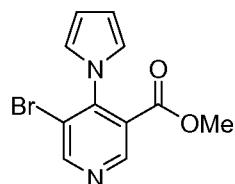

(300MHz, CDCl₃) δ = 7.70 – 7.58 (m, 2H), 7.39 (t, *J*=7.8 Hz, 1H), 6.80 (t, *J*=2.1 Hz, 1H), 6.31 (t, *J*=2.1 Hz, 2H), 3.65 (s, 2H). MS (ESI) *m/z* 212.0 (M+H)⁺.

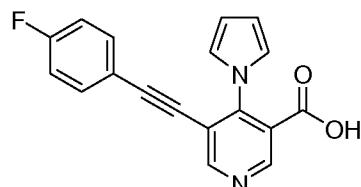
[0351] Example 48: Synthesis of 3-(3-amino-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0352] 3-(3-amino-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ¹H NMR (300MHz, DMSO) δ = 8.49 (br. s., 2H), 7.76 (dd, *J*=1.8, 7.6 Hz, 1H), 7.66 (dd, *J*=1.8, 7.6 Hz, 1H), 7.52 (t, *J*=7.6 Hz, 1H), 6.82 (t, *J*=2.2 Hz, 2H), 6.17 (t, *J*=2.2 Hz, 2H), 1.41 (s, 6H). MS (ESI) *m/z* 269.0 (M+H)⁺.

[0353] Example 49: Synthesis of 3-(3,3-dimethylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:

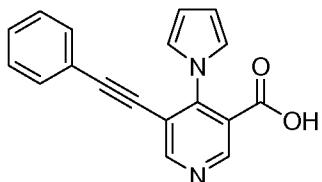
[0354] 3-(3,3-dimethylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ¹H NMR (300MHz, CDCl₃) δ = 7.78 (dd, *J*=1.2, 7.6 Hz, 1H), 7.61 (dd, *J*=1.2, 7.6 Hz, 1H), 7.35 (t, *J*=7.8 Hz, 1H), 6.76 (t, *J*=1.9 Hz, 2H), 6.26 (t, *J*=1.9 Hz, 2H), 1.14 (s, 9H). MS (ESI) *m/z* 268.2 (M+H)⁺.


[0355] Example 50: Synthesis of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid:

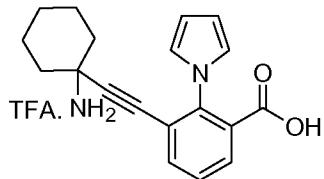

[0356] 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 21. ¹H NMR (300MHz, CDCl₃) δ =

8.04 (dd, $J=1.6, 7.8$ Hz, 1H), 7.81 (d, $J=7.6$ Hz, 1H), 7.52 (t, $J=7.9$ Hz, 1H), 7.36 - 7.21 (m, 5H), 5.97 (s, 2H), 1.97 (s, 6H). MS (ESI) m/z 316.0 ($M+H$)⁺.

[0357] Example 51: Synthesis of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid:

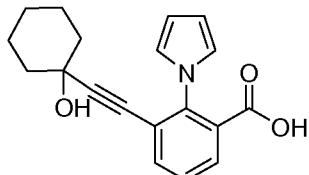


[0358] 5-Bromo-4-pyrrol-1-yl-nicotinic acid methyl ester was prepared in the same manner as 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester.

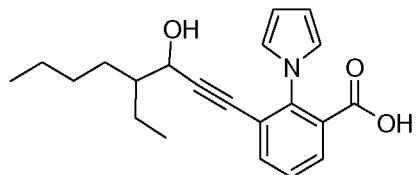

2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 9 starting from 5-bromo-4-pyrrol-1-yl-nicotinic acid methyl ester. MS (ESI) m/z 307.0 ($M+H$)⁺.

[0359] Example 52: Synthesis of 5-(2-phenylethynyl)-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid

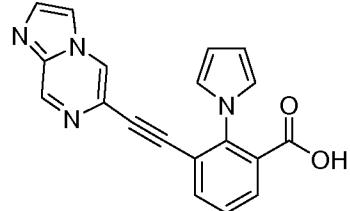
[0365] 5-(2-phenylethynyl)-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid was prepared by the same procedure as example 51. MS (ESI) m/z 289.0 ($M+H$)⁺.


[0360] Example 53: Synthesis of 3-[2-(1-aminocyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid trifluoroacetic acid

[0361] 3-[2-(1-aminocyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid trifluoroacetic acid was prepared by the same procedure as example 9. ¹H NMR

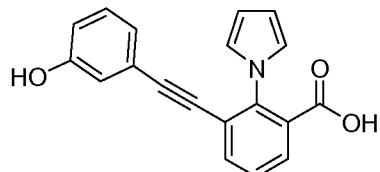

(300MHz, CDCl₃) δ = 7.87 (dd, *J*=1.5, 7.9 Hz, 1H), 7.68 (dd, *J*=1.6, 7.8 Hz, 1H), 7.42 (t, *J*=7.8 Hz, 1H), 6.77 (t, *J*=2.2 Hz, 2H), 6.25 (t, *J*=2.2 Hz, 2H), 3.22 (br. s., 2H), 2.00 - 1.95 (m, 2H), 1.79 - 1.51 (m, 5H), 1.48 – 1.05 (m, 3H). MS (ESI) *m/z* 292.1 (M-H₂O)⁺.

[0362] Example 54: Synthesis of 3-[2-(1-hydroxycyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid

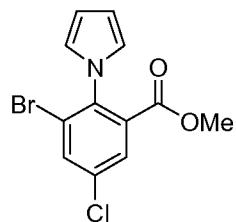

[0363] 3-[2-(1-hydroxycyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ¹H NMR (300MHz, CDCl₃) δ = 7.78 (d, *J*=7.7 Hz, 1H), 7.61 (d, *J*=7.6 Hz, 1H), 7.36 (t, *J*=7.8 Hz, 1H), 6.76 (t, *J*=2.0 Hz, 2H), 6.23 (t, *J*=2.0 Hz, 2H), 1.84 - 1.71 (m, 2H), 1.62 - 1.10 (m, 8H). MS (ESI) *m/z* 292.1 (M-H₂O)⁺.

[0364] Example 55: Synthesis of 3-(4-ethyl-3-hydroxyoct-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid

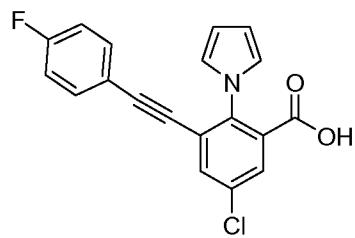
[0365] 3-(4-ethyl-3-hydroxyoct-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. MS (ESI) *m/z* 322.2 (M-H₂O)⁺.


[0366] Example 56: Synthesis of 3-(2-{imidazo[1,2-a]pyrazin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid

[0367] 3-(2-{imidazo[1,2-a]pyrazin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ¹H NMR (300MHz, DMSO) δ = 9.03 (s, 1H), 8.64 (s, 1H), 8.19 (s, 1H), 7.93 - 7.75 (m, 2H), 7.57 (dd,

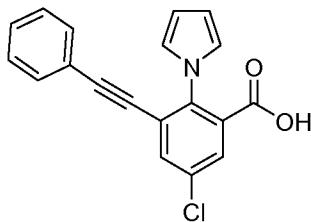

$J=1.6, 7.8$ Hz, 1H), 7.56 (t, $J=7.8$ Hz, 1H), 6.92 (t, $J=2.2$ Hz, 2H), 6.24 (t, $J=2.2$ Hz, 2H). MS (ESI) m/z 328.9 ($M+H$)⁺.

[0368] Example 57: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid

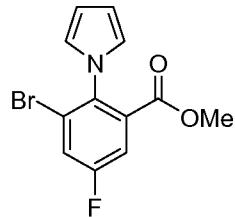


[0369] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. 1 H NMR (300MHz, $CDCl_3$) δ = 7.79 (dd, $J=1.6, 7.8$ Hz, 1H), 7.66 (dd, $J=1.6, 7.8$ Hz, 1H), 7.39 (t, $J=7.8$ Hz, 1H), 7.11 (t, $J=7.0$ Hz, 1H), 6.90 – 6.71 (m, 5H), 6.30 (t, $J=2.2$ Hz, 2H)., MS (ESI) m/z 304.1 ($M+H$)⁺.

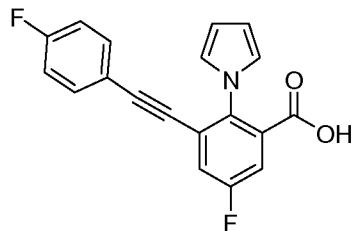
[0370] Example 58: Synthesis of 5-chloro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid


[0371] 3-Bromo-5-chloro-2-pyrrol-1-yl-benzoic acid methyl ester was prepared in the same manner as 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester.

[0372] 5-chloro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9 starting from 3-bromo-5-chloro-2-pyrrol-1-yl-benzoic acid methyl ester. 1 H NMR (300MHz, $CDCl_3$) δ = 7.85 (d, $J=3.6$ Hz, 1H), 7.73 (d, $J=2.4$ Hz, 1H), 7.33 - 7.23 (m, 2H), 7.04 - 6.95

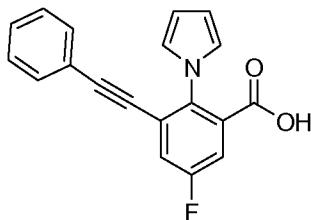

(m, 2H), 6.82 (t, $J=2.0$ Hz, 2H), 6.36 (t, $J=2.0$ Hz, 2H). MS (ESI) m/z 340.1 ($M+H$)⁺.

[0373] Example 59: Synthesis of 5-chloro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid

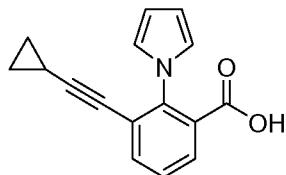


[0374] 5-Chloro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example **58**. 1 H NMR (300MHz, $CDCl_3$) δ = 7.83 (d, $J=2.3$ Hz, 1H), 7.74 (d, $J=2.3$ Hz, 1H), 7.35 - 7.25 (m, 5H), 6.82 (t, $J=2.0$ Hz, 2H), 6.35 (t, $J=1.8$ Hz, 2H). MS (ESI) m/z 322.1 ($M+H$)⁺.

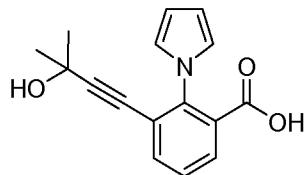
[0375] Example 60: Synthesis of 5-fluoro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid



[0376] 3-Bromo-5-fluoro-2-pyrrol-1-yl-benzoic acid methyl ester was prepared in the same manner as 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester.


[0377] 5-Fluoro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example **9** starting from 3-bromo-5-fluoro-2-pyrrol-1-yl-benzoic acid methyl ester. 1 H NMR (300MHz, $CDCl_3$) δ = 7.59 (dd, $J=2.9, 8.2$ Hz, 1H), 7.45 (dd, $J=2.6, 7.9$ Hz, 1H), 7.31 - 7.24 (m, 2H), 7.02 - 6.94 (m, 2H), 6.82 (t, $J=2.0$ Hz, 2H), 6.35 (t, $J=2.0$ Hz, 2H). MS (ESI) m/z 324.0 ($M+H$)⁺.

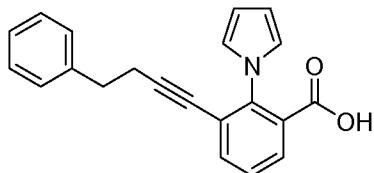
[0378] Example 61: Synthesis of 5-fluoro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid


[0379] 5-fluoro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 60. ^1H NMR (300MHz, CDCl_3) δ = 7.58 (dd, J =3.1, 8.1 Hz, 1H), 7.46 (dd, J =2.9, 8.2 Hz, 1H), 7.36 - 7.25 (m, 5H), 6.81 (t, J =2.2 Hz, 2H), 6.35 (t, J =2.1 Hz, 2H).

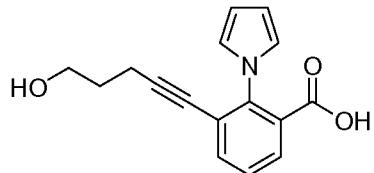
[0380] Example 62: Synthesis of 3-(2-cyclopropylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid


[0381] 3-(2-cyclopropylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.77 (dd, J =1.6, 7.8 Hz, 1H), 7.61 (dd, J =1.6, 7.8 Hz, 1H), 7.34 (t, J =7.8 Hz, 1H), 6.74 (t, J =2.2 Hz, 2H), 6.26 (t, J =2.2 Hz, 2H), 1.31 - 1.22 (m, 1H), 0.83 - 0.69 (m, 2H), 0.69 - 0.60 (m, 2H). MS (ESI) m/z 234.0 ($\text{M}-\text{H}_2\text{O}$) $^+$.

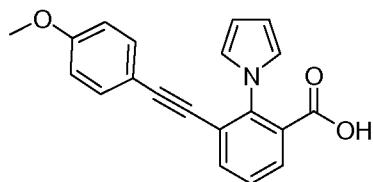
[0382] Example 63: Synthesis of 3-(3-hydroxy-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0383] 3-(3-hydroxy-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.77 (d, J =7.7 Hz, 1H), 7.57 (dd, J =1.6, 7.8 Hz, 1H), 7.34 (t, J =7.8 Hz, 1H), 6.75 (t, J =2.2 Hz, 2H), 6.24 (t, J =2.2 Hz, 2H), 1.39 (s, 6H). MS (ESI) m/z 252.1 ($\text{M}-\text{H}_2\text{O}$) $^+$.

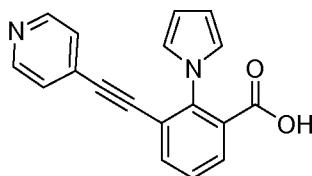
[0384] Example 64: Synthesis of 3-[3-(dimethylamino)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0385] 3-[3-(dimethylamino)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.95 (dd, J =1.6, 7.8 Hz, 1H), 7.70 (dd, J =1.6, 7.8 Hz, 1H), 7.49 (t, J =7.8 Hz, 1H), 6.78 (t, J =2.2 Hz, 2H), 6.26 (t, J =2.1 Hz, 2H), 4.01 (s, 2H), 2.61 (s, 6H). MS (ESI) m/z 269.1 ($\text{M}+\text{H}$) $^+$.

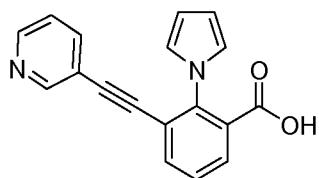
[0386] Example 65: Synthesis of 3-(4-phenylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0387] 3-(4-phenylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.78 (dd, J =1.6, 7.8 Hz, 1H), 7.60 (dd, J =1.6, 7.8 Hz, 1H), 7.37 - 7.09 (m, 6H), 6.76 (t, J =2.2 Hz, 2H), 6.28 (t, J =2.1 Hz, 2H), 2.76 (t, J =7.5 Hz, 2H), 2.55 (t, J =7.3 Hz, 2H). MS (ESI) m/z 316.1 ($\text{M}+\text{H}$) $^+$.

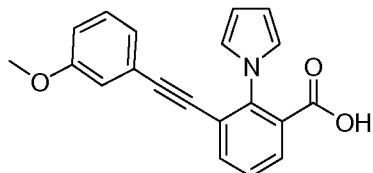
[0388] Example 66: Synthesis of 3-(5-hydroxypent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid:


[0389] 3-(5-hydroxypent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.77 (d, J =7.8 Hz, 1H), 7.61 (d, J =7.8 Hz, 1H), 7.29 (t, J =7.8 Hz, 1H), 6.78 (t, J =2.2 Hz, 2H), 6.30 (t, J =2.2 Hz, 2H), 3.53 (t, J =9.5 Hz, 2H), 2.40 (t, J =9.7 Hz, 2H), 1.71 - 1.62 (m, 2H). MS (ESI) m/z 270.1 ($\text{M}+\text{H}$) $^+$.

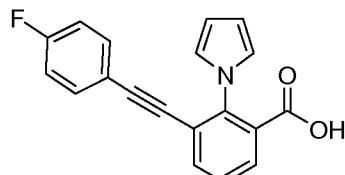
[0390] Example 67: Synthesis of 3-[2-(4-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0391] 3-[2-(4-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.86 (dd, J =1.6, 7.8 Hz, 1H), 7.75 (dd, J =1.5, 7.9 Hz, 1H), 7.43 (t, J =7.9 Hz, 1H), 7.29 - 7.23 (m, 2H), 6.89 - 6.80 (m, 4H), 6.36 (t, J =2.2 Hz, 2H), 3.80 (s, 3H). MS (ESI) m/z 318.1 ($\text{M}+\text{H}$) $^+$.

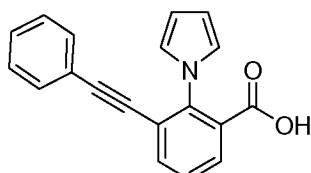
[0392] Example 68: Synthesis of 3-[2-(pyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid


[0393] 3-[2-(pyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 8.63 (d, J =6.5 Hz, 2H), 7.97 (dd, J =1.6, 7.8 Hz, 1H), 7.79 (dd, J =1.6, 7.8 Hz, 1H), 7.51 (t, J =7.8 Hz, 1H), 7.44 - 7.40 (m, 2H), 6.78 (t, J =2.2 Hz, 2H), 6.30 (t, J =2.2 Hz, 2H). MS (ESI) m/z 289.1 ($\text{M}+\text{H}$) $^+$.

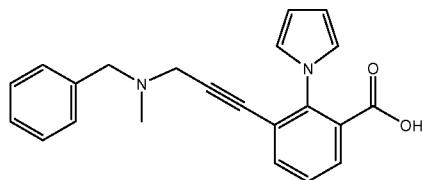
[0394] Example 69: Synthesis of 3-[2-(pyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid


[0395] 3-[2-(pyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = ^1H NMR (300MHz, CDCl_3) δ = 8.80 - 8.55 (m, 2H), 7.99 - 7.87 (m, 2H), 7.80 - 7.74 (m, 1H), 7.65 - 7.55 (m, 1H), 7.51 (t, J =7.8 Hz, 1H), 6.86 (t, J =2.2 Hz, 2H), 6.35 (t, J =2.2 Hz, 2H). MS (ESI) m/z 289.1 ($\text{M}+\text{H}$) $^+$.

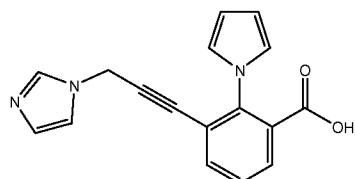
[0396] Example 70: Synthesis of 3-[2-(3-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid


[0397] 3-[2-(3-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.90 (dd, J =1.7, 7.8 Hz, 1H), 7.78 (dd, J =1.6, 7.8 Hz, 1H), 7.46 (t, J =7.9 Hz, 1H), 7.20 (t, J =7.9 Hz, 1H), 6.95 - 6.82 (m, 5H), 6.37 (t, J =2.2 Hz, 2H), 3.80 (s, 3H). MS (ESI) m/z 318.1 ($\text{M}+\text{H}$) $^+$.

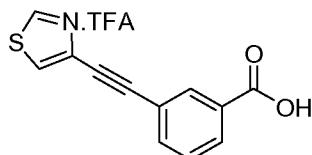
[0398] Example 71: Synthesis of 3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0399] 3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.88 (dd, J =1.5, 7.9 Hz, 1H), 7.75 (dd, J =1.6, 7.7 Hz, 1H), 7.44 (t, J =7.8 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.02 – 6.94 (m, 2H), 6.87 (t, J =2.2 Hz, 2H), 6.25 (t, J =2.2 Hz, 2H). MS (ESI) m/z 306.0 ($\text{M}+\text{H}$) $^+$.

[0400] Example 72: Synthesis of 3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid:

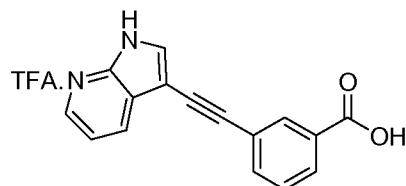

[0401] 3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CDCl_3) δ = 7.86 (dd, J =1.5, 7.9 Hz, 1H), 7.77 (dd, J =1.6, 7.8 Hz, 1H), 7.42 (t, J =7.9 Hz, 1H), 7.35 – 7.26 (m, 5H), 6.87 (t, J =2.1 Hz, 2H), 6.36 (t, J =2.1 Hz, 2H). MS (ESI) m/z 288.0 ($\text{M}+\text{H}$) $^+$.

[0402] Example 73: 3-{3-[benzyl(methyl)amino]prop-1-yn-1-yl}-2-(1H-pyrrol-1-yl)benzoic acid:

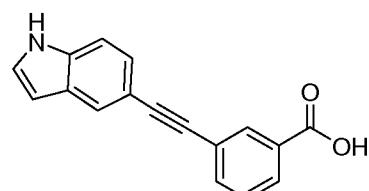

[0403] 3-{3-[benzyl(methyl)amino]prop-1-yn-1-yl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CD_3OD) δ = 7.82-7.6 (m, 2H), 7.58 - 7.45 (m, 4H), 7.42 - 7.38 (m, 1H), 6.90 (d, $J=3.4$ Hz, 2H), 6.82-6.55 (m, 1H), 6.28- 6.22 (m, 2H), 4.42- 4.21 (m, 2H), 4.08 (m, 2H), 2.75 - 2.67 (m, 3H). MS (ES $^+$) = 345.0 (MH^+).

[0404] Example 74: 3-[3-(1H-imidazol-1-yl)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid

[0405] 3-[3-(1H-imidazol-1-yl)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 9. ^1H NMR (300MHz, CD_3OD) δ = 8.89 (br. s., 1H), 8.79 - 8.63 (m, 1H), 8.60 - 8.44 (m, 1H), 8.37 - 8.22 (m, 1H), 8.16 - 8.07 (m, 1H), 7.91 - 7.76 (m, 1H), 7.61 - 7.48 (m, 1H), 7.36 (d, $J=7.6$ Hz, 1H), 7.00 (br. s., 1H), 6.51 (d, $J=12.0$ Hz, 1H), 4.64 (br. s., 2H). MS (ES $^+$) = 291.9 (M^+).

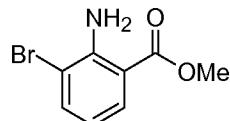

[0406] Example 75: Synthesis of 3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid:

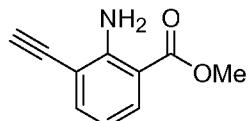
[0407] 3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid. A mixture of 3-ethynyl-1-ylbenzoic acid methyl ester (40 mg, 0.25 mmol), 4-bromo-thiazole (82 mg, 0.5 mmol), palladium tetrakis-triphenylphosphine (29 mg, 0.025 mmol) and copper iodide (9.5 mg, 0.05 mmol), potassium carbonate (69 mg, 0.5 mmol) in 1,2-dimethoxyethane/water (1 mL/0.3 mL) was degassed with N_2 for 5 minutes and


then heated at 60 °C for 4 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by preparative thin layered chromatography eluting with ethyl acetate/hexane (30%) to give the ester intermediate. To this intermediate in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 18 mg (22% for 2 steps) of the pure product as a white solid. ¹H NMR (300MHz, DMSO) δ = 13.2 (br. s., 1H), 9.18 (d, *J*=2.1 Hz, 1H), 8.19 (d, *J*=1.8 Hz, 1H), 8.05 (t, *J*=1.5 Hz, 1H), 7.98 (td, *J*=1.4, 7.8 Hz, 1H), 7.81 (td, *J*=1.4, 7.8 Hz, 1H), 7.57 (t, *J*=7.8 Hz, 1H). LCMS (ESI) *m/z* 230.0 (M+1)⁺.

[0408] Example 76: Synthesis of 3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid:

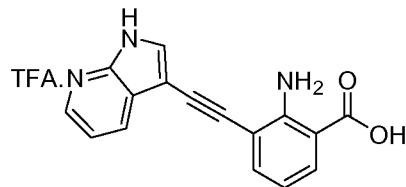
[0409] 3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 75. ¹H NMR (300MHz, DMSO) δ = 12.20 (br. s., 1H), 8.31 (dd, *J*=1.5, 4.7 Hz, 1H), 8.13 (dd, *J*=1.5, 7.9 Hz, 1H), 8.05 (d, *J*=2.4 Hz, 1H), 7.97 - 7.95 (m, 1H), 7.91 (d, *J*=7.7 Hz, 1H), 7.78 (d, *J*=7.6 Hz, 1H), 7.54 (t, *J*=7.8 Hz, 1H), 7.20 (dd, *J*=4.8, 7.8 Hz, 1H). LCMS (ESI) *m/z* 263.0 (M+1)⁺.


[0410] Example 77: Synthesis of 3-[2-(1H-indol-5-yl)ethynyl]benzoic acid:

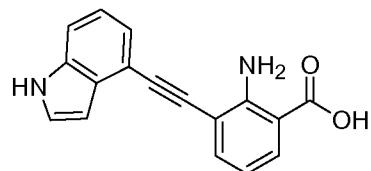

[0411] 3-[2-(1H-indol-5-yl)ethynyl]benzoic acid was prepared by the same procedure as example 75. ¹H NMR (300MHz, CDCl₃) δ = 9.30 (br. s., 1H), 8.23 (t, *J*=1.8 Hz, 1H), 7.98 (td, *J*=1.5, 7.9 Hz, 1H), 7.87 (d, *J*=0.9 Hz, 1H), 7.72 (td,

J=1.3, 7.9 Hz, 1H), 7.47 - 7.23 (m, 4H), 6.59 - 6.50 (m, 1H). LCMS (ESI) *m/z* 262.0 (M+1)⁺.

[0412] Example 78: Synthesis of 2-amino-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid



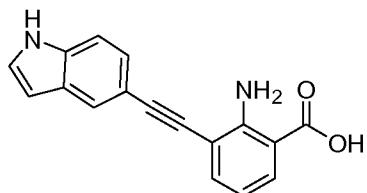
[0413] 2-Amino-3-bromo-benzoic acid methyl ester: 2-Amino-3-bromo-benzoic acid (5 g, 23 mmol) was dissolved in methanol (30 mL), concentrated sulfuric acid (1 mL) was added dropwise and the reaction mixture was refluxed at 80 °C for 24 hours, allowed to cool to ambient temperature and then concentrated at reduced pressure. The residue was diluted by water (10 mL) and basified with saturated sodium bicarbonate solution, extracted by ethyl acetate (20 mL x 3). The organic layer was dried (anhydrous magnesium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (10%) to give the product as a colorless oil (5 g, 95%).


[0414] 2-Amino-3-ethynyl-benzoic acid methyl ester: To a pressure flask was loaded a mixture of 2-amino-3-bromo-benzoic acid methyl ester (2 g, 8.7 mmol), Pd(PPh₃)₂Cl₂ (610 mg, 0.87 mmol) and CuI (331 mg, 1.74 mmol) in triethyl amine (20 mL), the mixture was degassed with N₂ for 10 minutes, trimethylsilylacetylene (4 mL) was added, and the mixture was further degassed for 3 minutes. The flask was sealed with a PTFE plug and heated at 90 °C for 5 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane and the filtrate was concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with hexane to give a solid intermediate. The solid intermediate was dissolved in tetrahydrofuran (15 mL), tetrabutyl ammonium fluoride (1 N in THF, 14 mL, 14 mmol) was added and the reaction mixture was stirred for 10 minutes and concentrated. The residue was purified by column chromatography through a

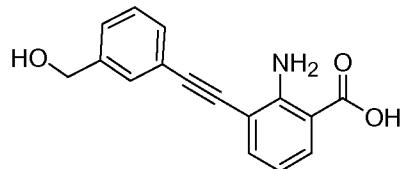
silica gel cartridge (80 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid (1.4 g, 86% for 2 steps).


[0415] 2-amino-3-(2-(1H-pyrrolo[2,3-b]pyridin-3-yl)ethynyl)benzoic acid was prepared by the same procedure as example **75** starting with 2-amino-3-ethynylbenzoic acid methyl ester. ^1H NMR (300MHz, CDCl_3) δ = 7.98 - 7.76 (m, 1H), 7.68 - 7.52 (m, 1H), 7.44 (d, $J=8.5$ Hz, 1H), 7.35 - 7.30 (m, 3H), 7.25 - 7.14 (m, 1H), 6.77 - 6.48 (m, 2H).

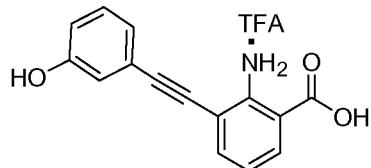
[0416] Example 79: Synthesis of 2-amino-3-[2-(1H-indol-4-yl)ethynyl]benzoic acid


[0417] 2-amino-3-[2-(1H-indol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example **78**. ^1H NMR (300MHz, CDCl_3) δ = 7.94 (td, $J=1.7$, 7.4 Hz, 2H), 7.60 (dd, $J=1.6$, 7.5 Hz, 1H), 7.53 (dd, $J=1.6$, 7.6 Hz, 1H), 7.44 (d, $J=8.2$ Hz, 1H), 7.35 - 7.29 (m, 1H), 7.17 (t, $J=8.0$ Hz, 1H), 6.76 - 6.52 (m, 3H). LCMS (ESI) m/z 278.0 ($\text{M}+1$) $^+$.

[0418] Example 80: Synthesis of 2-amino-3-[2-(1H-indol-6-yl)ethynyl]benzoic acid

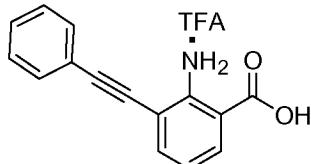

[0419] 2-amino-3-[2-(1H-indol-6-yl)ethynyl]benzoic acid was prepared by the same procedure as example **78**. ^1H NMR (300MHz, CDCl_3) δ = 7.91 (dd, $J=1.6$, 8.1 Hz, 1H), 7.72 - 7.44 (m, 3H), 7.41 - 7.17 (m, 4H), 6.64 (t, $J=7.8$ Hz, 1H), 6.55 (d, $J=3.4$ Hz, 1H). LCMS (ESI) m/z 278.0 ($\text{M}+1$) $^+$.

[0420] Example 81: Synthesis of 2-amino-3-[2-(1H-indol-5-yl)ethynyl]benzoic acid


[0421] 2-amino-3-[2-(1H-indol-5-yl)ethynyl]benzoic acid was prepared by the same procedure as example 78. LCMS (ESI) m/z 277.1 ($M+1$)⁺.

[0422] Example 82: Synthesis of 2-amino-3-{2-[3-(hydroxymethyl)phenyl]ethynyl}benzoic acid

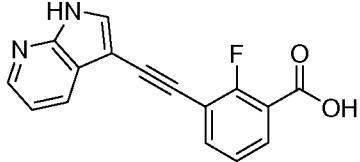
[0423] 2-amino-3-{2-[3-(hydroxymethyl)phenyl]ethynyl}benzoic acid was prepared by the same procedure as example 78. LCMS (ESI) m/z 250.1 ($M-H_2O$)⁺.


[0424] Example 83: Synthesis of 2-amino-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid

[0425] 2-amino-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid: To a sealed tube was loaded a mixture of 2-amino-3-bromo-benzoic acid methyl ester (50 mg, 0.22 mmol), $Pd(PPh_3)_2Cl_2$ (15.4 mg, 0.022 mmol) and CuI (4.2 mg, 0.022 mmol) in triethyl amine (1 mL). The mixture was degassed with N_2 for 10 minutes, 3-ethynyl-phenol (103 mg, 0.87 mmol) was added and the mixture degassed with N_2 for 5 minutes. The reaction mixture was heated at 90 °C for 5 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by preparative thin layer chromatography eluting with ethyl acetate/hexane (30%) to give a solid intermediate. To the solid intermediate in tetrahydrofuran/methanol

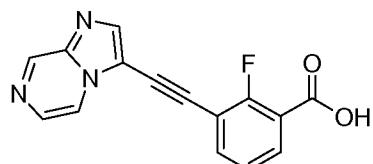

(1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 11 mg (14% for 2 steps) of the pure product as a white solid. LCMS (ESI) *m/z* 254.1 (M+1)⁺.

[0426] Example 84: Synthesis of 2-amino-3-(2-phenylethynyl)benzoic acid:

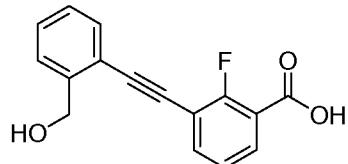

[0427] 2-amino-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 83. ¹H NMR (300 MHz, CDCl₃) δ = 7.93 (dd, *J*=1.6, 8.1 Hz, 1H), 7.58 - 7.50 (m, 4H), 7.39 - 7.34 (m, 4H), 6.64 (t, *J*=7.6 Hz, 1H). LCMS (ESI) *m/z* 220.2 (M-H₂O)⁺.

[0428] Example 85: Synthesis of 2-fluoro-3-(2-phenylethynyl)benzoic acid:

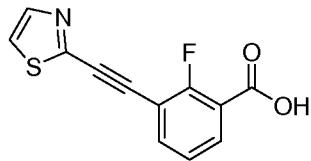
[0429] 2-fluoro-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 83 starting with 2-fluoro-3-bromobenzoic acid methyl ester. ¹H NMR (300 MHz, CDCl₃) δ 7.98 (m, 1H), 7.75 (m, 1H), 7.57 (m, 2H), 7.48 – 7.32 (m, 4H). MS *m/z* (M⁺) 240.7.


[0430] Example 86: Synthesis of 2-fluoro-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid:

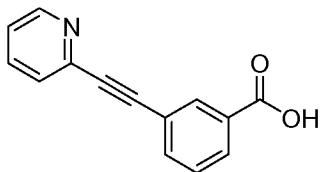
[0431] 2-fluoro-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 78 starting with 2-fluoro-3-bromobenzoic acid methyl ester. ¹H NMR (300 MHz, CD₃OD) δ 8.34 (bs, 1H),


8.25 (dd, $J = 7.9, 1.3$ Hz, 1H), 7.98 – 7.83 (m, 1H), 7.80 – 7.71 (m, 2H), 7.35 – 7.31 (m, 1H), 7.28 (t, $J = 7.7$ Hz, 1H). MS m/z (M+H) 281.0.

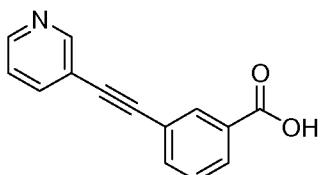
[0432] Example 87: Synthesis of 2-fluoro-3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)benzoic acid


[0433] 2-fluoro-3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 86. ^1H NMR (300 MHz, DMSO) δ 9.21 (d, $J = 1.5$ Hz, 1H), 8.66 (dd, $J = 4.6, 1.5$ Hz, 1H), 8.28 (s, 1H), 8.14 (d, $J = 4.5$ Hz, 1H), 8.06 – 7.97 (m, 1H), 7.97 – 7.89 (m, 1H), 7.41 (t, $J = 7.8$ Hz, 1H). MS m/z (M+H) 282.0

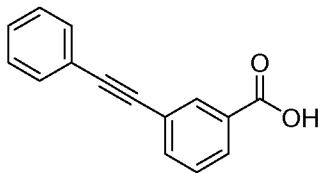
[0434] Example 88: Synthesis of 2-fluoro-3-{2-[2-(hydroxymethyl)phenyl]ethynyl}benzoic acid


[0435] 2-fluoro-3-{2-[2-(hydroxymethyl)phenyl]ethynyl}benzoic acid was prepared by the same procedure as example 86. ^1H NMR (300 MHz, CDCl_3) δ 7.94 – 7.85 (m, 1H), 7.71 – 7.61 (m, 1H), 7.58 – 7.47 (m, 2H), 7.43 – 7.34 (m, 1H), 7.32 – 7.25 (m, 1H), 7.23 – 7.14 (m, 1H), 4.89 (d, $J = 20.9$ Hz, 2H). MS m/z (M+) 270.7

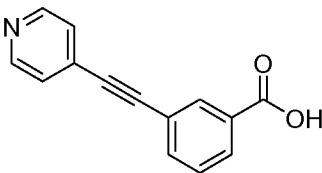
[0436] Example 89: Synthesis of 2-fluoro-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid:


[0437] 2-fluoro-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 86. ^1H NMR (300 MHz, DMSO) δ 13.49 (s, 1H), 9.20 (d, $J = 1.9$ Hz, 1H), 8.23 (d, $J = 1.9$ Hz, 1H), 8.05 – 7.52 (m, 2H), 7.36 (t, $J = 7.8$ Hz, 1H). MS m/z (M+H) 248.0

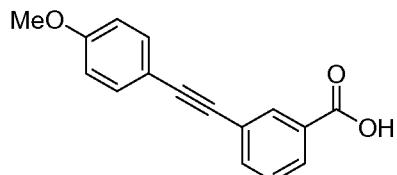
[0438] Example 90: Synthesis of 3-[2-(pyridin-2-yl)ethynyl]benzoic acid:


[0439] 3-[2-(pyridin-2-yl)ethynyl]benzoic acid was prepared by the same procedure as example 78 starting with 3-bromo-benzoic acid methyl ester. ^1H NMR (300 MHz, CDCl_3) δ 8.65 (s, 1H), 8.29 (s, 1H), 8.04 (d, $J = 7.9$ Hz, 1H), 7.78 (d, $J = 7.4$ Hz, 1H), 7.71 (dd, $J = 7.7, 6.0$ Hz, 1H), 7.55 (d, $J = 7.8$ Hz, 1H), 7.46 (t, $J = 7.8$ Hz, 1H), 7.28 (d, $J = 10.1$ Hz, 1H). MS m/z (M+H) 224.0

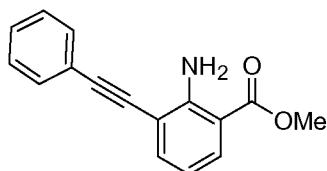
[0440] Example 91: Synthesis of 3-[2-(pyridin-3-yl)ethynyl]benzoic acid


[0441] 3-[2-(pyridin-3-yl)ethynyl]benzoic acid was prepared by the same procedure as example 90. ^1H NMR (300 MHz, CDCl_3) δ 8.79 (s, 1H), 8.57 (d, $J = 3.3$ Hz, 1H), 8.23 (s, 1H), 8.04 (d, $J = 7.9$ Hz, 1H), 7.83 (d, $J = 7.8$ Hz, 1H), 7.72 (d, $J = 7.7$ Hz, 1H), 7.46 (t, $J = 7.9$ Hz, 1H), 7.31 (dd, $J = 7.4, 4.6$ Hz, 2H). MS m/z (M+H) 224.1

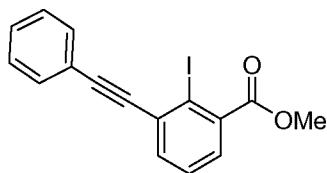
[0442] Example 92: Synthesis of 3-(2-phenylethynyl)benzoic acid:


[0443] 3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 90. ^1H NMR (300 MHz, CDCl_3) δ 8.21 (s, 1H), 8.00 (d, $J = 8.2$ Hz, 1H), 7.69 (s, 2H), 7.54 (d, $J = 3.5$ Hz, 2H), 7.45 (d, $J = 7.7$ Hz, 1H), 7.35 (d, $J = 2.6$ Hz, 2H). MS m/z (M+H) 223.1

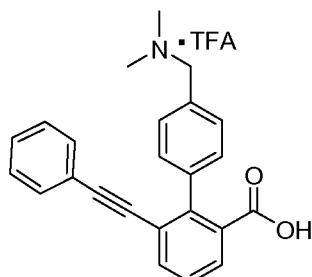
[0444] Example 93: Synthesis of 3-[2-(pyridin-4-yl)ethynyl]benzoic acid


[0445] 3-[2-(pyridin-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 90. ^1H NMR (300 MHz, CDCl_3) δ 8.63 (d, $J = 5.2$ Hz, 1H), 8.24 (s, 1H), 8.06 (d, $J = 7.9$ Hz, 1H), 7.73 (d, $J = 7.5$ Hz, 1H), 7.47 (t, $J = 8.0$ Hz, 1H), 7.45 – 7.34 (m, 2H), 7.26 (m, 1H). MS m/z (M+H) 224.0

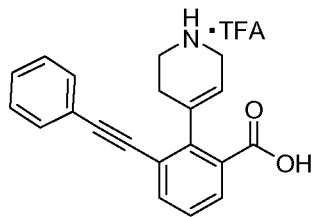
[0446] Example 94: Synthesis of 3-[2-(4-methoxyphenyl)ethynyl]benzoic acid:



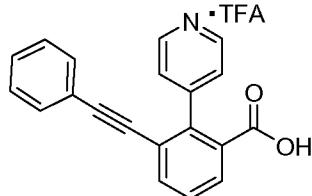
[0447] 3-[2-(4-methoxyphenyl)ethynyl]benzoic acid was prepared by the same procedure as example 90. ^1H NMR (300 MHz, CDCl_3) δ 8.19 (s, 1H), 7.97 (d, $J = 7.8$ Hz, 1H), 7.68 (d, $J = 7.6$ Hz, 1H), 7.48 (d, $J = 8.9$ Hz, 2H), 7.42 (t, $J = 7.7$ Hz, 1H), 6.89 (d, $J = 8.9$ Hz, 2H). MS m/z (M+H) 253.0


[0448] Example 95: Synthesis of 2-{4-[(dimethylamino)methyl]phenyl}-3-(2-phenylethynyl)benzoic acid trifluoroacetic acid salt:

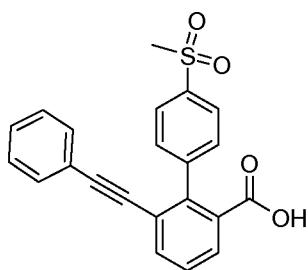
[0449] 2-Amino-3-phenylethynyl-benzoic acid methyl ester: To a sealed flask was loaded a mixture of 2-amino-3-bromo-benzoic acid methyl ester (4 g, 17.4 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (618 mg, 0.88 mmol) and copper iodide (335 mg, 1.76 mmol) in triethyl amine (80 mL). The mixture was degassed with N_2 for 10 minutes, phenylacetylene (7.2 g, 70.5 mmol) was added and the mixture was degassed with N_2 for 5 minutes. The reaction mixture was heated at 90 °C for 17 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (0 - 30%) to give 4.3 g (98%) of the product as a white solid.


[0450] 2-Iodo-3-phenylethynyl-benzoic acid methyl ester: A solution of 2-amino-3-phenylethynyl-benzoic acid methyl ester (1 g, 3.98 mmol) in 1,4-dioxane was treated with concentrated hydrochloric acid (7.8 mL) slowly and stirred for 10 minutes. At 0 °C sodium nitrite (304 mg, 4.4 mmol) in water (5 mL) was added and the reaction mixture was stirred at 0 °C for 1 hour. Potassium iodide (6.8 g, 4.1 mmol) in water (5.5 mL) was added at 0 °C and the solution was stirred at room temperature for 17 hours. Saturated sodium bicarbonate was added until bubbling ceased and the solution was extracted with dichloromethane (15 mL x 3), the organic extracts were combined, dried (anhydrous sodium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (40 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid (340 mg, 30%).

