

(12) UK Patent (19) GB (11) 2 024 049 B

- (54) Title of invention
 A foam-generating device for a pump sprayer
- (51) INT CL3; B05B 11/00 B01F 3/04
- (21) Application No **7921991**
- (22) Date of filing **25 Jun 1979**
- (30) Priority data
 - (31) 919595
 - (32) 27 Jun 1978
 - (33) United States of America (US)
- (43) Application published 9 Jan 1980
- (45) Patent published **14 Jul 1982**

(73) Proprietor
The Dow Chemical Company
Midland
County of Midland
Michigan
United States of America

- (72) Inventors
 Paul Richard Stoesser
 John Edward Cuzic
 John William McLaren
- (52) Domestic classification **B2F** 207 303 305 345 348 D AU 504 523 627 **B1C**
- (56) Documents cited GB 1468249 GB 1344417 GB 1279520 GB 1135929 GB 1120323-4
- (58) Field of Search B2F B1C

(74) Agents
Boult Wade & Tennant
27 Furnival Street
London
EC4A 1PQ

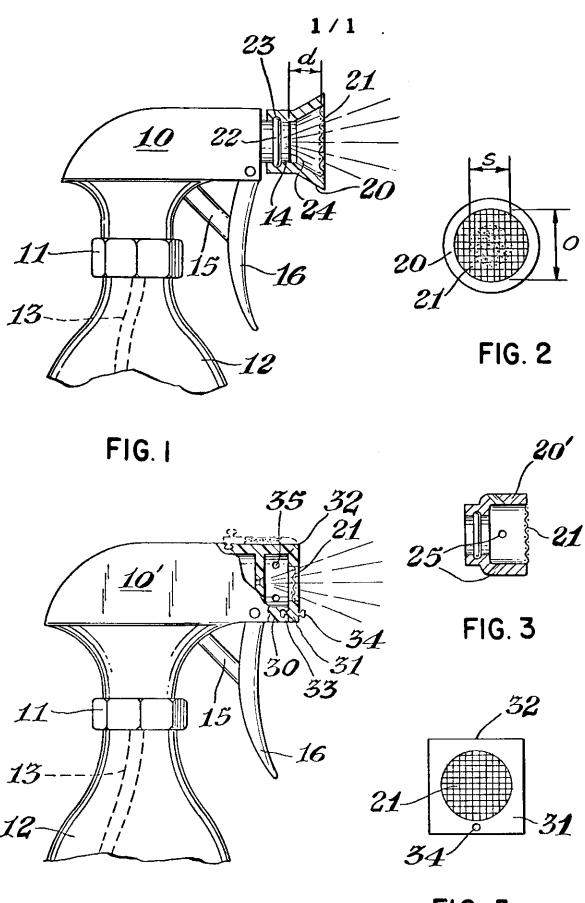


FIG. 4

FIG. 5

1

A foam generating device for a pump sprayer

_	- and disposing device and more particular	5
5	The present invention resides in a foam generating and dispensing device and, more particularly, to a foam generating device for a manually operated atomizing dispenser having the	·
	capacity to spray a foamable liquid as a foam.	
	Form generating and dispensing devices are well known in the art. The demand for these	
40	devices has heretofore been satisfied almost exclusively by the disposable, self-contained aerosol dispensers, due to their convenience and adaptability to a wide variety of products and foaming	10
10	conditions. However, the continued use of such self-container aerosol dispensers is presently	
	being re-evaluated, due in part to recently espoused environmental concerns over the effects of	
	some of the chemical propellants used therein and in part to changing economic conditions.	
4.5	Accordingly, workers in the art have embarked upon a search for an acceptable replacement for	15
15	the aerosol foam dispensers. Generally, those replacement devices which have been proposed are of the type which include	. •
	a collapsible bottle and a foam-forming cap assembly. The foam-forming cap assembly typically	
	includes a homogenizing element of sponge-like material providing minute tortuous passages in	
	which a flow of foamable liquid and air from the container is mixed to provide foam. Exemplary	20
20	devices of this type are described in US Patent No. 3,985,271; US Patent No. 3,973,701; US Patent No. 3,937,364; and US Patent No. 3,572,590. In such devices, the mixture of air and	20
	liquid loses considerable velocity as it passes through the homogenizing element. Consequently,	
	auch devices undesirably have only limited "reach", i.e., they require the user to dispense the	
	foam in near proximity to the surface upon which the foam will be deposited. Furthermore,	25
25	because the user must apply his efforts to expel both liquid and air simultaneously, appreciable energy is wasted in forming and dispensing the foam. Still further, such devices are	20
	uneconomical inasmuch as they require that the bottle be only partially filled with a toamable	
	liquid so that the necessary internal air supply is available for foam formation.	
	Consequently, attempts have been made to convert a conventional manually-operated atomizing dispenser (or "pump sprayer" as they are often called) to a foam-forming device,	30
30	thereby overcoming some of the disadvantages of the "collapsible bottle" foamers. Specifically,	
	it has been appreciated that (a) a pump sprayer is highly efficient, i.e., the user's efforts are	
	directed to expelling only liquid, thereby minimizing the labor involved in its operation, and (b) it	
	has considerable "reach", i.e., the liquid can be projected over a considerable distance.	35