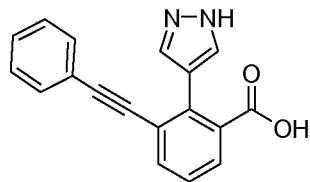
[0451] 2-{4-[(dimethylamino)methyl]phenyl}-3-(2-phenylethynyl)benzoic acid trifluoroacetic acid salt. A mixture of 2-iodo-3-phenylethynyl-benzoic acid methyl ester (25 mg, 0.069 mmol), dimethyl-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzyl]-amine (26 mg, 0.1 mmol), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride (6.1 mg, 0.007 mmol) and potassium carbonate (23 mg, 0.17 mmol) in 1,4-dioxane (0.8 mL) and water (0.2 mL) was degassed with N₂ for 10 minutes and heated at 90 °C for 17 hours. After cooling down the reaction mixture was partitioned between water and ethyl acetate, the organic layer was dried (sodium sulfate), filtered, concentrated and purified through preparative thin layer chromatography to give a solid intermediate. To this solid intermediate in tetrahydrofuran/methanol (1 mL/0.2


mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 13 mg (42% for 2 steps) of the pure product as a white solid. ^1H NMR (300MHz, CDCl_3) δ = 7.97 (d, $J=7.6$ Hz, 1H), 7.77 (d, $J=7.9$ Hz, 1H), 7.57 - 7.38 (m, 3H), 7.37 - 7.09 (m, 7H), 4.03 (s, 2H), 2.67 (s, 6H). LCMS (ESI) m/z 356.1 ($\text{M}+1$) $^+$.

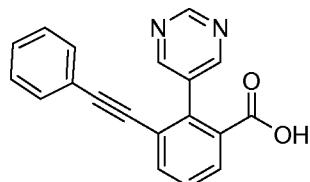
[0452] Example 96: Synthesis of 3-(2-phenylethynyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)benzoic acid trifluoroacetic acid salt:


[0453] 3-(2-phenylethynyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)benzoic acid trifluoroacetic acid salt was prepared by the same procedure as example 95. LCMS (ESI) m/z 304.1 ($\text{M}+1$) $^+$.

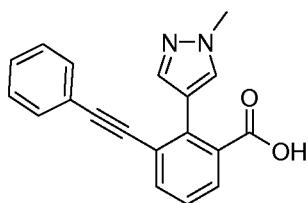
[0454] Example 97: 3-(2-phenylethynyl)-2-(pyridin-4-yl)benzoic acid trifluoroacetic acid salt:


[0455] 3-(2-phenylethynyl)-2-(pyridin-4-yl)benzoic acid trifluoroacetic acid salt was prepared by the same procedure as example 95. ^1H NMR (300MHz, CDCl_3) δ = 8.74 (d, $J=6.7$ Hz, 2H), 8.19 (dd, $J=1.2, 7.9$ Hz, 1H), 7.85 (dd, $J=1.3, 7.8$ Hz, 1H), 7.77 (d, $J=6.5$ Hz, 2H), 7.61 (t, $J=7.9$ Hz, 1H), 7.31 - 7.23 (m, 3H), 7.09 (dd, $J=1.6, 8.1$ Hz, 2H). LCMS (ESI) m/z 300.1 ($\text{M}+1$) $^+$.

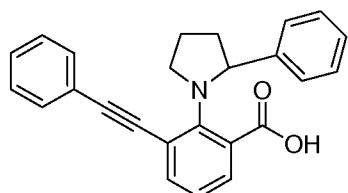
[0456] Example 98: Synthesis of 2-(4-methanesulfonylphenyl)-3-(2-phenylethynyl)benzoic acid


[0457] 2-(4-methanesulfonylphenyl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 95. ^1H NMR (300MHz, CDCl_3) δ = 8.04 - 7.99 (m, 3H), 7.82 (dd, J =1.2, 7.6 Hz, 1H), 7.58 - 7.48 (m, 3H), 7.29 - 7.22 (m, 3H), 7.09 - 7.04 (m, 2H), 3.11 (s, 3H). LCMS (ESI) m/z 377.0 ($\text{M}+1$) $^+$.

[0458] Example 99: Synthesis of 3-(2-phenylethynyl)-2-(1H-pyrazol-4-yl)benzoic acid

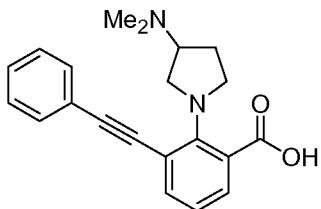

[0459] 3-Phenylethynyl-2-(1H-pyrazol-4-yl)-benzoic acid was prepared by the same procedure as example 95. ^1H NMR (300MHz, CDCl_3) δ = 8.03 (s, 2H), 7.91 (d, J =8.0 Hz, 1H), 7.81 (dd, J =1.3, 7.8 Hz, 1H), 7.48 (t, J =7.8 Hz, 1H), 7.35 - 7.27 (m, 5H). LCMS (ESI) m/z 289.1 ($\text{M}+1$) $^+$.

[0460] Example 100: Synthesis of 3-(2-phenylethynyl)-2-(pyrimidin-5-yl)benzoic acid:

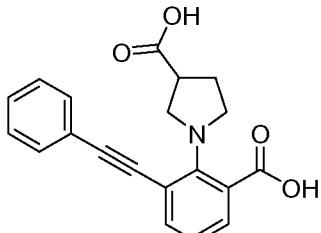

[0461] 3-(2-phenylethynyl)-2-(pyrimidin-5-yl)benzoic acid was prepared by the same procedure as example 95. ^1H NMR (300MHz, CDCl_3) δ = 9.18 (s, 1H), 8.74 (s, 2H), 8.06 (dd, J =1.5, 7.9 Hz, 1H), 7.81 (dd, J =1.3, 7.8 Hz, 1H), 7.51 (t, J =7.8 Hz, 1H), 7.28 - 7.15 (m, 5H). LCMS (ESI) m/z 301.1 ($\text{M}+1$) $^+$.

[0462] Example 101: Synthesis of 2-(1-methyl-1H-pyrazol-4-yl)-3-(2-phenylethynyl)benzoic acid:

[0463] 2-(1-methyl-1H-pyrazol-4-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **95**. ^1H NMR (300MHz, CDCl_3) δ = 8.87 (br. s., 1H), 7.93 - 7.89 (m, 1H), 7.89 (s, 1H), 7.80 (dd, J =1.3, 7.8 Hz, 1H), 7.70 (s, 1H), 7.44 (t, J =7.8 Hz, 1H), 7.36 - 7.26 (m, 5H), 4.08 (s, 3H). LCMS (ESI) m/z 303.0 ($\text{M}+1$) $^+$.

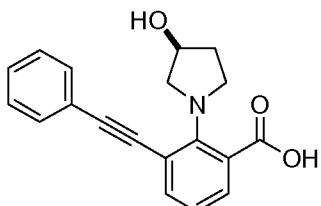

[0464] Example 102: Synthesis of 3-(2-phenylethynyl)-2-(2-phenylpyrrolidin-1-yl)benzoic acid

[0465] A solution of methyl 2-fluoro-3-bromobenzoate (6.41 mmol) and phenylacetylene (7.76 mmol) in tetrahydrofuran/triethylamine (32 mL/32 mL) was degassed using a N_2 gas balloon for 15 minutes in a sealed round bottom flask. To this solution was added Bis(triphenylphosphine)palladium(II) dichloride (450 mg, 0.64 mmol) and copper iodide (60 mg), sealed and heated to 80 °C for 16 hours. The reaction mixture was then cooled to ambient temperature, filtered through celite using ethyl acetate (50 mL). The filtrate was then concentrated under reduced pressure and purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product as a brown liquid in 70% yield. To a stirring solution of 2-fluoro-3-phenylethynyl-benzoic acid methyl ester (60 mg, 0.236 mmol) in dimethyl sulfoxide (2 mL) was added 2-phenylpyrrolidine (0.27 mmol), potassium carbonate (0.1 g, 0.7 mmol), and catalytic tetra butyl ammonium iodide. This solution was heated to 140 °C for 24 hours. The reaction mixture was then cooled to ambient temperature diluted with ethyl acetate (10 mL) washed with water (2 X 4 mL). The organic layers were washed with 1N hydrochloric acid (2 mL), water (2 mL), brine (2 mL) dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product

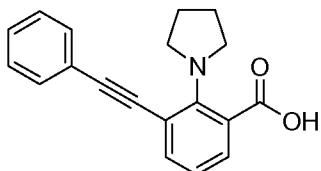

was then dissolved in terahydrofuran/methanol (1/1 mL) and added 2N sodium hydroxide solution (0.3 mL) and stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N hydrochloric acid solution. The aqueous layer was then extracted using ethyl acetate (2 X 5 mL) and washed with water (2 mL) and brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reversed phase HPLC. ^1H NMR (300 MHz, CDCl_3) δ 8.14 (d, $J = 7.7$ Hz, 1H), 7.76 (d, $J = 7.7$ Hz, 1H), 7.59 (dd, $J = 6.6, 3.1$ Hz, 2H), 7.46 (q, $J = 3.7$ Hz, 3H), 7.35 (t, $J = 7.7$ Hz, 1H), 7.23 (bs, 5H), 5.52 (t, $J = 7.8$ Hz, 1H), 4.05 – 3.86 (m, 1H), 3.75 (s, 1H), 2.61 – 2.28 (m, 4H). MS m/z (M+H) 368.1

[0466] Example 103: Synthesis of 2-(3-(dimethylamino)pyrrolidin-1-yl)-3-(phenylethynyl)benzoic acid:

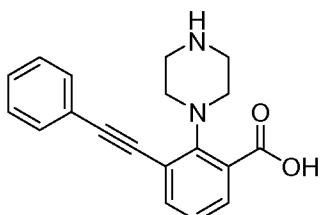
[0467] 2-(3-(dimethylamino)pyrrolidin-1-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example 102. ^1H NMR (300 MHz, CDCl_3) δ 8.32 (dd, $J = 7.9, 1.7$ Hz, 1H), 7.81 (dd, $J = 7.7, 1.7$ Hz, 1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.41 (m, 4H), 3.82 – 3.80 (m, 1H), 3.11 – 2.90 (m, 2H), 2.82 (s, 6H), 2.76 – 2.45 (m, 2H), 1.75 – 1.55 (m, 1H), 1.39 (dq, $J = 14.7, 7.3$ Hz, 1H). MS m/z (M+H) 335.2


[0468] Example 104: Synthesis of 1-(2-carboxy-6-(phenylethynyl)phenyl)pyrrolidine-3-carboxylic acid:

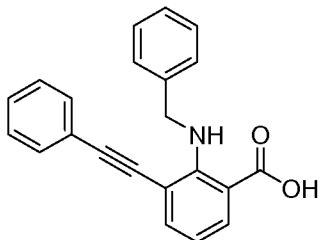
[0469] 1-(2-carboxy-6-(phenylethynyl)phenyl)pyrrolidine-3-carboxylic acid was prepared by the same procedure as example 102. ^1H NMR (300 MHz, CDCl_3) δ


8.31 (d, $J = 6.9$ Hz, 1H), 7.80-7.70 (m, 1H), 7.74 (ddd, $J = 8.5, 7.9, 4.7$ Hz, 1H), 7.53 (dd, $J = 6.7, 3.1$ Hz, 1H), 7.48 – 7.33 (m, 3H), 7.09 (td, $J = 7.9, 0.9$ Hz, 1H), 3.91 (m, 1H) 3.73 (bs, 1H), 3.21-2.91 (m, 2H), 2.53 (m, 1H), 1.63 (bs, 1H), 1.40 (dd, $J = 14.7, 7.1$ Hz, 1H). MS m/z (M+H) 336.4

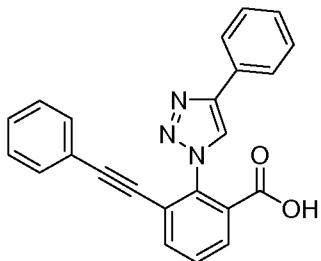
[0470] Example 105: Synthesis of (S)-2-(3-hydroxypyrrolidin-1-yl)-3-(phenylethynyl)benzoic acid:


[0471] (S)-2-(3-hydroxypyrrolidin-1-yl)-3-(phenylethynyl) benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CDCl_3) δ 8.32 (d, $J = 7.9$ Hz, 1H), 7.75 (d, $J = 7.6$ Hz, 1H), 7.50 (dd, $J = 13.1, 9.4$ Hz, 2H), 7.45-7.35 (m, 4H), 4.82 (s, 1H), 3.92 (d, $J = 12.1$ Hz, 1H), 3.87 – 3.69 (m, 3H), 3.49 (d, $J = 9.1$ Hz, 1H), 2.46 (s, 1H), 2.25 (s, 1H). MS m/z (M+H) 308.2

[0472] Example 106: Synthesis of 3-(phenylethynyl)-2-(pyrrolidin-1-yl) benzoic acid:


[0473] 3-(phenylethynyl)-2-(pyrrolidin-1-yl) benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CD_3OD) δ 8.25 (dd, $J = 7.9, 1.6$ Hz, 1H), 7.88 (dd, $J = 7.7, 1.5$ Hz, 1H), 7.68 – 7.51 (m, 3H), 7.47 – 7.33 (m, 3H), 3.85-3.75 (m, 4H), 2.49 – 2.19 (m, 4H). MS m/z (M+H) 292.1

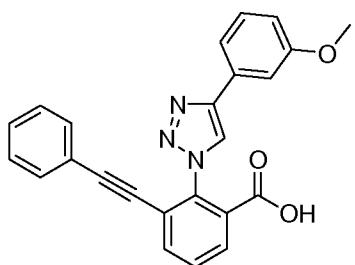
[0474] Example 107: Synthesis of 3-(phenylethynyl)-2-(piperazin-1-yl)benzoic acid:


[0475] 3-(phenylethynyl)-2-(piperazin-1-yl) benzoic acid acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CD_3OD) δ 7.70 (dd, J = 3.4, 1.6 Hz, 1H), 7.67 (dd, J = 3.6, 1.6 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.45 – 7.40 (m, 3H), 7.27 (td, J = 7.7, 3.3 Hz, 1H), 3.67 – 3.55 (m, 4H), 3.35 (dd, J = 8.8, 4.2 Hz, 4H). MS m/z (M+H) 307.2

[0476] Example 108: Synthesis of 2-(benzylamino)-3-(phenylethynyl)benzoic acid:

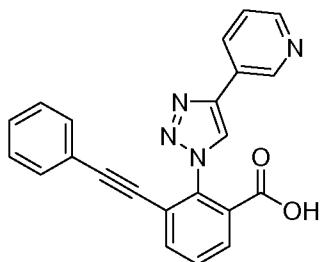
[0477] 2-(benzylamino)-3-(phenylethynyl) benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CDCl_3) δ 8.25 (d, J = 7.3 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.64 – 7.28 (m, 9H), 7.31 – 7.17 (m, 2H), 4.12 (s, 2H). MS m/z (M+H) 328.6

[0478] Example 109: Synthesis of 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-3-(2-phenylethynyl)benzoic acid

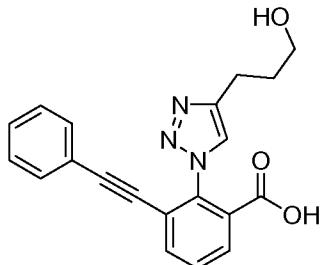


[0479] To a stirring solution of methyl 2-amino-3-bromobenzoate (0.23 g, 1 mmol) in water/1,4-dioxane (3.5/0.5 mL) at 0 °C was added concentrated hydrochloric acid (0.2 mL, 2.4 mmol) dropwise followed by a solution of sodium nitrite (0.07 g, 1 mmol) in water (1 mL) dropwise. This solution was stirred for 1 hour at 0 °C after which a solution of sodium azide (0.07 g, 1 mmol) in water (1 mL) was added. The resultant mixture was allowed to warm to ambient temperature and stirred for 3 hours. After 3 hours, the reaction mixture was extracted with dichloromethane (2 x 10 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced

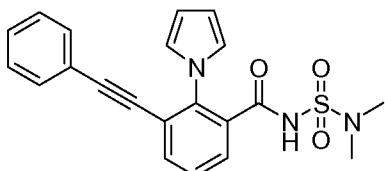
pressure. The resulting crude product was used as is in the next reaction. To a stirring solution of methyl 2-azido-3-bromobenzoate (0.07 g, 0.27 mmol) in *tert*-butanol: water (1:1 mL) was added alkyne (0.27 mmol), 1M sodium ascorbate solution in water (0.1 mL) and copper sulfate (~5 mg). This solution was stirred for 24 hours at ambient temperature. After 24 hours the reaction mixture was extracted with ethyl acetate (2 x 10 mL). The organic layers were washed with water (5 mL), brine (5 mL) and dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product as a pale yellow solid in 45 % overall yield.


[0480] A solution of 3-bromo-2-(4-phenyl-[1,2,3]triazol-1-yl)-benzoic acid methyl ester (0.11 mmol) and phenylacetylene (0.11 mmol) in terahydrofuran:triethylamine (1:1 mL) was deaerated using a N₂ gas balloon for 2 minutes. To this solution was added Bis(triphenylphosphine)palladium(II) dichloride (10 mg, 0.011 mmol) and copper iodide (5 mg) and heated to 80 °C for 16 hours. The reaction mixture was then cooled to ambient temperature, filtered through celite using ethyl acetate (5 mL). The resultant solution was the concentrated under reduced pressure and purified via either short silica gel cartridge or preparative thin layer chromatography eluting with ethyl acetate/hexanes. This product was then dissolved in terahydrofuran/methanol (1/1 mL) and 2N sodium hydroxide solution (0.3 mL) was added and the solution was stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N hydrochloric acid solution. The aqueous layer was then extracted using ethyl acetate (2 X 5 mL) and washed with brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reversed phase HPLC. ¹H NMR (300 MHz, CD₃OD) δ 8.74 (s, 1H), 8.10 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.93 (dtd, *J* = 5.0, 3.0, 1.8 Hz, 3H), 7.74 (t, *J* = 7.8 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.41 – 7.32 (m, 1H), 7.27 (tdd, *J* = 10.1, 3.7, 1.9 Hz, 1H), 7.22 – 7.17 (m, 4H). MS *m/z* (M+H) 366.0.

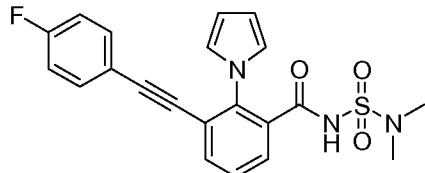
[0481] Example 110: Synthesis of 2-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-3-(phenylethynyl) benzoic acid:


[0482] 2-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CD_3OD) δ 8.75 (s, 1H), 8.10 (dd, $J = 7.8, 1.5$ Hz, 1H), 7.94 (dd, $J = 7.8, 1.5$ Hz, 1H), 7.74 (t, $J = 7.8$ Hz, 1H), 7.49 (dt, $J = 2.5, 1.5$ Hz, 2H), 7.37 (dd, $J = 8.2, 7.6$ Hz, 1H), 7.28 (tdd, $J = 5.0, 4.5, 3.1$ Hz, 1H), 7.23 – 7.18 (m, 4H), 6.95 (ddd, $J = 8.2, 2.5, 1.1$ Hz, 1H), 3.82 (d, $J = 20.1$ Hz, 3H). MS m/z (M+H) 396.1

[0483] Example 111: Synthesis of 3-(phenylethynyl)-2-(4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl) benzoic acid:


[0484] 3-(phenylethynyl)-2-(4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl)benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CD_3OD) δ 9.37 (d, $J = 1.9$ Hz, 1H), 9.07 (s, 1H), 9.00 – 8.88 (m, 1H), 8.76 (d, $J = 4.3$ Hz, 1H), 8.16 (dd, $J = 7.9, 1.5$ Hz, 1H), 8.06 – 8.01 (m, 1H), 7.99 (dd, $J = 7.9, 1.5$ Hz, 1H), 7.79 (t, $J = 7.8$ Hz, 1H), 7.34 – 7.26 (m, 1H), 7.26 – 7.17 (m, 4H). MS m/z (M+H) 367.1

[0485] Example 112: Synthesis of 2-(4-(3-hydroxypropyl)-1H-1,2,3-triazol-1-yl)-3-(phenylethynyl) benzoic acid:


[0486] 2-(4-(3-hydroxypropyl)-1H-1,2,3-triazol-1-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example **102**. ^1H NMR (300 MHz, CD₃OD) δ 8.09 (s, 1H), 8.08 – 8.01 (m, 1H), 7.90 (dd, J = 7.8, 1.5 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.39 – 7.21 (m, 5H), 3.60 (t, J = 6.4 Hz, 2H), 2.92 (dd, J = 17.8, 10.3 Hz, 2H), 1.94 (dq, J = 9.8, 6.4 Hz, 2H). MS m/z (M+H) 348.1

[0487] Example 113: Synthesis of N-(Dimethylsulfamoyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl) benzamide:

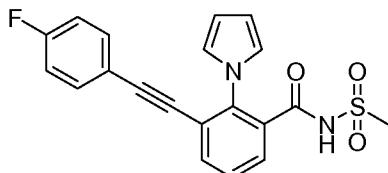
[0488] To a solution of 3-phenylethynyl-2-pyrrol-1-yl-benzoic acid (50 mg, 0.17 mmol) in N,N-dimethylformamide (0.25 mL) was added N,N-dimethylsulfamide (43 mg, 0.35 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (67 mg, 0.35 mmol), and hydroxyl-benzotriazole hydrate (43 mg, 0.35 mmol). After 16 hours, the reaction mixture was diluted with ethyl acetate (40 mL) and washed with dilute hydrochloric acid (30 mL, 0.1N), saturated aqueous sodium hydrogen carbonate (30 mL) and saturated aqueous sodium chloride (25 mL). The organic layer was concentrated at reduce pressure. The resulting oil was purified by column chromatography through a silica gel cartridge (4 g) eluting with ethyl acetate/hexane (1/4 to 1/2) to give the product as a white foam. ^1H NMR (300MHz, CDCl₃) δ = 7.95 (dd, J =1.6, 7.8 Hz, 1H), 7.79 (d, J =7.6 Hz, 1H), 7.54 (t, J =7.8 Hz, 1H), 7.36 - 7.23 (m, 5H), 6.92 (t, J =2.2 Hz, 2H), 6.54 (t, J =2.2 Hz, 2H), 2.90 (s, 6H). MS (ES⁺) = 394 (MH)⁺.


[0489] Example 114: Synthesis of N-(Dimethylsulfamoyl)-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzamide:

[0490] N-(Dimethylsulfamoyl)-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl) was prepared by the same procedure as example **113**. ^1H NMR (300MHz, CDCl₃) δ = 7.95 (dd, J =1.6, 7.8 Hz, 1H), 7.77 (dd, J =1.5, 7.6 Hz, 1H), 7.54 (t, J =7.8 Hz,

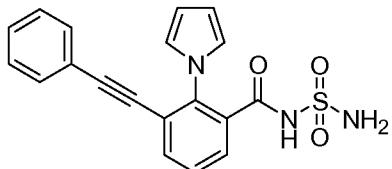
1H), 7.39 (br s, 1H), 7.31 - 7.20 (m, 1H), 7.02 - 6.90 (m, 1H), 6.91 (t, $J=2.2$ Hz, 2H), 6.54 (t, $J=2.2$ Hz, 2H), 2.90 (s, 6H). MS (ES⁺) = 412 (MH)⁺.

[0491] Example 115: Synthesis of N-(morpholine-4-sulfonyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide:

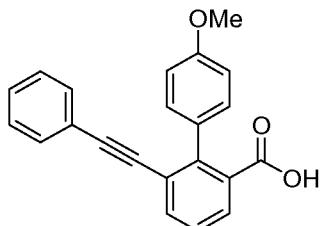

[0492] N-(morpholine-4-sulfonyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide was prepared by the same procedure as example **113**. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (dt, $J=15.9, 8.0$ Hz, 1H), 7.87 - 7.74 (m, 1H), 7.54 (t, $J=7.8$ Hz, 1H), 7.46 (bs, 1H), 7.36 - 7.22 (m, 5H), 7.00 - 6.85 (m, 2H), 6.59 - 6.48 (m, 2H), 3.70 (m, 4H), 3.49 - 3.05 (m, 4H). MS *m/z* (M+H) 436.4.

[0493] Example 116: Synthesis of N-[(1,1-dioxo-4-thiomorpholin-4-yl)sulfonyl]-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide

[0494] N-[(1,1-dioxo-4-thiomorpholin-4-yl)sulfonyl]-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide was prepared by the same procedure as example **113**. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (dd, $J=7.9, 1.6$ Hz, 1H), 7.83 (dd, $J=7.8, 1.6$ Hz, 1H), 7.57 (t, $J=7.8$ Hz, 1H), 7.52 (bs, 1H), 7.36 - 7.22 (m, 5H), 7.00 - 6.85 (m, 2H), 6.56 (t, $J=2.1$ Hz, 2H), 3.96 - 3.79 (m, 4H), 3.25 - 2.96 (m, 4H). MS *m/z* (M+H) 484.7


[0495] Example 117: Synthesis of 3-[2-(4-fluorophenyl)ethynyl]-N-methanesulfonyl-2-(1H-pyrrol-1-yl)benzamide:

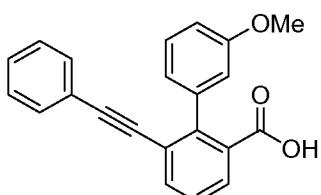
[0496] 3-[2-(4-fluorophenyl)ethynyl]-N-methanesulfonyl-2-(1H-pyrrol-1-yl)benzamide was prepared by the same procedure as example **113**. ¹H NMR


(300 MHz, CD₃OD) δ 7.64 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.54 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.36 – 7.26 (m, 2H), 7.10 – 7.00 (m, 2H), 6.96 – 6.89 (m, 2H), 6.29 – 6.22 (m, 2H), 2.86 (s, 3H). MS *m/z* (M+H) 383.0

[0497] Example 118: Synthesis of 3-(phenylethynyl)-2-(1H-pyrrol-1-yl)-N-sulfamoylbenzamide:

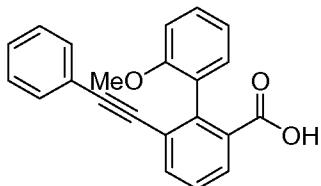
[0498] 3-(phenylethynyl)-2-(1H-pyrrol-1-yl)-N-sulfamoyl benzamide was prepared by the same procedure as example 113. ¹H NMR (300 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.82 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.60 – 7.52 (m, 1H), 7.50 (bs, 1H), 7.37 – 7.26 (m, 5H), 6.97 – 6.91 (m, 2H), 6.60 – 6.52 (m, 3H), 5.12 (bs, 2H). MS *m/z* (M+H) 366.3

[0499] Example 119: Synthesis of 2-(4-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid:

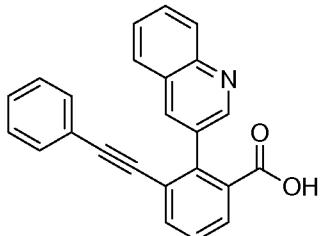


[0500] To a stirring solution of 2-bromo-3-iodobenzoic acid (1 g, 3.1 mmol) in dimethyl sulfoxide (5 mL) was added potassium carbonate (2.1 g, 15 mmol) followed by iodomethane (0.7 g, 4.6 mmol) and stirred for 12 hours at ambient temperature. The reaction mixture was then diluted with ethyl acetate (40 mL) washed with water (2 x 10 mL). The organic layer were washed brine (10 mL) dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified through silica gel cartridge eluting with ethyl acetate/hexanes to give methyl 2-bromo-3-iodobenzoate as a pale yellow liquid in 90% overall yield.

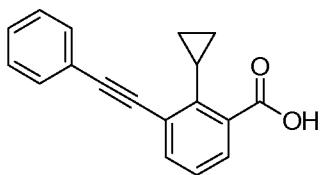
[0501] A solution of methyl 2-bromo-3-iodobenzoate (1 g, 2.9 mmol) and phenylacetylene (4.4 mmol) in terahydrofuran:triethylamine (20:20 mL) was deaerated using a N₂ gas balloon for 15 minutes in a round bottom flask. To this


solution was added Bis(triphenylphosphine)palladium(II) dichloride (210 mg, 0.3 mmol) and copper iodide (30 mg) and stirred for 16 hours at ambient temperature. The reaction mixture was then filtered through celite using ethyl acetate (50 mL). The resultant solution was concentrated under reduced pressure and purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product as a brown solid. To a stirring solution of this product (0.05 g, 0.16 mmol) in 1,4-dioxane/water (1/1 mL) was added 4-methoxyphenylboronic acid (0.32 mmol), [1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with dichloromethane (15 mg, 0.02 mmol) and potassium carbonate (45 mg, 0.32 mmol) and heated to 80 °C for 16 hours. The resultant mixture was allowed to cool to ambient temperature and was diluted with ethyl acetate (5 mL). The aqueous layer was extracted with ethyl acetate (2 x 2 mL) and the combined organic layers were washed with water (2 mL), brine (2 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified either through a small silica gel cartridge or preparative thin layer chromatography eluting with ethyl acetate/hexanes. The product so obtained was then dissolved in terahydrofuran/methanol (1/1 mL) and added 2N sodium hydroxide solution (0.3 mL) and stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N hydrochloric acid solution. The aqueous layer was then extracted using ethyl acetate (2 x 5 mL) and washed with water (2 mL) and brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reversed phase HPLC. ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.7, 5.2 Hz, 2H), 7.38 (dd, *J* = 9.7, 5.8 Hz, 1H), 7.33 (dt, *J* = 5.0, 2.8 Hz, 1H), 7.24 (m, 6H), 7.05 – 6.82 (m, 2H), 3.62 (s, 3H). MS *m/z* (M-H₂O) 312.0

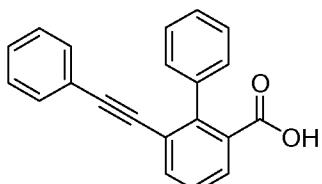
[0502] Example 120: Synthesis of 2-(3-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid:


[0503] 2-(3-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.75 (dd, J = 9.3, 7.8 Hz, 2H), 7.39 (dd, J = 12.3, 4.4 Hz, 1H), 7.36 – 7.29 (m, 1H), 7.28 – 7.22 (m, 3H), 7.22 – 7.15 (m, 2H), 6.99 – 6.90 (m, 3H), 3.61 (s, 3H). MS m/z (M- H_2O) 312.1

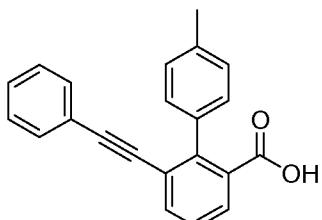
[0504] Example 121: Synthesis of 2-(2-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid:


[0505] 2-(2-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.94 – 7.81 (m, 1H), 7.81 – 7.67 (m, 1H), 7.47 – 7.32 (m, 2H), 7.28 (dt, J = 5.5, 2.7 Hz, 1H), 7.25 – 7.15 (m, 3H), 7.16 – 7.10 (m, 2H), 7.05 (td, J = 7.4, 1.0 Hz, 1H), 6.96 (dt, J = 7.9, 4.0 Hz, 1H), 3.64 (s, 3H). MS m/z (M- H_2O) 312.1

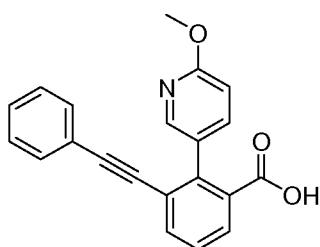
[0506] Example 122: Synthesis of 3-(2-phenylethynyl)-2-(quinolin-3-yl)benzoic acid:


[0507] 3-(2-phenylethynyl)-2-(quinolin-3-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 8.92 (bs, 1H), 8.24 – 8.15 (m, 2H), 7.97 (dd, J = 7.8, 1.3 Hz, 1H), 7.91 – 7.81 (m, 2H), 7.77 (t, J = 7.7 Hz, 1H), 7.59 (t, J = 6.9 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.24 – 7.06 (m, 3H), 7.06 – 6.98 (m, 2H). MS m/z (M+H) 350.1

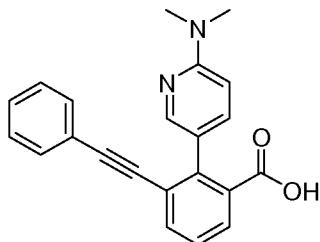
[0508] Example 123: Synthesis of 2-cyclopropyl-3-(2-phenylethynyl)benzoic acid:


[0509] 2-cyclopropyl-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.67 – 7.44 (m, 4H), 7.44 – 7.31 (m, 3H), 7.30 – 7.15 (m, 1H), 2.34 – 2.10 (m, 1H), 1.15 – 0.84 (m, 2H), 0.79 – 0.50 (m, 2H). MS m/z (M+H) 263.1

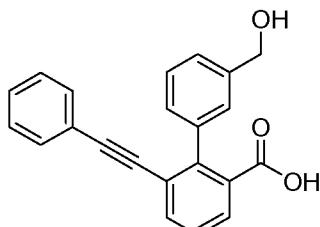
[0510] Example 124: Synthesis of 2-phenyl-3-(2-phenylethynyl)benzoic acid:


[0511] 2-phenyl-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.86 – 7.76 (m, 1H), 7.77 – 7.66 (m, 1H), 7.52 – 7.27 (m, 6H), 7.30 – 7.18 (m, 3H), 7.18 – 7.02 (m, 2H). MS m/z (M+Na) 321.0.

[0512] Example 125: Synthesis of 2-(4-methylphenyl)-3-(2-phenylethynyl)benzoic acid:

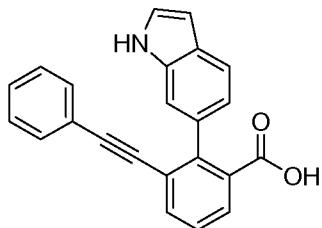

[0513] 2-(4-methylphenyl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.75 (ddd, J = 10.5, 7.8, 1.4 Hz, 2H), 7.51 – 7.30 (m, 1H), 7.33 – 7.25 (m, 6H), 7.20 – 7.15 (m, 3H), 2.43 (s, 3H). MS m/z (M+Na) 335.1.

[0514] Example 126: Synthesis of 2-(6-methoxypyridin-3-yl)-3-(2-phenylethynyl)benzoic acid:

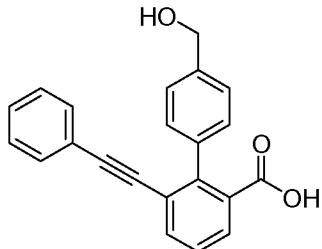

[0515] 2-(6-methoxypyridin-3-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 8.13 (dd, $J = 2.5, 0.7$ Hz, 1H), 7.84 (dd, $J = 7.8, 1.4$ Hz, 1H), 7.79 – 7.73 (m, 1H), 7.65 (dd, $J = 8.5, 2.5$ Hz, 1H), 7.42 (t, $J = 7.8$ Hz, 1H), 7.32 – 7.20 (m, 5H), 6.83 (ddd, $J = 8.6, 2.0, 0.7$ Hz, 1H), 3.68 (s, 3H). MS m/z (M+H) 330.0

[0516] Example 127: Synthesis of 2-[6-(dimethylamino)pyridin-3-yl]-3-(2-phenylethynyl)benzoic acid:

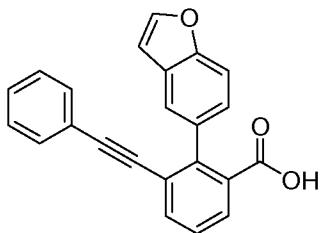
[0517] 2-[6-(dimethylamino)pyridin-3-yl]-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 8.17 (dd, $J = 2.5, 0.7$ Hz, 1H), 7.75 (ddd, $J = 9.2, 7.8, 1.4$ Hz, 2H), 7.60 – 7.53 (m, 1H), 7.41 – 7.32 (m, 1H), 7.32 – 7.21 (m, 5H), 6.58 (dd, $J = 8.8, 0.7$ Hz, 1H), 3.13 (s, 6H). MS m/z (M+H) 343.1


[0518] Example 128: Synthesis of 2-[3-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid:

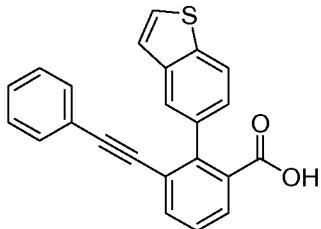
[0519] 2-[3-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.85 (dd, $J = 7.8, 1.4$ Hz, 1H), 7.75 (dd, $J = 7.8, 1.4$ Hz, 1H), 7.48 – 7.33 (m, 5H),


7.25 (dd, $J = 5.0, 2.0$ Hz, 3H), 7.15 (dd, $J = 6.5, 3.3$ Hz, 2H), 4.67 (s, 2H). MS m/z (M+H) 329.0.

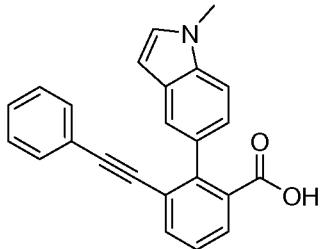
[0520] Example 129: Synthesis of 2-(1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid:


[0521] 2-(1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 11.18 (s, 1H), 7.74 (dd, $J = 7.7, 1.3$ Hz, 1H), 7.70 – 7.63 (m, 1H), 7.57 (d, $J = 8.1$ Hz, 1H), 7.45 (t, $J = 7.7$ Hz, 1H), 7.39 (dd, $J = 7.2, 4.7$ Hz, 2H), 7.27 (dd, $J = 9.4, 3.2$ Hz, 3H), 7.12 (dd, $J = 7.6, 1.9$ Hz, 2H), 7.02 (dd, $J = 8.1, 1.5$ Hz, 1H), 6.46 (s, 1H). MS m/z (M+H) 338.0

[0522] Example 130: Synthesis of 2-[4-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid:

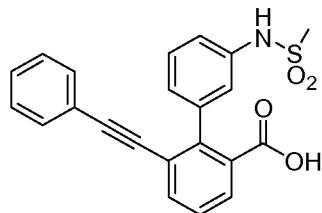

[0523] 2-[4-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.83 – 7.77 (m, 1H), 7.74 (dd, $J = 7.8, 0.7$ Hz, 1H), 7.42 (t, $J = 7.4$ Hz, 1H), 7.39 – 7.33 (m, 5H), 7.28 – 7.19 (m, 3H), 7.19 – 7.09 (m, 2H), 4.77 (s, 2H). MS m/z (M+H) 329.0

[0524] Example 131: Synthesis of 2-(1-benzofuran-5-yl)-3-(2-phenylethynyl)benzoic acid:

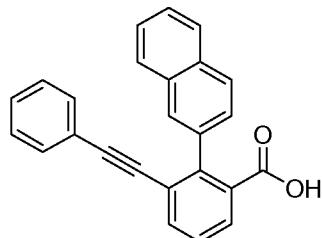

[0525] 2-(1-benzofuran-5-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.81 – 7.76 (m, 2H), 7.74 (dd, J = 7.8, 1.4 Hz, 1H), 7.61 (d, J = 1.8 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.46 (dd, J = 9.8, 5.8 Hz, 1H), 7.34 – 7.26 (m, 1H), 7.25 – 7.13 (m, 3H), 7.07 – 6.96 (m, 2H), 6.88 (dd, J = 2.2, 0.9 Hz, 1H). MS m/z (M+H) 339.0

[0526] Example 132: Synthesis of 2-(1-benzothiophen-5-yl)-3-(2-phenylethynyl)benzoic acid:

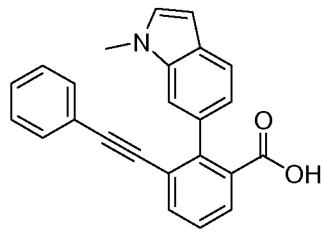
[0527] 2-(1-benzothiophen-5-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.95 (d, J = 8.3 Hz, 1H), 7.86 – 7.79 (m, 2H), 7.75 (dd, J = 7.8, 1.3 Hz, 1H), 7.60 (d, J = 5.5 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.41 (dd, J = 5.5, 0.7 Hz, 1H), 7.35 (dd, J = 8.3, 1.6 Hz, 1H), 7.26 – 7.08 (m, 3H), 7.01 – 6.90 (m, 2H). MS m/z (M- H_2O) 337.0


[0528] Example 133: Synthesis of 2-(1-methyl-1H-indol-5-yl)-3-(2-phenylethynyl)benzoic acid:

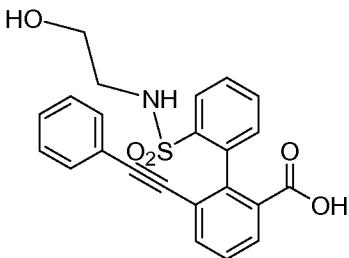
[0529] 2-(1-methyl-1H-indol-5-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.72 (dd, J = 3.9, 1.4 Hz, 1H), 7.70 (dd, J = 4.1, 1.4 Hz, 1H), 7.60 (d, J = 1.1 Hz,


1H), 7.45 – 7.37 (m, 3H), 7.26 – 7.11 (m, 5H), 7.06 (dt, J = 8.2, 2.1 Hz, 2H), 3.85 (s, 3H). MS m/z (M+H) 352.0

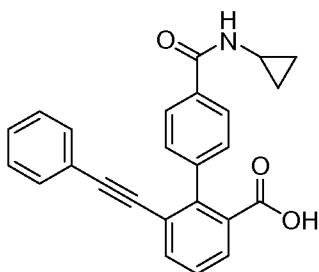
[0530] Example 134: Synthesis of 2-(3-methanesulfonamidophenyl)-3-(2-phenylethynyl)benzoic acid:


[0531] 2-(3-methanesulfonamidophenyl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 119. 1 H NMR (300 MHz, CD₃OD) δ 7.84 (dd, J = 7.8, 1.3 Hz, 1H), 7.75 (dd, J = 7.8, 1.3 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.33 – 7.23 (m, 5H), 7.20 – 7.09 (m, 3H), 2.83 (s, 3H). MS m/z (M-H₂O) 373.9

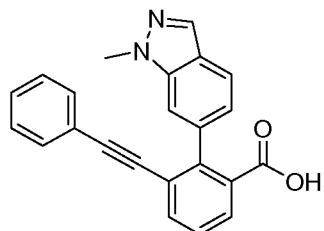
[0532] Example 135: Synthesis of 2-(naphthalen-2-yl)-3-(2-phenylethynyl)benzoic acid:


[0533] 2-(naphthalen-2-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 119. 1 H NMR (300 MHz, CDCl₃) δ 8.11 – 7.70 (m, 6H), 7.68 – 7.39 (m, 4H), 7.22 – 7.01 (m, 3H), 7.00 – 6.85 (m, 2H). MS m/z (M+H) 349.1.