35	Nevertheless, it is believed that foam-generating pump sprayers have heretofore not met with success. For whatever reason, it would appear that pump sprayers (which have replaced the	00
	agrosol dispenser in numerous other applications) have not been made adaptable to the	
	generation and dispensation of a foam of commercially acceptable quality.	
	Accordingly, it is an object of the present invention to provide a foam generating device	40
40	operatively associated with a dispensing pump which requires only minimal effort to operate, which has considerable reach, which can spray a foam of commercially acceptable quality, and	
	which can be economically produced by conventional tabrication techniques. It is also an object	
	of this invention to provide a dispensing pump having the capacity to spray a foamable liquid as	
	a foam. The present invention provides a foam generating device, being operatively associated with a	45
45	dispensing pump, including an atomizing nozzle, for drawing a foamable liquid from a container	
	and ejecting it as a spray into the atmosphere through the atomizing nozzle, the association	
	their appellant producing from the spray without substantially modifying the spray	
	pattern thereof, said device comprising a screen retained in the path of the spray, which screen has a size in the range of from 60 to 200 mesh (U.S. Sieve Series) and is spaced at a distance	50
50	of from 0.8 to 4mm from the atomizing nozzle, and means for introducing air into the spray so	00
	that in use the spray is permitted to foam upon contact with the screen and said device is such	
	as to permit the passage of substantially all the spray therethrough without contact except by	
	the screen. The device generates foam on the surface of the screen using air external to the dispensing	55
55	pump. Consequently, the user's labor is minimized since the amount of liquid expelled in the	
	form of a foam is directly proportional to the effort contributed, there being no wasted energy	
	due to the compression of air as in the "collapsible bottle" foamers.	
	Additionally, minimal velocity is lost by the spray as it is converted to foam in the device since substantially all the spray passes through the foam generating device without contact except by	60
60	the surface of the screen. Accordingly the reach of the spraying apparatus utilizing the present	
	form generating device is considerably increased compared to the "collapsible bottle" foamers.	
	Furthermore, the foam generating device of the present invention provides a foam of	
0.5	commercially acceptable quality, i.e. it is relatively dry and stable and has little tendency to drip when deposited on a vertical surface. Consequently, the device is eminently suited for spray-	65
00	when deposited on a vertical surface. Consequently, the device to contain y contains the	

10

15

20

25

30

35

40

50

55

60

65

foaming household cleaners and the like.

Still further, the foam generator of the present invention is very economical to produce since. in some instances, it can be readily constructed with only minimal modification for use on a preexisting pump sprayer.

Figure 1 is a side elevation view, showing the foam generating device in cross-section attached to a conventional manually operated foam-spraying apparatus.

Figure 2 is a front elevation view of the foam generating device of Fig. 1.

Figure 3 is a cross-sectional side elevation view of another embodiment of a foam generating device.

Figure 4 is a side elevation view, partially in cross-section, of another embodiment of a foam generating device attached to a conventional hand-held dispensing pump.

Figure 5 is a front elevation view of the foam generating device of Fig. 4.