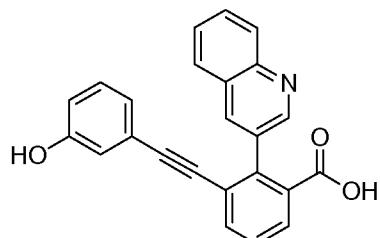
[0534] Example 136: Synthesis of 2-(1-methyl-1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid:


[0535] 2-(1-methyl-1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.87 (dd, $J = 7.8, 1.4$ Hz, 1H), 7.77 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.66 (dd, $J = 8.1, 0.6$ Hz, 1H), 7.44 – 7.36 (m, 2H), 7.23 – 7.11 (m, 4H), 7.09 (d, $J = 3.1$ Hz, 1H), 7.05 – 6.99 (m, 2H), 6.53 (dd, $J = 3.1, 0.8$ Hz, 1H), 3.74 (d, $J = 6.5$ Hz, 3H). MS m/z (M+H) 352.0

[0536] Example 137: Synthesis of 2-{2-[(2-hydroxyethyl)sulfamoyl]phenyl}-3-(2-phenylethynyl) benzoic acid:


[0537] 2-{2-[(2-hydroxyethyl)sulfamoyl]phenyl}-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.91 (ddd, $J = 7.6, 5.6, 1.4$ Hz, 2H), 7.85 – 7.75 (m, 2H), 7.64 (td, $J = 7.6, 0.5$ Hz, 1H), 7.60 – 7.56 (m, 1H), 7.53 (t, $J = 7.8$ Hz, 1H), 7.32 – 7.18 (m, 3H), 7.14 (ddd, $J = 4.3, 3.8, 2.5$ Hz, 2H), 3.44 (t, $J = 5.9$ Hz, 2H), 2.89 (t, $J = 5.9$ Hz, 2H). MS m/z (M+H) 422.2

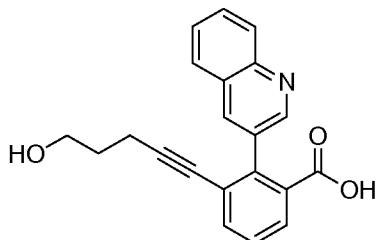
[0538] Example 138: Synthesis of 2-[4-(cyclopropylcarbamoyl)phenyl]-3-(2-phenylethynyl)benzoic acid:


[0539] 2-[4-(cyclopropylcarbamoyl)phenyl]-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.86 (ddd, $J = 5.7, 3.5, 1.6$ Hz, 3H), 7.76 (dd, $J = 7.8, 1.3$ Hz, 1H), 7.49 (t, $J = 7.8$ Hz, 1H), 7.45 – 7.39 (m, 2H), 7.32 – 7.16 (m, 3H), 7.16 – 7.02 (m, 2H), 2.88 (ddd, $J = 11.1, 7.3, 3.9$ Hz, 1H), 0.89 – 0.76 (m, 2H), 0.71 – 0.60 (m, 2H). MS m/z (M+H) 382.4

[0540] Example 139: Synthesis of 2-(1-methyl-1H-indazol-6-yl)-3-(2-phenylethynyl)benzoic acid:

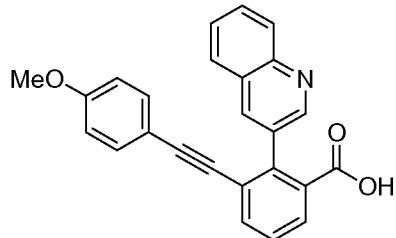
[0541] 2-(1-methyl-1H-indazol-6-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, CDCl_3) δ 8.04 (d, $J = 0.8$ Hz, 1H), 7.84 (dt, $J = 7.8, 4.1$ Hz, 1H), 7.77 (dd, $J = 7.9, 1.3$ Hz, 2H), 7.49 – 7.38 (m, 2H), 7.24 – 7.10 (m, 4H), 7.04 – 6.93 (m, 2H), 3.56 (s, 3H). MS m/z (M $^+$) 352.6

[0542] Example 140: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(quinolin-3-yl)benzoic acid:

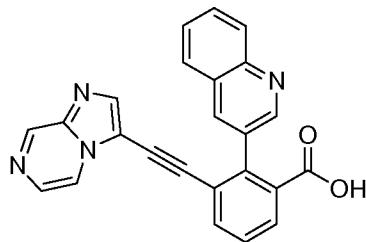

[0543] To a stirring solution of 2-amino-3-bromobenzoic acid (1 g, 4.65 mmol) in water/1,4-dioxane (20 mL/2 mL) at 0 °C was added concentrated hydrochloric acid (1 mL, 11.2 mmol) dropwise followed by a solution of sodium nitrite (0.32 g, 4.65 mmol) in 10 mL water dropwise. This solution was stirred for 1 hour at 0 °C after which a solution of potassium iodide (6.9 g, 42 mmol) in 12 mL water was added. The resultant mixture was allowed to warm to ambient temperature and stirred for 12 hours. After 12 hours the reaction mixture was extracted with ethyl acetate (2 x 50 mL). The organic layers were combined, washed with sodium thiosulfate (2 x 10 mL), water (10 mL), brine (10 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. This crude mixture was dissolved in dimethyl sulfoxide (5 mL) and potassium carbonate (2.1 g, 15 mmol) was added followed by iodomethane (0.8 g, 5.6 mmol) and stirred for 12 hours at ambient temperature. The reaction mixture was then diluted with ethyl acetate (40 mL) washed with water (2 x 10 mL). The organic layer were washed

brine (10 mL) dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified through silica gel cartridge eluting with ethyl acetate/hexanes to give methyl 2-iodo-3-bromobenzoate as a pale yellow liquid in 85% overall yield.

[0544] To a stirring solution of methyl 2-iodo-3-bromobenzoate (1 g, 3.3 mmol) in 1,4-dioxane/water (10mL/10mL) was added quinolin-3-yl boronic acid (5 mmol), [1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with dichloromethane (0.24 g, 0.33 mmol) and potassium carbonate (0.9 g, 6.6 mmol) and heated to 40 °C for 16 hours. The resultant mixture was allowed to cool to ambient temperature and was diluted with ethyl acetate (50 mL). The aqueous layer was extracted with ethyl acetate (2 X 20 mL) and the combined organic layers were washed with water (10 mL), brine (10 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product. A solution of 3-bromo-2-quinolin-3-ylbenzoic acid methyl ester (0.11 mmol) and 3-hydroxyphenylacetylene (0.11 mmol) in N,N-dimethylformamide/triethylamine (1mL/1 mL) was degassed using a N₂ gas balloon for 2 minutes. To this solution was added Bis(triphenylphosphine)palladium(II) dichloride (10 mg, 0.011 mmol) and copper iodide (5 mg) and heated to 100 °C for 16 hours. The reaction mixture was then cooled to ambient temperature, filtered through celite using ethyl acetate (10 mL). The resultant solution were washed with 1N hydrochloric acid (2 mL), water (2 X 2 mL), brine (2 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified through either a short silica gel cartridge. The product so obtained was then dissolved in tetrahydrofuran/methanol (1mL/1mL) and added 2N sodium hydroxide solution (0.3 mL) and stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N hydrochloric acid solution. The aqueous layer was then extracted using ethyl acetate (2 X 5 mL) and washed with water (2 mL) and brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reversed phase HPLC. ¹H NMR (300 MHz, CD₃OD) δ 9.20 (d, *J* = 1.8 Hz, 1H), 8.92 (s, 1H), 8.34 – 8.12 (m, 3H), 8.09 (t, *J* =


7.8 Hz, 1H), 8.02 – 7.82 (m, 3H), 7.68 (t, J = 7.9 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 6.68 (d, J = 9.8 Hz, 1H), 6.48 – 6.27 (m, 2H). MS m/z (M+H) 366.0

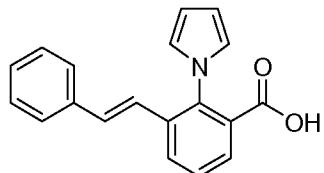
[0545] Example 141: Synthesis of 3-(5-hydroxypent-1-ynyl)-2-(quinolin-3-yl)benzoic acid:


[0546] 3-(5-hydroxypent-1-ynyl)-2-(quinolin-7-yl)benzoic acid was prepared by the same procedure as example 140. ^1H NMR (300 MHz, CD_3OD) δ 9.23 (bs, 1H), 8.97 (dd, J = 4.8, 1.7 Hz, 1H), 8.29 (td, J = 8.5, 3.7 Hz, 2H), 8.22 – 8.09 (m, 2H), 7.95 (dt, J = 7.4, 6.0 Hz, 1H), 7.83 (ddd, J = 7.6, 6.1, 1.3 Hz, 1H), 7.62 (td, J = 7.9, 2.8 Hz, 1H), 4.14 – 3.56 (m, 2H), 3.20 (t, J = 6.2 Hz, 1H), 2.29-2.19 (m, 2H), 1.61 (m, 1H), 1.45 – 1.08 (m, 1H). MS m/z (M+H) 332.1

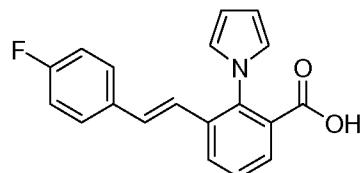
[0547] Example 142: Synthesis of 3-((4-methoxyphenyl)ethynyl)-2-(quinolin-3-yl)benzoic acid:

[0548] 3-((4-methoxyphenyl)ethynyl)-2-(quinolin-7-yl)benzoic acid was prepared by the same procedure as example 140. ^1H NMR (300 MHz, DMSO) δ 8.81 (d, J = 2.2 Hz, 1H), 8.34 (d, J = 2.2 Hz, 1H), 8.05 (t, J = 9.3 Hz, 2H), 7.92 (dd, J = 7.8, 1.3 Hz, 1H), 7.84 (dd, J = 7.8, 1.3 Hz, 1H), 7.79 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.67 – 7.56 (m, 2H), 7.01 – 6.87 (m, 2H), 6.85 – 6.60 (m, 2H), 3.68 (s, 3H). MS m/z (M+H) 380.2

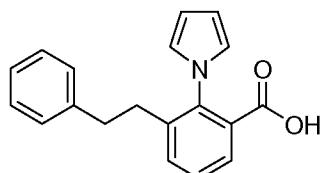
[0549] Example 143: Synthesis of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-(quinolin-3-yl)benzoic acid:


[0550] 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-(quinolin-3-yl)benzoic acid was prepared by the same procedure as example **140**. ^1H NMR (300 MHz, DMSO) δ 9.04 (d, J = 1.5 Hz, 1H), 8.92 (d, J = 2.2 Hz, 1H), 8.50 (d, J = 2.2 Hz, 1H), 8.20 – 8.08 (m, 1H), 8.08 – 7.97 (m, 3H), 7.91 – 7.82 (m, 1H), 7.77 – 7.67 (m, 2H), 7.41 (d, J = 4.5 Hz, 1H), 7.14 (dd, J = 4.5, 1.5 Hz, 1H). MS m/z (M $^+$) 390.9

[0551] Example 144: Synthesis of 3-[(1E)-3-methoxyprop-1-en-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0552] 3-[(1E)-3-methoxyprop-1-en-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid: A mixture of 3-bromo-2-pyrrol-1-yl-benzoic acid methyl ester (60 mg, 0.214 mmol), 2-(3-methoxy-propenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (85 mg, 0.428 mmol), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride (16 mg, 0.0214 mmol) and potassium carbonate (59 mg, 0.428 mmol) in 1,4-dioxane (0.8 mL) and water (0.8 mL) was degassed with N_2 for 10 minutes and heated at 90 °C for 17 hours. After cooling down the reaction mixture was partitioned between water and ethyl acetate, the organic layer was dried (sodium sulfate), filtered, concentrated and purified through preparative thin layer chromatography to give a solid intermediate. To this solid intermediate in dimethylsulfoxide (0.5 mL) was added sodium hydroxide solution (10% in water, 0.5 mL) and the solution was heated at 100 °C for 24 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give the product as a white solid. ^1H NMR (300MHz, CDCl_3) δ = 7.85 – 7.76 (m, 2H), 7.43 (t, J =7.8 Hz, 1H), 6.67 (t, J =2.2 Hz, 2H), 6.36 - 6.17 (m, 3H), 6.04 (d, J =16.1 Hz, 1H), 3.97 (dd, J =1.3, 6.0 Hz, 2H), 3.30 (s, 3H). LCMS (ESI) m/z 258.0 (M $^+$).

[0553] Example 145: Synthesis of 3-[(E)-2-phenylethenyl]-2-(1H-pyrrol-1-yl)benzoic acid:

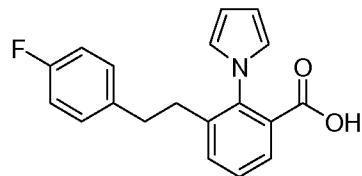

[0554] 3-[(E)-2-phenylethenyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example **144**. ^1H NMR (300MHz, CDCl_3) δ = 7.95 (dd, J =1.2, 8.2 Hz, 1H), 7.86 (dd, J =1.5, 7.6 Hz, 1H), 7.50 (t, J =7.8 Hz, 1H), 7.34 - 7.23 (m, 5H), 7.05 (d, J =16.5 Hz, 1H), 6.76 (t, J =2.1 Hz, 2H), 6.47 (d, J =16.4 Hz, 1H), 6.37 (t, J =2.2 Hz, 2H). LCMS (ESI) m/z 290.0 ($\text{M}+1$) $^+$.

[0555] Example 146: Synthesis of 3-[(E)-2-(4-fluorophenyl)ethenyl]-2-(1H-pyrrol-1-yl)benzoic acid:

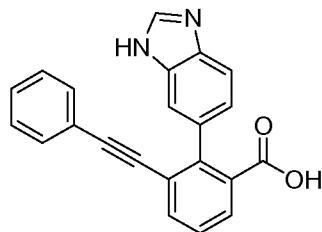
[0556] 3-[(E)-2-(4-fluorophenyl)ethenyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example **144**. ^1H NMR (300MHz, CDCl_3) δ = 7.95 - 7.83 (m, 2H), 7.49 (t, J =7.8 Hz, 1H), 7.32 - 7.24 (m, 3H), 7.04 - 6.94 (m, 2H), 6.75 (t, J =3.2 Hz, 2H), 6.40 - 6.33 (m, 3H). LCMS (ESI) m/z 308.0 ($\text{M}+1$) $^+$.

[0557] Example 147: Synthesis of 3-(2-phenylethyl)-2-(1H-pyrrol-1-yl)benzoic acid:

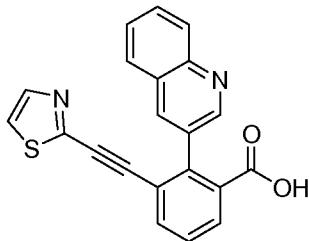
[0558] A solution of Example **146** (50 mg, 0.173 mmol) and 10% Pd-C (20 mg) in methanol (3 mL) and chloroform (1 mL) was shaked under hydrogen at 40 psi for 4 hours in Parr-Shaker. The solution was filtered through celite and the filtrate was concentrated. The residue was purified through preparative HPLC to give the product as a white solid. ^1H NMR (300MHz, CDCl_3) δ = 7.80 (dd, J =1.7, 7.3 Hz, 1H), 7.49 - 7.37 (m, 2H), 7.25 - 7.12 (m, 3H), 7.01 - 6.95 (m, 2H), 6.63 (t, J =2.2


Hz, 2H), 6.26 (t, $J=2.1$ Hz, 2H), 2.75 – 2.60 (m, 4H). LC/MS (ESI) m/z 274.1 ($M-H_2O$)⁺.

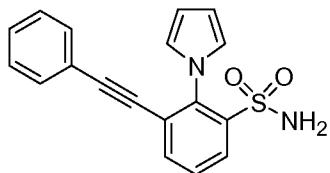
[0559] Example 148: Synthesis of 3-(2-phenylethyl)-2-(pyrrolidin-1-yl)benzoic acid:


[0560] 3-(2-Phenylethyl)-2-(pyrrolidin-1-yl)benzoic acid was isolated as another product in synthesizing Example 147. 1H NMR (300MHz, $CDCl_3$) δ = 12.09 (br. s., 1H), 8.25 (dd, $J=1.8, 7.6$ Hz, 1H), 7.61 (dd, $J=1.6, 7.8$ Hz, 1H), 7.48 (t, $J=7.8$ Hz, 1H), 7.35 – 7.12 (m, 3H), 7.16 – 7.12 (m, 2H), 3.40 – 2.85 (m, 8H), 2.23 – 2.10 (m, 4H). LCMS (ESI) m/z 296.1 ($M+H$)⁺.

[0561] Example 149: Synthesis of 3-[2-(4-fluorophenyl)ethyl]-2-(1H-pyrrol-1-yl)benzoic acid:


[0562] 3-[2-(4-fluorophenyl)ethyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 147. LCMS (ESI) m/z 310.1 ($M+H$)⁺.

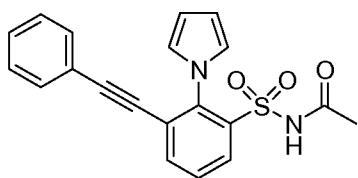
[0563] Example 150: Synthesis of 2-(1H-1,3-benzodiazol-6-yl)-3-(2-phenylethynyl)benzoic acid:


[0564] 2-(1H-1,3-benzodiazol-6-yl)-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example 119. 1H NMR (300 MHz, DMSO) δ 9.37 (s, 1H), 7.89 (d, $J=8.5$ Hz, 1H), 7.85 (d, $J=7.9$ Hz, 2H), 7.80 (s, 1H), 7.58 (dd, $J=8.0, 7.5$ Hz, 1H), 7.51 (dd, $J=8.5, 1.5$ Hz, 1H), 7.37 – 7.23 (m, 3H), 7.14 – 7.04 (m, 2H). MS m/z ($M+H$) 339.0

[0565] Example 151: Synthesis of 2-(quinolin-3-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid:

[0566] 2-(quinolin-3-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example **140**. ^1H NMR (300 MHz, DMSO) δ 9.02 (d, J = 1.9 Hz, 1H), 8.96 (d, J = 2.2 Hz, 1H), 8.52 (s, 1H), 8.11 (d, J = 8.5 Hz, 2H), 8.02 (dd, J = 7.8, 1.3 Hz, 1H), 7.97 (dd, J = 7.8, 1.3 Hz, 1H), 7.86 (t, J = 7.1 Hz, 1H), 7.74 – 7.64 (m, 2H), 7.63 (d, J = 1.9 Hz, 1H). MS m/z (M $^+$) 356.9

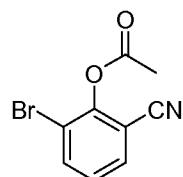
[0567] Example 152: Synthesis of 3-Phenylethynyl-2-pyrrol-1-yl-benzenesulfonamide:

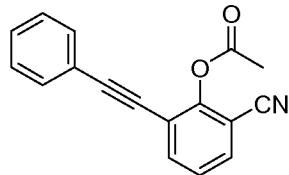

[0568] 2-Amino-3-bromo-benzenesulfonamide: To a solution of chlorosulfonyl isocyanate (3.78 g, 26.7 mmol) in nitroethane (20 mL) at 50 °C was added 2-bromoaniline (4.0 g, 23.3 mmol) in nitroethane (30 mL). After 5 minutes aluminum chloride (4.0 g, 30.2 mmol) was added in three portions and the mixture was heated to reflux at 110 °C for 30 minutes. The reaction mixture was cooled to ambient temperature and poured onto ice (100g) and the resulting suspension in water was stirred for 10 minutes. The resulting slurry was filtered and rinsed with water (50 mL) and diethyl ether (50 mL) to give a gray green solid (2.77 g). This solid was added to sulfuric acid (50%, 30 mL) at 145 °C in three portions allowing foaming to subside between additions. The mixture was heated for an additional 30 minutes and cooled to ambient temperature. The mixture was then poured over ice (100 g) and neutralized with aqueous sodium hydroxide (6N) to pH 7 to give a white slurry. This mixture was extracted with isopropyl acetate (3 x 50 mL). The combined organic extracts were dried with sodium sulfate, filtered and concentrated to a white solid. ^1H NMR (DMSO- d_6) δ

7.63-7.50 (m, 2H), 7.48 (br s, 2H), 6.61 (*J*=7.9 Hz, 1H), 5.85 (br s, 2H). MS (ES⁺) = 251 (MH)⁺.

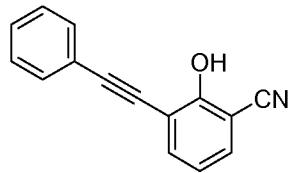
[0569] 3-Bromo-2-pyrrol-1-yl-benzenesulfonamide: To a slurry of 2,5-dimethoxytetrahydrofuran (950 mg, 7.2 mmol) and 4-chloropyridine hydrochloride (1.08 g, 7.2 mmol) in 1,4-dioxane (50 mL) was added 2-amino-3-bromo-benzenesulfonamide (1.5 g, 6.0 mmol) and the mixture was heated to reflux for 2 hours. The reaction mixture was allowed to cool to ambient temperature and was poured into water (200 mL). The resulting slurry was vigorously stirred for 2 hours and filtered. The filtrate was extracted with ethyl acetate (3 x 50 mL). The combined organic extracts were dried with magnesium sulfate, filtered and concentrated at reduced pressure. The resulting oil was purified by column chromatography through a silica gel cartridge (4 g) eluting with ethyl acetate/hexane (1:9 to 1:2) to give the product as a white solid. ¹H NMR ¹H NMR (300MHz, DMSO) δ = 8.02-7.98 (m, 2H), 7.59 (t, *J*=7.9 Hz, 1H), 7.97 (br s, 2H), 6.72 (t, *J*=2.1 Hz, 2H), 6.20 (t, *J*=2.1 Hz, 2H). MS (ES⁺) = 301 (MH)⁺.

[0570] 3-Phenylethynyl-2-pyrrol-1-yl-benzenesulfonamide. To a degassed solution of 3-bromo-2-pyrrol-1-yl-benzenesulfonamide (170 mg, 0.56 mmol) in triethylamine (1.7 mL), phenylacetylene (115 mg, 124 μL, 1.13 mmol) and copper (I) iodide (5.4 mg, 0.028 mmol) in a sealed tube was added bis(triphenylphosphine)palladium(II) dichloride (40 mg, 0.056 mmol). The tube was sealed and heated at 90 °C for 16 hours. The reaction mixture was cooled to ambient temperature and concentrated at reduced pressure. The resulting mixture was purified by column chromatography through a silica gel cartridge (12 g) eluting with ethyl acetate/hexane (1:9 to 1:2) to give the product as a light yellow solid. ¹H NMR (300MHz, DMSO) δ = 8.02 (dd, *J*=1.5, 7.9 Hz, 1H), 7.87 (dd, *J*=1.5, 7.6 Hz, 1H), 7.67 (t, *J*=7.9 Hz, 1H), 7.36 (m, 3H), 7.31 - 7.19 (m, 2H), 7.01 (br s, 2H), 6.86 (t, *J*=2.1 Hz, 2H), 6.26 (t, *J*=2.1 Hz, 2H). MS (ES⁺) = 323 (MH)⁺.

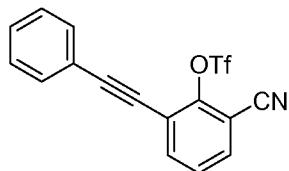

[0571] Example 153: Synthesis of N-Acetyl-3-phenylethynyl-2-pyrrol-1-yl-benzenesulfonamide:


[0572] N-Acetyl-3-bromo-2-pyrrol-1-yl-benzenesulfonamide: To a slurry of acetic acid (9.6 mg, 0.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (31 mg, 0.16 mmol), and 4-dimethylaminopyridine (20 mg, 0.16 mmol) in N,N-dimethylformamide (0.20 mL) was added 3-bromo-2-pyrrol-1-yl-benzenesulfonamide (40 mg, 0.13 mmol). The resulting mixture was stirred at ambient temperature for 16 hours. The reaction mixture was then diluted with aqueous hydrochloric acid (0.1N, 10 mL) and extracted with ethyl acetate (2 x 15 mL). The combined organic extracts were dried with magnesium sulfate, filtered and concentrated at reduced pressure to give the product in quantitative yield, which was used in the next step without purification.

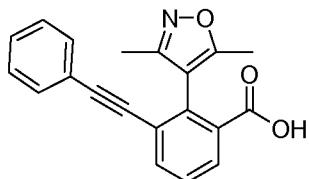
[0573] N-Acetyl-3-phenylethynyl-2-pyrrol-1-yl-benzenesulfonamide: To a degassed solution of N-Acetyl-3-bromo-2-pyrrol-1-yl-benzenesulfonamide (40 mg, 0.117 mmol) in triethylamine (0.40 mL), phenylacetylene (24 mg, 26 μ L, 0.23 mmol) and copper (I) iodide (1.1 mg, 0.0058 mmol) in a sealed tube was added bis(triphenylphosphine)palladium(II) dichloride (8.2 mg, 0.00117 mmol). The tube was sealed and heated at 90 °C for 48 hours. The reaction mixture was cooled to ambient temperature and concentrated at reduced pressure. The resulting mixture was purified by column chromatography through a silica gel cartridge (4 g) eluting with ethyl acetate/hexane (1:4 to 1:2) to give the product as a white foam. 1 H NMR (300MHz, DMSO) δ = 11.74 (br s, 1H), 8.10 (dd, J =1.5, 7.9 Hz, 1H), 7.94 (dd, J =1.5, 7.6 Hz, 1H), 7.72 (t, J =7.9 Hz, 1H), 7.44 - 7.19 (m, 5H), 6.82 (t, J =2.2 Hz, 2H), 6.30 (t, J =2.1 Hz, 2H), 1.84 (s, 3H). MS (ES $^+$) = 365 (MH) $^+$.


[0574] Example 154: Synthesis of 2-(dimethyl-1,2-oxazol-4-yl)-3-(2-phenylethynyl)benzoic acid:

[0575] Acetic acid 2-bromo-6-cyano-phenyl ester: At 0 °C to a solution of 2-bromo-6-cyano-phenol (2 g, 10.1 mmol) and triethylamine (2.25 mL, 16.2 mmol) in dichloromethane (30 mL) was slowly added acetyl chloride (1 M in dichloromethane, 13.1 mL, 13.1 mmol). The reaction mixture was stirred at room temperature for 30 minutes, washed with water, dried (anhydrous sodium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (40 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid.

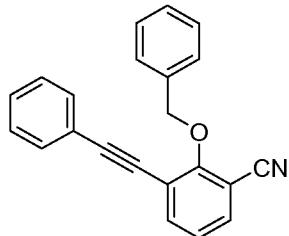


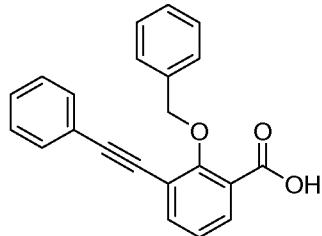
[0576] Acetic acid 2-cyano-6-phenylethynyl-phenyl ester: To a sealed flask was loaded a mixture of acetic acid 2-bromo-6-cyano-phenyl ester (1.6 g, 6.67 mmol), bis(triphenylphosphine)palladium(II) dichloride (468 mg, 0.667 mmol), copper iodide (127 mg, 0.667 mmol) and N,N-diisopropylethylamine (1.74 mL, 10 mmol). The mixture was degassed with N₂ for 10 minutes, phenylacetylene (1 g, 10 mmol) was added and the mixture was degassed with N₂ for 5 minutes. The reaction mixture was heated at 90 °C for 3 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through a silica gel cartridge (40 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid.



[0577] 2-Hydroxy-3-phenylethynyl-benzonitrile: To a solution of acetic acid 2-cyano-6-phenylethynyl-phenyl ester (1.9 g, 8.68 mmol) in tetrahydrofuran (3 mL) was added ammonium hydroxide (3 mL). The reaction mixture was stirred at room temperature for 30 minutes, acidified with 4 N hydrochloric acid in water and extracted with ethyl acetate (15 mL x 3). The combined organic extracts were

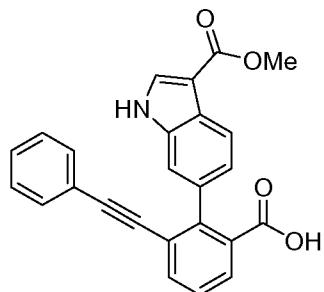
dried (anhydrous sodium sulfate), concentrated and vacuum dry to give the product as a white solid.


[0578] Trifluoro-methanesulfonic acid 2-cyano-6-phenylethynyl-phenyl ester: To a solution of 2-hydroxy-3-phenylethynyl-benzonitrile (800 mg, 3.64 mmol) in dichloromethane (20 mL) cooled at -70 °C was added triethylamine (0.76 mL, 5.46 mmol) followed by trifluoromethanesulfonic anhydride (0.67 mL, 4 mmol). The reaction mixture was allowed to be slowly warmed up to room temperature and stirred at room temperature for 30 minutes. Dichloromethane (20 mL) was added and the solution was washed with water, dried (anhydrous sodium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (40 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid.

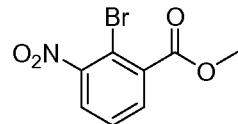

[0579] 2-(Dimethyl-1,2-oxazol-4-yl)-3-(2-phenylethynyl)benzoic acid: A mixture of trifluoro-methanesulfonic acid 2-cyano-6-phenylethynyl-phenyl ester (50 mg, 0.143 mmol), 3,5-dimethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-isoxazole (48 mg, 0.215 mmol), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride (10.5 mg, 0.014 mmol) and potassium carbonate (39.5 mg, 0.286 mmol) in 1,4-dioxane (0.5 mL) and water (0.5 mL) was degassed with N₂ for 10 minutes and heated at 90 °C for 17 hours. After cooling down the reaction mixture was partitioned between water and ethyl acetate, the organic layer was dried (sodium sulfate), filtered, concentrated and purified through preparative thin layer chromatography to give a solid intermediate. To this intermediate in dimethylsulfoxide (0.5 mL) was added sodium hydroxide solution (10% in water, 0.5 mL) and the solution was heated at 100 °C for 24 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the

reaction mixture was purified through preparative HPLC to give the product as a white solid. ^1H NMR (300MHz, CDCl_3) δ = 8.06 – 7.98 (m, 1H), 7.81 (d, J =7.6 Hz, 1H), 7.50 (t, J =7.8 Hz, 1H), 7.32 - 7.24 (m, 5H), 2.24 (s, 3H), 2.13 (s, 3H). LCMS (ESI) m/z 318.0 ($\text{M}+1$) $^+$.

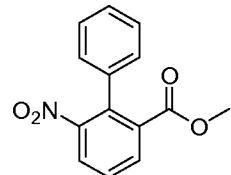
[0580] Example 155: Synthesis of 2-(benzyloxy)-3-(2-phenylethynyl)benzoic acid:



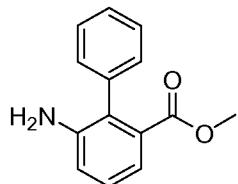
[0581] 2-Benzyl-3-phenylethynylbenzonitrile: To a solution of 2-hydroxy-3-phenylethynylbenzonitrile (50 mg, 0.227 mmol), benzyl alcohol (37 mg, 0.34 mmol) and triphenylphosphine (71.4 mg, 0.272 mmol) in tetrahydrofuran (1.5 mL) was added diisopropyl azodicarboxylate (0.055 mL, 0.272 mmol) and the reaction mixture was stirred at room temperature for 17 hours. The solution was concentrated and the residue was purified by column chromatography through a silica gel cartridge (12 g) eluting with ethyl acetate/hexane (0 - 20%) to give the product as a white solid.

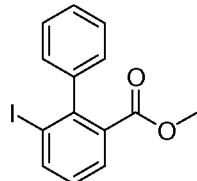

[0582] 2-(benzyloxy)-3-(2-phenylethynyl)benzoic acid: To 2-benzyl-3-phenylethynylbenzonitrile (40 mg, 0.129 mmol) in dimethylsulfoxide (0.5 mL) was added sodium hydroxide solution (10% in water, 0.5 mL) and the solution was heated at 100 °C for 24 h. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give the pure product as a white solid. ^1H NMR (300MHz, CDCl_3) δ = 8.06 (d, J =6.7 Hz, 1H), 7.77 (d, J =7.6 Hz, 1H), 7.55 - 7.44 (m, 4H), 7.43 - 7.23 (m, 7H), 5.45 (s, 2H). LCMS (ESI) m/z 329.0 ($\text{M}+1$) $^+$.

[0583] Example 156: Synthesis of 2-[3-(methoxycarbonyl)-1H-indol-6-yl]-3-(2-phenylethynyl) benzoic acid:

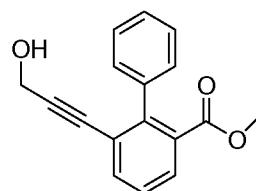


[0584] 2-[3-(methoxycarbonyl)-1H-indol-6-yl]-3-(2-phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 12.00 (s, 1H), 8.13 (d, J = 3.0 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.77 (dd, J = 7.7, 1.4 Hz, 1H), 7.71 (dd, J = 7.8, 1.4 Hz, 1H), 7.54 – 7.39 (m, 2H), 7.33 – 7.21 (m, 3H), 7.18 (dd, J = 8.2, 1.5 Hz, 1H), 7.12 – 7.05 (m, 2H), 3.81 (s, 3H). MS m/z (M+H) 396.0.

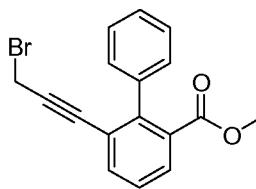

[0585] Example 157: Synthesis of 3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid


[0586] Methyl 2-bromo-3-nitrobenzoate: To a stirring solution of 2-bromo-3-nitrobenzoic acid (500 mg, 2.04 mmol) in methanol (5 mL) was added concentrated sulfuric acid (0.5 mL). The resulting solution was heated at 80 °C for 18 hours. The reaction mixture was cooled to ambient temperature and concentrated at reduced pressure. The residue was diluted with ethyl acetate (50 mL) and washed with 1N aqueous sodium hydroxide solution (50 mL) and brine, dried (magnesium sulfate), filtered and concentrated at reduced pressure to give the desired product as a colorless oil which was used in the next step without further purification.

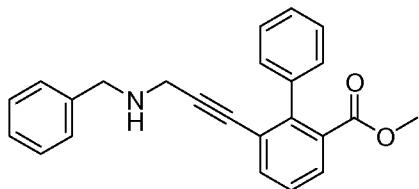
[0587] Methyl 2-phenyl-3-nitrobenzoate: To a mixture of methyl 2-bromo-3-nitrobenzoate (2.6 g, 10 mmol), phenyl boronic acid (1.46 g, 12 mmol) and palladium acetate (171 mg, 0.7 mmol) in acetone (12 mL) was added 2N aqueous potassium carbonate (12 mL). The reaction mixture was heated at 65 °C for 4 hours, cooled to ambient temperature and partitioned between ethyl acetate (200 mL) and water (100 mL). The organic layer was dried (magnesium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (0 to 5%) to achieve the product as a solid. ¹H NMR (300MHz, CDCl₃) δ = 7.99 (dd, *J*=1.2, 7.9 Hz, 1H), 7.88 (dd, *J*=1.3, 8.1 Hz, 1H), 7.56 (t, *J*=7.9 Hz, 1H), 7.44 - 7.35 (m, 3H), 7.27 - 7.19 (m, 2H), 3.57 (s, 3H).



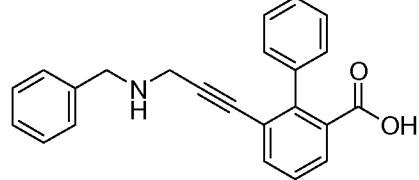
[0588] Methyl 2-phenyl-3-aminobenzoate: To a stirring solution of methyl 2-phenyl-3-nitrobenzoate (1.09 g, 4.24 mmol) in a mixture of acetic acid (4 mL) and methanol (10 mL) was added zinc powder (1.38 g, 21.2 mmol) in three portions. The resulting mixture was stirred at ambient temperature for 18 hours. The mixture was neutralized by 6N aqueous sodium hydroxide solution, extracted with ethyl acetate (3 X 100 mL). The organic layer was washed with brine, dried (magnesium sulfate) and concentrated at reduced pressure to give the product as a yellow solid which was used in the next step without further purification.



[0589] Methyl 2-phenyl-3-iodobenzoate: To a solution of methyl 2-phenyl-3-aminobenzoate (2.29 g, 10 mmol) in 1,4-dioxane (30 mL) and water (20 mL) at 0 °C was added concentrated hydrochloric acid (3.0 mL). After 25 minutes, aqueous sodium nitrate solution (760 mg, 7.4 mmol, 10 mL water) was added and the resulting mixture was stirred for 1 hour. Potassium iodide solution (14.9 g, 90

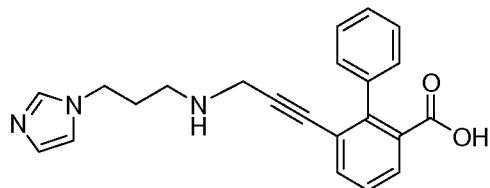

mmol, 10 mL water) was added via addition funnel. The resulting mixture was allowed to warm to ambient temperature and stirred for 18 hours. The reaction mixture was diluted with ethyl acetate (200 mL) and washed with sodium hydroxide solution (100 mL, 2N), followed by saturated aqueous sodium thiosulfate solution (50 mL). The organic layer was dried (magnesium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with ethyl acetate/hexane (0 to 5%) to provide the product as a red oil (2.33 g, 68%, 70% pure) ^1H NMR (300MHz, CDCl_3) δ = 8.08 (dd, J =1.2, 7.9 Hz, 1H), 7.81 (dd, J =1.3, 7.8 Hz, 1H), 7.44 - 7.29 (m, 3H), 7.18 - 7.07 (m, 2H), 3.54 - 3.51 (m, 3H). MS(ES $^+$) = 177(M-31) $^+$

[0590] Methyl 2-phenyl-3-(3-hydroxyprop-1-ynyl)benzoate: To a sealed flask was added methyl 2-phenyl-3-iodobenzoate (734 mg, 2.17 mmol), triethylamine (3 mL) and N,N-dimethylformamide (7 mL). The mixture was degased for 30 minutes, followed by addition of bis(triphenylphosphine)palladium(II) dichloride (151 mg, 0.22 mmol), copper(I) iodide (21 mg, 0.11 mmol) and propargyl alcohol (0.26 mL, 4.34 mmol). The flask was sealed and heated at 45°C for 18 hours. After cooling to ambient temperature, the mixture was poured into water (150 mL), extracted with ethyl acetate (3 X 100 mL). The organic layer was dried (magnesium sulfate), concentrated and purified by column chromatography through a silica gel cartridge (40 g) eluting with ethyl acetate/hexane (10% to 20%) to provide the product as a red oil. ^1H NMR (300MHz, CDCl_3) δ = 7.78 (dd, J =1.5, 7.9 Hz, 1H), 7.63 (dd, J =1.3, 7.8 Hz, 1H), 7.41 - 7.26 (m, 5H), 4.20 (d, J =5.0 Hz, 2H), 3.56 (s, 3H).

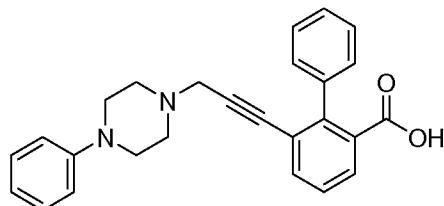


[0591] Methyl 2-phenyl-3-(3-bromoprop-1-ynyl)benzoate: To a solution of methyl 2-phenyl-3-(3-hydroxyprop-1-ynyl)benzoate (100 mg, 0.376 mmol) in dichloromethane (1 mL), carbon tetrabromide (157 mg, 0.564 mmol) was added and the reaction mixture was cooled to 0°C, the solution of triphenyl phosphine (128 mg, 0.583 mmol) in dichloromethane (0.5 mL) was added drop wisely. The mixture warmed to ambient temperature and stirred for 3 hours. Ethanol (0.2mL) was added. After 25 minutes, the mixture was concentrated and purified by column chromatography through a silica gel cartridge (4 g) eluting with ethyl acetate/hexane (0 to 5%) to achieve the product as a colored oil.

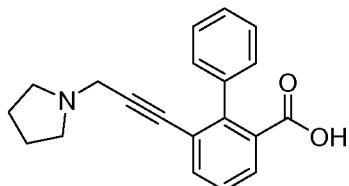
[0592] 3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid methyl ester: To a mixture of benzylamine (24 mg, 0.226 mmol) and cesium carbonate (92 mg, 0.282 mmol) in acetonitrile (1 mL) was added methyl 2-phenyl-3-(3-bromoprop-1-ynyl)benzoate (37 mg, 0.113 mmol) and the mixture was stirred at ambient temperature for 18 hours. The reaction mixture was filtered, concentrated and purified by column chromatography through a silica gel cartridge (4 g) eluting with ethyl acetate/hexane (0 to 10%) to achieve the product as a solid.


MS(ES⁺) = 356 (MH⁺).

[0593] 3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid: To a mixture of 3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid methyl ester (29 mg, 0.082 mmol) in tetrahydrofuran (0.2 mL), methanol (0.2 mL) and water (0.2 mL) was added lithium hydroxide (10 mg, 0.4 mmol) and stirred for 18 hrs. The mixture was neutralized with hydrochloric acid (2N) to pH = 4 and concentrated at reduced pressure. The crude product was purified by preparative HPLC to give the product as a yellow solid. ¹H NMR (300MHz, DMSO-d₆) δ = 7.84 (ddd,

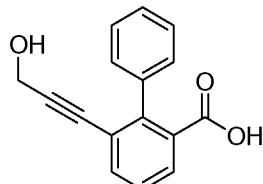

$J=1.3, 7.8, 9.4$ Hz, 2H), 7.60 (t, $J=7.7$ Hz, 1H), 7.53 - 7.33 (m, 10H), 4.02 (s, 2H), 3.86 (s, 2H). MS (ES⁺) = 342 (MH⁺).