Referring to Figs. 1 and 2, a manually operated dispensing pump 10 is detachably connected by a conventional threaded coupling 11 to a container 12 for receiving a foamable liquid 15 therein. It is not a requirement of this invention that the dispensing pump be connected to the container, though such is desirable to enhance mobility. Generally, a conventional hand-held dispensing pump/container combination, such as is currently marketed for household use, is preferred. Regardless of the particular form chosen, it is understood that fluid communication will be provided between the dispensing pump and the foamable liquid, e.g., through a dip tube

20 13 (shown in phantom), so that the dispensing pump is able to draw liquid from the container. As used herein, the term "foamable liquid" is meant to include any liquid having the capacity to form a foam when dispensed by the foam-spraying apparatus of the present invention. Generally, such liquids will exhibit the following properties: surface tension in the range of 20 to 45 dyne/cm, preferably 25 to 35 dyne/cm; density in the range of 0.8 to 1.2 g/cc, preferably 25 0.98 to 1.05 g/cc; and viscosity in the range of 0.9 to 1.7 centistokes, preferably 1.1 to 1.4 centistokes.

The dispensing pump may generally be of any conventional construction, so long as it includes an atomizing nozzle 14. The term "atomizing nozzle" as used herein is intended to be generic to a mechanism for providing a fine spray of liquid through a single or a plurality of 30 orifices. Such dispensing pumps are generally provided with a compression mechanism, e.g., a piston 15 and an actuator 16, to force the liquid from the container through the atomizing nozzle with sufficient velocity to form the spray. Suitable dispensing pumps will preferably provide a spray having a velocity in the range of 15 to 21 metres/sec. through an orifice having a diameter in the range of from 0.3 to 0.65 mm and a land length in the range of from 0.25 to 35 0.6 mm. Exemplary dispensing pumps which may be used in the present invention include the

AFA 7510 sprayer manufactured by the AFA Corporation and the Canyon CS sprayer manufactured by the Canyon Corporation. The foam dispensing device of the present invention includes a bell-shaped housing 20 which

is provided with a screen 21. The housing is operatively attached to the dispensing pump by a 40 suitable mechanism such as a snap-fit mechanism which consists of a peripheral projection 22 which extends from the atomizing nozzle and a complimentary annular groove 23 defined by the inner surface of the housing 20. The housing 20 functions to retain the screen 21 in the path of the spray at a predetermined distance d from the atomizing nozzle, i.e., the distance from the point at which the spray is ejected from the dispensing pump into the atmosphere (which point 45 will typically coincide with the location of the nozzle face 24). In order to generate a high quality 45 foam, distance d will be in the range of from 0.8 to 4 mm, preferably in the range of from 2 to 3 mm. Furthermore, the screen size will be in the range of from 60 to 200 mesh (U.S. Sieve Series), preferably in the range of from 100 to 180 mesh. Screens having a smaller mesh size than that indicated will severely reduce spray velocity and cause excessive dribbling, whereas 50 screens having a larger mesh size will permit spray to pass therethrough without sufficient foaming. The screen can be made of any material which is inert to the foamable liquid which will be dispensed. Because of their low cost and characteristically flat surface conformations, plastic screens, such as those made from polyethylene or polypropylene, are preferred.

Furthermore, such plastic screens are eminently suited for sonic or electronic welding, thus 55 providing a convenient method of attaching the screen to housing 20, should the housing be constructed of a similar plastic material. Other methods of attachment, such as by a suitable adhesive or press-fit mechanism, can also be used.

The foam generating device also includes means for introducing air into the spray so that the spray is permitted to foam upon contact with the screen. One method of accomplishing this is to 60 construct housing 20 so that the diameter of the opening therein is larger than the diameter of the spray pattern at the point which it intercepts the screen, whereby air is permitted to enter the foam generating device from the front. This will be better understood by referring to Fig. 2, which shows the screen diameter s of the spray pattern as it intercepts the screen 21 (depicted by shading) and the diameter o of the opening of housing 20. Another method is exemplified by 65 Fig. 3, wherein housing 20' defines passageways 25 which permit air to flow into the spray

through the wall of the foam-forming means. Either of these methods, or a combination thereof, may be used. In either method, however, the foam generating device should be constructed so as to provide the proper amount of air for good foam formation. Specifically, if too little air is available, some of the spray will pass through the screen without foaming, thereby resulting in 5 an undesirably wet foam being ejected from the foam-spraying apparatus.