[0594] Example 158: Synthesis of 3-(3-{{3-(1H-imidazol-1-yl)propyl}amino}prop-1-yn-1-yl)-2-phenylbenzoic acid

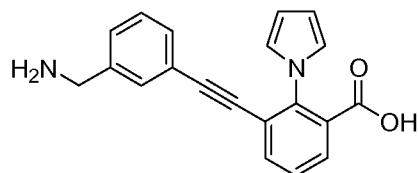

[0595] 3-(3-{{3-(1H-imidazol-1-yl)propyl}amino}prop-1-yn-1-yl)-2-phenylbenzoic acid was prepared by the same procedure as example 157. 1 H NMR (300MHz, DMSO-d₆) δ = 8.98 (s, 1H), 7.79 - 7.64 (m, 4H), 7.51 (t, $J=7.7$ Hz, 1H), 7.43 - 7.33 (m, 3H), 7.27 - 7.24 (m, 2H), 4.19 (t, $J=6.9$ Hz, 2H), 3.99 (s, 2H), 2.66 (d, $J=7.6$ Hz, 2H), 2.04 (d, $J=7.3$ Hz, 2H). MS (ES⁺) = 359.99 (MH⁺).

[0596] Example 159: Synthesis of 2-phenyl-3-[3-(4-phenylpiperazin-1-yl)prop-1-yn-1-yl]benzoic acid

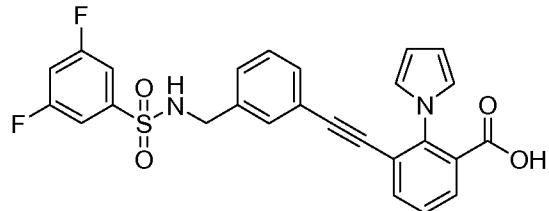
[0597] 2-phenyl-3-[3-(4-phenylpiperazin-1-yl)prop-1-yn-1-yl]benzoic acid was prepared by the same procedure as example 157. 1 H NMR (300MHz, DMSO-d₆) δ = 7.79 (dd, $J=1.2, 7.6$ Hz, 1H), 7.75 (dd, $J=1.3, 7.8$ Hz, 1H), 7.54 - 7.24 (m, 8H), 6.99 (d, $J=8.5$ Hz, 2H), 6.87 (t, $J=7.1$ Hz, 1H), 4.18 (br. s., 2H), 3.15 - 2.70 (br. s., 8H). MS (ES⁺) = 397.10 (MH⁺).


[0598] Example 160: Synthesis of 2-phenyl-3-[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]benzoic acid

[0599] 2-phenyl-3-[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]benzoic acid was prepared by the same procedure as example 157. 1 H NMR (300MHz, DMSO-d₆) δ = 7.78

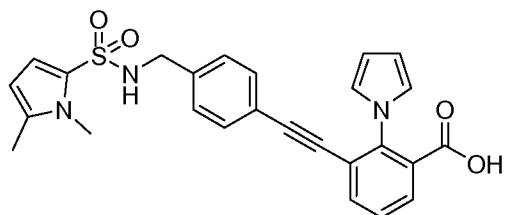

(dd, $J=1.5, 7.6$ Hz, 1H), 7.74 (dd, $J=1.3, 7.8$ Hz, 1H), 7.51 (t, $J=7.8$ Hz, 1H), 7.45 – 7.35 (m, 3H), 7.30 – 7.24 (m, 2H), 4.20 (s, 2H), 3.44 – 3.2 (br. s., 2H), 2.99 – 2.83 (m, 2H), 1.78 (br. s., 4H). MS (ES⁺) = 306.06 (MH⁺).

[0600] Example 161: Synthesis of 3-(3-hydroxyprop-1-yn-1-yl)-2-phenylbenzoic acid


[0601] 3-(3-hydroxyprop-1-yn-1-yl)-2-phenylbenzoic acid was prepared by the same procedure as example 157. ¹H NMR (300MHz, DMSO-d₆) δ = 12.75 (br. s., 1H), 7.70 – 7.60 (m, 2H), 7.47 – 7.21 (m, 6H), 5.14 (br. s., 1H), 4.04 (br. s., 2H).

[0602] Example 162: Synthesis of 3-{2-[3-(Aminomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl) benzoic acid

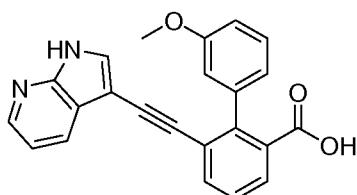
[0603] 3-{2-[3-(aminomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 157. ¹H NMR (300 MHz, CD₃OD) δ 7.76 (ddd, $J=8.0, 6.6, 1.6$ Hz, 2H), 7.50 (t, $J=7.8$ Hz, 1H), 7.45 – 7.40 (m, 3H), 7.37 (d, $J=5.4$ Hz, 1H), 6.93 – 6.73 (m, 2H), 6.35 – 6.08 (m, 2H), 4.09 (s, 2H). MS *m/z* (M⁺) 317.1


[0604] Example 163: Synthesis of 3-{2-[3-(3,5-difluorobenzenesulfonamidomethyl)phenyl] ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid

[0605] To a stirring solution of methyl 3-{2-[3-(aminomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoate (0.1 mmol) in dichloromethane (2 mL) was added


3,5-difluoro-benzenesulfonyl chloride (0.15 mmol), triethylamine (0.1 g), and catalytic 4-dimethylaminopyridine at 0 °C and stirred for 16 hours. The reaction mixture was then quenched with water (1 mL). The organic layers were washed with water (1 mL), brine (1 mL) dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then dissolved in tetrahydrofuran:methanol (1:1 mL) and added 2N sodium hydroxide solution (0.3 mL) and stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N HCl solution. The aqueous layer was then extracted using ethyl acetate (2 X 5 mL) and washed with water (2 mL) and brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reverse phase HPLC. ^1H NMR (300 MHz, CD_3OD) δ 8.21 – 8.04 (m, 1H), 7.88 (d, J = 6.4 Hz, 1H), 7.83 – 7.70 (m, 1H), 7.54 – 7.45 (m, 2H), 7.33 (dd, J = 6.4, 1.8 Hz, 2H), 7.26 – 7.06 (m, 3H), 6.86 – 6.79 (m, 2H), 6.66 – 6.56 (m, 1H), 6.32 – 6.26 (m, 2H), 4.12 (d, J = 2.5 Hz, 2H). MS m/z (M+) 493.1

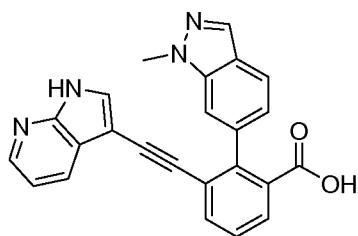
[0606] Example 164: Synthesis of 3-{2-[4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl) phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid


[0607] 3-{2-[4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 163. ^1H NMR (300 MHz, CD_3OD) δ 7.76 (ddd, J = 7.9, 6.3, 1.6 Hz, 1H), 7.69 – 7.56 (m, 2H), 7.58 – 7.52 (m, 1H), 7.52 – 7.43 (m, 2H), 7.25 – 7.15 (m, 3H), 6.90 – 6.80 (m, 2H), 6.33 – 6.19 (m, 2H), 4.20 (d, J = 8.8 Hz, 2H), 3.57 (s, 3H), 2.39 (s, 3H). MS m/z (M+) 475.1

[0608] Example 165: Synthesis of 3-{2-[3-(cyclopropanesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid

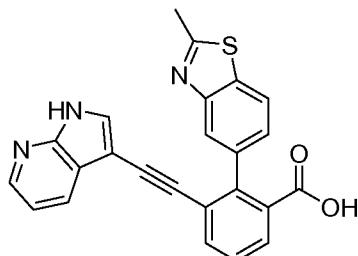
[0609] 3-[2-[3-(cyclopropanesulfonamidomethyl)phenyl]ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid was prepared by the same procedure as example 163. ¹H NMR (300 MHz, CD₃OD) δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.49 (dd, *J* = 10.3, 5.3 Hz, 1H), 7.38 (d, *J* = 6.0 Hz, 1H), 7.30 (dd, *J* = 20.9, 13.4 Hz, 2H), 6.89 – 6.77 (m, 2H), 6.31 – 6.21 (m, 2H), 4.25 (s, 2H), 2.42 (d, *J* = 4.9 Hz, 1H), 1.10 – 0.74 (m, 4H). MS *m/z* (M⁺) 421.1

[0610] Example 166: Synthesis of 2-(3-methoxyphenyl)-3-(2-[1H-pyrrolo[2,3-b]pyridin-3-yl] ethynyl)benzoic acid

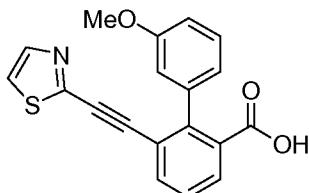


[0611] 2-Bromo-3-ethynyl-benzoic acid methyl ester: A solution of 2-bromo-3-iodobenzoate (1 g, 2.9 mmol) and trimethylsilylacetylene (14.5 mmol) in terahydrofuran:triethylamine (20 ml:20 mL) was degassed using a nitrogen gas balloon for 5 minutes in a round bottom flask. To this solution was added Bis(triphenylphosphine)palladium(II) dichloride (210 mg, 0.3 mmol) and copper iodide (30 mg) and the reaction was stirred for 16 hours at ambient temperature. The reaction mixture was then filtered through celite using ethyl acetate (50 mL). The resultant solution was concentrated under reduced pressure and purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product as a brown solid in 76% yield. To a stirring solution of the brown (0.6 g) in methanol (20 mL) was added solid potassium carbonate (20 mg) and the reaction was stirred for 16 hours at ambient temperature. The resultant mixture was concentrated and was diluted with ethyl acetate (10 mL) and washed with water (2 X 5 mL), brine (2 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was purified through a small silica gel cartridge eluting with ethyl acetate/hexanes (1:9) to provide 2-bromo-3-ethynyl-benzoic acid methyl ester.

[0612] ExTo a stirring solution of 2-bromo-3-ethynyl-benzoic acid methyl ester (0.5 g, 2.1 mmol) was added 3-iodo-1-(toluene-4-sulfonyl)-1H-pyrrolo[2,3-b]pyridine (1 g, 2.3 mmol) in terahydrofuran:triethylamine (20:20 mL) and the reaction was degassed using a nitrogen gas balloon for 15 minutes in a round bottom flask. To this solution was added Bis(triphenylphosphine) palladium(II) dichloride (150 mg, 0.21 mmol) and copper iodide (30 mg) and the reaction was stirred for 16 hours at ambient temperature. The reaction mixture was then filtered through celite using ethyl acetate (50 mL). The resultant solution was concentrated under reduced pressure and purified through silica gel cartridge eluting with ethyl acetate/hnes to give the product as a brown solid in 54% yield.

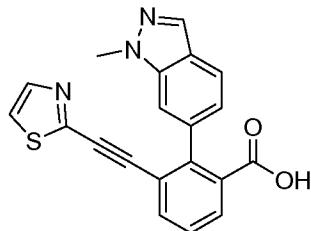

[0613] To a stirring solution of above brown solid (0.05 g, 0.1 mmol) in dimethoxyethane:water (5: 0.1 mL) was added 3-methoxyphenylboronic acid (0.12 mmol), Tetrakis(triphenylphosphine) palladium(0) (12 mg, 0.01 mmol) and potassium carbonate (35 mg, 0.25 mmol) in a sealed vial and the reaction was heated to 130 °C for 10 minutes. The resultant mixture was allowed to cool to ambient temperature and was diluted with ethyl acetate (20 mL) and washed with water (2 X 5 mL), brine (2 mL), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resultant crude product was then dissolved in terahydrofuran:methanol (1:1 mL), 2N sodium hydroxide solution (0.3 mL) was added, and stirred for 24 hours at ambient temperature. This solution was then concentrated and neutralized to pH 4 using 1 N hydrochloric acid solution. The aqueous layer was then extracted using ethyl acetate (2X5 mL) and washed with water (2 mL) and brine (3 mL). The organic layers were combined, dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product was then purified using reversed phase HPLC to provide 3-{2-[3-(cyclopropanesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid. ¹H NMR (300 MHz, DMSO) δ 12.08 (s, 1H), 8.24 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.66 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.41 – 7.31 (m, 2H), 7.07 (dd, *J* = 7.9, 4.7 Hz, 1H), 7.01 (dd, *J* = 7.4, 2.6 Hz, 1H), 6.92 (dd, *J* = 8.9, 1.5 Hz, 2H), 3.73 (s, 3H). MS *m/z* (M+H) 369.0

[0614] Example 167: Synthesis of 2-(1-methyl-1H-indazol-6-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid

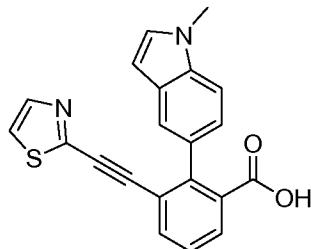

[0615] 2-(1-methyl-1H-indazol-6-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 166. ¹H NMR (300 MHz, DMSO) δ 12.04 (s, 1H), 8.16 (dd, *J* = 4.4, 1.9 Hz, 1H), 8.13 (d, *J* = 1.0 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.74 (q, *J* = 1.4 Hz, 1H), 7.65 (d, *J* = 1.1 Hz, 1H), 7.63 (d, *J* = 2.7 Hz, 1H), 7.56 – 7.45 (m, 1H), 7.10 (dd, *J* = 8.3, 1.3 Hz, 1H), 6.81 – 6.67 (m, 2H), 3.98 (s, 3H). MS *m/z* (M⁺) 392.9

[0616] Example 168: Synthesis of 2-(2-methyl-1,3-benzothiazol-5-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid

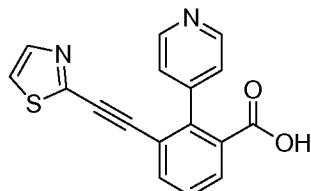
[0617] 2-(2-methyl-1,3-benzothiazol-5-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid was prepared by the same procedure as example 166. ¹H NMR (300 MHz, DMSO) δ 12.05 (s, 1H), 8.17 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.89 (s, 1H), 7.75 (d, *J* = 9.6 Hz, 2H), 7.67 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 6.83 (s, 2H), 2.77 (s, 3H). MS *m/z* (M⁺) 409.7


[0618] Example 169: Synthesis of 2-(3-methoxyphenyl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid

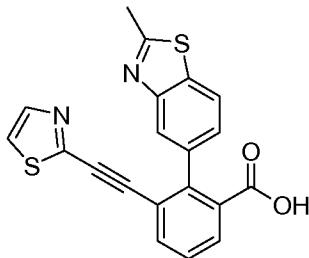
[0619] 2-(3-methoxyphenyl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 166. ¹H NMR (300 MHz, DMSO) δ


9.10 (d, $J = 1.9$ Hz, 1H), 7.84 – 7.70 (m, 3H), 7.52 (t, $J = 7.7$ Hz, 1H), 7.34 (m, 1H), 7.00 – 6.87 (m, 3H), 3.76 (s, 3H). MS m/z (M $^+$) 335.9

[0620] Example 170: Synthesis of 2-(1-methyl-1H-indazol-6-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid


[0621] 2-(1-methyl-1H-indazol-6-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 169. 1 H NMR (300 MHz, DMSO) δ 9.04 (d, $J = 1.9$ Hz, 1H), 8.75 (s, 1H), 8.06 (d, $J = 0.8$ Hz, 1H), 7.84 (dt, $J = 7.8, 4.1$ Hz, 1H), 7.77 (dd, $J = 7.9, 1.3$ Hz, 2H), 7.46 – 7.28 (m, 2H), 7.27 – 7.18 (m, 2H), 3.91 (s, 3H). MS m/z (M $^+$) 359.4

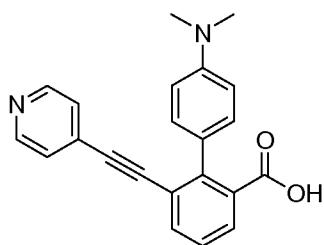
[0622] Example 171: Synthesis of 2-(1-methyl-1H-indol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid


[0623] 2-(1-methyl-1H-indol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 169. 1 H NMR (300 MHz, DMSO) δ 9.06 (d, $J = 2.0$ Hz, 1H), 7.78 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.74 – 7.65 (m, 2H), 7.55 – 7.52 (m, 1H), 7.48 (t, $J = 7.7$ Hz, 2H), 7.35 (d, $J = 3.1$ Hz, 1H), 7.18 (dd, $J = 8.4, 1.7$ Hz, 1H), 6.46 (dd, $J = 3.1, 0.8$ Hz, 1H), 3.82 (s, 3H). MS m/z (M $^+$) 358.9

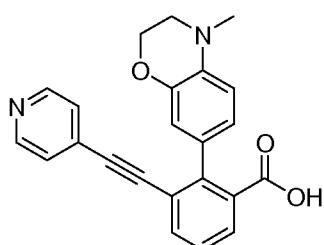
[0624] Example 172: Synthesis of 2-(pyridin-4-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid

[0625] 2-(pyridin-4-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 169. ^1H NMR (300 MHz, DMSO) δ 9.10 (d, J = 1.9 Hz, 1H), 8.85 (s, 1H), 8.03 (dd, J = 7.8, 1.2 Hz, 1H), 7.95 (dd, J = 7.8, 1.3 Hz, 1H), 7.81 (dd, J = 5.7, 3.9 Hz, 4H), 7.68 (t, J = 7.8 Hz, 1H). MS m/z (M+) 306.9

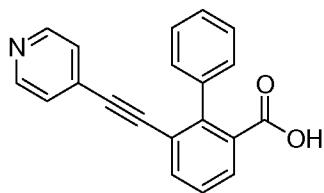
[0626] Example 173: Synthesis of 2-(2-methyl-1,3-benzothiazol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid


[0627] 2-(2-methyl-1,3-benzothiazol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 169. ^1H NMR (300 MHz, CD₃OD) δ 8.90 (d, J = 2.0 Hz, 1H), 7.98 (dd, J = 8.3, 0.6 Hz, 1H), 7.93 – 7.86 (m, 2H), 7.84 (dd, J = 7.8, 1.3 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.43 (dd, J = 8.3, 1.7 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 2.85 (s, 3H). MS m/z (M+) 376.8

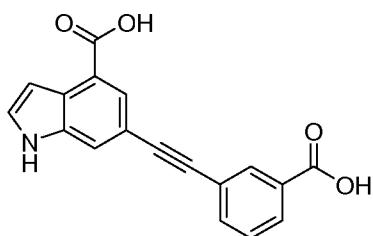
[0628] Example 174: Synthesis of 2-(1H-indol-3-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid


[0629] 2-(1H-indol-3-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 166. ^1H NMR (300 MHz, DMSO-d₆) δ = 11.34 (br. s., 1H), 8.47 (br. s., 2H), 7.82 (dd, J =1.3, 7.8 Hz, 1H), 7.74 (d, J =7.5 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.33 (d, J =7.9 Hz, 1H), 7.12 (t, J =7.6 Hz, 1H), 7.02 – 6.90 (m, 3H). MS (ES⁺) = 338.93 (MH⁺).

[0630] Example 175: Synthesis of 2-[4-(dimethylamino)phenyl]-3-[2-(pyridin-4-yl)ethynyl]benzoic acid


[0631] 2-[4-(dimethylamino)phenyl]-3-[2-(pyridin-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 174. ^1H NMR (300MHz, DMSO-d6) δ = 8.67 (br. s., 2H), 7.88 - 7.71 (m, 2H), 7.53 - 7.33 (m, 3H), 7.31 - 7.16 (m, 2H), 6.86 (d, J =8.8 Hz, 2H), 2.97 (s, 6H). MS (ES $^+$) = 343.01 (MH $^+$).

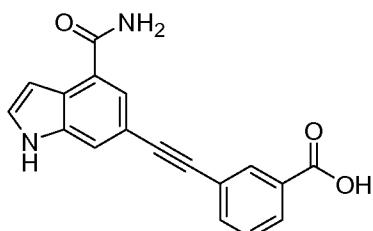
[0632] Example 176: Synthesis of 2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid


[0633] 2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 174. MS (ES $^+$) = 371.00 (MH $^+$).

[0634] Example 177: Synthesis of 2-phenyl-3-[2-(pyridin-4-yl)ethynyl]benzoic acid

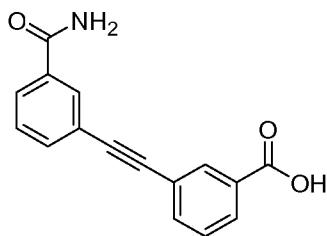
[0635] 2-phenyl-3-[2-(pyridin-4-yl)ethynyl]benzoic acid was prepared by the same procedure as example 174. ^1H NMR (300MHz, DMSO-d6) δ = 8.59 (d, J =5.9 Hz, 2H), 7.87 - 7.81 (m, 2H), 7.55 (t, J =7.8 Hz, 1H), 7.48 - 7.32 (m, 5H), 7.18 (d, J =5.2 Hz, 2H). MS (ES $^+$) = 300.01 (MH $^+$).

[0636] Example 178: Synthesis of 6-(3-carboxy-phenylethynyl)-1H-indole-4-carboxylic acid

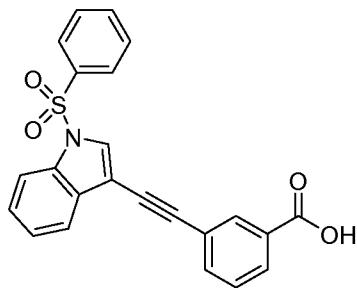

[0637] 6-(3-carboxy-phenylethynyl)-1H-indole-4-carboxylic acid was prepared by the same procedure as example 90. ^1H NMR (300MHz, DMSO) δ = 11.64 (s, J =3.5, 3.5 Hz, 1H), 8.07 (d, J =2.3 Hz, 1H), 7.94 (td, J =1.7, 8.2 Hz, 1H), 7.86 - 7.80 (m, 3H), 7.63 (t, J =2.8 Hz, 1H), 7.56 (t, J =7.7 Hz, 1H), 6.99 - 6.96 (m, 1H). MS (ESI) m/z 287.9 (M-H₂O+1)⁺.

1192

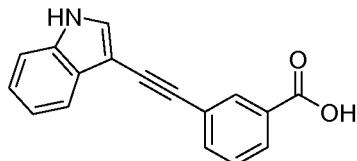
[0638] Example 179: Synthesis of 3-(4-carbamoyl-1H-indol-6-ylethynyl)-benzoic acid



[0639] 6-Bromo-1H-indole-4-carboxylic acid amide: A solution of 6-bromo-1H-indole-4-carboxylic acid methyl ester (600 mg, 2.36 mmol) in ammonium hydroxide (10 mL) in a sealed flask was heated at 110 °C for 18 hours. After cooling to ambient temperature, the precipitates were filtered, washed with water and air dried to give 240 mg of the desired product (43%) as a white solid.

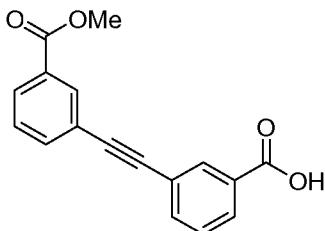

[0640] 3-(4-Carbamoyl-1H-indol-6-ylethynyl)-benzoic acid was prepared by the same procedure as example 90. ^1H NMR (300MHz, CD₃OD) δ = 11.05 (br. s., 1H), 8.15 (t, J =1.5 Hz, 1H), 7.99 (td, J =1.4, 7.9 Hz, 1H), 7.78 - 7.72 (m, 2H), 7.68 (s, 1H), 7.53 - 7.47 (m, 2H), 6.95 - 6.92 (m, 1H). MS (ESI) m/z 305.0 (M+1)⁺.

[0641] Example 180: Synthesis of 3-(3-carbamoyl-phenylethynyl)-benzoic acid

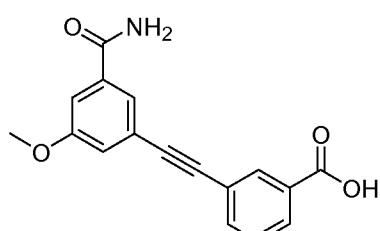

[0642] 3-(3-Carbamoyl-phenylethynyl)-benzoic acid was prepared by the same procedure as example **90**. ^1H NMR (300MHz, DMSO) δ = 13.25 (br. s., 1H), 8.11 – 8.05 (m, 3H), 7.98 (td, J =1.5, 11.0 Hz, 2H), 7.95 - 7.88 (m, 1H), 7.80 (d, J =7.5 Hz, 1H), 7.73 (td, J =1.4, 7.8 Hz, 1H), 7.60 - 7.46 (m, 2H). MS (ESI) m/z 266.1 ($\text{M}+1$) $^+$.

[0643] Example 181: Synthesis of 3-(1-benzenesulfonyl-1H-indol-3-ylethynyl)-benzoic acid

[0644] 3-(1-Benzenesulfonyl-1H-indol-3-ylethynyl)-benzoic acid was prepared by the same procedure as example **90**. ^1H NMR (300MHz, CDCl_3) δ = 9.75 (br. s., 1H), 8.24 (s, 1H), 7.98 (d, J =7.9 Hz, 1H), 7.82 (d, J =6.7 Hz, 1H), 7.74 (d, J =7.6 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.53 - 7.40 (m, 5H), 7.30 - 7.19 (m, 3H).


[0645] Example 182: Synthesis of 3-(1H-indol-3-ylethynyl)-benzoic acid

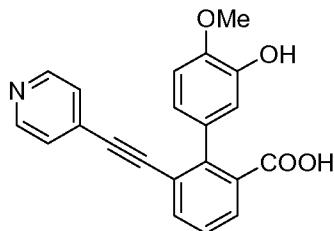
[0646] 3-(1H-Indol-3-ylethynyl)-benzoic acid was prepared by the same procedure as example **90**. ^1H NMR (300MHz, CD_3OD) δ = 8.32 (s, 1H), 8.22 (d, J =7.2 Hz, 1H), 8.07 - 7.98 (m, 1H), 7.90 (d, J =7.8 Hz, 1H), 7.59 (d, J =7.9 Hz, 1H), 7.48 - 7.38 (m, 2H), 7.26 - 7.16 (m, 2H).


[0647] Example 183: Synthesis of 3-(3-carboxy-phenylethynyl)-benzoic acid methyl ester 3-(3-Methoxycarbonyl-phenylethynyl)-benzoic acid tert-butyl ester

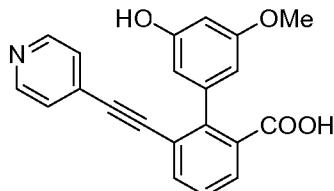
was prepared by the same procedure as example **90** and was used without further purification.

[0648] 3-(3-Carboxy-phenylethynyl)-benzoic acid methyl ester: To a solution of 3-(3-methoxycarbonyl-phenylethynyl)-benzoic acid tert-butyl ester (690 mg, 2.05 mmol) in dichloromethane (5 mL) was added trifluoroacetic acid (5 mL). The solution was stirred at room temperature for 1 hour, concentrated and dried over vacuum to give 570 mg of the product (99%) as a white solid. ¹H NMR (300MHz, CDCl₃) δ = 8.24 (d, *J*=7.0 Hz, 2H), 8.04 (t, *J*=6.8 Hz, 2H), 7.73 (t, *J*=4.0 Hz, 2H), 7.46 (t, *J*=7.8 Hz, 2H), 3.96 (s, 3H). MS (ESI) *m/z* 281.0 (M+1)⁺.

[0649] Example 184: Synthesis of 3-(3-carbamoyl-5-methoxy-phenylethynyl)-benzoic acid


[0650] 3-(3-Carbamoyl-5-methoxy-phenylethynyl)-benzoic acid was prepared by the same procedure as example **90**. ¹H NMR (300MHz, CD₃OD) δ = 8.15 – 8.12 (m, 1H), 8.04 – 8.00 (m, 1H), 7.76 – 7.72 (m, 1H), 7.64 (s, 1H), 7.54 – 7.45 (m, 2H), 7.35 – 7.25 (m, 1H), 3.88 (s, 3H). MS (ESI) *m/z* 296.1 (M+1)⁺.

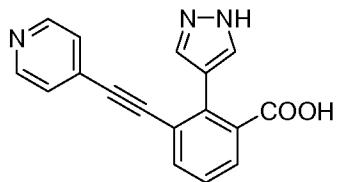
[0651] Example 185: Synthesis of 3'-hydroxy-4'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid


[0652] 2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol: A mixture of 5-bromo-2-methoxy-phenol (300 mg, 1.48 mmol), *bis(pinacolato)diboron* (488 mg, 1.92 mmol), [1,1'-Bis(diphenylphosphino)ferrocene]palladium(II) dichloride (60 mg, 0.074 mmol)

and potassium acetate (278 mg, 3 mmol) in dimethylformamide (4 mL) was heated at 90 °C for 18 hours. After cooling to room temperature, the reaction mixture was partitioned between dichloromethane (50 mL) and water (30 mL). The organic layer was dried (sodium sulfate), filtered, concentrated and purified through silica gel cartridge eluting with ethyl acetate/hexanes to give the product as a white solid in 86% yield.


[0653] 3'-Hydroxy-4'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid was prepared from 2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 8.45 (br. s., 2H), 7.75 (t, J =7.9 Hz, 2H), 7.43 (t, J =7.8 Hz, 1H), 7.26 - 7.15 (m, 2H), 7.00 - 6.87 (m, 2H), 6.79 (dd, J =1.8, 8.2 Hz, 1H), 3.90 (s, 3H). MS (ESI) m/z 346.13 ($\text{M}+1$) $^+$.

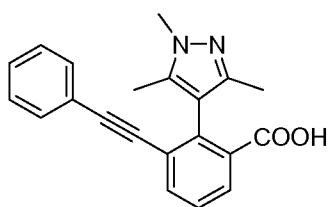
[0660] Example 186: Synthesis of 5'-hydroxy-3'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid


[0654] 5'-Hydroxy-3'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 8.46 (br. s., 2H), 7.79 (dd, J =1.2, 7.6 Hz, 1H), 7.75 (dd, J =1.2, 7.9 Hz, 1H), 7.47 (t, J =7.8 Hz, 1H), 7.20 (d, J =5.3 Hz, 2H), 6.47 - 6.38 (m, 3H), 3.75 (s, 3H). MS (ESI) m/z 346.1 ($\text{M}+1$) $^+$.

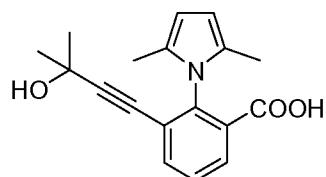
[0655] Example 187: Synthesis of 2-(1H-pyrazol-3-yl)-3-pyridin-4-ylethynyl-benzoic acid

[0656] 2-(1H-Pyrazol-3-yl)-3-pyridin-4-ylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, DMSO) δ = 8.82 – 8.73 (m, 2H), 8.58 – 8.53 (m, 2H), 8.34 (d, J =7.3 Hz, 1H), 8.07 (d, J =7.3 Hz, 1H), 7.91(d, J =2.1 Hz, 1H), 7.61(t, J =7.9 Hz, 1H), 7.41 (s, 1H), 6.94(d, J =1.7 Hz, 1H). MS (ESI) m/z 290.1 (M+1) $^+$.

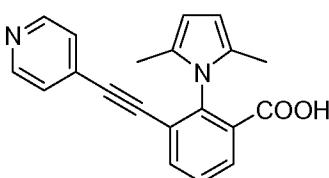
[0657] Example 188: Synthesis of 2-(1H-pyrazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid


[0658] 2-(1H-Pyrazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, DMSO) δ = 7.82 – 7.76 (m, 4H), 7.68 – 7.64 (m, 1H), 7.50 – 7.42 (m, 3H). MS (ESI) m/z 290.1 (M+1) $^+$.

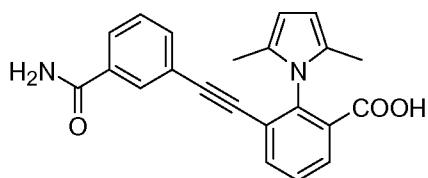
[0659] Example 189: Synthesis of 2-(3,5-dimethyl-isoxazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid


[0660] 2-(3,5-Dimethyl-isoxazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD₃OD) δ = 8.78 (br. s., 2H), 8.16 (d, J =7.9 Hz, 1H), 7.99 (dd, J =1.2, 7.9 Hz, 1H), 7.79 - 7.63 (m, 3H), 2.23 (s, 3H), 2.09 (s, 3H). MS (ESI) m/z 319.1 (M+1) $^+$.

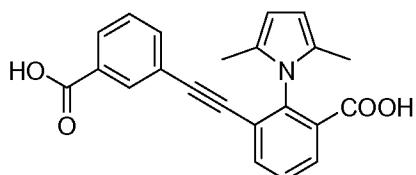
[0661] Example 190: Synthesis of 3-phenylethynyl-2-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzoic acid


[0662] 3-Phenylethynyl-2-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 7.94 (d, $J=8.1$ Hz, 1H), 7.80 (d, $J=7.4$ Hz, 1H), 7.53 (t, $J=7.8$ Hz, 1H), 7.38 - 7.20 (m, 5H), 3.87 (s, 3H), 2.12 (s, 3H), 2.11 (s, 3H). MS (ESI) m/z 331.1 ($\text{M}+1$) $^+$.

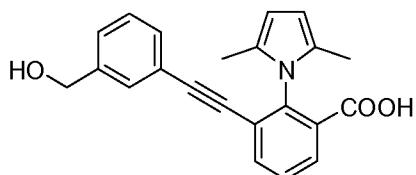
[0663] Example 191: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-methyl-but-1-ynyl)-benzoic acid


[0664] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-methyl-but-1-ynyl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CDCl_3) δ = 8.01 (dd, $J=1.6, 7.8$ Hz, 1H), 7.64 (dd, $J=1.6, 7.8$ Hz, 1H), 7.48 (t, $J=7.7$ Hz, 1H), 5.90 (s, 2H), 1.92 (s, 6H), 1.38 (s, 6H). MS (ESI) m/z 280.1 ($\text{M}-\text{H}_2\text{O}+1$) $^+$.

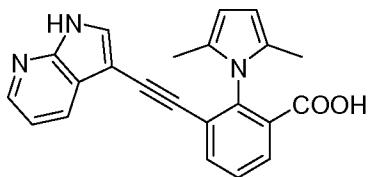
[0665] Example 192: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-pyridin-4-ylethynyl-benzoic acid


[0666] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-pyridin-4-ylethynyl-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CD_3OD) δ = 8.69 (br. s., 2H), 8.05 (dd, $J=1.5, 7.9$ Hz, 1H), 7.93 (dd, $J=1.5, 7.9$ Hz, 1H), 7.71 - 7.57 (m, 3H), 5.89 (s, 2H), 1.93 (s, 6H). MS (ESI) m/z 317.1 ($\text{M}+1$) $^+$.

Example 193: Synthesis of 3-(3-carbamoyl-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid


[0667] 3-(3-Carbamoyl-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CD_3OD) δ = 7.99 - 7.77 (m, 4H), 7.63 - 7.50 (m, 1H), 7.48 - 7.32 (m, 2H), 5.85 (s, 2H), 1.94 (s, 6H). MS (ESI) m/z 359.0 ($\text{M}+1$) $^+$.

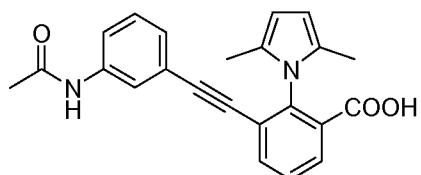
[0668] Example 194: Synthesis of 3-(3-carboxy-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid


[0669] 3-(3-Carboxy-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CD_3OD) δ = 7.98 - 7.78 (m, 4H), 7.64 - 7.50 (m, 1H), 7.50 - 7.33 (m, 2H), 5.85 (s, 2H), 1.94 (s, 6H). MS (ESI) m/z 360.0 ($\text{M}+1$) $^+$.

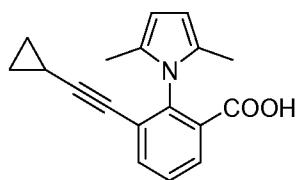
[0670] Example 195: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxymethyl-phenylethynyl)-benzoic acid

[0671] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-(3-hydroxymethyl-phenylethynyl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CD_3OD) δ = 7.85 (d, $J=7.6$ Hz, 1H), 7.76 (d, $J=7.6$ Hz, 1H), 7.54 (t, $J=7.6$ Hz, 1H), 7.36 - 7.13 (m, 4H), 5.84 (s, 2H), 4.55 (s, 2H), 1.94 (s, 6H). MS (ESI) m/z 346.0 ($\text{M}+1$) $^+$.

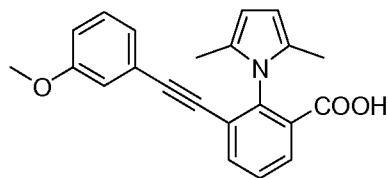
[0672] Example 196: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-(1H-pyrrolo[2,3-b]pyridin-3-ylethynyl)-benzoic acid


[0673] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-(1H-pyrrolo[2,3-b]pyridin-3-ylethynyl)-benzoic acid was prepared by the same procedure as example 21. ¹H NMR (300MHz, CD₃OD) δ = 8.34 (br. s., 1H), 8.10 (dd, *J*=1.5, 7.9 Hz, 1H), 7.89 - 7.78 (m, 2H), 7.70 (s, 1H), 7.64 - 7.49 (m, 1H), 7.35 (dd, *J*=5.3, 7.9 Hz, 1H), 5.90 (s, 2H), 1.97 (s, 6H). MS (ESI) *m/z* 356.1 (M+1)⁺.

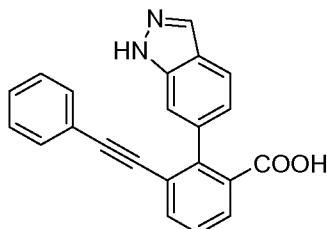
[0674] Example 197: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-phenyl-prop-1-ynyl)-benzoic acid


[0675] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-phenyl-prop-1-ynyl)-benzoic acid was prepared by the same procedure as example 21. ¹H NMR (300MHz, CD₃OD) δ = 8.08 (d, *J*=7.9 Hz, 1H), 7.97 - 7.85 (m, 2H), 7.68 - 7.42 (m, 3H), 7.21 (d, *J*=16.1 Hz, 1H), 6.85 (d, *J*=15.8 Hz, 1H), 5.91 (s, 2H), 3.30 (s, 1H), 1.87 (s, 6H). MS (ESI) *m/z* 346.0 (M+1)⁺.

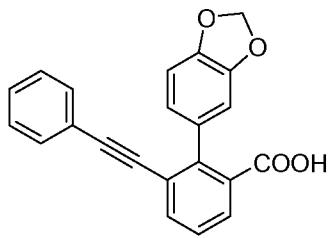
[0676] Example 198: Synthesis of 3-(3-acetylamino-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid


[0677] 3-(3-Acetylamino-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid was prepared by the same procedure as example 21. ¹H NMR (300MHz, CD₃OD) δ = 7.84 (d, *J*=5.9 Hz, 1H), 7.75 (d, *J*=7.9 Hz, 1H), 7.60 - 7.43 (m, 3H), 7.30 - 7.14 (m, 1H), 6.97 (d, *J*=7.3 Hz, 1H), 2.12 (s, 3H), 1.95 (s, 6H). MS (ESI) *m/z* 373.0 (M+1)⁺.

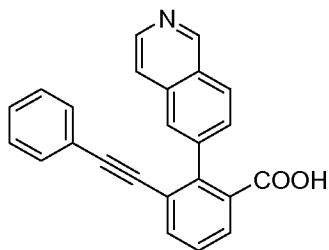
[0678] Example 199: Synthesis of 3-cyclopropylethynyl-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid


[0679] 3-Cyclopropylethynyl-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, CD_3OD) δ = 7.79 (d, J =7.9 Hz, 1H), 7.60 (d, J =7.9 Hz, 1H), 7.45 (t, J =7.9 Hz, 1H), 5.72 (s, 2H), 1.85 (s, 6H), 1.36 - 1.13 (m, 1H), 0.75 - 0.63 (m, 2H), 0.62 - 0.37 (m, 2H). MS (ESI) m/z 280.1 (M+1) $^+$.

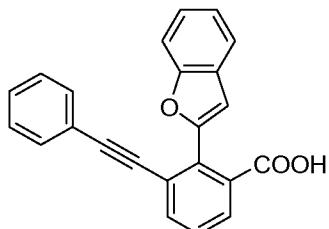
[0680] Example 200: Synthesis of 2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-methoxy-phenylethynyl)-benzoic acid


[0681] 2-(2,5-Dimethyl-pyrrol-1-yl)-3-(3-methoxy-phenylethynyl)-benzoic acid was prepared by the same procedure as example **21**. ^1H NMR (300MHz, DMSO) δ = 7.81 (d, J =7.9 Hz, 2H), 7.58 (t, J =7.6 Hz, 1H), 7.24 (t, J =8.0 Hz, 1H), 6.94 (d, J =2.6 Hz, 1H), 6.90 (d, J =2.6 Hz, 1H), 6.84 - 6.80 (m, 1H), 5.80 (s, 2H), 3.72 (s, 3H), 1.82 (s, 6H). MS (ESI) m/z 346.0 (M+1) $^+$.

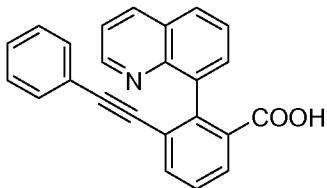
[0682] Example 201: Synthesis of 2-(1H-indazol-6-yl)-3-phenylethynyl-benzoic acid


[0683] 2-(1H-Indazol-6-yl)-3-phenylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 8.10 (s, 1H), 7.85 - 7.74 (m, 3H), 7.55 - 7.45 (m, 2H), 7.25 - 7.13 (m, 4H), 6.96 (d, J =7.0 Hz, 2H). MS (ESI) m/z 339.0 (M+1) $^+$.

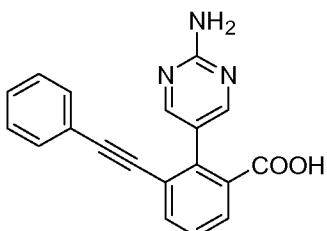
[0684] Example 202: Synthesis of 2-benzo[1,3]dioxol-5-yl-3-phenylethynyl-benzoic acid


[0685] 2-Benzo[1,3]dioxol-5-yl-3-phenylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 7.72 (t, J =8.5 Hz, 2H), 7.43 (t, J =7.7 Hz, 1H), 7.31 - 7.19 (m, 5H), 6.87 (s, 1H), 6.88 (d, J =8.2 Hz, 1H), 6.82 - 6.78 (m, 1H), 6.00 (s, 2H). MS (ESI) m/z 325.0 (M- $\text{H}_2\text{O}+1$) $^+$.

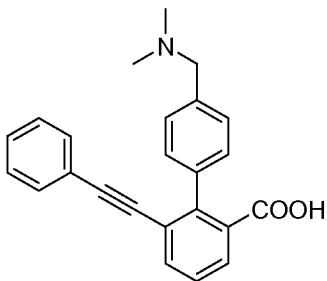
[0686] Example 203: Synthesis of 2-isoquinolin-6-yl-3-phenylethynyl-benzoic acid


[0687] 2-Isoquinolin-6-yl-3-phenylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 9.78 (br. s., 1H), 8.52 (d, J =8.5 Hz, 1H), 8.22 - 8.02 (m, 3H), 7.94 (d, J =7.3 Hz, 1H), 7.85 (br. s., 1H), 7.71 (t, J =7.8 Hz, 1H), 7.24 - 7.10 (m, 5H), 6.72 (d, J =7.0 Hz, 2H). MS (ESI) m/z 350.0 (M+1) $^+$.