It is a requirement of the foam generating device of the present invention that substantially all the spray pass therethrough without contacting any surface except the surface of the screen. Mechanical breakup of the spray, such as by impinging upon the walls of housing 20, should be minimized, since such will cause the reduction of spray velocity and result in undesirable

10 dribbling from the foam-spraying apparatus.

It will be appreciated that the foam generating device of the present invention is capable of numerous embodiments. For example, it may be constructed so as to be detachable from the dispensing pump, as exemplified by Figs. 1 to 3, or it may be permanently integrated with the dispensing pump, as exemplified by Figs. 4 and 5. In Fig. 4, the foam generating device 15 comprises an integral box-like member 30, which protrudes outwardly from a dispensing pump 10' adjacent to the atomizing nozzle. The box-like member includes a flap 31, retaining a screen 21, and defines suitable air passages 35 at a position rearward of the flap. Flap 31 is connected to the box-like member by a hinge 32 so that the flap can be pivoted 270° from a foam generating position, wherein the screen is retained in the path of the spray, to a position where 20 no foam is generated (shown in phantom). Suitable locking pins 33 and 34 snap-fit into mating receptacles defined by the box-like member 30 and the upper surface of the dispensing pump 10' respectively, to enable the user to lock flap 31 in the desired operating position.

The type of dispensing pump to be used in the present foam-spraying apparatus is not critical. For example, the dispensing pump can be a finger-actuated, vertically-oriented mechanism as 25 well as the hand-actuated, horizontally-oriented mechanism like that shown in Figs. 1 and 4. Additionally, the form of the screen can be varied within the scope of the functional requirements suggested earlier. For example, the screen may be arcuate in cross-section, e.g., protruding away from the atomizing nozzle, and the openings of the screen can be of any desired configuration, i.e., the openings need not be square.

30 Example

In order to demonstrate the effectiveness of the foam-forming apparatus of the present invention, experiments were performed by testing two commercially available dispensing pumps, i.e., the AFA 7510 sprayer and the Canyon CS sprayer, with and without the foam generating 35 device depicted in Figs. 1 and 2. The foam generating device included a 100 mesh (U.S. Sieve Series) nylon screen spaced a distance d of $\bar{3}$ to 4 mm from the atomizing nozzle and had an opening o of about 10 mm.

For comparison, an AFA 5910 sprayer was tested with and without an AFA 5912BA foaming attachment.

A foamable liquid cleaner having a surface tension of 31.2 dyne/cm, a density of 1.02 g/cc, and a viscosity of 1.37 centistokes was used in all tests.

The results of these experiments are shown in Table 1. It can be seen that the AFA 5912BA foaming attachment severely modified the predetemined spray pattern and rendered the dispensing pump relatively hard to operate.

In contrast, the foam generating device of the present invention did not substantially modify the predetermined spray pattern nor did it substantially affect the amount of effort required to operate the dispensing pump. In addition, the present foam generating device was able to produce a very good quality foam-much like that produced by a typical aerosol dispenser.

10

5

15

20

25

30

35

40

45

TABLE I

Foam Quality		None None None		Scattered,	Scattered, Hardly Runs		Thick Buildup Slowly Runs
Ease of Operation		Moderate Easy Moderate		Moderate	Easy		Hard
Spray Area (in x in)		5.5 x 6 6 x 7 7 x 8		5 x 5.5	5 x 6.5		3.5 x 2.5
Foam Attachment	`	None None None		Yes	Yes		AFA 5912BA
Orifice Diameter (mm)	:	0.56 0.64 0.56		0.56	0.64		N.M.
Sprayer	Control	AFA 7510 Canyon CS AFA 5910	The Invention	AFA 7510	Canyon CS	For Comparison	AFA 5910

Notes:

 $^{
m 1}$ Measured on a target located at a distance of about 7 in form the sprayer.

N.M. - Not measured.