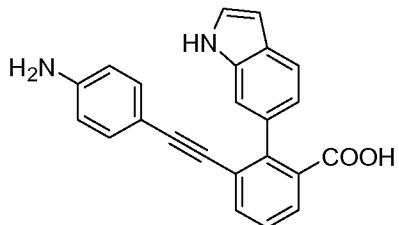
[0688] Example 204: Synthesis of 2-benzofuran-2-yl-3-phenylethynyl-benzoic acid


[0689] 2-Benzofuran-2-yl-3-phenylethynyl-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CD_3OD) δ = 7.90 - 7.78 (m, 2H), 7.70 - 7.65 (m, 1H), 7.58 - 7.48 (m, 2H), 7.35 - 7.22 (m, 7H), 7.18 (s, 1H). MS (ESI) m/z 339.0 (M+1) $^+$.

[0690] Example 205: Synthesis of 3-phenylethynyl-2-quinolin-8-yl-benzoic acid


[0691] 3-Phenylethynyl-2-quinolin-8-yl-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CD_3OD) δ = 9.14 (dd, J =1.6, 8.4 Hz, 1H), 8.95 (dd, J =1.6, 5.1 Hz, 1H), 8.35 (dd, J =1.5, 8.2 Hz, 1H), 8.20 (d, J =7.9 Hz, 1H), 8.03 - 7.90 (m, 4H), 7.73 (t, J =7.8 Hz, 1H), 7.24 - 7.10 (m, 3H), 6.70 (d, J =7.5 Hz, 2H). MS (ESI) m/z 350.0 ($\text{M}+1$) $^+$.

[0692] Example 206: Synthesis of 2-(2-amino-pyrimidin-5-yl)-3-phenylethynyl-benzoic acid

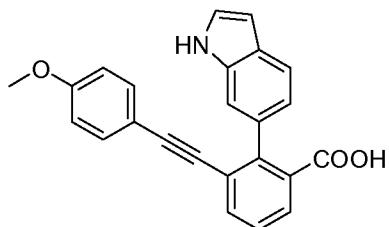

[0693] 2-(2-Amino-pyrimidin-5-yl)-3-phenylethynyl-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CD_3OD) δ = 8.47 (s, 2H), 8.07 (dd, J =1.5, 7.9 Hz, 1H), 7.86 (dd, J =1.3, 7.8 Hz, 1H), 7.58 (t, J =7.8 Hz, 1H), 7.37 - 7.29 (m, 5H). MS (ESI) m/z 316.0 ($\text{M}+1$) $^+$.

[0694] Example 207: Synthesis of 4'-dimethylaminomethyl-6-phenylethynyl-biphenyl-2-carboxylic acid

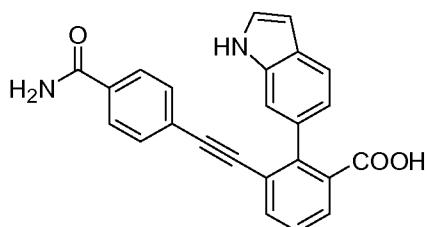
[0695] 4'-Dimethylaminomethyl-6-phenylethynyl-biphenyl-2-carboxylic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CD_3OD) δ = 7.90 (dd, J =1.2, 7.9 Hz, 1H), 7.77 (d, J =7.6 Hz, 1H), 7.58 - 7.44 (m, 5H), 7.34 - 7.09 (m, 5H), 4.39 (s, 2H), 2.85 (m, 6H). MS (ESI) m/z 356.1 ($\text{M}+1$) $^+$.

[0696] Example 208: Synthesis of 3-(4-amino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid

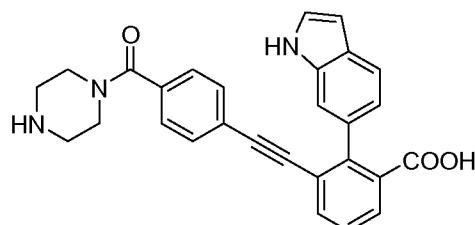
[0697] 3-(4-Amino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CDCl_3) δ = 8.24 (d, J =8.8 Hz, 1H), 8.00 (br. s., 1H), 7.93 (d, J =7.9 Hz, 1H), 7.86 - 7.80 (m, 2H), 7.62 (s, 1H), 7.55 (d, J =7.6 Hz, 1H), 7.43 - 7.36 (m, 2H), 7.07 - 6.95 (m, 3H), 6.61 (dd, J =2.2, 2.9 Hz, 1H). MS (ESI) m/z 353.1 ($\text{M}+1$) $^+$.


[0698] Example 209: Synthesis of 3-(4-carboxy-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid 2-Bromo-3-[4-(2-oxo-2-phenyl-ethoxycarbonyl)-phenylethynyl]-benzoic acid methyl ester was prepared by the same Sonogashira Coupling procedure as preparing 2-bromo-3-phenylethynyl-benzoic acid methyl ester in example 119 and was used in the next step without purification.

[0699] 2-(1H-Indol-6-yl)-3-[4-(2-oxo-2-phenyl-ethoxycarbonyl)-phenylethynyl]-benzoic acid methyl ester was prepared by the same Suzuki Coupling procedure as preparing 2-(1H-indol-6-yl)-3-phenylethynyl-benzoic acid methyl ester in example 119 and was used in the next step without purification.

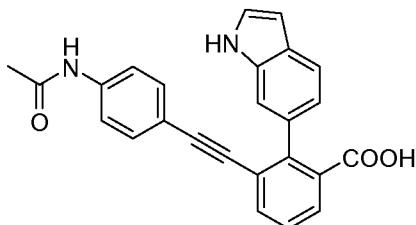

[0700] 3-(4-Carboxy-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid was prepared from 22-(1H-indol-6-yl)-3-phenylethynyl-benzoic acid methyl ester by the same hydrolysis procedure as example 119. ^1H NMR (300MHz, CDCl_3) δ = 7.87 - 7.65 (m, 5H), 7.45 - 7.38 (m, 2H), 7.25 (d, J =3.2 Hz, 1H), 7.19 (dd, J =1.5, 8.2 Hz, 1H), 7.09 (d, J =8.2 Hz, 2H), 6.57 (d, J =3.3 Hz, 1H). MS (ESI) m/z 382.0 ($\text{M}+1$) $^+$.

[0701] Example 210: Synthesis of 2-(1H-indol-6-yl)-3-(4-methoxy-phenylethynyl)-benzoic acid

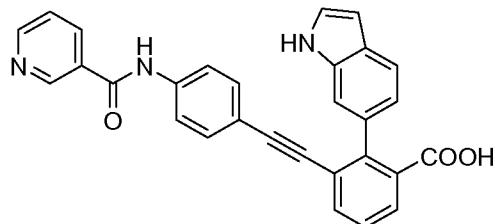

[0702] 2-(1H-Indol-6-yl)-3-(4-methoxy-phenylethynyl)-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CD_3OD) δ = 7.69 (d, $J=7.9$ Hz, 2H), 7.59 (d, $J=8.2$ Hz, 1H), 7.45 - 7.27 (m, 2H), 7.28 (d, $J=3.2$ Hz, 1H), 7.05 (dd, $J=1.4, 8.2$ Hz, 1H), 6.96 (d, $J=8.8$ Hz, 2H), 6.73 (d, $J=9.1$ Hz, 2H), 6.50 (d, $J=3.4$ Hz, 1H), 3.73 (s, 3H). MS (ESI) m/z 368.1 ($\text{M}+1$) $^+$.

[0703] Example 211: Synthesis of 3-(4-carbamoyl-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid

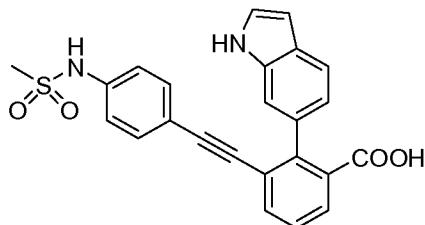
[0704] 3-(4-Carbamoyl-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, DMSO) δ = 11.21 (br. s., 1H), 8.01 (s, 1H), 7.82 - 7.70 (m, 4H), 7.62 - 7.40 (m, 5H), 7.18 (d, $J=8.2$ Hz, 2H), 7.05 (d, $J=7.0$ Hz, 1H), 6.51 (s, 1H). MS (ESI) m/z 381.1 ($\text{M}+1$) $^+$.


[0705] Example 212: Synthesis of 2-(1H-indol-6-yl)-3-[4-(piperazine-1-carbonyl)-phenylethynyl]-benzoic acid

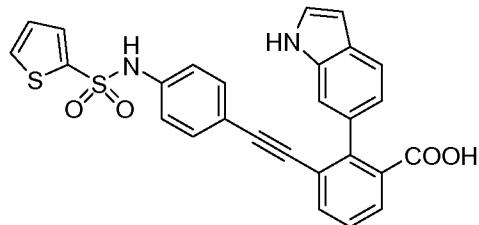
[0706] 2-(1H-Indol-6-yl)-3-[4-(piperazine-1-carbonyl)-phenylethynyl]-benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300MHz, CD_3OD) δ = 7.78 - 7.74 (m, 2H), 7.60 (d, $J=8.2$ Hz, 1H), 7.48 - 7.42 (m, 2H),


7.35 - 7.25 (m, 3H), 7.15 - 7.03 (m, 3H), 6.50 (d, $J=3.1$ Hz, 1H), 3.85 - 3.70 (m, 4H), 3.30 - 3.06 (m, 4H). MS (ESI) m/z 450.3 (M+1)⁺.

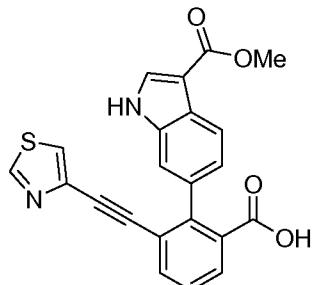
[0707] Example 213: Synthesis of 3-(4-acetylamino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid


[0708] 3-(4-acetylamino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid was prepared by the same procedure as example **119**. ¹H NMR (300MHz, CDCl₃) δ = 7.86 - 7.64 (m, 3H), 7.46 - 7.29 (m, 4H), 7.25 - 7.17 (m, 2H), 7.00 (d, $J=8.5$ Hz, 2H), 6.56 (d, $J=2.4$ Hz, 1H), 2.12 (s, 3H). MS (ESI) m/z 395.1 (M+1)⁺.

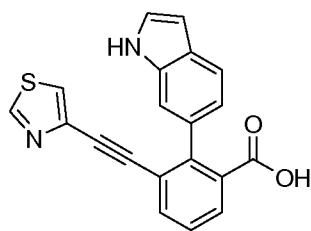
[0709] Example 214: Synthesis of 2-(1H-indol-6-yl)-3-{4-[(pyridine-3-carbonyl)-amino]-phenylethynyl}-benzoic acid


[0710] 2-(1H-Indol-6-yl)-3-{4-[(pyridine-3-carbonyl)-amino]-phenylethynyl}-benzoic acid was prepared by the same procedure as example **119**. ¹H NMR (300MHz, CDCl₃) δ = 9.10 (br. s., 1H), 8.75 - 8.69 (m, 1H), 8.43 - 8.37 (m, 1H), 7.81 - 7.72 (m, 2H), 7.67 (d, $J=8.2$ Hz, 1H), 7.60 - 7.52 (m, 3H), 7.48 - 7.36 (m, 2H), 7.32 - 7.18 (m, 2H), 7.07 (d, $J=7.9$ Hz, 2H), 6.56 (dd, $J=1.2, 3.2$ Hz, 1H). MS (ESI) m/z 458.0 (M+1)⁺.

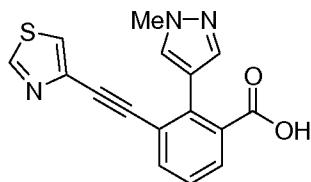
[0711] Example 215: Synthesis of 2-(1H-indol-6-yl)-3-(4-methanesulfonylamino-phenylethynyl)-benzoic acid


[0712] 2-(1H-indol-6-yl)-3-(4-methanesulfonylamino-phenylethynyl)-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CDCl_3) δ = 7.85 - 7.64 (m, 3H), 7.45 - 7.32 (m, 2H), 7.26 – 7.17 (m, 2H), 7.07 - 7.00 (m, 4H), 6.55 (dd, J =2.9 Hz, 1H), 3.46 (s, 3H). MS (ESI) m/z 431.1 ($\text{M}+1$) $^+$.

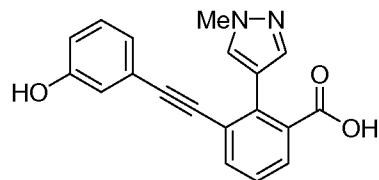
[0713] Example 216: Synthesis of 2-(1H-indol-6-yl)-3-[4-(thiophene-2-sulfonylamino)-phenylethynyl]-benzoic acid


[0714] 2-(1H-Indol-6-yl)-3-[4-(thiophene-2-sulfonylamino)-phenylethynyl]-benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300MHz, CDCl_3) δ = 9.10 (br. s., 1H), 8.75 (br. s., 1H), 7.77 (dd, J =1.4, 7.8 Hz, 1H), 7.69 (dd, J =1.5, 7.9 Hz, 1H), 7.64 (d, J =8.2 Hz, 1H), 7.48 (dd, J =1.5, 5.0 Hz, 1H), 7.43 (dd, J =1.2, 3.8 Hz, 1H), 7.42 - 7.24 (m, 2H), 7.22 - 7.14 (m, 2H), 7.02 - 6.86 (m, 5H), 6.53 (dd, J =0.9, 3.2 Hz, 1H). MS (ESI) m/z 499.1 ($\text{M}+1$) $^+$.

[0715] Example 217: Synthesis of 2-(3-(Methoxycarbonyl)-1H-indol-6-yl)-3-(thiazol-4-ylethynyl) benzoic acid

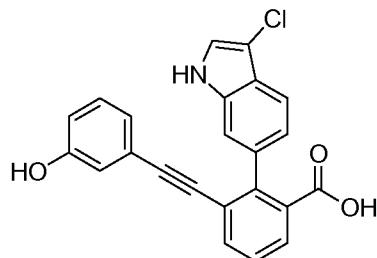

[0716] 2-(3-(Methoxycarbonyl)-1H-indol-6-yl)-3-(thiazol-4-ylethynyl) benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 11.89 (s, 1H), 9.06 (d, J = 1.9 Hz, 1H), 8.04 (d, J = 3.0 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.81 (dd, J = 7.7, 1.3 Hz, 1H), 7.73 (dd, J = 7.8, 1.4 Hz, 1H), 7.69 (d, J = 1.9 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.18 (dd, J = 8.2, 1.6 Hz, 1H), 3.82 (s, 3H). MS m/z 403.5 ($\text{M}+\text{H}$).

[0717] Example 218: Synthesis of 2-(1H-indol-6-yl)-3-(thiazol-4-ylethynyl)benzoic acid

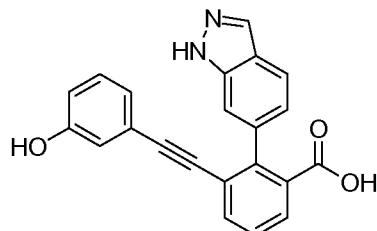

[0718] 2-(1H-indol-6-yl)-3-(thiazol-4-ylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 8.66 (d, J = 2.1 Hz, 1H), 8.41 (s, 1H), 7.76 (ddd, J = 7.9, 3.7, 1.4 Hz, 2H), 7.63 (dd, J = 13.0, 6.5 Hz, 1H), 7.45 (d, J = 6.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.12 (dd, J = 8.1, 1.5 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.56 (t, J = 2.1 Hz, 1H). MS m/z 344.9 (M+H).

[0719] Example 219: Synthesis of 2-(1-methyl-1H-pyrazol-4-yl)-3-(thiazol-4-ylethynyl) benzoic acid

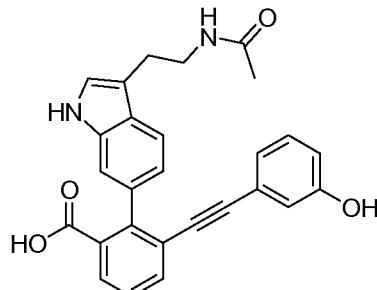
[0720] 2-(1-methyl-1H-pyrazol-4-yl)-3-(thiazol-4-ylethynyl) benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 9.16 (d, J = 1.9 Hz, 1H), 8.00 (d, J = 2.0 Hz, 1H), 7.93 (s, 1H), 7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.61 (dd, J = 7.7, 1.4 Hz, 1H), 7.57 (d, J = 0.8 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 3.89 (s, 3H). MS m/z 310.0 (M+H).


[0721] Example 220: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(1-methyl-1H-pyrazol-4-yl)benzoic acid

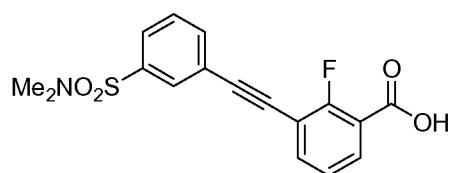
[0722] 3-((3-hydroxyphenyl)ethynyl)-2-(1-methyl-1H-pyrazol-4-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.78 (s, 1H), 7.72 – 7.66 (m, 2H), 7.65 (d, J = 0.9 Hz, 1H), 7.38 (t, J =


7.8 Hz, 1H), 7.21 – 7.10 (m, 1H), 6.86 – 6.77 (m, 2H), 6.75 (tt, J = 2.5, 1.4 Hz, 1H), 3.96 (m, 3H). MS m/z 319.0 (M+H).

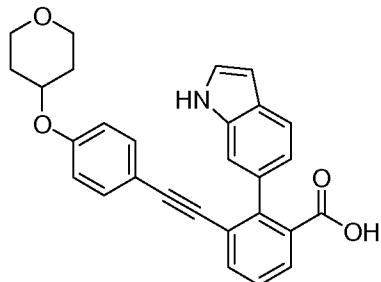
[0723] Example 221: Synthesis of 2-(3-chloro-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid


[0724] 2-(3-chloro-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 12.38 (s, 1H), 9.60 (s, 1H), 7.88 – 7.65 (m, 3H), 7.59 – 7.41 (m, 2H), 7.32 (s, 1H), 7.16 (dd, J = 8.3, 1.5 Hz, 1H), 7.12 – 7.00 (m, 1H), 6.73 (d, J = 9.7 Hz, 1H), 6.59 – 6.41 (m, 2H). MS m/z 371.1 (M-OH).

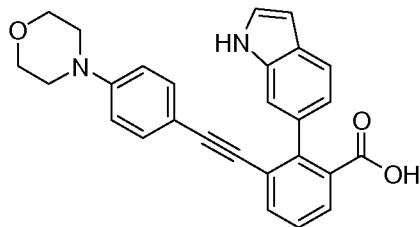
[0725] Example 222: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(1H-indazol-6-yl)benzoic acid


[0726] 3-((3-hydroxyphenyl)ethynyl)-2-(1H-indazol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 8.12 (s, 1H), 7.85 – 7.70 (m, 4H), 7.52 (t, J = 7.7 Hz, 1H), 7.45 (s, 1H), 7.16 – 6.99 (m, 2H), 6.78 – 6.65 (m, 1H), 6.53 – 6.44 (m, 2H). MS m/z 355.0 (M+H).

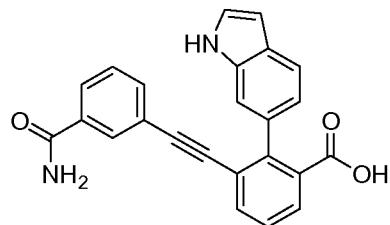
[0727] Example 223: Synthesis of 2-(3-(2-acetamidoethyl)-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid


[0728] 2-(3-(2-acetamidoethyl)-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 10.90 (s, 1H), 7.93 (m, 1H), 7.72 (dd, J = 7.7, 1.4 Hz, 1H), 7.64 (dd, J = 7.7, 1.4 Hz, 1H), 7.50 (s, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 7.13 – 6.98 (m, 2H), 6.74 – 6.64 (m, 1H), 6.60 – 6.51 (m, 2H), 3.28 (d, J = 7.7 Hz, 2H), 2.86 – 2.72 (m, 2H), 1.77 (s, 3H). MS m/z 439.2 (M+H).

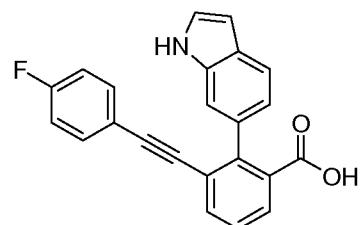
[0729] Example 224: Synthesis of 3-((3-(N,N-dimethylsulfamoyl)phenyl)ethynyl)-2-fluorobenzoic acid


[0730] 3-((3-(N,N-dimethylsulfamoyl)phenyl)ethynyl)-2-fluorobenzoic acid was prepared by the same procedure as example **85**. ^1H NMR (300 MHz, DMSO) δ 8.02 – 7.87 (m, 3H), 7.87 – 7.81 (m, 1H), 7.81 – 7.69 (m, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 2.67 (s, 3H), 2.65 (s, 3H). MS m/z 448.0 (M+H).

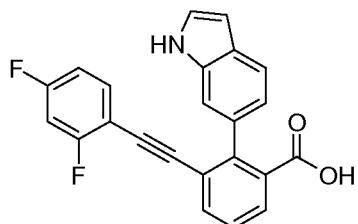
[0731] Example 225: Synthesis of 2-(1H-indol-6-yl)-3-((4-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)benzoic acid


[0732] 2-(1H-indol-6-yl)-3-((4-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD₃OD) δ 7.67 (d, J = 7.7 Hz, 2H), 7.58 (dd, J = 8.2, 0.7 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.39 (dd, J = 8.1, 7.4 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.04 (dd, J = 8.1, 1.5 Hz, 1H), 6.99 – 6.90 (m, 2H), 6.81 – 6.71 (m, 2H), 6.49 (dd, J = 3.1, 0.9 Hz, 1H), 4.51 (dq, J = 12.0, 3.8 Hz, 2H), 4.08 – 3.75 (m, 2H), 3.55 (ddd, J = 11.7, 8.7, 3.1 Hz, 2H), 2.24 – 1.76 (m, 2H), 1.65 (dtd, J = 12.8, 8.4, 4.0 Hz, 2H). MS m/z 438.2 (M+H).

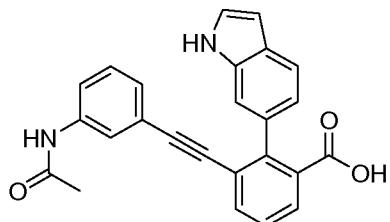
[0733] Example 226: Synthesis of 2-(1H-indol-6-yl)-3-((4-morpholinophenyl)ethynyl)benzoic acid


[0734] 2-(1H-indol-6-yl)-3-((4-morpholinophenyl)ethynyl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, CDCl_3) δ 8.20 (s, 1H), 7.69 (t, $J = 7.9$ Hz, 3H), 7.43 (s, 1H), 7.36 (t, $J = 7.8$ Hz, 1H), 7.26 – 7.21 (m, 1H), 7.15 (dd, $J = 8.1, 1.4$ Hz, 1H), 6.95 (d, $J = 8.8$ Hz, 2H), 6.68 (d, $J = 8.9$ Hz, 2H), 6.60 (s, 1H), 3.92 – 3.71 (m, 4H), 3.20 – 3.02 (m, 4H). MS m/z 423.1 (M+H).

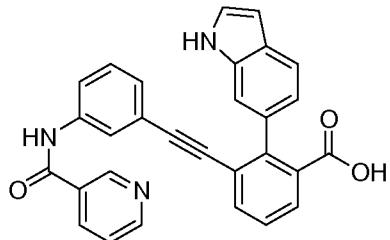
[0735] Example 227: Synthesis of 3-((3-carbamoylphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0736] 3-((3-carbamoylphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, DMSO) δ 13.09 – 12.22 (m, 1H), 11.16 (s, 1H), 7.94 (s, 1H), 7.80 – 7.71 (m, 2H), 7.67 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.57 (d, $J = 8.2$ Hz, 1H), 7.47 (t, $J = 7.7$ Hz, 1H), 7.43 – 7.39 (m, 1H), 7.39 – 7.29 (m, 2H), 7.21 – 7.14 (m, 1H), 7.04 (dd, $J = 8.1, 1.6$ Hz, 1H), 6.56 – 6.32 (m, 1H). MS m/z 381.3 (M+H).

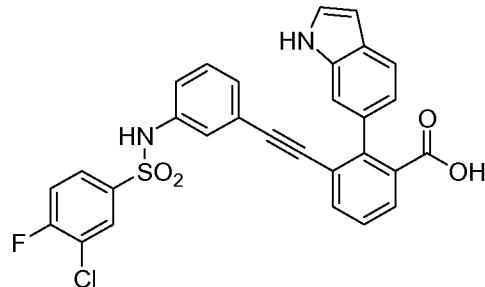
[0737] Example 228: Synthesis of 3-((4-Fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0738] 3-((4-Fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 8.51 (s, 1H), 8.37 (s, 1H), 8.06 (dd, $J = 7.8, 1.3$ Hz, 1H), 7.87 (dd, $J = 7.8, 1.3$ Hz, 1H), 7.67 (d, $J = 3.5$ Hz, 1H), 7.61 (t, $J = 7.8$ Hz, 1H), 7.14 – 7.01 (m, 2H), 7.03 – 6.88 (m, 2H), 6.83 (d, $J = 3.5$ Hz, 1H). MS m/z 357.1 (M+H).

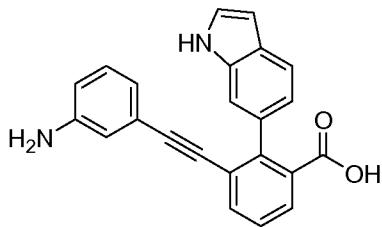
[0739] Example 229: Synthesis of 3-((2,4-Difluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0740] 3-((2,4-Difluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.73 (dq, $J = 7.9, 1.4$ Hz, 2H), 7.56 (dt, $J = 7.8, 1.8$ Hz, 1H), 7.47 – 7.39 (m, 2H), 7.29 – 7.22 (m, 1H), 7.03 (dd, $J = 8.2, 1.5$ Hz, 1H), 6.97 – 6.82 (m, 2H), 6.78 (ddd, $J = 10.3, 6.0, 1.3$ Hz, 1H), 6.48 (dd, $J = 3.1, 0.9$ Hz, 1H). MS m/z 374.4 (M+H).

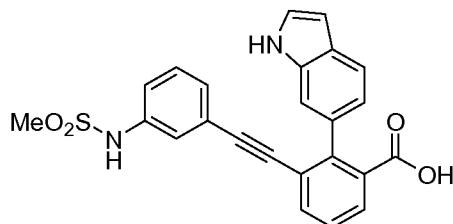
[0741] Example 230: Synthesis of 3-((3-Acetamidophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0742] 3-((3-Acetamidophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 11.17 (s, 1H), 9.96 (s, 1H), 7.77 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.67 (dd, $J = 7.7, 1.4$ Hz, 2H), 7.63 – 7.55 (m, 2H), 7.45 (dd, $J = 13.6, 5.9$ Hz, 1H), 7.38 (dd, $J = 3.3, 2.3$ Hz, 2H), 7.18 (t, $J = 7.9$ Hz, 1H), 7.05 (dd, $J = 8.1, 1.6$ Hz, 1H), 6.73 (d, $J = 7.8$ Hz, 1H), 6.50 – 6.35 (m, 1H), 2.05 (d, $J = 14.2$ Hz, 3H). MS m/z 395.0 (M+H).

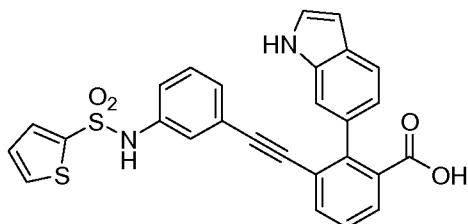
[0743] Example 231: Synthesis of 2-(1H-indol-6-yl)-3-((3-(nicotinamido)phenyl)ethynyl)benzoic acid


[0744] 2-(1H-indol-6-yl)-3-((3-(nicotinamido)phenyl)ethynyl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, DMSO) δ 11.18 (s, 1H), 10.47 (s, 1H), 9.10 (d, J = 1.6 Hz, 1H), 8.79 (dd, J = 4.9, 1.6 Hz, 1H), 8.41 – 8.13 (m, 1H), 7.79 (dd, J = 7.7, 1.4 Hz, 1H), 7.75 (m, 1H), 7.68 (dd, J = 7.8, 1.3 Hz, 2H), 7.62 (t, J = 3.6 Hz, 1H), 7.59 (s, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.41 (s, 1H), 7.39 – 7.35 (m, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.06 (dd, J = 8.1, 1.5 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.46 (m, 1H). MS m/z 458.2 (M+H).

[0745] Example 232: Synthesis of 3-((3-(3-chloro-4-fluorophenylsulfonamido)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid

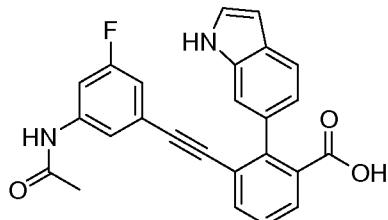

[0746] 3-((3-(3-chloro-4-fluorophenylsulfonamido)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, CDCl_3) δ 8.39 (bs, 1H), 7.76 (m, 1H), 7.71 – 7.60 (m, 1H), 7.42 – 7.34 (m, 2H), 7.24 – 7.14 (m, 1H), 7.12 – 6.96 (m, 1H), 6.97 – 6.83 (m, 1H), 6.80 (d, J = 2.2 Hz, 1H), 6.70 – 6.59 (m, 2H), 6.61 – 6.51 (m, 2H), 6.51 – 6.38 (m, 2H), 6.34 – 6.18 (m, 1H). MS m/z 545.1(M+H).

[0747] Example 233: Synthesis of 3-((3-aminophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid

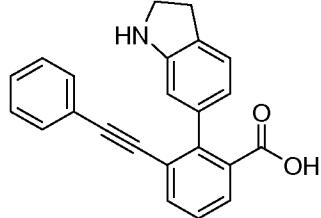

[0748] 3-((3-aminophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 8.21 (bs, 1H), 7.73 – 7.46 (m, 3H), 7.35 – 7.28 (m, 2H), 7.13 – 7.08 (m, 1H), 7.02 (dd, J = 8.1, 1.4 Hz, 1H), 6.86 (t, J = 7.8 Hz, 1H), 6.51 (s, 1H), 6.46 – 6.37 (m, 2H), 5.94 (s, 1H). MS m/z 353.5 (M+H).

[0749] Example 234: Synthesis of 2-(1H-indol-6-yl)-3-((3-(methylsulfonamido)phenyl)ethynyl)benzoic acid

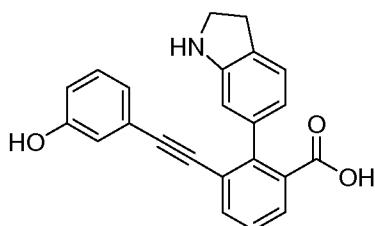
[0750] 2-(1H-indol-6-yl)-3-((3-(methylsulfonamido)phenyl)ethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 10.50 (s, 1H), 7.70 (ddd, J = 7.9, 3.0, 1.3 Hz, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.31 – 7.22 (m, 1H), 7.18 – 7.04 (m, 3H), 7.01 (d, J = 1.8 Hz, 1H), 6.83 – 6.74 (m, 1H), 6.48 (d, J = 2.3 Hz, 1H), 2.97 – 2.66 (m, 3H). MS m/z 431.0 (M+H).


[0751] Example 235: Synthesis of 2-(1H-indol-6-yl)-3-((3-(thiophene-2-sulfonamido)phenyl)ethynyl)benzoic acid

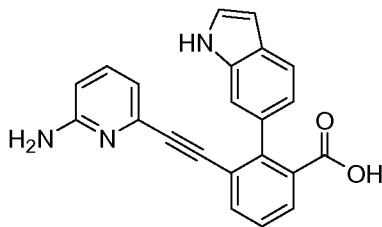
[0752] 2-(1H-indol-6-yl)-3-((3-(thiophene-2-sulfonamido)phenyl)ethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, Acetone) δ 10.33 (s, 1H), 9.14 (s, 1H), 7.87 – 7.72 (m, 3H), 7.63 (d, J = 8.1 Hz, 1H), 7.54 – 7.43 (m, 3H), 7.42 – 7.33 (m, 1H),


7.23 – 7.10 (m, 4H), 7.05 (dd, J = 5.0, 3.8 Hz, 1H), 6.85 (dd, J = 4.9, 2.7 Hz, 1H), 6.53 (m, 1H). MS m/z 499.8 (M+H).

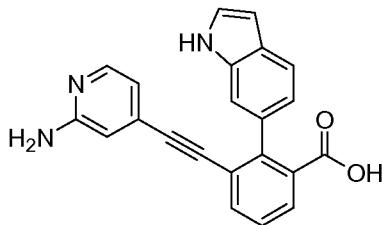
[0753] Example 236: Synthesis of 3-((3-acetamido-5-fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0754] 3-((3-acetamido-5-fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, DMSO) δ 11.17 (s, 1H), 10.15 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 6.5 Hz, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.38 (m, 2H), 7.26 (s, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.46 (m, 2H), 2.21 (s, 3H). MS m/z 435.1 (M+Na).

[0755] Example 237: Synthesis of 2-(indolin-6-yl)-3-(phenylethynyl)benzoic acid

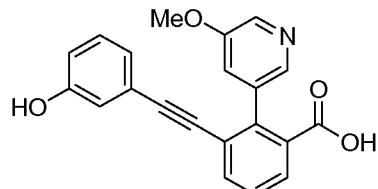

[0756] 2-(indolin-6-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.84 (dd, J = 7.8, 1.3 Hz, 1H), 7.76 (dd, J = 7.8, 1.3 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.39 (s, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 2.5 Hz, 1H), 7.13 (dd, J = 10.4, 6.7 Hz, 2H), 3.94 (d, J = 7.7 Hz, 2H), 3.36 (s, 2H). MS m/z 340.1 (M+H).

[0757] Example 238: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(indolin-6-yl)benzoic acid

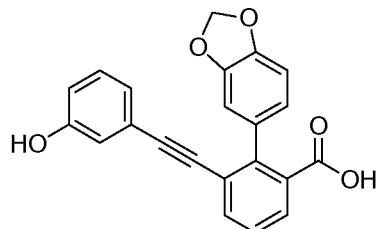

[0758] 3-((3-hydroxyphenyl)ethynyl)-2-(indolin-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 7.99 – 7.83 (m, 1H), 7.85 – 7.69 (m, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.51 – 7.39 (m, 2H), 7.32 (d, J = 7.8 Hz, 1H), 7.12 (t, J = 7.9 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 6.12 (s, 1H), 4.23 – 3.73 (m, 2H), 3.40 (s, 2H). MS m/z 356.1 (M+H).

[0759] Example 239: Synthesis of 3-((6-aminopyridin-2-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid

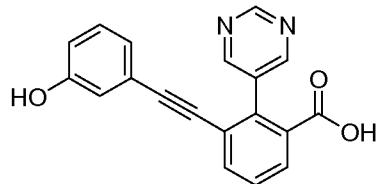
[0760] 3-((6-aminopyridin-2-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 8.65 (s, 1H), 7.74 (ddd, J = 10.5, 7.7, 1.1 Hz, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.17 – 7.03 (m, 3H), 6.51 (s, 1H), 6.20 (dd, J = 16.1, 7.8 Hz, 1H), 4.57 (s, 2H). MS m/z 354.1 (M+H).


[0761] Example 240: Synthesis of 3-((2-aminopyridin-4-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid

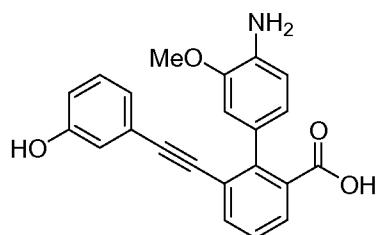
[0762] 3-((2-aminopyridin-4-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 8.67 (s, 1H), 7.84 (d, J = 5.2 Hz, 1H), 7.78 (dd, J = 7.8, 1.2 Hz, 1H), 7.72 – 7.61 (m, 2H), 7.37 (dd, J = 13.1, 5.2 Hz, 2H), 7.24 – 7.13 (m, 1H), 7.07 (dd, J = 8.2,


1.2 Hz, 1H), 6.58 (s, 1H), 6.27 (d, J = 5.2 Hz, 1H), 5.79 (s, 1H), 4.28 (s, 2H). MS m/z 354.1 (M+H).

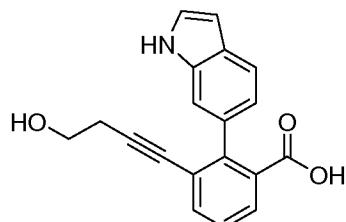
[0763] Example 241: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(5-methoxypyridin-3-yl)benzoic acid


[0764] 3-((3-hydroxyphenyl)ethynyl)-2-(5-methoxypyridin-3-yl)benzoic acid was prepared by the same procedure as example 119. 1 H NMR (300 MHz, CD₃OD) δ 8.50 (d, J = 30.3 Hz, 2H), 8.14 (dd, J = 7.9, 1.1 Hz, 1H), 8.09 (s, 1H), 7.89 (dd, J = 7.8, 1.1 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.11 (t, J = 7.9 Hz, 1H), 6.77 (dd, J = 8.2, 1.6 Hz, 1H), 6.64 (d, J = 7.6 Hz, 1H), 6.57 (s, 1H), 4.02 (s, 3H). MS m/z 346.3 (M+H).

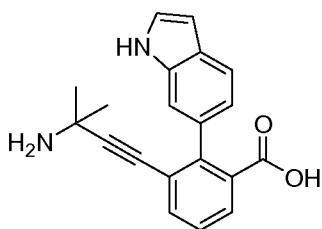
[0765] Example 242: Synthesis of 2-(benzo[d][1,3]dioxol-5-yl)-3-((3-hydroxyphenyl) ethynyl)benzoic acid


[0766] 2-(benzo[d][1,3]dioxol-5-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid was prepared by the same procedure as example 119. 1 H NMR (300 MHz, CD₃OD) δ 7.71 (ddd, J = 10.2, 7.8, 1.4 Hz, 2H), 7.42 (t, J = 7.8 Hz, 1H), 7.14 – 7.04 (m, 1H), 6.87 (dd, J = 9.1, 4.8 Hz, 2H), 6.82-6.78 (m, 1H), 6.76-6.70 (m, 1H), 6.66 (ddd, J = 3.9, 2.5, 1.4 Hz, 1H), 5.99 (s, 2H). MS m/z 359.4 (M+H).

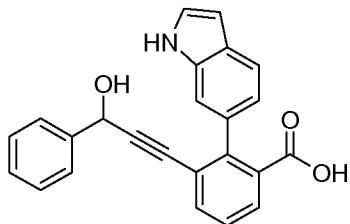
[0767] Example 243: Synthesis of 3-((3-hydroxyphenyl)ethynyl)-2-(pyrimidin-5-yl)benzoic acid


[0768] 3-((3-hydroxyphenyl)ethynyl)-2-(pyrimidin-5-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 9.19 (s, 1H), 8.78 (s, 2H), 8.10 (dd, $J = 7.9, 1.3$ Hz, 1H), 7.87 (dd, $J = 7.8, 1.3$ Hz, 1H), 7.61 (t, $J = 7.8$ Hz, 1H), 7.09 (t, $J = 7.9$ Hz, 2H), 6.84 – 6.68 (m, 1H), 6.63 (d, $J = 8.0$ Hz, 1H), 6.57 (d, $J = 1.3$ Hz, 1H). MS m/z 317.3 (M+H).

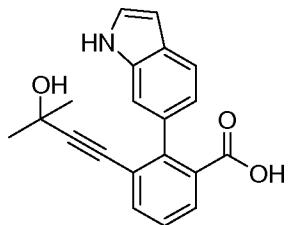
[0769] Example 244: Synthesis of 4'-Amino-6-((3-hydroxyphenyl)ethynyl)-5'-methoxybiphenyl-2-carboxylic acid


[0770] 4'-amino-6-((3-hydroxyphenyl)ethynyl)-5'-methoxybiphenyl-2-carboxylic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.81 (ddd, $J = 30.0, 7.8, 1.3$ Hz, 2H), 7.50 (t, $J = 7.8$ Hz, 1H), 7.35 (d, $J = 8.0$ Hz, 1H), 7.19 (d, $J = 1.6$ Hz, 1H), 7.08 (t, $J = 7.9$ Hz, 1H), 7.00 (dd, $J = 8.0, 1.7$ Hz, 1H), 6.74 (dd, $J = 8.2, 1.5$ Hz, 1H), 6.60 (dd, $J = 13.2, 5.0$ Hz, 2H), 3.88 (s, 3H). MS m/z 360.2 (M+H).

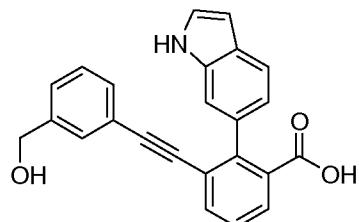
[0771] Example 245: Synthesis of 3-(4-hydroxybut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid


[0772] 3-(4-hydroxybut-1-ynyl)-2-(1H-indol-6-yl) benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CDCl_3) δ 8.54 (m, 1H), 7.73 – 7.64 (m, 1H), 7.65 – 7.49 (m, 2H), 7.29 (dd, $J = 16.2, 8.4$ Hz, 2H), 7.18 – 7.05 (m, 1H), 7.01 (dd, $J = 8.1, 1.4$ Hz, 1H), 6.54 (d, $J = 2.1$ Hz, 1H), 3.15 (t, $J = 6.4$ Hz, 2H), 2.22 (t, $J = 6.5$ Hz, 2H). MS m/z 306.1 (M+H).

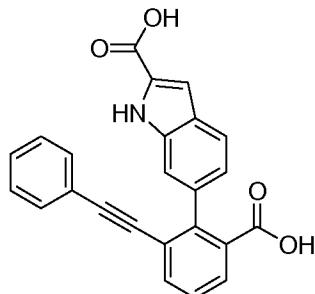
[0773] Example 246: Synthesis of 3-(3-amino-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid


[0774] 3-(3-amino-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.70 (ddd, $J = 16.2, 7.8, 1.4$ Hz, 2H), 7.58 (d, $J = 8.1$ Hz, 1H), 7.43 (dd, $J = 13.4, 5.7$ Hz, 2H), 7.29 (d, $J = 3.2$ Hz, 2H), 6.93 (dd, $J = 8.1, 1.6$ Hz, 1H), 6.49 (dd, $J = 3.2, 0.9$ Hz, 1H), 3.56 (s, 6H). MS m/z 318.1 (M+H).

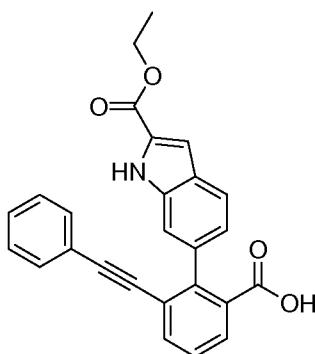
[0775] Example 247: Synthesis of 3-(3-hydroxy-3-phenylprop-1-ynyl)-2-(1H-indol-6-yl)benzoic acid


[0776] 3-(3-hydroxy-3-phenylprop-1-ynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.76 – 7.63 (m, 2H), 7.52 (t, $J = 7.2$ Hz, 1H), 7.40 (dd, $J = 10.1, 5.4$ Hz, 2H), 7.36 – 7.30 (m, 1H), 7.29 – 7.21 (m, 1H), 7.14 – 6.98 (m, 1H), 7.02 – 6.82 (m, 4H), 6.56 – 6.44 (m, 1H), 5.36 (s, 1H). MS m/z 368.3 (M+H).

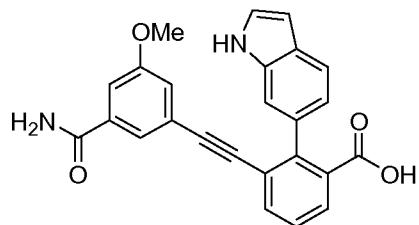
[0777] Example 248: Synthesis of 3-(3-hydroxy-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid


[0778] 3-(3-hydroxy-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 10.48 (s, 1H), 7.71 (d, $J = 7.7$ Hz, 1H), 7.62 (t, $J = 10.2$ Hz, 1H), 7.47 – 7.35 (m, 1H), 7.30 – 7.19 (m, 1H), 7.20 – 7.04 (m, 1H), 7.01 (d, $J = 1.7$ Hz, 1H), 6.82 – 6.69 (m, 1H), 6.49 (d, $J = 2.2$ Hz, 1H), 2.98 (s, 6H). MS m/z 342.1 (M+Na).

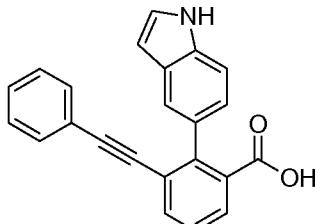
[0779] Example 249: Synthesis of 3-((3-(hydroxymethyl)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0780] 3-((3-(hydroxymethyl)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, CD_3OD) δ 10.53 (s, 1H), 7.76 – 7.64 (m, 2H), 7.59 (d, J = 8.1 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.44 – 7.36 (m, 1H), 7.28 (dt, J = 3.0, 1.2 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.15 (t, J = 7.4 Hz, 1H), 7.04 (dt, J = 3.3, 1.6 Hz, 1H), 7.00 – 6.83 (m, 2H), 6.57 – 6.42 (m, 1H), 4.77 (d, J = 65.2 Hz, 2H). MS m/z 368.0 (M+H).

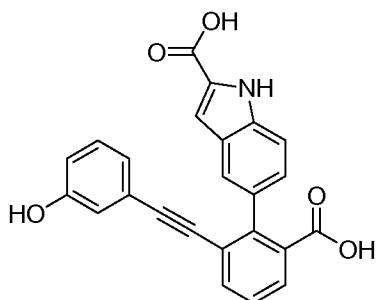
[0781] Example 250: Synthesis of 6-(2-carboxy-6-(phenylethynyl)phenyl)-1H-indole-2-carboxylic acid


[0782] 6-(2-carboxy-6-(phenylethynyl)phenyl)-1H-indole-2-carboxylic acid was prepared by the same procedure as example 119. ^1H NMR (300 MHz, CD_3OD) δ 7.74 (ddd, J = 7.8, 5.0, 1.4 Hz, 2H), 7.65 (dd, J = 1.6, 0.8 Hz, 1H), 7.50 (dt, J = 8.6, 0.8 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.35 – 7.25 (m, 1H), 7.25 – 7.13 (m, 4H), 7.04 (dt, J = 8.2, 2.1 Hz, 2H). MS m/z 382.0 (M+H).

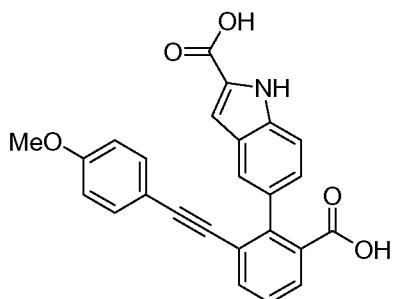
[0783] Example 251: Synthesis of 2-(2-(ethoxycarbonyl)-1H-indol-6-yl)-3-(phenylethynyl) benzoic acid


[0784] 2-(2-(ethoxycarbonyl)-1H-indol-6-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.81 – 7.69 (m, 2H), 7.65 (d, J = 0.9 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 7.42 (dd, J = 15.2, 7.4 Hz, 1H), 7.35 – 7.27 (m, 1H), 7.24 – 7.10 (m, 4H), 7.03 (dd, J = 8.0, 1.6 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). MS m/z 410.1 (M+H).

[0785] Example 252: Synthesis of 3-((3-carbamoyl-5-methoxyphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid

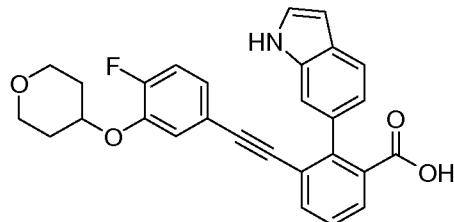

[0786] 3-((3-carbamoyl-5-methoxyphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.74 (ddd, J = 7.8, 4.6, 1.4 Hz, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.45 (dd, J = 9.9, 5.6 Hz, 2H), 7.27 (dd, J = 3.6, 2.0 Hz, 2H), 7.22 (t, J = 1.4 Hz, 1H), 7.05 (dd, J = 8.1, 1.5 Hz, 1H), 6.51 (ddd, J = 5.0, 2.8, 1.1 Hz, 2H), 3.66 (s, 3H). MS m/z 411.2 (M+H).

[0787] Example 253: Synthesis of 2-(1H-indol-5-yl)-3-(phenylethynyl)benzoic acid

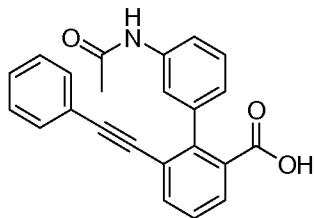

[0788] 2-(1H-indol-5-yl)-3-(phenylethynyl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.71 (ddd, $J = 7.8, 4.8, 1.4$ Hz, 2H), 7.60 (dd, $J = 1.7, 0.7$ Hz, 1H), 7.45 – 7.38 (m, 2H), 7.30 – 7.25 (m, 1H), 7.23 – 7.13 (m, 4H), 7.06 (ddd, $J = 6.4, 3.8, 2.0$ Hz, 2H), 6.49 (dd, $J = 3.2, 0.9$ Hz, 1H). MS m/z 338.2 (M+H).

[0789] Example 254: Synthesis of 5-(2-carboxy-6-((3-hydroxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid

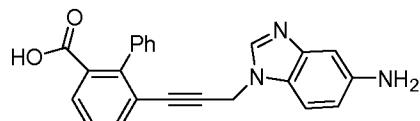
[0790] 5-(2-carboxy-6-((3-hydroxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.70 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.62 (dd, $J = 7.8, 1.4$ Hz, 1H), 7.57 – 7.51 (m, 2H), 7.42 (t, $J = 7.7$ Hz, 1H), 7.30 (dd, $J = 8.5, 1.7$ Hz, 1H), 7.20 (d, $J = 0.9$ Hz, 1H), 7.00 (dd, $J = 11.5, 4.8$ Hz, 1H), 6.67 (ddd, $J = 8.2, 2.4, 1.2$ Hz, 1H), 6.57 – 6.46 (m, 2H). MS m/z 398.0 (M+H).


[0791] Example 255: Synthesis of 5-(2-carboxy-6-((4-methoxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid

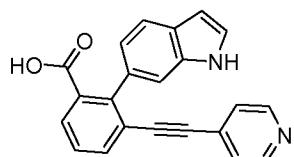
[0792] 5-(2-carboxy-6-((4-methoxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD_3OD) δ 7.69 – 7.62 (m, 1H), 7.58 (ddd, $J = 4.7, 2.3, 1.1$ Hz, 2H), 7.52 (dt, $J = 8.5, 0.8$ Hz, 1H), 7.40 (t, $J = 7.7$ Hz, 1H), 7.28 (dd, $J = 8.5, 1.7$ Hz,


1H), 7.20 (d, J = 0.9 Hz, 1H), 7.04 – 6.90 (m, 2H), 6.78 – 6.69 (m, 2H), 3.69 (s, 3H). MS m/z 412.2 (M+H).

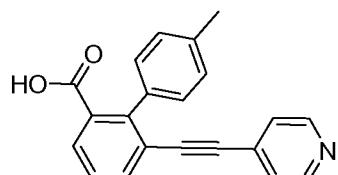
[0793] Example 256: Synthesis of 3-((4-fluoro-3-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid


[0794] 3-((4-fluoro-3-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD₃OD) δ 7.71 (ddd, J = 9.2, 8.1, 1.4 Hz, 2H), 7.59 (dd, J = 11.1, 10.5 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.29 (t, J = 9.2 Hz, 1H), 7.10 – 7.01 (m, 1H), 6.95 (dd, J = 11.1, 8.4 Hz, 1H), 6.74 (ddd, J = 8.4, 4.4, 2.0 Hz, 1H), 6.50 (ddd, J = 9.9, 5.6, 1.4 Hz, 2H), 4.31 – 4.10 (m, 1H), 4.00 – 3.77 (m, 2H), 3.55 (ddd, J = 17.7, 10.6, 6.7 Hz, 2H), 2.03 – 1.71 (m, 2H), 1.61 (ddd, J = 21.1, 7.6, 3.7 Hz, 2H). MS m/z 456.2 (M+H).

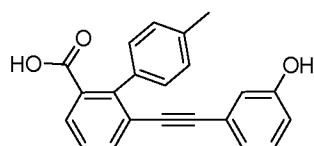
[0795] Example 257: Synthesis of 5'-acetamido-6-(phenylethynyl)biphenyl-2-carboxylic acid


[0796] 5'-acetamido-6-(phenylethynyl)biphenyl-2-carboxylic acid was prepared by the same procedure as example **119**. ^1H NMR (300 MHz, CD₃OD) δ 7.81 (dd, J = 7.8, 1.3 Hz, 1H), 7.78 – 7.66 (m, 2H), 7.54 (t, J = 1.9 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.30 – 7.21 (m, 3H), 7.19 – 7.10 (m, 2H), 7.08 (d, J = 7.6 Hz, 1H), 2.11 (s, 3H). MS m/z 356.2 (M+H).

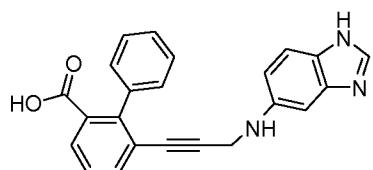
[0797] Example 258: Synthesis of 3-[3-(5-amino-1H-1,3-benzodiazol-1-yl)prop-1-yn-1-yl]-2-phenylbenzoic acid trifluoroacetate salt


[0798] 3-[3-(5-amino-1H-1,3-benzodiazol-1-yl)prop-1-yn-1-yl]-2-phenylbenzoic acid trifluoroacetate salt was prepared by the same procedure as example **157**. ¹H NMR (300MHz, DMSO) δ = 8.72 (br. s., 1H), 7.71 (ddd, *J*=1.5, 7.8, 13.0 Hz, 2H), 7.46 (t, *J*=7.8 Hz, 1H), 7.25 - 7.10 (m, 6H), 6.71 (d, *J*=7.9 Hz, 2H), 5.31 (s, 2H), MS (ES⁺) = 367.94 (MH)⁺.

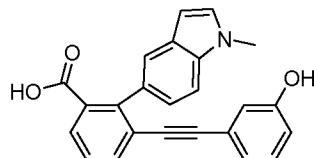
[0799] Example 259: Synthesis of 2-(1H-indol-6-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt


[0800] 2-(1H-indol-6-yl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ¹H NMR (300MHz, DMSO) δ = 11.19 (s, 1H), 8.55 (br. s., 2H), 7.82 (dd, *J*=1.5, 7.6 Hz, 1H), 7.74 (dd, *J*=1.5, 7.6 Hz, 1H), 7.64 - 7.45 (m, 2H), 7.44 - 7.36 (m, 2H), 7.17 (d, *J*=6.2 Hz, 2H), 7.03 (dd, *J*=1.8, 8.2 Hz, 1H), 6.47 (ddd, *J*=0.9, 2.0, 3.0 Hz, 1H). MS (ES⁺) = 339.00 (MH)⁺.

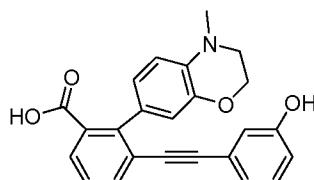
[0801] Example 260: Synthesis of 2-(4-methylphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt


[0802] 2-(4-methylphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ¹H NMR (300MHz, DMSO) δ = 8.59 (d, *J*=5.6 Hz, 2H), 7.80 (ddd, *J*=1.2, 7.7, 10.5 Hz, 2H), 7.52 (t, *J*=7.8 Hz, 1H), 7.28 - 7.16 (m, 6H), 2.37 (s, 3H). MS (ES⁺) = 314.00 (MH)⁺.

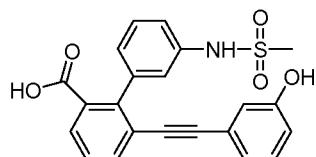
[0803] Example 261: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methylphenyl)benzoic acid


[0804] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl phenyl)benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.62 (br. s., 1H), 7.81 - 7.62 (m, 2H), 7.52 - 7.40 (m, 1H), 7.30 - 7.16 (m, 5H), 7.16 - 7.06 (m, 1H), 6.74 (ddd, J =0.9, 2.3, 8.2 Hz, 1H), 6.65 - 6.51 (m, 2H), 2.36 (s, 3H). MS (ES $^+$) = 328.11 (MH) $^+$.

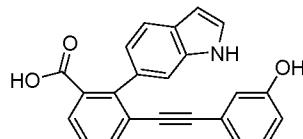
[0805] Example 262: Synthesis of 3-{3-[(1H-1,3-benzodiazol-6-yl)amino]prop-1-yn-1-yl}-2-phenylbenzoic acid; trifluoroacetate salt


[0806] 3-{3-[(1H-1,3-benzodiazol-6-yl)amino]prop-1-yn-1-yl}-2-phenylbenzoic acid; trifluoroacetate salt was prepared by the same procedure as example **157**. ^1H NMR (300MHz, DMSO) δ = 8.68 (br. s., 1H), 7.77 - 7.64 (m, 2H), 7.51 - 7.41 (m, 1H), 7.32 - 7.08 (m, 7H), 6.79 - 6.62 (m, 2H), 5.30 (s, 2H). MS (ES $^+$) = 368.01 (MH) $^+$.

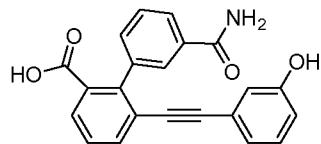
[0807] Example 263: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1-methyl-1H-indol-5-yl)benzoic acid


[0808] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1-methyl-1H-indol-5-yl)benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.57 (br. s., 1H), 7.76 - 7.69 (m, 1H), 7.65 (dd, J =1.5, 7.6 Hz, 1H), 7.56 - 7.49 (m, 1H), 7.49 - 7.40 (m, 2H), 7.34 (d, J =3.2 Hz, 1H), 7.19 - 7.11 (m, 1H), 7.10 - 6.99 (m, 1H), 6.76 - 6.64 (m, 1H), 6.61 - 6.51 (m, 2H), 6.48 - 6.42 (m, 1H), 3.87 - 3.77 (m, 3H). MS (ES $^+$) = 368.08 (MH) $^+$.

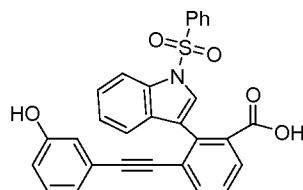
[0809] Example 264: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)benzoic acid; trifluoroacetate salt


[0810] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 7.70 - 7.64 (m, 1H), 7.63 - 7.56 (m, 1H), 7.44 - 7.32 (m, 1H), 7.14 (t, J =7.9 Hz, 1H), 6.80 - 6.63 (m, 5H), 4.25 (dd, J =3.8, 5.0 Hz, 2H), 3.33 - 3.21 (m, 2H), 2.87 (s, 3H). MS (ES $^+$) = 386.09 (MH) $^+$.

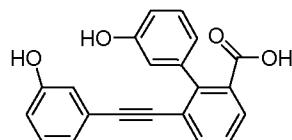
[0811] Example 265: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(3-methane sulfonamidophenyl) benzoic acid


[0812] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(3-methane sulfonamidophenyl) benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.81 (s, 1H), 9.63 (br. s., 1H), 7.75 (qd, J =1.6, 7.8 Hz, 2H), 7.55 - 7.46 (m, 1H), 7.43 - 7.34 (m, 1H), 7.25 - 7.18 (m, 1H), 7.16 - 7.01 (m, 3H), 6.74 (ddd, J =1.0, 2.4, 8.3 Hz, 1H), 6.62 - 6.52 (m, 2H), 2.88 (s, 3H). MS (ES $^+$) = 430.00 (M+Na) $^+$.

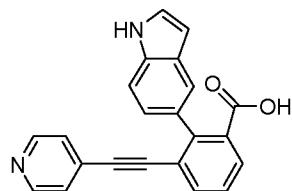
[0813] Example 266: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-6-yl)benzoic acid


[0814] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-6-yl)benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 11.15 (s, 1H), 9.57 (br. s., 1H), 7.79 - 7.71 (m, 1H), 7.69 - 7.60 (m, 1H), 7.60 - 7.53 (m, 1H), 7.50 - 7.41 (m, 1H), 7.41 - 7.33 (m, 2H), 7.11 - 6.96 (m, 2H), 6.76 - 6.63 (m, 2H), 6.60 - 6.50 (m, 2H), 6.49 - 6.42 (m, 1H). MS (ES $^+$) = 354.01 (MH) $^+$.

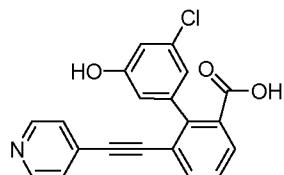
[0815] Example 267: Synthesis of 2-(3-carbamoylphenyl)-3-[2-(3-hydroxyphenyl) ethynyl]benzoic acid


[0816] 2-(3-carbamoylphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.58 (br. s., 1H), 7.99 (s, 1H), 7.95 - 7.83 (m, 3H), 7.83 - 7.73 (m, 2H), 7.57 - 7.42 (m, 3H), 7.39 - 7.29 (m, 1H), 7.13 - 7.01 (m, 1H), 6.73 (ddd, J =1.0, 2.4, 8.3 Hz, 1H), 6.59 - 6.48 (m, 2H). MS (ES $^+$) = 380.04 (M+Na) $^+$.

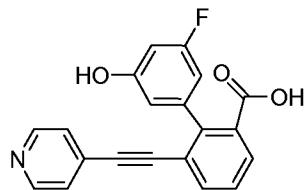
[0817] Example 268: Synthesis of 2-[1-(benzenesulfonyl)-1H-indol-3-yl]-3-[2-(3-hydroxyphenyl)ethynyl] benzoic acid


[0818] 2-[1-(benzenesulfonyl)-1H-indol-3-yl]-3-[2-(3-hydroxyphenyl)ethynyl] benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.55 (br. s., 1H), 7.97 - 7.86 (m, 3H), 7.85 - 7.77 (m, 3H), 7.61 - 7.46 (m, 2H), 7.42 - 7.29 (m, 3H), 7.26 - 7.18 (m, 2H), 6.92 (t, J =7.9 Hz, 1H), 6.68 (ddd, J =1.0, 2.4, 8.3 Hz, 1H), 6.29 (dd, J =1.5, 2.3 Hz, 1H), 5.94 (td, J =1.2, 7.8 Hz, 1H). MS (ES $^+$) = 352.99 (M-140) $^+$.

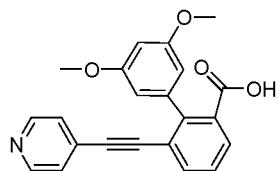
[0819] Example 269: Synthesis of 2-(3-hydroxyphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid


[0820] 2-(3-hydroxyphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid was prepared by the same procedure as example **166**. ^1H NMR (300MHz, DMSO) δ = 9.63 (br. s., 1H), 9.42 (br. s., 1H), 7.69 (ddd, J =1.2, 7.8, 14.5 Hz, 2H), 7.52 - 7.37 (m, 1H), 7.27 - 7.16 (m, 1H), 7.17 - 7.06 (m, 1H), 6.82 - 6.68 (m, 4H), 6.68 - 6.54 (m, 2H), 3.95 (s, 1H). MS (ES $^+$) = 312.98 (MH-H₂O) $^+$.

[0821] Example 270: Synthesis of 2-(1H-indol-5-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt


[0822] 2-(1H-indol-5-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ^1H NMR (300MHz, DMSO) δ = 11.17 (s, 1H), 8.58 - 8.46 (m, 2H), 7.81 (dd, J =1.2, 7.9 Hz, 1H), 7.73 (dd, J =0.9, 7.9 Hz, 1H), 7.57 - 7.40 (m, 3H), 7.38 (t, J =2.6 Hz, 1H), 7.17 (dd, J =1.8, 4.4 Hz, 2H), 7.11 (dd, J =1.6, 8.4 Hz, 1H), 6.47 (t, J =2.2 Hz, 1H). MS (ES $^+$) = 339.07 (MH) $^+$.

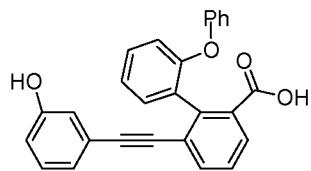
[0823] Example 271: Synthesis of 2-(3-chloro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt


[0824] 2-(3-chloro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ^1H NMR (300MHz, DMSO) δ = 10.04 (br. s., 1H), 8.70 - 8.55 (m, 2H), 7.89 - 7.78 (m, 2H), 7.65 - 7.48 (m, 1H), 7.29 - 7.20 (m, 2H), 6.83 (td, J =2.0, 12.5 Hz, 2H), 6.69 (dd, J =1.5, 2.3 Hz, 1H), 6.25 - 6.06 (m, 1H). MS (ES $^+$) = 350.00 (MH) $^+$.

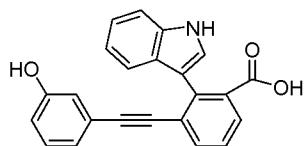
[0825] Example 272: Synthesis of 2-(3-fluoro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt

[0826] 2-(3-fluoro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ^1H NMR (300MHz, DMSO) δ = 9.96 (br. s., 1H), 8.55 (d, J =5.9 Hz, 2H), 7.88 - 7.67 (m, 2H), 7.56 - 7.41 (m, 1H), 7.22 - 7.08 (m, 2H), 6.61 - 6.45 (m, 3H). MS (ES $^+$) = 334.04 (MH) $^+$.

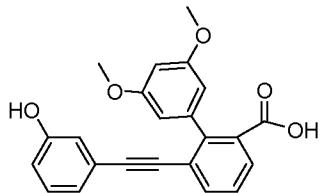
[0827] Example 273: Synthesis of 2-(3,5-dimethoxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt


[0828] 2-(3,5-dimethoxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt was prepared by the same procedure as example **174**. ^1H NMR (300MHz, DMSO) δ = 8.61 (br. s., 2H), 7.80 (ddd, J =1.3, 7.7, 13.3 Hz, 2H), 7.53 (t, J =7.8 Hz, 1H), 7.21 (d, J =5.9 Hz, 2H), 6.61 - 6.52 (m, 1H), 6.49 (d, J =2.3 Hz, 2H), 3.73 (s, 6H). MS (ES $^+$) = 360.06 (MH) $^+$.

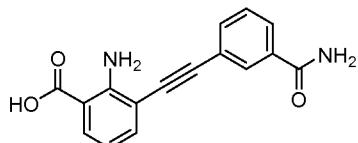
[0829] Example 274: Synthesis of 3-[3-(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl]-2-(3-hydroxyphenyl) benzoic acid


[0830] 3-[3-(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl]-2-(3-hydroxyphenyl)benzoic acid was prepared by the same procedure as example 33. ^1H NMR (300MHz, DMSO) δ = 9.18 (br. s., 1H), 7.47 - 7.37 (m, 2H), 7.27 - 7.14 (m, 1H), 6.98 - 6.73 (m, 5H), 6.55 (ddd, J =1.2, 2.3, 8.2 Hz, 1H), 6.44 - 6.34 (m, 2H), 5.19 - 5.09 (m, 1H).

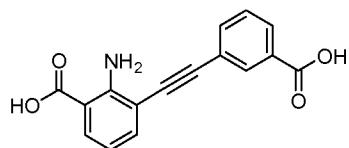
[0831] Example 275: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(2-phenoxyphenyl) benzoic acid


[0832] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(2-phenoxyphenyl) benzoic acid was prepared by the same procedure as example 166. ^1H NMR (300MHz, DMSO) δ = 9.63 (br. s., 1H), 7.81 (dd, J =1.3, 7.8 Hz, 1H), 7.72 (dd, J =1.5, 7.6 Hz, 1H), 7.51 - 7.30 (m, 3H), 7.27 - 7.07 (m, 4H), 7.05 - 6.92 (m, 1H), 6.92 - 6.80 (m, 3H), 6.74 (ddd, J =1.0, 2.5, 8.2 Hz, 1H), 6.62 - 6.49 (m, 2H). MS (ES $^+$) = 429.19 (M+Na) $^+$.

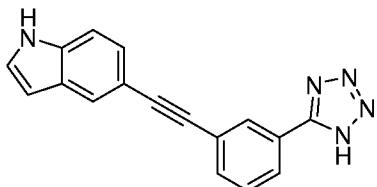
[0833] Example 276: Synthesis of 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-3-yl) benzoic acid


[0834] 3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-3-yl) benzoic acid was prepared by the same procedure as example 166. ^1H NMR (300MHz, DMSO) δ = 11.29 (s, 1H), 9.53 (s, 1H), 7.74 (dd, J =1.3, 7.8 Hz, 1H), 7.65 (dd, J =1.5, 7.9 Hz, 1H), 7.48 - 7.37 (m, 3H), 7.31 (d, J =8.2 Hz, 1H), 7.16 - 6.91 (m, 3H), 6.69 (ddd, J =0.9, 2.6, 8.2 Hz, 1H), 6.50 - 6.34 (m, 2H). MS (ES $^+$) = 354.08 (MH) $^+$.

[0835] Example 277: Synthesis of 2-(3,5-dimethoxyphenyl)-3-[2-(3-hydroxyphenyl) ethynyl]benzoic acid

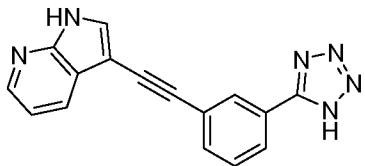

[0836] 2-(3,5-dimethoxyphenyl)-3-[2-(3-hydroxyphenyl) ethynyl]benzoic acid was prepared by the same procedure as example 166. ^1H NMR (300MHz, DMSO) δ = 9.63 (br. s., 1H), 7.78 - 7.62 (m, 2H), 7.54 - 7.40 (m, 1H), 7.13 (t, J =7.9 Hz, 1H), 6.81 - 6.67 (m, 1H), 6.68 - 6.56 (m, 2H), 6.56 - 6.49 (m, 1H), 6.47 (d, J =2.3 Hz, 2H), 3.82 (s, 6H). MS (ES $^+$) = 375.08 (MH) $^+$.

[0837] Example 278: Synthesis of 2-amino-3-[2-(3-carbamoylphenyl)ethynyl]benzoic acid; trifluoroacetate salt

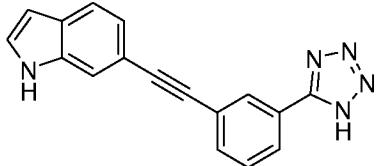

[0838] 2-amino-3-[2-(3-carbamoylphenyl)ethynyl]benzoic acid; trifluoroacetate salt was prepared by the same procedure as example 78. ^1H NMR (300MHz, DMSO) δ = 8.24 - 8.06 (m, 2H), 8.05 - 7.75 (m, 3H), 7.68 - 7.46 (m, 3H), 6.76 - 6.58 (m, 1H), 3.38 (s, 2H). MS (ES $^+$) = 281.07 (MH) $^+$.

[0839] Example 279: Synthesis of 2-amino-3-[2-(3-carboxyphenyl)ethynyl]benzoic acid; trifluoroacetate salt

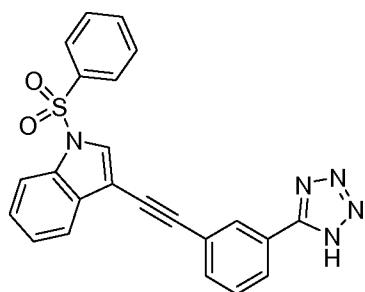
[0840] 2-amino-3-[2-(3-carboxyphenyl)ethynyl]benzoic acid; trifluoroacetate salt was prepared by the same procedure as example 78. ^1H NMR (300MHz, DMSO) δ = 13.13 (br. s., 1H), 8.18 (br. s., 1H), 7.94 (d, J =7.6 Hz, 1H), 7.83 (dd, J =7.8, 15.1 Hz, 2H), 7.64 - 7.45 (m, 2H), 6.59 (t, J =7.6 Hz, 1H). MS (ES $^+$) = 282.09 (MH) $^+$.


[0841] Example 280: Synthesis of 5-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole 5-(3-Ethynyl-phenyl)-1H-tetrazole: The solution of 5-(3-Bromo-phenyl)-1H-tetrazole (2 g, 8.9 mmol) in triethylamine (20 mL) was degassed under N₂ for 10 min. Trimethylsilylacetylene (1 mL), bis(triphenylphosphine)palladium(II) dichloride (624 mg, 0.89 mmol) and copper iodide (339 mg, 1.78 mmol) was added and the reaction mixture was degassed under N₂ for 20 min and then heated at 60 °C for 18 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by column chromatography through a silica gel cartridge (80 g) eluting with methanol/dichloromethane (10-20%) to give the intermediate as a white solid. To this intermediate in methanol (10 mL) was slowly added 2N NaOH (3.5 mL, 7 mmol). The reaction mixture was stirred at room temperature for 20 minutes and concentrated, diluted with water (10 mL) and acidified with 2N hydrochloric acid aqueous solution until pH = 1. The precipitate was filtered and purified through preparative HPLC to give 810 mg (59% for 2 steps) of the pure product as a white solid.

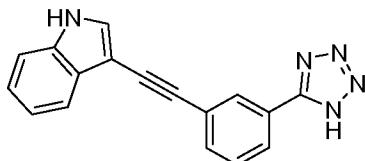
[0842] 5-[3-(1H-Tetrazol-5-yl)-phenylethynyl]-1H-indole. A mixture of 5-(3-ethynyl-phenyl)-1H-tetrazole (34 mg, 0.2 mmol), 5-iodo-indole (97 mg, 0.4 mmol), palladium tetrakis-triphenylphosphine (23 mg, 0.02 mmol) and copper iodide (7.6 mg, 0.04 mmol), potassium carbonate (55.3 mg, 0.4 mmol) in 1,2-dimethoxyethane/water (1 mL/0.3 mL) was degassed with N₂ for 5 minutes and


then heated at 60 °C for 3 hours. After cooling to ambient temperature, the crude mixture was filtered through celite and washed with dichloromethane. The filtrate was concentrated and purified by preparative HPLC to give 15.4 mg (27%) of the pure product as a white solid. ^1H NMR (300MHz, CD₃OD) δ = 10.71 (br. s., 1H), 8.15 (d, J =2.3 Hz, 1H), 7.96 (td, J =1.5, 7.8 Hz, 1H), 7.78 (s, 1H), 7.71 - 7.52 (m, 3H), 7.44 - 7.34 (m, 1H), 7.31 - 7.25 (m, 2H), 6.48 (d, J =3.1 Hz, 1H). MS (ESI) m/z 285.0 (M)⁺.

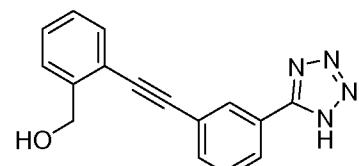
[0843] Example 281: Synthesis of 3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-pyrrolo[2,3-b]pyridine


[0844] 3-[3-(1H-Tetrazol-5-yl)-phenylethynyl]-1H-pyrrolo[2,3-b]pyridine was prepared by the same procedure as example **280**. ^1H NMR (300MHz, DMSO) δ = 12.23 (br. s., 1H), 8.33 (dd, J =1.5, 4.7 Hz, 1H), 8.20 (s, 1H), 8.13 (dd, J =1.6, 7.8 Hz, 1H), 8.04 - 7.95 (m, 2H), 7.78 - 7.73 (m, 1H), 7.70 - 7.61 (m, 1H), 7.22 (dd, J =4.7, 7.9 Hz, 1H). MS (ESI) m/z 287.1 (M+1)⁺.

[0845] Example 282: Synthesis of 6-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole

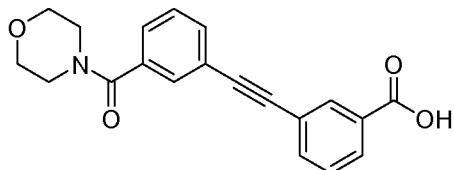

[0846] 6-[3-(1H-Tetrazol-5-yl)-phenylethynyl]-1H-indole was prepared by the same procedure as example **280**. ^1H NMR (300MHz, DMSO) δ = 11.33 (br. s., 1H), 8.19 (d, J =2.5 Hz, 1H), 8.19 (s, 1H), 8.06 - 8.03 (m, 1H), 7.75 (td, J =5.0 Hz, 8.1 Hz, 1H), 7.67 - 7.55 (m, 3H), 7.49 - 7.46 (m, 1H), 7.19 (dd, J =1.3, 8.1 Hz, 1H), 6.50 - 6.47 (m, 1H); MS (ESI) m/z 285.1 (M)⁺.

[0847] Example 283: Synthesis of 1-benzenesulfonyl-3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole

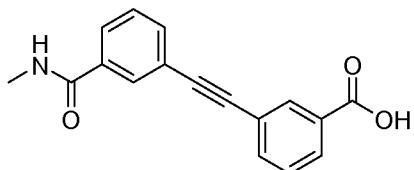

[0848] 1-Benzensulfonyl-3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole was prepared by the same procedure as example **280**. MS (ESI) m/z 426.0 ($M+1$)⁺.

[0849] Example 284: Synthesis of 3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole

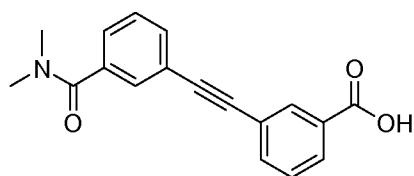
[0850] 3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole. 1-Benzensulfonyl-3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole, (30 mg, 0.07 mmol) was dissolved in tetrahydrofuran/ methanol (1 mL/0.2 mL) and added sodium hydroxide solution (2 N in water, 0.1 mL, 0.2 mmol) and the solution was stirred at 60 °C for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 17 mg (84%) of the pure product as a white solid. ¹H NMR (300MHz, DMSO) δ = 11.63 (br. s., 1H), 8.18 (s, 1H), 8.03 - 8.01 (m, 1H), 7.83 (d, J =2.6 Hz, 1H), 7.76 - 7.61 (m, 3H), 7.50 - 7.45 (m, 1H), 7.24 - 7.13 (m, 2H). MS (ESI) m/z 286.0 ($M+1$)⁺.


[0851] Example 285: Synthesis of {2-[3-(1H-tetrazol-5-yl)-phenylethynyl]-phenyl}-methanol

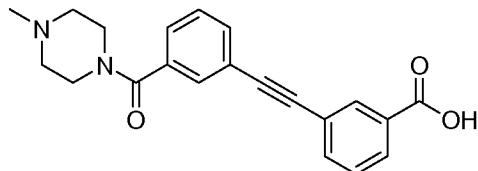
[0852] {2-[3-(1H-Tetrazol-5-yl)-phenylethynyl]-phenyl}-methanol was prepared by the same procedure as example **280**. ¹H NMR (300MHz, CD₃OD) δ = 8.21 (br. s., 1H), 8.04 (d, J =7.0 Hz, 1H), 7.77 - 7.69 (m, 1H), 7.65 - 7.51 (m, 3H), 7.42


(t, $J=7.3$ Hz, 1H), 7.35 - 7.27 (m, 1H), 4.92 - 4.84 (m, 2H). MS (ESI) m/z 300.0 ($M+Na$)⁺.

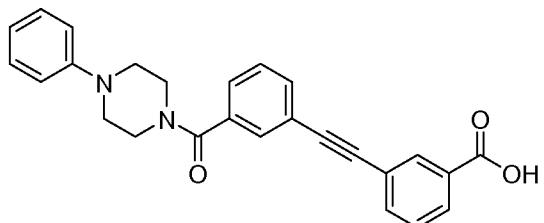
[0853] Example 286: Synthesis of 3-[3-(morpholine-4-carbonyl)-phenylethynyl]-benzoic acid


[0854] 3-[3-(Morpholine-4-carbonyl)-phenylethynyl]-benzoic acid. A mixture of 3-(3-carbamoyl-5-methoxy-phenylethynyl)-benzoic acid (40 mg, 0.14 mmol), morpholine (0.1 mL), HATU (70 mg, 0.18 mmol) and triethylamine (0.1 mmol) in tetrahydrofuran (1 mL) was stirred at room temperature for 24 hours. The reaction mixture was concentrated and purified through preparative HPLC to give the ester intermediate. To this intermediate in tetrahydrofuran/methanol (1 mL/0.2 mL) was added sodium hydroxide solution (2 N in water, 0.2 mL, 0.4 mmol) and the solution was stirred at room temperature for 18 hours. 1 N hydrochloric acid aqueous solution was added dropwise until pH = 1 and the reaction mixture was purified through preparative HPLC to give 8 mg (17% for 2 steps) of the pure product as a white solid. 18 mg (22% for 2 steps) of the pure product as a white solid. ¹H NMR (300MHz, CD₃OD) δ = 8.15 (s, 1H), 8.02 (d, $J=7.6$ Hz, 1H), 7.75 (d, $J=7.4$ Hz, 1H), 7.68 - 7.60 (m, 2H), 7.55 - 7.42 (m, 3H), 3.80 - 3.60 (m, 6H), 3.55 - 3.42 (m, 2H). MS (ESI) m/z 336.1 ($M+1$)⁺.

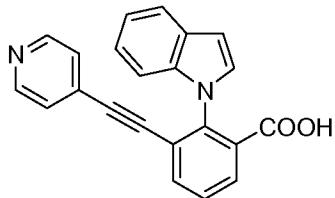
[0855] Example 287: Synthesis of 3-(3-methylcarbamoyl-phenylethynyl)-benzoic acid


[0856] 3-(3-Methylcarbamoyl-phenylethynyl)-benzoic acid was prepared by the same procedure as example 286. ¹H NMR (300MHz, CD₃OD) δ = 8.15 (t, $J=1.6$ Hz, 1H), 8.05 - 7.99 (m, 2H), 7.82 - 7.79 (m, 1H), 7.76 - 7.69 (m, 2H), 7.53 - 7.49 (m, 2H), 2.93 (s, 3H). MS (ESI) m/z 280.1 ($M+1$)⁺.

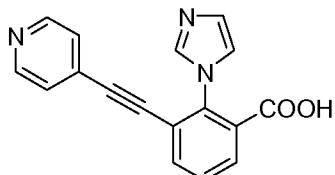
[0857] Example 288: Synthesis of 3-(3-dimethylcarbamoyl-phenylethynyl)-benzoic acid


[0858] 3-(3-Dimethylcarbamoyl-phenylethynyl)-benzoic acid was prepared by the same procedure as example **286**. ^1H NMR (300MHz, CD_3OD) δ = 8.15 (t, J =1.3 Hz, 1H), 8.02 (td, J =1.5, 7.9 Hz, 1H), 7.75 (td, J =1.4, 7.8 Hz, 1H), 7.66 - 7.59 (m, 2H), 7.54 - 7.41 (m, 3H), 3.11 (s, 3H), 3.01 (s, 3H). MS (ESI) m/z 294.1 ($\text{M}+1$) $^+$.

[0859] Example 289: Synthesis of 3-[3-(4-methyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid

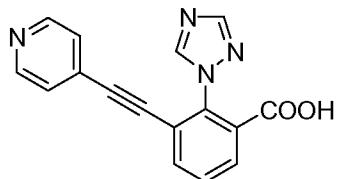

[0860] 3-[3-(4-Methyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid was prepared by the same procedure as example **286**. ^1H NMR (300MHz, CD_3OD) δ = 8.14 (d, J =2.3 Hz, 1H), 8.02 (td, J =1.5, 7.9 Hz, 1H), 7.76 - 7.66 (m, 3H), 7.56 - 7.47 (m, 3H), 3.95 - 3.72 (m, 2H), 3.70 - 3.12 (m, 6H), 2.94 (s, 3H). MS (ESI) m/z 349.1 ($\text{M}+1$) $^+$.

[0861] Example 290: Synthesis of 3-[3-(4-phenyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid

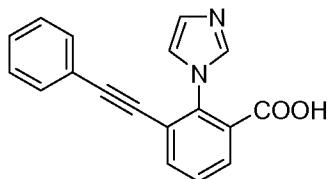

[0862] 3-[3-(4-Phenyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid was prepared by the same procedure as example **286**. ^1H NMR (300MHz, CD_3OD) δ = 8.15 (t, J =1.6 Hz, 1H), 8.02 (td, J =1.3, 7.9 Hz, 1H), 7.75 (td, J =1.5, 7.6 Hz, 1H), 7.69 - 7.61 (m, 2H), 7.54 - 7.44 (m, 3H), 7.28 - 7.19 (m, 2H), 7.01 - 6.95 (m, 2H), 6.90 - 6.81 (m, 1H), 3.91 (br. s., 2H), 3.69 - 3.53 (m, 2H), 3.30 - 3.10 (m, 4H). MS (ESI) m/z 411.2 ($\text{M}+1$) $^+$.

[0863] Example 291: Synthesis of 2-indol-1-yl-3-pyridin-4-ylethynyl-benzoic acid

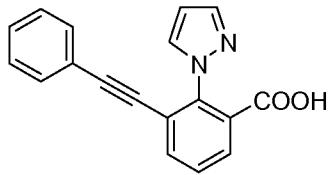
[0864] 2-Indol-1-yl-3-pyridin-4-ylethynyl-benzoic acid. A mixture of 2-bromo-3-pyridin-4-ylethynyl-benzoic acid methyl ester (50 mg, 0.16 mmol), *indole* (28 mg, 0.237 mmol), potassium phosphate (70 mg, 0.332 mmol), copper iodide (3 mg, 0.016 mmol) and N,N'-dimethyl-cyclohexane-1,2-diamine (10 mg, 0.063 mmol) in toluene (1.5 mL) was degassed under N₂ for 10 minutes and then heated at 110 °C for 18 hours. After cooling to room temperature, the reaction mixture was filtered through celite washing with ethyl acetate (5 mL). The filtrate was concentrated and purified using reversed phase HPLC to provide the desired product as a white solid. ¹H NMR (300MHz, CD₃OD) δ = 8.57 (d, *J*=6.2 Hz, 2H), 8.13 (dd, *J*=1.5, 7.9 Hz, 1H), 7.99 (d, *J*=7.4 Hz, 1H), 7.75 - 7.64 (m, 2H), 7.33 (d, *J*=3.5 Hz, 1H), 7.19 - 7.09 (m, 4H), 7.05 - 6.99 (m, 1H), 6.71 (d, *J*=3.3 Hz, 1H). MS (ESI) *m/z* 339.1 (M+1)⁺.


[0865] Example 292: Synthesis of 2-imidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid

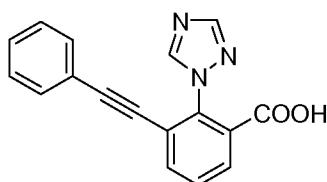
[0866] 2-Imidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid. A mixture of 2-bromo-3-pyridin-4-ylethynyl-benzoic acid methyl ester (50 mg, 0.16 mmol), *imidazole* (50 mg, 0.74 mmol), copper iodide (60 mg, 0.32 mmol), cesium carbonate (82 mg, 0.25 mmol) in dimethylformamide (1.5 mL) was degassed under N₂ for 10 minutes and then heated at 120 °C for 18 hours. After cooling to room temperature, the reaction mixture was filtered through celite washing with ethyl acetate (5 mL). The filtrate was concentrated and purified using reversed phase HPLC to provide the desired product as a white solid. ¹H NMR (300MHz,


CD_3OD) δ = 9.40 (br. s., 1H), 8.38 (dd, J =1.5, 7.9 Hz, 1H), 8.14 (dd, J =1.3, 7.8 Hz, 1H), 7.96 - 7.78 (m, 5H), 7.74 - 7.64 (m, 2H). MS (ESI) m/z 290.1 ($M+1$)⁺.

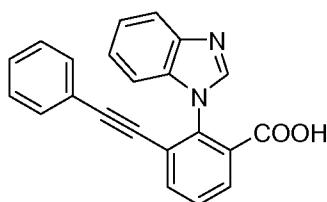
[0867] Example 293: Synthesis of 3-pyridin-4-ylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid


[0868] 3-Pyridin-4-ylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid was prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 8.83 (s, 1H), 8.52 (d, J =3.8 Hz, 2H), 8.23 (s, 1H), 8.03 (d, J =7.9 Hz, 1H), 7.90 (d, J =7.6 Hz, 1H), 7.71 (t, J =7.8 Hz, 1H), 7.29 (d, J =5.6 Hz, 2H). MS (ESI) m/z 291.12 ($M+1$)⁺.

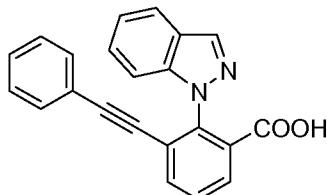
[0869] Example 294: Synthesis of 2-imidazol-1-yl-3-phenylethynyl-benzoic acid


[0870] 2-Imidazol-1-yl-3-phenylethynyl-benzoic acid was prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 8.02 (s, 1H), 7.97 - 7.68 (m, 4H), 7.64 - 7.58 (m, 1H), 7.34 - 7.22 (m, 5H). MS (ESI) m/z 289.1 ($M+1$)⁺.

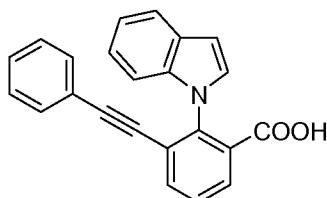
[0871] Example 295: Synthesis of 3-phenylethynyl-2-pyrazol-1-yl-benzoic acid


[0872] -Phenylethynyl-2-pyrazol-1-yl-benzoic acid prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 7.97 - 7.69 (m, 4H), 7.63 - 7.56 (m, 1H), 7.37 - 7.25 (m, 5H), 6.57 (br. s., 1H). MS (ESI) m/z 289.1 ($M+1$)⁺.

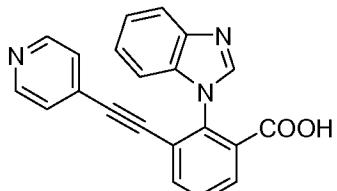
[0873] Example 296: Synthesis of 3-phenylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid


[0874] 3-Phenylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 8.84 (br. s., 1H), 8.23 (s, 1H), 8.03 (d, J =7.6 Hz, 1H), 7.88 (d, J =7.9 Hz, 1H), 7.69 (t, J =7.5 Hz, 1H), 7.40 - 7.23 (m, 5H). MS (ESI) m/z 290.1 ($\text{M}+1$) $^+$.

[0875] Example 297: Synthesis of 2-benzoimidazol-1-yl-3-phenylethynyl-benzoic acid


[0876] 2-Benzoimidazol-1-yl-3-phenylethynyl-benzoic acid prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 8.32 (d, J =7.6 Hz, 1H), 8.15 - 7.95 (m, 1H), 7.95 - 7.80 (m, 1H), 7.71 - 7.52 (m, 2H), 7.48 (br. s., 1H), 7.33 - 7.14 (m, 5H), 6.85 (d, J =7.3 Hz, 2H). MS (ESI) m/z 339.1 ($\text{M}+1$) $^+$.

[0877] Example 298: Synthesis of 2-indazol-1-yl-3-phenylethynyl-benzoic acid


[0878] 2-Indazol-1-yl-3-phenylethynyl-benzoic acid prepared by the same procedure as example 293. ^1H NMR (300MHz, CD_3OD) δ = 8.27 (d, J =0.9 Hz, 1H), 8.03 (dd, J =1.6, 7.8 Hz, 1H), 7.93 - 7.85 (m, 2H), 7.67 (t, J =7.8 Hz, 1H), 7.45 - 7.37 (m, 1H), 7.31 - 7.10 (m, 5H), 6.78 - 6.73 (m, 2H). MS (ESI) m/z 339.1 ($\text{M}+1$) $^+$.

[0879] Example 299: Synthesis of 2-indol-1-yl-3-phenylethynyl-benzoic acid

[0880] 2-Indol-1-yl-3-phenylethynyl-benzoic acid prepared by the same procedure as example 293. ^1H NMR (300MHz, CD₃OD) δ = 7.97- 7.92 (m, 1H), 7.87 - 7.83 (m, 1H), 7.66 - 7.57 (m, 2H), 7.30 - 6.97 (m, 7H), 6.88 - 6.82 (m, 2H), 6.67 (d, J =3.2 Hz, 1H). MS (ESI) m/z 338.0 (M+1)⁺.

[0881] Example 300: Synthesis of 2-benzoimidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid

[0882] 2-Benzoimidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid was prepared by the same procedure as example 293. ^1H NMR (300MHz, CD₃OD) δ = 8.55 (d, J =6.3 Hz, 2H), 8.30 (d, J =7.4 Hz, 1H), 8.15 - 7.95 (m, 1H), 7.93 - 7.79 (m, 1H), 7.72 - 7.51 (m, 2H), 7.44 (br. s., 1H), 7.25 (d, J = 6.1 Hz, 2H), 6.88 (d, J =7.3 Hz, 2H). MS (ESI) m/z 340.1 (M+1)⁺.

FORMULATIONS

[0883] The present invention also relates to compositions or formulations which comprise the EBNA1 inhibitors according to the present invention. In general, the compositions of the present invention comprise an effective amount of one or more EBNA1 inhibitors and salts thereof according to the present invention which are effective and one or more excipients.

[0884] For the purposes of the present invention the term “excipient” and “carrier” are used interchangeably throughout the description of the present invention and said terms are defined herein as, “ingredients which are used in the practice of formulating a safe and effective pharmaceutical composition.”

[0885] The formulator will understand that excipients are used primarily to serve in delivering a safe, stable, and functional pharmaceutical, serving not only as part of the overall vehicle for delivery but also as a means for achieving effective absorption by the recipient of the active ingredient. An excipient may fill a role as simple and direct as being an inert filler, or an excipient as used herein may be part of a pH stabilizing system or coating to insure delivery of the ingredients

safely to the stomach. The formulator can also take advantage of the fact the compounds of the present invention have improved cellular potency, pharmacokinetic properties, as well as improved oral bioavailability.

[0886] The present teachings also provide pharmaceutical compositions that include at least one compound described herein and one or more pharmaceutically acceptable carriers, excipients, or diluents. Examples of such carriers are well known to those skilled in the art and can be prepared in accordance with acceptable pharmaceutical procedures, such as, for example, those described in *Remington's Pharmaceutical Sciences*, 17th edition, ed.

Alfonoso R. Gennaro, Mack Publishing Company, Easton, PA (1985), the entire disclosure of which is incorporated by reference herein for all purposes. As used herein, "pharmaceutically acceptable" refers to a substance that is acceptable for use in pharmaceutical applications from a toxicological perspective and does not adversely interact with the active ingredient. Accordingly, pharmaceutically acceptable carriers are those that are compatible with the other ingredients in the formulation and are biologically acceptable. Supplementary active ingredients can also be incorporated into the pharmaceutical compositions.

[0887] Compounds of the present teachings can be administered orally, intravenously (both bolus and infusion), intraperitoneally, subcutaneously, intramuscular, or parenterally, neat or in combination with conventional pharmaceutical carriers. Applicable solid carriers can include one or more substances which can also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents, or encapsulating materials. The compounds can be formulated in conventional manner, for example, in a manner similar to that used for known EBNA1 inhibitors. Oral formulations containing a compound disclosed herein can comprise any conventionally used oral form, including tablets, capsules, buccal forms, troches, lozenges and oral liquids, suspensions or solutions. In powders, the carrier can be a finely divided solid, which is an admixture with a finely divided compound. In tablets, a compound disclosed herein can be mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets can contain up to 99 % of the compound.

[0888] Capsules can contain mixtures of one or more compound(s) disclosed herein with inert filler(s) and/or diluent(s) such as pharmaceutically acceptable starches (e.g., corn, potato or tapioca starch), sugars, artificial sweetening agents, powdered celluloses (e.g., crystalline and microcrystalline celluloses), flours, gelatins, gums, and the like.

[0889] Useful tablet formulations can be made by conventional compression, wet granulation or dry granulation methods and utilize pharmaceutically acceptable diluents, binding agents, lubricants, disintegrants, surface modifying agents (including surfactants), suspending or stabilizing agents, including, but not limited to, magnesium stearate, stearic acid, sodium lauryl sulfate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, microcrystalline cellulose, sodium carboxymethyl cellulose, carboxymethylcellulose calcium, polyvinylpyrrolidine, alginic acid, acacia gum, xanthan gum, sodium citrate, complex silicates, calcium carbonate, glycine, sucrose, sorbitol, dicalcium phosphate, calcium sulfate, lactose, kaolin, mannitol, sodium chloride, low melting waxes, and ion exchange resins. Surface modifying agents include nonionic and anionic surface modifying agents. Representative examples of surface modifying agents include, but are not limited to, poloxamer 188, benzalkonium chloride, calcium stearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, magnesium aluminum silicate, and triethanolamine. Oral formulations herein can utilize standard delay or time-release formulations to alter the absorption of the compound(s). The oral formulation can also consist of administering a compound disclosed herein in water or fruit juice, containing appropriate solubilizers or emulsifiers as needed.

[0890] Liquid carriers can be used in preparing solutions, suspensions, emulsions, syrups, elixirs, and for inhaled delivery. A compound of the present teachings can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, or a mixture of both, or a pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers, and osmo-regulators. Examples of liquid

carriers for oral and parenteral administration include, but are not limited to, water (particularly containing additives as described herein, e.g., cellulose derivatives such as a sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) and their derivatives, and oils (e.g., fractionated coconut oil and arachis oil). For parenteral administration, the carrier can be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellants.

[0891] Liquid pharmaceutical compositions, which are sterile solutions or suspensions, can be utilized by, for example, intravenous, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Compositions for oral administration can be in either liquid or solid form.

[0892] Preferably the pharmaceutical composition is in unit dosage form, for example, as tablets, capsules, powders, solutions, suspensions, emulsions, granules, or suppositories. In such form, the pharmaceutical composition can be sub-divided in unit dose(s) containing appropriate quantities of the compound. The unit dosage forms can be packaged compositions, for example, packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. Alternatively, the unit dosage form can be a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form. Such unit dosage form can contain from about 1 mg/kg of compound to about 500 mg/kg of compound, and can be given in a single dose or in two or more doses. Such doses can be administered in any manner useful in directing the compound(s) to the recipient's bloodstream, including orally, via implants, parenterally (including intravenous, intraperitoneal and subcutaneous injections), rectally, vaginally, and transdermally.

[0893] When administered for the treatment or inhibition of a particular disease state or disorder, it is understood that an effective dosage can vary depending upon the particular compound utilized, the mode of administration, and severity of the condition being treated, as well as the various physical factors related to

the individual being treated. In therapeutic applications, a compound of the present teachings can be provided to a patient already suffering from a disease in an amount sufficient to cure or at least partially ameliorate the symptoms of the disease and its complications. The dosage to be used in the treatment of a specific individual typically must be subjectively determined by the attending physician. The variables involved include the specific condition and its state as well as the size, age and response pattern of the patient.

[0894] In some cases it may be desirable to administer a compound directly to the airways of the patient, using devices such as, but not limited to, metered dose inhalers, breath-operated inhalers, multidose dry-powder inhalers, pumps, squeeze-actuated nebulized spray dispensers, aerosol dispensers, and aerosol nebulizers. For administration by intranasal or intrabronchial inhalation, the compounds of the present teachings can be formulated into a liquid composition, a solid composition, or an aerosol composition. The liquid composition can include, by way of illustration, one or more compounds of the present teachings dissolved, partially dissolved, or suspended in one or more pharmaceutically acceptable solvents and can be administered by, for example, a pump or a squeeze-actuated nebulized spray dispenser. The solvents can be, for example, isotonic saline or bacteriostatic water. The solid composition can be, by way of illustration, a powder preparation including one or more compounds of the present teachings intermixed with lactose or other inert powders that are acceptable for intrabronchial use, and can be administered by, for example, an aerosol dispenser or a device that breaks or punctures a capsule encasing the solid composition and delivers the solid composition for inhalation. The aerosol composition can include, by way of illustration, one or more compounds of the present teachings, propellants, surfactants, and co-solvents, and can be administered by, for example, a metered device. The propellants can be a chlorofluorocarbon (CFC), a hydrofluoroalkane (HFA), or other propellants that are physiologically and environmentally acceptable.

[0895] Compounds described herein can be administered parenterally or intraperitoneally. Solutions or suspensions of these compounds or a pharmaceutically acceptable salts, hydrates, or esters thereof can be prepared in water suitably mixed with a surfactant such as hydroxyl-propylcellulose.

Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations typically contain a preservative to inhibit the growth of microorganisms.

[0896] Parenteral injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions. Additionally, one approach for parenteral administration employs the implantation of a slow-release or sustained-released systems, which assures that a constant level of dosage is maintained, according to U.S. Pat. No. 3,710,795, incorporated herein by reference.

[0897] Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame seed oil, benzyl alcohol, sodium chloride, tragacanth gum, or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art. The active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol), cosolvent solubilization (i.e. propylene glycol), or micellar solubilization (i.e., Tween 80).

[0898] The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3 butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose and blan fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. Aqueous solutions suitable for intravenous injection (bolus or infusion) are preferably buffered and the liquid diluent first rendered isotonic. Aqueous solutions suitable for

intravenous injection (bolus or infusion) are preferably sterile as prepared by standard pharmaceutical techniques well known to those skilled in the art. Pharmaceutical compositions are preferably preserved against the contaminating action of microorganisms such as fungi and bacteria by standard pharmaceutical techniques well known to those skilled in the art.

[0899] The pharmaceutical forms suitable for injection can include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In some embodiments, the form can be sterile and its viscosity permits it to flow through a syringe. The form preferably is stable under the conditions of manufacture and storage and can be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

[0900] Compounds described herein can be administered transdermally, i.e., administered across the surface of the body and the inner linings of bodily passages including epithelial and mucosal tissues. Such administration can be carried out using the compounds of the present teachings including pharmaceutically acceptable salts, hydrates, or esters thereof, in lotions, creams, foams, patches, suspensions, solutions, and suppositories (rectal and vaginal).

[0901] Transdermal administration can be accomplished through the use of a transdermal patch containing a compound, such as a compound disclosed herein, and a carrier that can be inert to the compound, can be non-toxic to the skin, and can allow delivery of the compound for systemic absorption into the blood stream via the skin. The carrier can take any number of forms such as creams and ointments, pastes, gels, and occlusive devices. The creams and ointments can be viscous liquid or semisolid emulsions of either the oil-in-water or water-in-oil type. Pastes comprised of absorptive powders dispersed in petroleum or hydrophilic petroleum containing the compound can also be suitable. A variety of occlusive devices can be used to release the compound into the blood stream, such as a semi-permeable membrane covering a reservoir containing the compound with or without a carrier, or a matrix containing the compound. Other occlusive devices are known in the literature.

[0902] Compounds described herein can be administered rectally or vaginally in the form of a conventional suppository. Suppository formulations can be made from traditional materials, including cocoa butter, with or without the addition of waxes to alter the suppository's melting point, and glycerin. Water-soluble suppository bases, such as polyethylene glycols of various molecular weights, can also be used.

[0903] Lipid formulations or nanocapsules can be used to introduce compounds of the present teachings into host cells either *in vitro* or *in vivo*. Lipid formulations and nanocapsules can be prepared by methods known in the art.

[0904] To increase the effectiveness of compounds of the present teachings, it can be desirable to combine a compound with other agents effective in the treatment of the target disease. For example, other active compounds (i.e., other active ingredients or agents) effective in treating the target disease can be administered with compounds of the present teachings. The other agents can be administered at the same time or at different times than the compounds disclosed herein.

[0905] Compounds of the present teachings can be useful for the treatment or inhibition of a pathological condition or disorder in a mammal, for example, a human subject. The present teachings accordingly provide methods of treating or inhibiting a pathological condition or disorder by providing to a mammal a compound of the present teachings including its pharmaceutically acceptable salt) or a pharmaceutical composition that includes one or more compounds of the present teachings in combination or association with pharmaceutically acceptable carriers. Compounds of the present teachings can be administered alone or in combination with other therapeutically effective compounds or therapies for the treatment or inhibition of the pathological condition or disorder.

[0906] Non-limiting examples of compositions according to the present invention include from about 0.001 mg to about 1000 mg of one or more EBNA1 inhibitors according to the present invention and one or more excipients; from about 0.01 mg to about 100 mg of one or more EBNA1 inhibitors according to the present invention and one or more excipients; and from about 0.1 mg to about 10 mg of one or more EBNA1 inhibitors according to the present invention; and one or more excipients. Oral dosages of the present invention, when used for the

indicated effects, will range between about 0.05 to 1000 mg/day orally. The compositions are preferably provided in the form of scored tablets containing 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100.0, 250.0, 500.0 and 1000.0 mg of active ingredient. Infused dosages, intranasal dosages and transdermal dosages will range between 0.05 to 1000 mg/day. Subcutaneous, intravenous (bolus or infusion) and intraperitoneal dosages will range between 0.05 to 1000 mg/day. Effective plasma levels of the compounds of the present invention range from 0.002 mg/mL to 50 mg/mL. Compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily.

PROCEDURES

[0907] The following procedures can be utilized in evaluating and selecting compounds as EBNA1 inhibitors.

[0908] Inhibition of 5'-biotin-oPL4624 binding to His-EBNA1 using Alpha Screen technology: Assays were performed using the DNA binding domain of EBNA1 (amino acids 459-607), which was His-tagged (His-EBNA1) and the self-complementary biotinylated (bt) oligonucleotide with the sequence 5'-bt-GGGTAGCATATGCTATCTAGATAGCAT-ATGCTACCC-3' (bt-oPL4624). The protein was expressed in *E. coli* and purified according to Barwell, et al. (Barwell JA, Bochkarev A, Pfuetzner RA, Tong H, Yang DS, Frappier L, Edwards AM. (1995) Overexpression, purification, and crystallization of the DNA binding and dimerization domains of the Epstein-Barr virus nuclear antigen 1. *J Biol Chem.* 270: 20556-9.). The bt-oPL4624 oligonucleotide was purchased from Integrated DNA Technologies, Inc (IDT). AlphaScreen donor, acceptor beads and white, opaque 384-well assay plates were purchased from PerkinElmer, Inc.

[0909] Assays contained 15 nM His-EBNA1, 0.2 nM bt-oPL4624, 5 μ g/mL AlphaScreen streptavidin donor beads and nickel chelate acceptor beads, and a series of concentrations of test compound ranging from 3.2 nM to 100 μ M in a total volume of 40 μ L assay buffer (25 mM Tris, pH 7.2, 160 mM NaCl, 1 mM MgCl₂). His-EBNA1 (30 nM) and bt-oPL4624 (0.4 nM) were preincubated with 10 μ g/mL nickel chelate AlphaScreen acceptor bead, or 10 μ g/mL streptavidin

AlphaScreen donor bead, respectively, for 30 minutes at room temperature in assay buffer. Twenty microliters of His-EBNA1/acceptor bead mix and bt-oPL4624/donor bead mix were transferred to assay plates containing 0.4 μ L of 1:3 serial dilutions of test compounds previously prepared in DMSO at concentrations ranging from 0.32 μ M to 10 mM. Nonspecific binding was determined with 5 μ g/mL AlphaScreen acceptor bead in the absence of His-EBNA1. After 2hr incubation at room temperature, the AlphaScreen signal was measured on the Envision plate reader (PerkinElmer, Inc.) at 680 nm excitation and 570 nm emission. Inhibition values at each concentration of test compound were determined by setting 100% equal to raw data values in the absence of EBNA1 and 0% equal to the raw data values in the presence of EBNA1. Nonlinear regression fits of the inhibition values to a one-site dose-response equation were performed using GraphPad Prism. Results from screening of representative compounds of the disclosure are described in table 6.

Table 6: Inhibition of 5'-biotin-oPL4624 binding to His-EBNA1 of representative compounds of the disclosure using Alpha Screen technology:

Entry	Compound	Alpha Screen Activity
1	3-{2-[3-(methylsulfamoyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
2	3-[2-(1H-indol-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
3	3-[2-(3-methanesulfonamidophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
4	2-(1H-pyrrol-1-yl)-3-[2-(3-sulfamoylphenyl)ethynyl]benzoic acid	++++
5	3-[2-(3-carbamoylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
6	3-(2-{imidazo[1,2-a]pyridin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++
7	3-[2-(2-hydroxypyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
8	3-[2-(1H-indazol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
9	3-{2-[3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl]ethynyl}-2-(1H-	++++

	pyrrol-1-yl)benzoic acid	
10	3-(2-{3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	+++
11	3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
12	3-(2-{imidazo[1,2-a]pyridin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
13	3-(2-{imidazo[1,2-a]pyridin-5-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++
14	2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-5-yl}ethynyl)benzoic acid	+++
15	3-[2-(1-methyl-1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
16	3-[2-(1-methyl-1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
17	3-[2-(1-benzothiophen-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
18	3-[2-(1H-indol-7-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
19	3-{2-[2-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
20	3-{2-[4-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
21	2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(4-methylphenyl)ethynyl]benzoic acid	++++
22	2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid	++++
23	3-[2-(2,3-dihydro-1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
24	3-[2-(1-methyl-1H-pyrazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
25	3-[2-(1,2-dimethyl-1H-imidazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++

26	3-[2-(1-methyl-1H-imidazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
27	3-[2-(1-methyl-1H-imidazol-2-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
28	2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-5-yl)ethynyl]benzoic acid	++
29	2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++++
30	2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-6-yl}ethynyl)benzoic acid	+++
31	3-{2-[3-(2-hydroxypropan-2-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
32	3-(3-hydroxy-4-methylpent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	+++
33	3-(3-hydroxy-3-phenylprop-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
34	2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid	++++
35	3-[2-(1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
36	2-(1H-pyrrol-1-yl)-3-(2-[[1,2,4]triazolo[1,5-a]pyridin-7-yl]ethynyl)benzoic acid	++++
37	3-{2-[3-(dimethylsulfamoyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
38	3-[2-(3-fluoro-5-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
39	3-{2-[3-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
40	3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
41	3-[2-(1H-1,3-benzodiazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
42	3-[2-(1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
43	3-[2-(1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
44	3-[2-(4-methylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++

45	3-[2-(3,5-difluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
46	3-{2-[3-(difluoromethoxy)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
47	3-ethynyl-2-(1H-pyrrol-1-yl)benzoic acid	++
48	3-(3-amino-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	+
49	3-(3,3-dimethylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	+++
50	2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid	++++
51	5-[2-(4-fluorophenyl)ethynyl]-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid	+++
52	5-(2-phenylethynyl)-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid	++
53	3-[2-(1-aminocyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid; trifluoroacetic acid	++++
54	3-[2-(1-hydroxycyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
55	3-(4-ethyl-3-hydroxyoct-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
56	3-(2-{imidazo[1,2-a]pyrazin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
57	3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
58	5-chloro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
59	5-chloro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++
60	5-fluoro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+
61	5-fluoro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++
62	3-(2-cyclopropylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
63	3-(3-hydroxy-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
64	3-[3-(dimethylamino)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid	+
65	3-(4-phenylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
66	3-(5-hydroxypent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
67	3-[2-(4-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++

68	3-[2-(pyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
69	3-[2-(pyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
70	3-[2-(3-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
71	3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid	+++
72	3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid	++++
73	3-{3-[benzyl(methyl)amino]prop-1-yn-1-yl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
74	3-[3-(1H-imidazol-1-yl)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid	++++
75	3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++
76	3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid	++
77	3-[2-(1H-indol-5-yl)ethynyl]benzoic acid	++++
78	2-amino-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid	++++
79	2-amino-3-[2-(1H-indol-4-yl)ethynyl]benzoic acid	++++
80	2-amino-3-[2-(1H-indol-6-yl)ethynyl]benzoic acid	++++
81	2-amino-3-[2-(1H-indol-5-yl)ethynyl]benzoic acid	++++
82	2-amino-3-{2-[3-(hydroxymethyl)phenyl]ethynyl}benzoic acid	+++
83	2-amino-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid	+++
84	2-amino-3-(2-phenylethynyl)benzoic acid	++
85	2-fluoro-3-(2-phenylethynyl)benzoic acid	+++
86	2-fluoro-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid	++
87	2-fluoro-3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)benzoic acid	++++
88	2-fluoro-3-{2-[2-(hydroxymethyl)phenyl]ethynyl}benzoic acid	+++
89	2-fluoro-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	+++
90	3-[2-(pyridin-2-yl)ethynyl]benzoic acid	+
91	3-[2-(pyridin-3-yl)ethynyl]benzoic acid	+++
92	3-(2-phenylethynyl)benzoic acid	++
93	3-[2-(pyridin-4-yl)ethynyl]benzoic acid	+++
94	3-[2-(4-methoxyphenyl)ethynyl]benzoic acid	+
95	2-{4-[(dimethylamino)methyl]phenyl}-3-(2-phenylethynyl)benzoic acid trifluoroacetic acid salt	+++
96	3-(2-phenylethynyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)benzoic acid	+++

	trifluoroacetic acid salt	
97	3-(2-phenylethynyl)-2-(pyridin-4-yl)benzoic acid trifluoroacetic acid salt	++
98	2-(4-methanesulfonylphenyl)-3-(2-phenylethynyl)benzoic acid	++
99	3-(2-phenylethynyl)-2-(1H-pyrazol-4-yl)benzoic acid	+++
100	3-(2-phenylethynyl)-2-(pyrimidin-5-yl)benzoic acid	+
101	2-(1-methyl-1H-pyrazol-4-yl)-3-(2-phenylethynyl)benzoic acid	+++
102	3-(2-phenylethynyl)-2-(2-phenylpyrrolidin-1-yl)benzoic acid	+++
103	2-[3-(dimethylamino)pyrrolidin-1-yl]-3-(2-phenylethynyl)benzoic acid	++
104	1-[2-carboxy-6-(2-phenylethynyl)phenyl]pyrrolidine-3-carboxylic acid	++
105	2-[(3S)-3-hydroxypyrrolidin-1-yl]-3-(2-phenylethynyl)benzoic acid	+
106	3-(2-phenylethynyl)-2-(pyrrolidin-1-yl)benzoic acid	++
107	3-(2-phenylethynyl)-2-(piperazin-1-yl)benzoic acid	++
108	2-(benzylamino)-3-(2-phenylethynyl)benzoic acid	++
109	2-(4-phenyl-1H-1,2,3-triazol-1-yl)-3-(2-phenylethynyl)benzoic acid	++
110	2-[4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-3-(2-phenylethynyl)benzoic acid	++
111	3-(2-phenylethynyl)-2-[4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl]benzoic acid	++
112	2-[4-(3-hydroxypropyl)-1H-1,2,3-triazol-1-yl]-3-(2-phenylethynyl)benzoic acid	++
113	N-(dimethylsulfamoyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide	+++
114	N-(dimethylsulfamoyl)-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzamide	+++
115	N-(morpholine-4-sulfonyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide	+
116	N-[(1,1-dioxo-4-thiomorpholin-4-yl)sulfonyl]-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide	++
117	3-[2-(4-fluorophenyl)ethynyl]-N-methanesulfonyl-2-(1H-pyrrol-1-	++

	yl)benzamide	
118	3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)-N-sulfamoylbenzamide	++
119	2-(4-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid	+++
120	2-(3-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid	+++
121	2-(2-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid	++
122	3-(2-phenylethynyl)-2-(quinolin-3-yl)benzoic acid	++
123	2-cyclopropyl-3-(2-phenylethynyl)benzoic acid	+++
124	2-phenyl-3-(2-phenylethynyl)benzoic acid	++
125	2-(4-methylphenyl)-3-(2-phenylethynyl)benzoic acid	+++
126	2-(6-methoxypyridin-3-yl)-3-(2-phenylethynyl)benzoic acid	++
127	2-[6-(dimethylamino)pyridin-3-yl]-3-(2-phenylethynyl)benzoic acid	++
128	2-[3-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid	++
129	2-(1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid	++++
130	2-[4-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid	++
131	2-(1-benzofuran-5-yl)-3-(2-phenylethynyl)benzoic acid	++
132	2-(1-benzothiophen-5-yl)-3-(2-phenylethynyl)benzoic acid	++
133	2-(1-methyl-1H-indol-5-yl)-3-(2-phenylethynyl)benzoic acid	+++
134	2-(3-methanesulfonamidophenyl)-3-(2-phenylethynyl)benzoic acid	+++
135	2-(naphthalen-2-yl)-3-(2-phenylethynyl)benzoic acid	+++
136	2-(1-methyl-1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid	+++
137	2-{2-[(2-hydroxyethyl)sulfamoyl]phenyl}-3-(2-phenylethynyl)benzoic acid	++
138	2-[4-(cyclopropylcarbamoyl)phenyl]-3-(2-phenylethynyl)benzoic acid	++
139	2-(1-methyl-1H-indazol-6-yl)-3-(2-phenylethynyl)benzoic acid	++
140	3-[2-(3-hydroxyphenyl)ethynyl]-2-(quinolin-3-yl)benzoic acid	+++
141	3-(5-hydroxypent-1-yn-1-yl)-2-(quinolin-3-yl)benzoic acid	++
142	3-[2-(4-methoxyphenyl)ethynyl]-2-(quinolin-3-yl)benzoic acid	++
143	3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(quinolin-3-yl)benzoic acid	+++
144	3-[(1E)-3-methoxyprop-1-en-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid	+++

145	3-[(E)-2-phenylethenyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
146	3-[(E)-2-(4-fluorophenyl)ethenyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
147	3-(2-phenylethyl)-2-(1H-pyrrol-1-yl)benzoic acid	++
148	3-(2-phenylethyl)-2-(pyrrolidin-1-yl)benzoic acid	++
149	3-[2-(4-fluorophenyl)ethyl]-2-(1H-pyrrol-1-yl)benzoic acid	++
150	2-(1H-1,3-benzodiazol-6-yl)-3-(2-phenylethynyl)benzoic acid	++
151	2-(quinolin-3-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++
152	3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzene-1-sulfonamide	+++
153	N-[3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzenesulfonyl]acetamide	++
154	2-(dimethyl-1,2-oxazol-4-yl)-3-(2-phenylethynyl)benzoic acid	+++
155	2-(benzyloxy)-3-(2-phenylethynyl)benzoic acid	++
156	2-[3-(methoxycarbonyl)-1H-indol-6-yl]-3-(2-phenylethynyl)benzoic acid	+++
157	3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid	++
158	3-(3-{{[3-(1H-imidazol-1-yl)propyl]amino}prop-1-yn-1-yl}-2-phenylbenzoic acid	++
159	2-phenyl-3-[3-(4-phenylpiperazin-1-yl)prop-1-yn-1-yl]benzoic acid	++
160	2-phenyl-3-[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]benzoic acid	++
161	3-(3-hydroxyprop-1-yn-1-yl)-2-phenylbenzoic acid	+
162	3-{{2-[3-(aminomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
163	3-{{2-[3-(3,5-difluorobenzenesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
164	3-{{2-[4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	+++
165	3-{{2-[3-(cyclopropanesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid	++++
166	2-(3-methoxyphenyl)-3-{{2-[1H-pyrrolo[2,3-b]pyridin-3-yl]ethynyl}benzoic acid	++
167	2-(1-methyl-1H-indazol-6-yl)-3-{{2-[1H-pyrrolo[2,3-b]pyridin-3-yl]ethynyl}benzoic acid	++

	yl}ethynyl)benzoic acid	
168	2-(2-methyl-1,3-benzothiazol-5-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid	++
169	2-(3-methoxyphenyl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++
170	2-(1-methyl-1H-indazol-6-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	+++
171	2-(1-methyl-1H-indol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	+++
172	2-(pyridin-4-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++
173	2-(2-methyl-1,3-benzothiazol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid	++
174	2-(1H-indol-3-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid	+++
175	2-[4-(dimethylamino)phenyl]-3-[2-(pyridin-4-yl)ethynyl]benzoic acid	++
176	2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-6-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid	++
177	2-phenyl-3-[2-(pyridin-4-yl)ethynyl]benzoic acid	+
178	6-(3-carboxy-phenylethynyl)-1H-indole-4-carboxylic acid	+++
179	3-(4-carbamoyl-1H-indol-6-ylethynyl)-benzoic acid	+++
180	3-(3-carbamoyl-phenylethynyl)-benzoic acid	++++
181	3-(1-benzenesulfonyl-1H-indol-3-ylethynyl)-benzoic acid	++
182	3-(1H-indol-3-ylethynyl)-benzoic acid	++
183	3-(3-carboxy-phenylethynyl)-benzoic acid methyl ester	+
184	3-(3-carbamoyl-5-methoxy-phenylethynyl)-benzoic acid	++
185	3'-hydroxy-4'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid	+
186	5'-hydroxy-3'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid	++
187	2-(1H-pyrazol-3-yl)-3-pyridin-4-ylethynyl-benzoic acid	++
188	2-(1H-pyrazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid	+
189	2-(3,5-dimethyl-isoxazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid	++
190	3-phenylethynyl-2-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzoic acid	+

191	2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-methyl-but-1-ynyl)-benzoic acid	++
192	2-(2,5-dimethyl-pyrrol-1-yl)-3-pyridin-4-ylethynyl-benzoic acid	++
193	3-(3-carbamoyl-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid	+++
194	3-(3-carboxy-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid	++++
195	2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxymethyl-phenylethynyl)-benzoic acid	++
196	2-(2,5-dimethyl-pyrrol-1-yl)-3-(1H-pyrrolo[2,3-b]pyridin-3-ylethynyl)-benzoic acid	+++
197	2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-phenyl-prop-1-ynyl)-benzoic acid	++
198	3-(3-acetylamino-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid	++
199	3-cyclopropylethynyl-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid	+++
200	2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-methoxy-phenylethynyl)-benzoic acid	+++
201	2-(1H-indazol-6-yl)-3-phenylethynyl-benzoic acid	++
202	2-benzo[1,3]dioxol-5-yl-3-phenylethynyl-benzoic acid	++
203	2-isoquinolin-6-yl-3-phenylethynyl-benzoic acid	++
204	2-benzofuran-2-yl-3-phenylethynyl-benzoic acid	+++
205	3-phenylethynyl-2-quinolin-8-yl-benzoic acid	++
206	2-(2-amino-pyrimidin-5-yl)-3-phenylethynyl-benzoic acid	+
207	4'-dimethylaminomethyl-6-phenylethynyl-biphenyl-2-carboxylic acid	+
208	3-(4-amino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid	+++
209	3-(4-carboxy-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid	++++
210	2-(1H-indol-6-yl)-3-(4-methoxy-phenylethynyl)-benzoic acid	+++
211	3-(4-carbamoyl-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid	+++
212	2-(1H-indol-6-yl)-3-[4-(piperazine-1-carbonyl)-phenylethynyl]-benzoic acid	+++

213	3-(4-acetylamino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid	++
214	2-(1H-indol-6-yl)-3-{4-[(pyridine-3-carbonyl)-amino]-phenylethynyl}-benzoic acid	++++
215	2-(1H-indol-6-yl)-3-(4-methanesulfonylamino-phenylethynyl)-benzoic acid	+++
216	2-(1H-indol-6-yl)-3-[4-(thiophene-2-sulfonylamino)-phenylethynyl]-benzoic acid	+++
217	2-(3-(Methoxycarbonyl)-1H-indol-6-yl)-3-(thiazol-4-ylethynyl)benzoic acid	+++
218	2-(1H-indol-6-yl)-3-(thiazol-4-ylethynyl)benzoic acid	+++
219	2-(1-methyl-1H-pyrazol-4-yl)-3-(thiazol-4-ylethynyl)benzoic acid	++
220	3-((3-hydroxyphenyl)ethynyl)-2-(1-methyl-1H-pyrazol-4-yl)benzoic acid	+++
221	2-(3-chloro-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid	+++
222	3-((3-hydroxyphenyl)ethynyl)-2-(1H-indazol-6-yl)benzoic acid	+++
223	2-(3-(2-acetamidoethyl)-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid	+++
224	3-((3-(N,N-dimethylsulfamoyl)phenyl)ethynyl)-2-fluorobenzoic acid	++
225	2-(1H-indol-6-yl)-3-((4-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)benzoic acid	++++
226	2-(1H-indol-6-yl)-3-((4-morpholinophenyl)ethynyl)benzoic acid	++
227	3-((3-carbamoylphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	++
228	3-((4-Fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
229	3-((2,4-Difluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
230	3-((3-Aacetamidophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	++++
231	2-(1H-indol-6-yl)-3-((3-(nicotinamido)phenyl)ethynyl)benzoic acid	+++
232	3-((3-(3-chloro-4-fluorophenylsulfonamido)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	++++
233	3-((3-aminophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	++++
234	2-(1H-indol-6-yl)-3-((3-	+++

	(methylsulfonamido)phenyl)ethynyl)benzoic acid	
235	2-(1H-indol-6-yl)-3-((3-(thiophene-2-sulfonamido)phenyl)ethynyl)benzoic acid	++++
236	3-((3-acetamido-5-fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	++++
237	2-(indolin-6-yl)-3-(phenylethynyl)benzoic acid	++
238	3-((3-hydroxyphenyl)ethynyl)-2-(indolin-6-yl)benzoic acid	+++
239	3-((6-aminopyridin-2-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
240	3-((2-aminopyridin-4-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
241	3-((3-hydroxyphenyl)ethynyl)-2-(5-methoxypyridin-3-yl)benzoic acid	++
242	2-(benzo[d][1,3]dioxol-5-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid	++
243	3-((3-hydroxyphenyl)ethynyl)-2-(pyrimidin-5-yl)benzoic acid	++
244	4'-Amino-6-((3-hydroxyphenyl)ethynyl)-5'-methoxybiphenyl-2-carboxylic acid	++
245	3-(4-hydroxybut-1-ynyl)-2-(1H-indol-6-yl) benzoic acid	++++
246	3-(3-amino-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid	+++
247	3-(3-hydroxy-3-phenylprop-1-ynyl)-2-(1H-indol-6-yl)benzoic acid	++++
248	3-(3-hydroxy-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid	++++
249	3-((3-(hydroxymethyl)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
250	6-(2-carboxy-6-(phenylethynyl)phenyl)-1H-indole-2-carboxylic acid	+++
251	2-(2-(ethoxycarbonyl)-1H-indol-6-yl)-3-(phenylethynyl)benzoic acid	+++
252	3-((3-carbamoyl-5-methoxyphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
253	2-(1H-indol-5-yl)-3-(phenylethynyl)benzoic acid	+++
254	5-(2-carboxy-6-((3-hydroxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid	++
255	5-(2-carboxy-6-((4-methoxyphenyl)ethynyl)phenyl)-1H-indole-2-	++

	carboxylic acid	
256	3-((4-fluoro-3-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid	+++
257	5'-acetamido-6-(phenylethynyl)biphenyl-2-carboxylic acid	++
258	3-[3-(5-amino-1H-1,3-benzodiazol-1-yl)prop-1-yn-1-yl]-2-phenylbenzoic acid trifluoroacetate salt	+++
259	2-(1H-indol-6-yl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt	+++
260	2-(4-methylphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt	++
261	3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl phenyl)benzoic acid	++
262	3-{3-[(1H-1,3-benzodiazol-6-yl)amino]prop-1-yn-1-yl}-2-phenylbenzoic acid; trifluoroacetate salt	+++
263	3-[2-(3-hydroxyphenyl)ethynyl]-2-(1-methyl-1H-indol-5-yl)benzoic acid	+++
264	3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)benzoic acid; trifluoroacetate salt	+++
265	3-[2-(3-hydroxyphenyl)ethynyl]-2-(3-methanesulfonamidophenyl) benzoic acid	++
266	3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-6-yl)benzoic acid	++++
267	2-(3-carbamoylphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid	++
268	2-[1-(benzenesulfonyl)-1H-indol-3-yl]-3-[2-(3-hydroxyphenyl)ethynyl] benzoic acid	++
269	2-(3-hydroxyphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid	++
270	2-(1H-indol-5-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt	++
271	2-(3-chloro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid; trifluoroacetate salt	+++
272	2-(3-fluoro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid; trifluoroacetate salt	++
273	2-(3,5-dimethoxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid;	++

	trifluoroacetate salt	
274	3-[3-(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl]-2-(3-hydroxyphenyl) benzoic acid	+++
275	3-[2-(3-hydroxyphenyl)ethynyl]-2-(2-phenoxyphenyl) benzoic acid	++
276	3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-3-yl) benzoic acid	++
277	2-(3,5-dimethoxyphenyl)-3-[2-(3-hydroxyphenyl) ethynyl]benzoic acid	++
278	2-amino-3-[2-(3-carbamoylphenyl)ethynyl]benzoic acid; trifluoroacetate salt	++
279	2-amino-3-[2-(3-carboxyphenyl)ethynyl]benzoic acid; trifluoroacetate salt	++
280	5-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole	+++
281	3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-pyrrolo[2,3-b]pyridine	++
282	6-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole	+++
283	1-benzenesulfonyl-3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole	++++
284	3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole	++++
285	{2-[3-(1H-tetrazol-5-yl)-phenylethynyl]-phenyl}-methanol	++
286	3-[3-(morpholine-4-carbonyl)-phenylethynyl]-benzoic acid	++
287	3-(3-methylcarbamoyl-phenylethynyl)-benzoic acid	++
288	3-(3-dimethylcarbamoyl-phenylethynyl)-benzoic acid	+
289	3-[3-(4-methyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid	+
290	3-[3-(4-phenyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid	++
291	2-indol-1-yl-3-pyridin-4-ylethynyl-benzoic acid	++
292	2-imidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid	+
293	3-pyridin-4-ylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid	++
294	2-imidazol-1-yl-3-phenylethynyl-benzoic acid	++
295	3-phenylethynyl-2-pyrazol-1-yl-benzoic acid	+
296	3-phenylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid	++
297	2-benzoimidazol-1-yl-3-phenylethynyl-benzoic acid	++
298	2-indazol-1-yl-3-phenylethynyl-benzoic acid	++
299	2-indol-1-yl-3-phenylethynyl-benzoic acid	+++

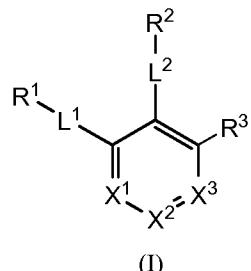
300	2-benzoimidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid	++
-----	---	----

Alpha Screen Activity: IC50 < 1 uM = +++; 1 uM < IC50 < 10 uM = +++; 10 uM < IC50 < 100 uM = ++; 100 uM < IC50 < 1 mM = +.

[0910] Cell based luciferase assay of EBNA1 inhibition: In vivo inhibition of EBNA1 was determined for compounds of the disclosure using a cell based luciferase reporter assay. EBNA1 binding to the Family of Repeat (FR) region is essential for EBV latent infection and host-cell viability, thus providing a physiologically meaningful cell-based readout. A derivative of EBNA1, which is functionally equivalent to full-length EBNA1 and lacks the GGA repeats (90-325), was cloned into p3xFLAG-Myc-CMV™-24 (Sigma-Aldrich Co., LLC) (N803). To make the assay more sensitive by reducing the expression levels of EBNA1, the CMV promoter was excised and the TK promoter inserted upstream of EBNA1. To enhance the EBNA1-driven luciferase signal, the activation domain of herpes virus VP16 (411-490) was fused to the C-terminus of EBNA1 using SacII and BamHI restriction sites, resulting in the plasmid pTK-3xFLAG-Myc-EBNA1-VP16AD. Empty vector p3xFLAG-Myc-CMV-24 was used as a control. To create luciferase reporter plasmid, the FR region, a locus of 21 contiguous EBNA1 binding sites (7421-8042), was PCR amplified from EBV genomic DNA and cloned into the pGLuc-Basic 2 (New England Biolabs) using the KpnI and HindIII restriction sites, resulting in plasmid pGLuc2-21xFR.

[0911] For the transient transfection assay, HEK293T cells were seeded at a concentration of 4-8 x 10⁶ cells in a 10cm plate in Delbecco's Modified Eagle Medium (DMEM) (Life Technologies Corp.) supplemented with 10% Fetal Bovine Serum (FBS) (Gemini Bio-Products). After overnight incubation, the transfection was performed using Lipofectamine 2000 (Life Technologies). 3 ug of pGLuc2-21xFR and 0.6 ug of pTK-3xFLAG-Myc-EBNA1-VP16AD or p3xFLAG-Myc-CMV-24 (empty vector) were added to 0.5 ml Optimem buffer (Life Technologies Corp.). 30 ul Lipofectamine was added to a separate 0.5 ml Optimem buffer and incubated for 5 minutes. The DNA and lipofectamine mixtures were combined and incubated for 20 minutes at room temperature and added drop wise to the 10 cm plate. The cells were then incubated for 6 hours at 37°C. The cells were harvested, counted and re-suspended at a concentration of 2

$\times 10^5$ cells/ml and distributed using a MicroFlo dispenser (BioTek) in 384-well tissue culture plate (Greiner BioOne), 40 ul (8000 cells) per well. 160 nl of solutions of compounds of the disclosure in DMSO at concentrations ranging from 50 mM to 976 uM were added to the cells (10-point 2-fold dilution series, final concentration 200 uM – 390 nM) using a Janus modular Nanohead dispenser (PerkinElmer, Inc.). Compounds and transfected cells were incubated overnight at 37°C. Gaussia luciferase is secreted into the medium. The top 10 ul of cell media from the 384-well tranfected HEK293T cells is transferred to a white opaque 384-well development plate. 10 ul of substrate is added to each well and incubated for 5 minutes. Bioluminescence is then measured using the Envision Multiplate Reader (Perkin Elmer, Inc.). To normalize the activity of the compounds of the disclosure and to filter toxic compound, the remaining 30 ul of cell media (including the cells) are incubated with 6 ul resazurin, incubated for 4-6 hours at 37°C and measured using the Envision Multiplate Reader. Data analysis and IC₅₀ curves are generated using Prism (GraphPad).

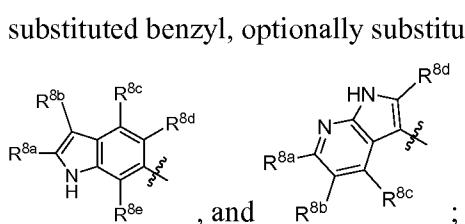
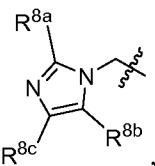

[0912] Cell Viability Assay: To further evaluate the cell-based efficacy of EBNA1 inhibitors, a cell cytotoxicity assay was performed. EBNA1 inhibitors should selective kill EBV-positive cell lines (Raji, LCL, C666-1) relative to EBV-negative cell lines (Bjab, DG75, HNE-1). Raji, Bjab, and DG75 were obtained from American Type Tissue Culture (ATCC), C666-1 and HNE-1 were a gift from Anne Lee (Hong Kong University) and the Lymphoblastic Cell Line (LCL) was obtained by *in vitro* infection of B-cells with the B95.8 strain of EBV.

[0913] To perform this assay, 40 ul of the different cell lines were seeded at a concentration of 1×10^5 cells in a clear 384-well plate (4000 cell/well). 160 nl of compound at concentrations ranging from 50 mM to 976 uM were added to each well (10-point, 2-fold dilution series, final concentration 200 uM – 390 nM) using a Janus modular Nanohead dispenser (PerkinElmer, Inc.). Cells were incubated for 72 hours in a humidified 37°C incubator 5% CO₂. The cell viability is inferred using the oxidation-reduction indicator, resazurin. 8 ul of resazurin was added to each well and after 4-6 hours incubation at 37°C, the fluorescent signal was monitored using 530-560 nm excitation wavelength and 590 nm emission wavelength using the Envision Multiplate Reader.

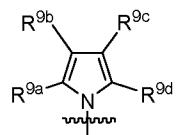
[0914] Data analysis and CC₅₀ (Cytotoxicity Concentration) curves are generated using Prism (GraphPad). A selectivity index is calculated by determining the ratio of the CC₅₀ from the EBV-negative cell line over the CC₅₀ from the EBV-positive cell line.

WHAT IS CLAIMED IS:

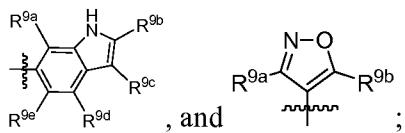
1. A compound having formula (I):

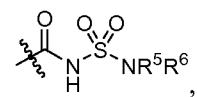


including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein:

X^1 is selected from the group consisting of CR^{4a} and N;

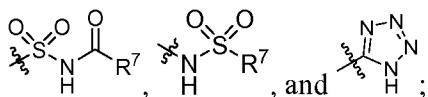

X^2 is selected from the group consisting of CR^{4b} and N;

X^3 is selected from the group consisting of CR^{4c} and N;


R^1 is selected from the group consisting of optionally substituted C_{1-6} linear alkyl, optionally substituted C_{3-6} branched alkyl, optionally substituted C_{3-6} cyclic alkyl, optionally substituted phenyl, optionally substituted heteroaryl, optionally substituted benzyl, optionally substituted heteroaryl methyl, R^{8c} ,



R^2 is selected from the group consisting of hydrogen, $NR^{10a}R^{10b}$, fluorine,



optionally substituted phenyl, optionally substituted heteroaryl,

R^3 is selected from the group consisting of CO_2R^{4d} ,

R^{4d} is selected from the group consisting of hydrogen, optionally

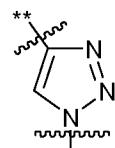
substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{4a} , R^{4b} , and R^{4c} are each independently selected from the group consisting of fluorine, chlorine, bromine, iodine, and hydrogen;

R^5 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^6 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

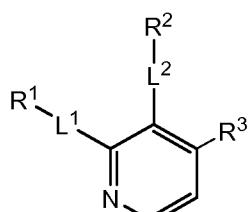
R^7 is selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;


R^{8a} , R^{8b} , R^{8c} , R^{8d} , and R^{8e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{9a} , R^{9b} , R^{9c} , R^{9d} , and R^{9e} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

R^{10a} and R^{10b} are each independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} linear alkyl, and optionally substituted C_{3-6} branched alkyl;

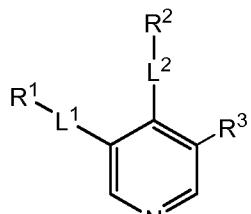
L^1 is selected from the group consisting of


L^2 is selected from a group consisting of NH , $(CH_2)_m$,

wherein “**” indicates the point of attachment for R^2 ;

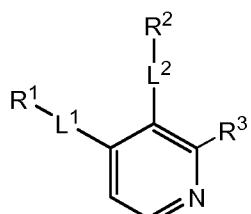
n is 0, 1, 2, or 3; and

m is 0, 1, 2, or 3.


2. The compound of claim 1, wherein the compound is of formula (II)

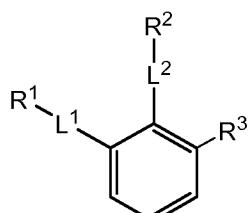
(II)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


3. The compound of claim 1, wherein the compound is of formula (III)

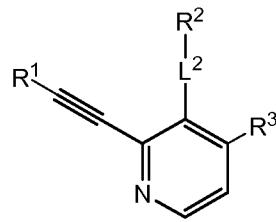
(III)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


4. The compound of claim 1, wherein the compound is of formula (IV)

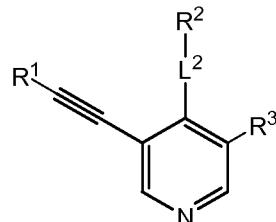
(IV)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


5. The compound of claim 1, wherein the compound is of formula (V)

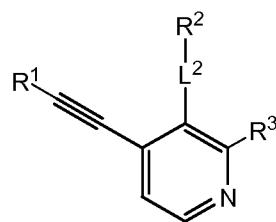
(V)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


6. The compound of claim 1, wherein the compound is of formula (VI)

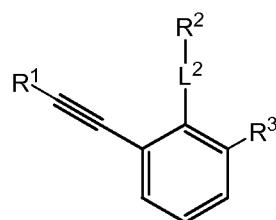
(VI)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


7. The compound of claim 1, wherein the compound is of formula (VII)

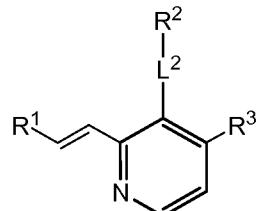
(VII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


8. The compound of claim 1, wherein the compound is of formula (VIII)

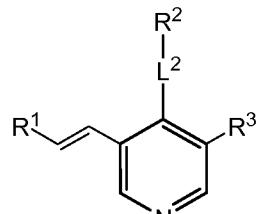
(VIII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


9. The compound of claim 1, wherein the compound is of formula (IX)

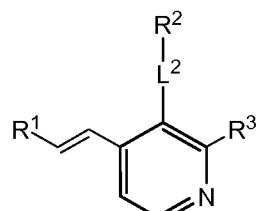
(IX)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


10. The compound of claim 1, wherein the compound is of formula (X)

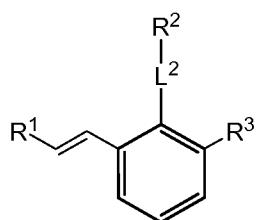
(X)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


11. The compound of claim 1, wherein the compound is of formula (XI)

(XI)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


12. The compound of claim 1, wherein the compound is of formula (XII)

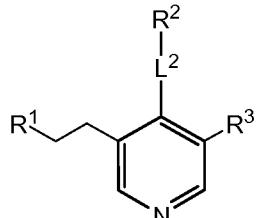
(XII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

13. The compound of claim 1, wherein the compound is of formula (XIII)

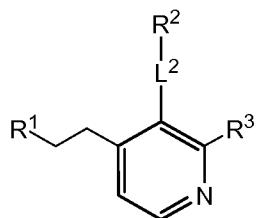
(XIII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


14. The compound of claim 1, wherein the compound is of formula (XIV)

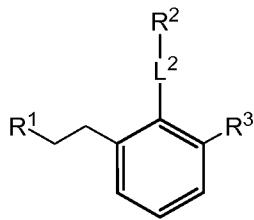
(XIV)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


15. The compound of claim 1, wherein the compound is of formula (XV)

(XV)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.


16. The compound of claim 1, wherein the compound is of formula (XVI)

(XVI)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

17. The compound of claim 1, wherein the compound is of formula (XVII)

(XVII)

including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof.

18. The compound of claim 1, wherein the compound is

3-[2-[3-(methylsulfamoyl)phenyl]ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(1H-indol-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(3-methanesulfonamidophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 2-(1H-pyrrol-1-yl)-3-[2-(3-sulfamoylphenyl)ethynyl]benzoic acid;
 3-[2-(3-carbamoylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-(2-{imidazo[1,2-a]pyridin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(2-hydroxypyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(1H-indazol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-{2-[3-(3,3-dimethyl-2-oxoazetidin-1-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
 3-(2-{3-[(2-carboxy-2,2-dimethylethyl)amino]phenyl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
 3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
 3-(2-{imidazo[1,2-a]pyridin-3-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
 3-(2-{imidazo[1,2-a]pyridin-5-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
 2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-5-yl}ethynyl)benzoic acid;
 3-[2-(1-methyl-1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(1-methyl-1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(1-benzothiophen-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-[2-(1H-indol-7-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
 3-{2-[2-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;

3-[2-[4-(hydroxymethyl)phenyl]ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(4-methylphenyl)ethynyl]benzoic acid;
2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid;
3-[2-(2,3-dihydro-1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1-methyl-1H-pyrazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1,2-dimethyl-1H-imidazol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1-methyl-1H-imidazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1-methyl-1H-imidazol-2-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-5-yl)ethynyl]benzoic acid;
2-(1H-pyrrol-1-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;
2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-6-yl}ethynyl)benzoic acid;
3-{2-[3-(2-hydroxypropan-2-yl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-(3-hydroxy-4-methylpent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(3-hydroxy-3-phenylprop-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
2-(1H-pyrrol-1-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;
3-[2-(1H-indol-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
2-(1H-pyrrol-1-yl)-3-(2-{[1,2,4]triazolo[1,5-a]pyridin-7-yl}ethynyl)benzoic acid;
3-{2-[3-(dimethylsulfamoyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(3-fluoro-5-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-{2-[3-(hydroxymethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(5-hydroxypyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1H-1,3-benzodiazol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1H-indol-5-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1H-indol-6-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(4-methylphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;

3-[2-(3,5-difluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-{2-[3-(difluoromethoxy)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-ethynyl-2-(1H-pyrrol-1-yl)benzoic acid;
3-(3-amino-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(3,3-dimethylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-(2-phenylethynyl)benzoic acid;
5-[2-(4-fluorophenyl)ethynyl]-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid;
5-(2-phenylethynyl)-4-(1H-pyrrol-1-yl)pyridine-3-carboxylic acid;
3-[2-(1-aminocyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1-hydroxycyclohexyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-(4-ethyl-3-hydroxyoct-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(2-{imidazo[1,2-a]pyrazin-6-yl}ethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
5-chloro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
5-chloro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
5-fluoro-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
5-fluoro-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(2-cyclopropylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(3-hydroxy-3-methylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-[3-(dimethylamino)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-(4-phenylbut-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(5-hydroxypent-1-yn-1-yl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(4-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(pyridin-4-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(pyridin-3-yl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(3-methoxyphenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-{3-[benzyl(methyl)amino]prop-1-yn-1-yl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-[3-(1H-imidazol-1-yl)prop-1-yn-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;
3-[2-(1H-indol-5-yl)ethynyl]benzoic acid;
2-amino-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;
2-amino-3-[2-(1H-indol-4-yl)ethynyl]benzoic acid;
2-amino-3-[2-(1H-indol-6-yl)ethynyl]benzoic acid;
2-amino-3-[2-(1H-indol-5-yl)ethynyl]benzoic acid;
2-amino-3-{2-[3-(hydroxymethyl)phenyl]ethynyl}benzoic acid;
2-amino-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid;
2-amino-3-(2-phenylethynyl)benzoic acid;
2-fluoro-3-(2-phenylethynyl)benzoic acid;
2-fluoro-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;
2-fluoro-3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)benzoic acid;
2-fluoro-3-{2-[2-(hydroxymethyl)phenyl]ethynyl}benzoic acid;
2-fluoro-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;
3-[2-(pyridin-2-yl)ethynyl]benzoic acid;
3-[2-(pyridin-3-yl)ethynyl]benzoic acid;
3-(2-phenylethynyl)benzoic acid;
3-[2-(pyridin-4-yl)ethynyl]benzoic acid;
3-[2-(4-methoxyphenyl)ethynyl]benzoic acid;
2-{4-[(dimethylamino)methyl]phenyl}-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-(1,2,3,6-tetrahydropyridin-4-yl)benzoic acid;
3-(2-phenylethynyl)-2-(pyridin-4-yl)benzoic acid;
2-(4-methanesulfonylphenyl)-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-(1H-pyrazol-4-yl)benzoic acid;
3-(2-phenylethynyl)-2-(pyrimidin-5-yl)benzoic acid;
2-(1-methyl-1H-pyrazol-4-yl)-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-(2-phenylpyrrolidin-1-yl)benzoic acid;
2-[3-(dimethylamino)pyrrolidin-1-yl]-3-(2-phenylethynyl)benzoic acid;
1-[2-carboxy-6-(2-phenylethynyl)phenyl]pyrrolidine-3-carboxylic acid;
2-[(3S)-3-hydroxypyrrolidin-1-yl]-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-(pyrrolidin-1-yl)benzoic acid;
3-(2-phenylethynyl)-2-(piperazin-1-yl)benzoic acid;
2-(benzylamino)-3-(2-phenylethynyl)benzoic acid;

2-(4-phenyl-1H-1,2,3-triazol-1-yl)-3-(2-phenylethynyl)benzoic acid;
2-[4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-[4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl]benzoic acid;
2-[4-(3-hydroxypropyl)-1H-1,2,3-triazol-1-yl]-3-(2-phenylethynyl)benzoic acid;
N-(dimethylsulfamoyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide;
N-(dimethylsulfamoyl)-3-[2-(4-fluorophenyl)ethynyl]-2-(1H-pyrrol-1-yl)benzamide;
N-(morpholine-4-sulfonyl)-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide;
N-[(1,1-dioxo-4-thiomorpholin-4-yl)sulfonyl]-3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzamide;
3-[2-(4-fluorophenyl)ethynyl]-N-methanesulfonyl-2-(1H-pyrrol-1-yl)benzamide;
3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)-N-sulfamoylbenzamide;
2-(4-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid;
2-(3-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid;
2-(2-methoxyphenyl)-3-(2-phenylethynyl)benzoic acid;
3-(2-phenylethynyl)-2-(quinolin-3-yl)benzoic acid;
2-cyclopropyl-3-(2-phenylethynyl)benzoic acid;
2-phenyl-3-(2-phenylethynyl)benzoic acid;
2-(4-methylphenyl)-3-(2-phenylethynyl)benzoic acid;
2-(6-methoxypyridin-3-yl)-3-(2-phenylethynyl)benzoic acid;
2-[6-(dimethylamino)pyridin-3-yl]-3-(2-phenylethynyl)benzoic acid;
2-[3-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid;
2-(1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid;
2-[4-(hydroxymethyl)phenyl]-3-(2-phenylethynyl)benzoic acid;
2-(1-benzofuran-5-yl)-3-(2-phenylethynyl)benzoic acid;
2-(1-benzothiophen-5-yl)-3-(2-phenylethynyl)benzoic acid;
2-(1-methyl-1H-indol-5-yl)-3-(2-phenylethynyl)benzoic acid;
2-(3-methanesulfonamidophenyl)-3-(2-phenylethynyl)benzoic acid;
2-(naphthalen-2-yl)-3-(2-phenylethynyl)benzoic acid;

2-(1-methyl-1H-indol-6-yl)-3-(2-phenylethynyl)benzoic acid;
2-{2-[(2-hydroxyethyl)sulfamoyl]phenyl}-3-(2-phenylethynyl)benzoic acid;
2-[4-(cyclopropylcarbamoyl)phenyl]-3-(2-phenylethynyl)benzoic acid;
2-(1-methyl-1H-indazol-6-yl)-3-(2-phenylethynyl)benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(quinolin-3-yl)benzoic acid;
3-(5-hydroxypent-1-yn-1-yl)-2-(quinolin-3-yl)benzoic acid;
3-[2-(4-methoxyphenyl)ethynyl]-2-(quinolin-3-yl)benzoic acid;
3-(2-{imidazo[1,2-a]pyrazin-3-yl}ethynyl)-2-(quinolin-3-yl)benzoic acid;
3-[(1E)-3-methoxyprop-1-en-1-yl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[(E)-2-phenylethynyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-[(E)-2-(4-fluorophenyl)ethenyl]-2-(1H-pyrrol-1-yl)benzoic acid;
3-(2-phenylethyl)-2-(1H-pyrrol-1-yl)benzoic acid;
3-(2-phenylethyl)-2-(pyrrolidin-1-yl)benzoic acid;
3-[2-(4-fluorophenyl)ethyl]-2-(1H-pyrrol-1-yl)benzoic acid;
2-(1H-1,3-benzodiazol-6-yl)-3-(2-phenylethynyl)benzoic acid;
2-(quinolin-3-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;
3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzene-1-sulfonamide;
N-[3-(2-phenylethynyl)-2-(1H-pyrrol-1-yl)benzenesulfonyl]acetamide;
2-(dimethyl-1,2-oxazol-4-yl)-3-(2-phenylethynyl)benzoic acid;
2-(benzyloxy)-3-(2-phenylethynyl)benzoic acid;
2-[3-(methoxycarbonyl)-1H-indol-6-yl]-3-(2-phenylethynyl)benzoic acid;
3-[3-(benzylamino)prop-1-yn-1-yl]-2-phenylbenzoic acid;
3-(3-{[3-(1H-imidazol-1-yl)propyl]amino}prop-1-yn-1-yl)-2-phenylbenzoic acid;
2-phenyl-3-[3-(4-phenylpiperazin-1-yl)prop-1-yn-1-yl]benzoic acid;
2-phenyl-3-[3-(pyrrolidin-1-yl)prop-1-yn-1-yl]benzoic acid;
3-(3-hydroxyprop-1-yn-1-yl)-2-phenylbenzoic acid;
3-{2-[3-(aminomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-{2-[3-(3,5-difluorobenzenesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;
3-{2-[4-(1,2-dimethyl-1H-imidazole-5-sulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;

3-{2-[3-(cyclopropanesulfonamidomethyl)phenyl]ethynyl}-2-(1H-pyrrol-1-yl)benzoic acid;

2-(3-methoxyphenyl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;

2-(1-methyl-1H-indazol-6-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;

2-(2-methyl-1,3-benzothiazol-5-yl)-3-(2-{1H-pyrrolo[2,3-b]pyridin-3-yl}ethynyl)benzoic acid;

2-(3-methoxyphenyl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

2-(1-methyl-1H-indazol-6-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

2-(1-methyl-1H-indol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

2-(pyridin-4-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

2-(2-methyl-1,3-benzothiazol-5-yl)-3-[2-(1,3-thiazol-4-yl)ethynyl]benzoic acid;

2-(1H-indol-3-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;

2-[4-(dimethylamino)phenyl]-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;

2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-6-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;

2-phenyl-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;

6-(3-carboxy-phenylethynyl)-1H-indole-4-carboxylic acid;

3-(4-carbamoyl-1H-indol-6-ylethynyl)-benzoic acid;

3-(3-carbamoyl-phenylethynyl)-benzoic acid;

3-(1-benzenesulfonyl-1H-indol-3-ylethynyl)-benzoic acid;

3-(1H-indol-3-ylethynyl)-benzoic acid;

3-(3-carboxy-phenylethynyl)-benzoic acid methyl ester;

3-(3-carbamoyl-5-methoxy-phenylethynyl)-benzoic acid;

3'-hydroxy-4'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid;

5'-hydroxy-3'-methoxy-6-pyridin-4-ylethynyl-biphenyl-2-carboxylic acid;

2-(1H-pyrazol-3-yl)-3-pyridin-4-ylethynyl-benzoic acid;

2-(1H-pyrazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid;

2-(3,5-dimethyl-isoxazol-4-yl)-3-pyridin-4-ylethynyl-benzoic acid;

3-phenylethynyl-2-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzoic acid;

2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-methyl-but-1-ynyl)-benzoic acid;
2-(2,5-dimethyl-pyrrol-1-yl)-3-pyridin-4-ylethynyl-benzoic acid;
3-(3-carbamoyl-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid;
3-(3-carboxy-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid;
2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxymethyl-phenylethynyl)-benzoic acid;
2-(2,5-dimethyl-pyrrol-1-yl)-3-(1H-pyrrolo[2,3-b]pyridin-3-ylethynyl)-benzoic acid;
2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-hydroxy-3-phenyl-prop-1-ynyl)-benzoic acid;
3-(3-acetylamino-phenylethynyl)-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid;
3-cyclopropylethynyl-2-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid;
2-(2,5-dimethyl-pyrrol-1-yl)-3-(3-methoxy-phenylethynyl)-benzoic acid;
2-(1H-indazol-6-yl)-3-phenylethynyl-benzoic acid;
2-benzo[1,3]dioxol-5-yl-3-phenylethynyl-benzoic acid;
2-isoquinolin-6-yl-3-phenylethynyl-benzoic acid;
2-benzofuran-2-yl-3-phenylethynyl-benzoic acid;
3-phenylethynyl-2-quinolin-8-yl-benzoic acid;
2-(2-amino-pyrimidin-5-yl)-3-phenylethynyl-benzoic acid;
4'-dimethylaminomethyl-6-phenylethynyl-biphenyl-2-carboxylic acid;
3-(4-amino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid;
3-(4-carboxy-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid;
2-(1H-indol-6-yl)-3-(4-methoxy-phenylethynyl)-benzoic acid;
3-(4-carbamoyl-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid;
2-(1H-indol-6-yl)-3-[4-(piperazine-1-carbonyl)-phenylethynyl]-benzoic acid;
3-(4-acetylamino-phenylethynyl)-2-(1H-indol-6-yl)-benzoic acid;
2-(1H-indol-6-yl)-3-{4-[(pyridine-3-carbonyl)-amino]-phenylethynyl}-benzoic acid;
2-(1H-indol-6-yl)-3-(4-methanesulfonylamino-phenylethynyl)-benzoic acid;

2-(1H-indol-6-yl)-3-[4-(thiophene-2-sulfonylamino)-phenylethynyl]-benzoic acid;

2-(3-(Methoxycarbonyl)-1H-indol-6-yl)-3-(thiazol-4-ylethynyl) benzoic acid;

2-(1H-indol-6-yl)-3-(thiazol-4-ylethynyl)benzoic acid;

2-(1-methyl-1H-pyrazol-4-yl)-3-(thiazol-4-ylethynyl) benzoic acid;

3-((3-hydroxyphenyl)ethynyl)-2-(1-methyl-1H-pyrazol-4-yl)benzoic acid;

2-(3-chloro-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid;

3-((3-hydroxyphenyl)ethynyl)-2-(1H-indazol-6-yl)benzoic acid;

2-(3-(2-acetamidoethyl)-1H-indol-6-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid;

3-((3-(N,N-dimethylsulfamoyl)phenyl)ethynyl)-2-fluorobenzoic acid;

2-(1H-indol-6-yl)-3-((4-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)benzoic acid;

2-(1H-indol-6-yl)-3-((4-morpholinophenyl)ethynyl)benzoic acid;

3-((3-carbamoylphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((4-Fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((2,4-Difluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((3-Aacetamidophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

2-(1H-indol-6-yl)-3-((3-(nicotinamido)phenyl)ethynyl)benzoic acid;

3-((3-(3-chloro-4-fluorophenylsulfonamido)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((3-aminophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

2-(1H-indol-6-yl)-3-((3-(methylsulfonamido)phenyl)ethynyl)benzoic acid;

2-(1H-indol-6-yl)-3-((3-(thiophene-2-sulfonamido)phenyl)ethynyl)benzoic acid;

3-((3-acetamido-5-fluorophenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

2-(indolin-6-yl)-3-(phenylethynyl)benzoic acid;

3-((3-hydroxyphenyl)ethynyl)-2-(indolin-6-yl)benzoic acid;

3-((6-aminopyridin-2-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((2-aminopyridin-4-yl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;

3-((3-hydroxyphenyl)ethynyl)-2-(5-methoxypyridin-3-yl)benzoic acid;

2-(benzo[d][1,3]dioxol-5-yl)-3-((3-hydroxyphenyl)ethynyl)benzoic acid;

3-((3-hydroxyphenyl)ethynyl)-2-(pyrimidin-5-yl)benzoic acid;
4'-Amino-6-((3-hydroxyphenyl)ethynyl)-5'-methoxybiphenyl-2-carboxylic acid;
3-(4-hydroxybut-1-ynyl)-2-(1H-indol-6-yl) benzoic acid;
3-(3-amino-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid;
3-(3-hydroxy-3-phenylprop-1-ynyl)-2-(1H-indol-6-yl)benzoic acid;
3-(3-hydroxy-3-methylbut-1-ynyl)-2-(1H-indol-6-yl)benzoic acid;
3-((3-(hydroxymethyl)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;
6-(2-carboxy-6-(phenylethynyl)phenyl)-1H-indole-2-carboxylic acid;
2-(2-(ethoxycarbonyl)-1H-indol-6-yl)-3-(phenylethynyl)benzoic acid;
3-((3-carbamoyl-5-methoxyphenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;
2-(1H-indol-5-yl)-3-(phenylethynyl)benzoic acid;
5-(2-carboxy-6-((3-hydroxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid;
5-(2-carboxy-6-((4-methoxyphenyl)ethynyl)phenyl)-1H-indole-2-carboxylic acid;
3-((4-fluoro-3-(tetrahydro-2H-pyran-4-yloxy)phenyl)ethynyl)-2-(1H-indol-6-yl)benzoic acid;
5'-acetamido-6-(phenylethynyl)biphenyl-2-carboxylic acid;
3-[3-(5-amino-1H-1,3-benzodiazol-1-yl)prop-1-yn-1-yl]-2-phenylbenzoic acid;
2-(1H-indol-6-yl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid;
2-(4-methylphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl phenyl)benzoic acid;
3-{3-[(1H-1,3-benzodiazol-6-yl)amino]prop-1-yn-1-yl}-2-phenylbenzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(1-methyl-1H-indol-5-yl)benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(3-methanesulfonamidophenyl) benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-6-yl)benzoic acid;
2-(3-carbamoylphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid;

2-[1-(benzenesulfonyl)-1H-indol-3-yl]-3-[2-(3-hydroxyphenyl)ethynyl] benzoic acid;
2-(3-hydroxyphenyl)-3-[2-(3-hydroxyphenyl)ethynyl]benzoic acid;
2-(1H-indol-5-yl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;
2-(3-chloro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid;
2-(3-fluoro-5-hydroxyphenyl)-3-[2-(pyridin-4-yl)ethynyl]benzoic acid;
2-(3,5-dimethoxyphenyl)-3-[2-(pyridin-4-yl)ethynyl] benzoic acid;
3-[3-(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl]-2-(3-hydroxyphenyl) benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(2-phenoxyphenyl) benzoic acid;
3-[2-(3-hydroxyphenyl)ethynyl]-2-(1H-indol-3-yl) benzoic acid;
2-(3,5-dimethoxyphenyl)-3-[2-(3-hydroxyphenyl) ethynyl]benzoic acid;
2-amino-3-[2-(3-carbamoylphenyl)ethynyl]benzoic acid;
2-amino-3-[2-(3-carboxyphenyl)ethynyl]benzoic acid;
5-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole;
3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-pyrrolo[2,3-b]pyridine;
6-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole;
1-benzenesulfonyl-3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole;
3-[3-(1H-tetrazol-5-yl)-phenylethynyl]-1H-indole;
{2-[3-(1H-tetrazol-5-yl)-phenylethynyl]-phenyl}-methanol;
3-[3-(morpholine-4-carbonyl)-phenylethynyl]-benzoic acid;
3-(3-methylcarbamoyl-phenylethynyl)-benzoic acid;
3-(3-dimethylcarbamoyl-phenylethynyl)-benzoic acid;
3-[3-(4-methyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid;
3-[3-(4-phenyl-piperazine-1-carbonyl)-phenylethynyl]-benzoic acid;
2-indol-1-yl-3-pyridin-4-ylethynyl-benzoic acid;
2-imidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid;
3-pyridin-4-ylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid;
2-imidazol-1-yl-3-phenylethynyl-benzoic acid;
3-phenylethynyl-2-pyrazol-1-yl-benzoic acid;
3-phenylethynyl-2-[1,2,4]triazol-1-yl-benzoic acid;
2-benzimidazol-1-yl-3-phenylethynyl-benzoic acid;
2-indazol-1-yl-3-phenylethynyl-benzoic acid;

2-indol-1-yl-3-phenylethynyl-benzoic acid;
2-benzoimidazol-1-yl-3-pyridin-4-ylethynyl-benzoic acid;
or a pharmaceutically acceptable form thereof.

19. A composition comprising at least one compound according to claim 1 and at least one excipient.

20. A composition comprising at least one compound according to claim 18 and at least one excipient.

21. A method for treating or preventing a disease caused by EBNA1 activity, the method comprising administering to a subject an effective amount of at least one compound according to claim 1.

22. The method of claim 21, wherein the at least one compound is administered in a composition further comprising at least one excipient.

23. The method of claim 21, wherein the disease caused by EBNA1 activity is cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus or rheumatoid arthritis.

24. The method of claim 22, wherein the disease caused by EBNA1 activity is cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus or rheumatoid arthritis.

25. The method of claim 23, wherein the cancer is nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulos, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma,

intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma or breast cancer.

26. The method of claim 24, wherein the cancer is nasopharyngeal carcinoma, gastric carcinomas, non-hodgkin lymphoma, anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, hepatosplenic T-cell lymphoma, B-cell lymphoma, Burkitt's lymphoma, reticuloendotheliosis, reticulositis, microglioma, diffuse large B-cell lymphoma, extranodal T/NK lymphoma/angiocentric lymphoma, follicular lymphoma, immunoblastic lymphoma, mucosa-associated lymphatic tissue lymphoma, B-cell chronic lymphocytic leukemia, mantle cell lymphoma, mediastinal large B cell lymphoma, lymphoplasmactic lymphoma, nodal marginal zone B cell lymphoma, splenic marginal zone lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, angioimmunoblastic lymphadenopathy, leiomyosarcomas, X-linked lymphoproliferative disease, post-transplant lymphoproliferative disorders, Hodgkin's lymphoma or breast cancer.

27. A method for treating or preventing Epstein-Barr Virus infection, the method comprising administering to a subject an effective amount of at least one compound according to claim 1.

28. The method of claim 27, wherein the at least one compound is administered in a composition further comprising at least one excipient.

29. A method for treating or preventing a disease or condition associated with Epstein-Barr Virus infection, the method comprising administering to a subject an effective amount of at least one compound according to claim 1.

30. The method of claim 29, wherein the at least one compound is administered in a composition further comprising at least one excipient.

31. A method for treating lytic Epstein-Barr Virus infection, the method comprising administering to a subject an effective amount of at least one compound according to claim 1.
32. The method of claim 31, wherein the at least one compound is administered in a composition further comprising at least one excipient.
33. A method for treating latent Epstein-Barr Virus infection, the method comprising administering to a subject an effective amount of at least one compound according to claim 1.
34. The method of claim 33, wherein the at least one compound is administered in a composition further comprising at least one excipient.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/065765

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - C07C 229/56 (2015.01)

CPC - C07C 229/56 (2015.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - A61K 31/196; C07C 229/56 (2015.01)

CPC - A61K 31/196; C07C 229/56 (2015.01) (keyword delimited)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 562/456, 458 (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Orbit, STN, PubChem, Google Scholar.

Search terms used: benzoic, acid, amino, propynyl, butynyl, pentynyl, hexynyl, heptynyl octynyl, fluoro, trifluoro

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2006/0030613 A1 (CONTE-MAYWEG et al) 09 February 2006 (09.02.2006) entire document	1, 19
A	PubChem. Compound Summary for: CID 19612039. Create Date: 2007-12-05. [retrieved on 31 March 2015]. Retrieved from the Internet. <URL: https://pubchem.ncbi.nlm.nih.gov/compound/19612039>. entire document	1, 19
A	US 5,155,248 A (ULLRICH et al) 13 October 1992 (13.10.1992) entire document	1, 19
A	US 2009/0171091 A1 (THOMBARE et al) 02 July 2009 (02.07.2009) entire document	1, 19

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international filing date

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"Q" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

31 March 2015

15 APR 2015

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:

Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/065765

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Claims 1 and 19 have been analyzed subject to the restriction that the claims read on the formula (I) as described in the Lack of Unity of Invention (See Extra Sheet). The claims are restricted to a compound having formula (I): including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein: X1 is CR4a; X2 is CR4b; X3 is CR4c; R1 is optionally substituted C1-6 linear alkyl; R2 is hydrogen; R3 is CO2R4d; R4d is hydrogen; R4a, R4b, and R4c are each fluorine; L1 is the first shown alkyne group; and L2 is NH; and a composition thereof.

<See Extra Sheet>

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1, 19

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/065765

<Continued from Box III: Observations where unity of invention is lacking>

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees need to be paid.

Group I+: claims 1-20 are drawn to compounds having formula (I), and compositions thereof.

Group II: claims 21-34 are drawn to methods for treating or preventing a disease caused by EBNA1 activity.

The first invention of Group I+ is restricted to a compound having formula (I): including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein: X1 is CR4a; X2 is CR4b; X3 is CR4c; R1 is optionally substituted C1-6 linear alkyl; R2 is hydrogen; R3 is CO2R4d; R4d is hydrogen; R4a, R4b, and R4c are each fluorine; L1 is the first shown alkyne group; and L2 is NH; and a composition thereof. It is believed that claims 1 and 19 read on this first named invention and thus these claims will be searched without fee to the extent that they read on the above embodiment.

Applicant is invited to elect additional formula(e) for each additional compound to be searched in a specific combination by paying an additional fee for each set of election. An exemplary election would be a compound having formula (I): including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein: X1 is N; X2 is CR4b; X3 is CR4c; R1 is optionally substituted C1-6 linear alkyl; R2 is hydrogen; R3 is CO2R4d; R4d is hydrogen; R4a, R4b, and R4c are each fluorine; L1 is the first shown alkyne group; and L2 is NH; and a composition thereof. Additional formula(e) will be searched upon the payment of additional fees. Applicants must specify the claims that read on any additional elected inventions. Applicants must further indicate, if applicable, the claims which read on the first named invention if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined.

The inventions listed in Groups I+ and II do not relate to a single general inventive concept under PCT Rule 13.1, because under PCT Rule 13.2 they lack the same or corresponding special technical features for the following reasons:

The special technical features of Group I+, compounds having formula (I), and compositions thereof, are not present in Group II; and the special technical features of Group II, methods for treating or preventing a disease caused by EBNA1 activity, are not present in Group I+.

The Groups I+ formulae do not share a significant structural element, requiring the selection of alternatives for the compound variables X1, X2, X3, R1, R2, R3, L1, and L2.

The Groups I+ and II share the technical features of a compound having formula (I) or species thereof, including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof; and a composition comprising at least one compound thereof and at least one excipient. However, these shared technical features do not represent a contribution over the prior art.

Specifically, US 2006/0030613 to Conte-Mayweg et al. teach a compound having formula (I): including hydrates, solvates, polymorphs, pharmaceutically acceptable salts, prodrugs, and complexes thereof, wherein: X1 is CR4a; X2 is CR4b; X3 is CR4c; R1 is C1 linear alkyl; R2 is hydrogen; R3 is CO2R4d; R4d is C1 linear alkyl; R4a is hydrogen, R4b is chlorine, and R4c is hydrogen; L1 is the first shown alkyne group; and L2 is NH (Para. [0526], Preparation of 2-amino-5-chloro-3-prop-1-ynylbenzoic acid methyl ester...); and a composition comprising at least one compound thereof and at least one excipient (Para. [0527], ... a cold (-10 °C.) solution of t-BuOK (30 mg, 0.27 mmol) in 4 mL NMP was added a solution of 2-amino-5-chloro-3-prop-1-ynylbenzoic acid methyl ester...).

The inventions listed in Groups I+ and II therefore lack unity under Rule 13 because they do not share a same or corresponding special technical feature.

<End Box III: Observations where unity of invention is lacking>