10

15

20

25

30

CLAIMS

- 1. A foam generating device, being operatively associated with a dispensing pump, including an atomizing nozzle, for drawing a foamable liquid from a container and ejecting it as a spray into the atmosphere through the atomizing nozzle, the association being capable of producing foam from the spray without substantially modifying the spray pattern thereof, said device comprising a screen retained in the path of the spray, which screen has a size in the range of from 60 to 200 mesh (U.S. Sieve Series) and is spaced at a distance of from 0.8 to 4mm from the atomizing nozzle, and means for introducing air into the spray so that, in use, the spray is permitted to foam upon contact with the screen, and said device is such as to permit
- 10 the passage of substantially all the spray therethrough without contact except by the screen.

 2. A device as claimed in claim 1, including means for connecting said device to the dispensing pump for movement between a first position for producing foam and a second position for permitting spray to be ejected without producing foam, and means for selectively securing the device in the first and second positions.
 - 3. A device as claimed in claim 1 or claim 2, wherein the screen has a size in the range of from 100 to 180 mesh.
 - 4. A device as claimed in any one of the preceding claims, wherein said means for introducing air comprises one or more apertures in the body of said device.
- A device as claimed in any one of the preceding claims, wherein the screen is spaced at a
 distance of from 2 to 3mm from the atomizing nozzle.
 - 6. A device as claimed in any one of the preceding claims, wherein the screen has a diameter larger than that of the spray pattern where such pattern contacts the screen, such that, in use, air enters the screen from the front.
- 7. A device as claimed in any one of the preceding claims, wherein said dispensing pump is 25 manually operated.
 - 8. A device as claimed in any one of the preceding claims, wherein said dispensing pump is in liquid flow communication with a container for foamable liquid.
 - 9. A device as claimed in claim 8, wherein said container contains foamable liquid.
- 10. A device as claimed in claim 9, wherein said foamable liquid is a household cleaning 30 liquid.
 - 11. A device as claimed in any one of claims 8 to 10, wherein the container is a hand-held container.
 - 12. A foam generating device substantially as hereinbefore described with reference to and as illustrated in any one of the accompanying drawings.

Dated: 25 June 1979

7921991 Application No.:

9 January 1980

Published

919595

Priority: 27 June 1978

U.S.A

of America a Corporation organized and existing under the laws of the State of Delaware, THE DOW CHEMICAL COMPANY, Midland, County of Midland, State of Michigan, United States

United States of America,

of Midland; State of Michigan 48640, U.S.A., PAUL RICHARD STOESSER, a citizen of the U.S.A. residing at 1201 Evamer, City and County

of Midland, State of Michigan 48640, U.S.A., JOHN EDWARD CUZIC, a citizen of the U.S.A. residing at 1827 Eastlawn, City and County

Beaverton, County of Gladwin, State of Michigan 48612 U.S.A., JOHN WILLIAM MC LAREN, a citizen of the U.S.A. residing at 5566 Hunter Road, City of

A foam-generating device for a pump sprayer:

Address for Service:

Boult Wade & Tennant, 27 Furnival Street, London, EC4A 1PQ.

Request for examination: Application refused - 3 DEC 79

\$ (a(a) CLEARANCE REPORTED

or withdrawn

Patent granted: WITH EFFECT FROM A A JUL 1982 **SECTION** 25(1)

Renewal Fee paid in respect of 5th Year

Kth Vant

A foam-generating device for a pump sprayer:

Address for Service:

Boult Wade & Tennant, 27 Furnival Street, London, EC4A 1PQ.

20th Year	19th Year	18th Year	17th Year	16th Year	15th Year	14th Year	13th Year	12th Year	11th Year	10th Year	9th Year	8th Year	7th Year	6th Year	5th Year	Renewal Fee paid in respect of	ratent granted:	or withdrawn:	Request for examination: Application refused
						•	"			· ·					_	in respect of	WITH EFFECT FROM # # JUL 1982	n:	ination: - 3 DEC 79
			-	•	·		- 1 14		•	•		•		·	•		4 JUL 1982	1	BATE: CLEAR
					1						ŀ								S 1 JUL 81

Patent ceased or

expired: