woO 2008/068233 A1 |0 0 00O O OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

(10) International Publication Number

WO 2008/068233 Al

(51) International Patent Classification:
HO4L 29/08 (2006.01)

(21) International Application Number:
PCT/EP2007/063194

(22) International Filing Date:
3 December 2007 (03.12.2007)

English
English

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
11/567,357 6 December 2006 (06.12.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BORGENDALE,

(74)

(81)

(34)

Kenneth Wayne [US/US]; 1200 Shelley, Austin, Texas
78703 (US). DUIGENAN, John Justin [GB/US]; 200 W.
26th Street, Apt 16B, New York, New York 10001 (US).

Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2IN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: APPLICATION MESSAGE CONVERSION USING A FEED ADAPTER

) Feed Source 213
e . Latency Data
B

Feed Adapter ftivy :

Input Stream ZJA\U ’

High Speed, Low

Communications
Environment 201

Feed Adapter 208 - 219 Stream Administration
o - 7 14 Server 212
Onversion cp—
Moduie 220 | | Coiguration} | Custom Conv. Stream
Palicy 222 Library 218 Adminialrati
557 |- 226 ministration
S - Module 228 ,
L Message i 232
Message Model 244 Conversion 1
; Func. Lib. 224
Library 225 !
266 Authentication
" T ™ Module 230
oosage Messaging essages 236
240) 241
Middieware 276 268 Aot L’
T G T & uth. 4 A thor.
: 7 Policy
R 28 Module
Transport Engine 278 235 234
b4
M0 267
Feed Adapter High Speed, Low Latency Data
Output Communications Network 200
Stream 216
264
Message Subscribing Client Device 210 L 250
Stream 280 Application | [Messagesill | Message Message
238 20 | | vocel 244 | oo
954 a2 <=1 | Library 248
— 274
:> T ey
Messaging Middleware Stream Administration
252 Library 272 -
A, Z ==
Transport Engine 256

(57) Abstract: Methods, apparatus, and products
are disclosed for applicat ion message conversion
using a feed adapter that include providing a feed
adapter capable of application message conversion,
the feed adapter comprising a plurality of conversion
functions, each conversion function capable of
converting data from one format to another format;
establishing, on the feed adapter, a configuration
policy that specifies a conversion rule from an input
message format to an output message format using
at least one of the conversion functions; receiving, in
the feed adapter, an application message having the
input message format; and converting, by the feed
adapter, the application message having the input
message format to an application message having the
output message format according to the conversion
rule of the configuration policy.

WO 2008/068233 A1 |/ DA 00 00000100 00 000

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Published:

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,FI, — with international search report
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, P, — before the expiration of the time limit for amending the
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, claims and to be republished in the event of receipt of

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

APPLICATION MESSAGE CONVERSION USING A FEED ADAPTER

BACKGROUND OF THE INVENTION

Field of the Invention

The field of the invention is data processing, or, more specifically, methods, apparatus, and

products for application message conversion using a feed adapter.

Description Of Related Art

Messaging environments are generally available to provide data communication between
message sending devices and message receiving devices using application messages. An
application message is a quantity of data organized into one or more data fields and is passed
from a message producer installed on a message sending device to a message consumer
installed on a message receiving device. An application message is a form of message
recognized by application software operating in the application layer of a data
communication protocol stack—as contrasted for example with a transport message or
network message which are forms of messages recognized in the transport layer and the
network layer respectively. An application message may represent, for example, numeric or
textual information, images, encrypted information, and computer program instructions. In a
financial market data environment, an application message is commonly referred to as a
‘tick” and includes financial market data such as, for example, financial quotes or financial
news. Financial quotes include bid and ask prices for any given financial security. A ‘bid’
refers to the highest price a buyer is willing to pay for a security. An ‘ask’ refers to the

lowest price a seller is willing to accept for a security.

Often in messaging environments, message formats recognized by message sending devices
are not recognized by message receiving devices. Such messaging environments typically
include feed adapters that are capable of application message conversion. The basic task of
the feed adapter is to receive an application message having an input message format from a
message sending device, convert the application message having the input format to an

application message having an output format, and transmit the application message having

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

the output format to a message receiving device. In addition, feed adapters typically process
information requests regarding data contained in the converted application messages from

message receiving devices.

In current messaging environments, software architects typically configure feed adapters to
perform application message conversion between only a fixed set of application message
formats. This fixed set of application message formats is often hard-coded into a conversion
module on the feed adapter. Any changes made to the application message formats or the
configuration of a feed adapter typically require extensive recoding of the conversion
module and subsequence recompilation of the new computer code. In fact, even slight
modifications to current feed adapters often involve substantial financial and human
resources. Readers will, therefore, appreciate that room for improvement exists for

application message conversion using feed adapters.

SUMMARY OF THE INVENTION

Methods, apparatus, and products are disclose for application message conversion using a
feed adapter that include providing a feed adapter capable of application message
conversion, the feed adapter comprising a plurality of conversion functions, each conversion
function capable of converting data from one format to another format; establishing, on the
feed adapter, a configuration policy that specifies a conversion rule from an input message
format to an output message format using at least one of the conversion functions; receiving,
in the feed adapter, an application message having the input message format; and converting,
by the feed adapter, the application message having the input message format to an
application message having the output message format according to the conversion rule of

the configuration policy.

Converting, by the feed adapter, the application message having the input message format to
an application message having the output message format according to the conversion rule of
the configuration policy may include calling each of the conversion functions used to specify

the conversion rule in dependence upon the application message having the input message

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

format; receiving, in return from each of the called conversion functions, a value; and storing

cach of the received values in the application message having the output message format.

Application message conversion using a feed adapter may also include brokering, by a
stream administration server, establishment of the message stream from the feed adapter to
the message receiving device; and transmitting, by the feed adapter to a message receiving

device on a message stream, the application message having the output message format.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be described, by way of example only,
with reference to the following drawings in which:

Figure 1 sets forth a network and block diagram illustrating an exemplary computer
data processing system for application message conversion using a feed adapter according to
exemplary embodiments of the present invention;

Figure 2 sets forth a block diagram of automated computing machinery comprising
an exemplary feed adapter useful in application message conversion using a feed adapter
according to exemplary embodiments of the present invention;

Figure 3 sets forth a flowchart illustrating an exemplary method for application
message conversion using a feed adapter according to exemplary embodiments of the
present invention;

Figure 4 sets forth a flowchart illustrating a further exemplary method for application
message conversion using a feed adapter according to exemplary embodiments of the
present invention; and

Figure 5 sets forth a flowchart illustrating a further exemplary method for application
message conversion using a feed adapter according to exemplary embodiments of the

present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Exemplary methods, apparatus, and products for application message conversion using a

feed adapter according to embodiments of the present invention are described with reference

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

to the accompanying drawings, beginning with Figure 1. Figure 1 sets forth a network and
block diagram illustrating an exemplary computer data processing system for application
message conversion using a feed adapter according to embodiments of the present invention.
The system of Figure 1 operates generally for application message conversion using a feed
adapter according to embodiments of the present invention as follows: A feed adapter (208)
capable of application message conversion is provided. The feed adapter (208) includes a
plurality of conversion functions. Each conversion function is capable of converting data
from one format to another format. A configuration policy (222) is established on the feed
adapter (208). The configuration policy (222) specifies a conversion rule from an input
message format to an output message format using at least one of the conversion functions.
The feed adapter (208) receives an application message (241) having the input message
format. The feed adapter (208) converts the application message (241) having the input
message format to an application message (240) having the output message format according
to the conversion rule of the configuration policy (222). The feed adapter (208) may also
transmit the application message (240) having the output message format to a message
receiving device on a message stream (280). In the example of Figure 1, the message

receiving device (210) is implemented as a subscribing client device.

The high speed, low latency data communications environment (201) illustrated in Figure 1
includes a high speed, low latency data communications network (200). The network (200)
includes a feed adapter (208), a stream administration server (212), and a subscribing client
device (210), as well as the infrastructure for connecting such devices (208, 212, 210)
together for data communications. The network (200) of Figure 1 is termed ‘high speed, low
latency’ because the application messages sent between devices connected to the network
(200) on message streams administered by the stream administration server (212) bypass the
stream administration server (212). For example, the application messages on the message
stream (280) from the feed adapter (208) to the subscribing client device (210) bypass the
stream administration server (212). Although such messages are not delayed for processing
in the stream administration server (212), the stream administration server (212) retains
administration of the stream (280) between devices connected to the high speed, low latency

data communications network (200).

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

Further contributing to the ‘high speed, low latency’ nature of network (200), readers will
note that the network (200) does not include a router, that is a computer networking device
whose primary function is to forward data packets across a network toward their
destinations. Rather, each device (208, 212, 210) provides its own routing functionality for
data communication through a direct connection with the other devices connected to the
network (200). Because the network (200) does not include a computer networking device
dedicated to routing data packets, the network (200) of Figure 1 may be referred to as a
‘minimally routed network.” Although the exemplary network (200) illustrated in Figure 1
does not include a router, such a minimally routed network is for explanation only. In fact,
some high speed, low latency networks useful in application message conversion using a

feed adapter according to embodiments of the present invention may include a router.

The high speed, low latency data communications environment (201) depicted in Figure 1
includes a message stream (280). A message stream is a data communication channel
between a communications endpoint of a sending device and a communications endpoint of
at least one receiving device. A communications endpoint is composed of a network address
and a port for a sending device, such as a feed adapter, or a receiving device, such as a
subscribing client device. A message stream may be implemented as a multicast data
communication channel. In a multicast data communication channel, a one-to-many
relationship exists between a destination address for a message and the communication
endpoints of receiving devices. That is, each destination address identifies a set of
communication endpoints for receiving devices to which each message of the stream is
replicated. A multicast data communication channel may be implemented using, for
example, the User Datagram Protocol (‘UDP’) and the Internet Protocol (‘IP’). In addition
to a multicast data communication channel, the message stream may be implemented as a
unicast data communication channel. In a unicast data communication channel, a one-to-one
relationship exists between a destination address for a message and a communication
endpoint of a receiving device. That is, each destination address uniquely identifies a single
communication endpoint of single receiving device. A unicast data communication channel

may be implemented using, for example, the Transmission Control Protocol (‘TCP’) and IP.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

The exemplary system of Figure 1 includes a stream administration server (212) connected
to the high speed, low latency data communications network (200) through a wireline
connection (262). The stream administration server (212) of Figure 1 is a computer device
having installed upon it a stream administration module (228), an authentication module
(230), an authorization module (234), and an authorization policy (235). A stream
administration module (228) is a software component that includes a set of computer
program instructions configured for application message conversion using a feed adapter
according to embodiments of the present invention. The stream administration module (228)
operates generally for application message conversion using a feed adapter according to
embodiments of the present invention by brokering establishment of a message stream (280)
from the feed adapter (208) to the message receiving device (210). In addition, the stream
administration module (228) administers the message stream by providing security services
such as authenticating the subscribing client device (210) and authorizing the subscribing
client device (210) to receive application messages from the feed adapter (208) on the

message stream (280).

The authentication module (230) of Figure 1 is a set of computer program instructions
capable of providing authentication security services to the stream administration module
(228) through an exposed authentication application programming interface (‘APT’) (232).
Authentication is a process of verifying the identity of an entity. In the exemplary system of
Figure 1, the authentication module (230) verifies the identity of the subscribing client
device (210). The authentication module (230) may provide authentication security services
using a variety of security infrastructures such as, for example, shared-secret key

infrastructure or a public key infrastructure.

The authorization module (234) of Figure 1 is a set of computer program instructions
capable of providing authorization security services to the stream administration module
(228) through an exposed authorization API (236). Authorization is a process of only
allowing resources to be used by resource consumers that have been granted authority to use
the resources. In the example of Figure 1, the authorization module (234) identifies the
application messages that the subscribing client device (210) is authorized to receive on the

message stream (280). The authorization module (234) of Figure 1 provides authorization

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

security services using an authorization policy (235). The authorization policy (235) is a set
of rules governing the privileges of authenticated entities to send or receive application
messages on a message stream. In a financial market data environment, for example, an
authenticated entity may be authorized to receive application messages that include financial
quotes for some financial securities but not other securities. The authorization policy (235)

may grant privileges on the basis of an individual entity or an entity’s membership in a

group.

In the exemplary system of Figure 1, feed adapter (208) is connected to the high speed, low
latency data communications network (200) through a wireline connection (260). The feed
adapter (208) is a computer device having the capabilities of converting application
messages (241) on a feed adapter input stream (214) having an input message format to
application messages (240) on a feed adapter output stream (216) having an output message
format and transmitting the application messages on the feed adapter output stream (216) to
subscribing client devices. The feed adapter input stream (214) is a message stream from a
feed source to the feed adapter (208). The feed adapter output stream (216) is a message
stream administered by the stream administration server (212) from the feed adapter (208) to

the subscribing client device (210).

In the example of Figure 1, the feed adapter (208) receives application messages (241)
having an input message format on the feed adapter input stream (214) from a feed source
(213). The feed source (213) is a computer device capable of aggregating data into
application messages and transmitting the messages to a feed adapter. In a financial market
data environment, for example, a feed source (213) may be implemented as a feed source
controlled by the Options Price Reporting Authority (‘OPRA”). OPRA is the securities
information processor for financial market information generated by the trading of securities
options in the United States. The core information that OPRA disseminates is last sale
reports and quotations. Other examples of feed sources in financial market data environment
may include feed sources controlled by the Consolidated Tape Association (‘CTA’) or The
Nasdaq Stock Market, Inc. The CTA oversees the dissemination of real-time trade and
quote information in New York Stock Exchange and American Stock Exchange listed

securities. The Nasdaq Stock Market, Inc. operates the NASDAQ Market Centersy which is

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

an electronic screen-based equity securities market in the United States. In a financial
market data environment, a feed adapter input stream is referred to as a ‘financial market

data feed.’

The feed adapter (208) of Figure 1 has installed upon it a conversion module (220), a custom
conversion library (218), a configuration policy (222), conversion function libraries (224), a
message library (225), a message model (244), messaging middleware (276), and a transport
engine (278). The conversion module (220) is a software component that includes a set of
computer program instructions for providing basic feed adapter operation. The conversion
module (220) of Figure 1 initializes the feed adapter, loads common conversion function
libraries, and loads the custom conversion library (218). The common conversion function
libraries contain conversion functions that the feed adapter typically utilizes regardless of the

feed sources providing application messages.

The custom conversion library (218) of Figure 1 is a software component that includes
computer program instructions for extending feed adapter functionality to utilize a particular
feed source such as, for example, the feed source (213). The conversion module (220)
utilizes the custom conversion library (218) through API (219) exposed by the custom
conversion library (218). The custom conversion library (218) provides access the feed
source (213), administers the feed adapter input stream (214) from the feed source (213), and
performs application message conversion according to embodiments of the present
invention. The custom conversion library (218) operates generally for application message
conversion according to embodiments of the present invention by converting an application
message (241) having the input message format to an application message (240) having the
output message format according to the conversion rule of the configuration policy (222).
To perform application message conversion, the custom conversion library (218) typically
loads conversion functions libraries (224) specified in the configuration policy (222) and

utilizes the conversion functions contained in those loaded libraries.

In the example of Figure 1, the custom conversion library (218) may be implemented as a
dynamically linked library available to the conversion module (220) at runtime, dynamically

loaded Java classes, or any other implementation as will occur to those of skill in the art.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

Although the description above indicates that the functionality provided by the custom
conversion library (218) is contained in a software module distinct from the conversion
model (220), readers will note that features of both the conversion module (220) and the

custom conversion library (218) may overlap or be combined into a single software module.

The configuration policy (222) of Figure 1 is a data structure that specifies a conversion rule
from an input message format to an output message format using at least one of the
conversion functions of the conversion function libraries (224). A conversion rule is a data
structure that contains a set of instructions for converting an application message from one
format to another format. The custom conversion library (218) may perform the set of
instructions contain in a conversion rule when conditions specified in the conversion rule are
satisfied. Utilizing multiple conversion rules in a configuration policy (222), the custom
conversion library (218) may convert messages from a variety of input formats to a variety
of output formats. In the example of Figure 1, the configuration policy (222) specifies a
conversion rule for converting the application message (241) received from the feed adapter
input stream (214) having an input format to application messages (240) having an output

format for transmission to subscribing client devices on the feed adapter output stream (216).

In the example of Figure 1, the configuration policy (222) is typically established on the feed
adapter (208) by a system administrator. The configuration policy (222) may, however, be
established on the feed adapter (208) by the stream administration server (212) when the
message stream (280) is brokered, or be established on the feed adapter (208) by any other
entity as will occur to those of skill in the art. The configuration policy (222) of Figure 1
may be implemented using a structured document such as, for example, an eXtensible
Markup Language (‘XML’) document. However, the custom conversion library (218)

typically converts a configuration policy to a binary table for optimal runtime performance.

The conversion function libraries (224) of Figure 1 are loadable software modules that each
contain one or more conversion functions capable of converting data in an application
message from one format to another format or converting values of data fields from one
value to another value. The conversion functions contained in the conversion function

libraries may, for example, convert a 16-bit integer to a 32-bit integer, convert a number

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
10

stored in a string field to a 64-bit double floating point value, increase the value of one data
field by one, or any other conversion as will occur to those of skill in the art. The custom
conversion library (218) accesses the conversion functions through a set of conversion
function APIs (226) exposed by the conversion functions of the conversion function libraries
(224). In the example of Figure 1, the conversion function libraries (224) may be
implemented as dynamically linked libraries available to the custom conversion library (218)
at runtime, dynamically loaded Java classes, or any other implementation as will occur to

those of skill in the art.

In the exemplary system of Figure 1, each conversion function in each of the conversion
function libraries (224) has an argument signature. An argument signature specifies the
order, number, and type of arguments that a particular conversion functions receives and
returns. The argument signature of each function is stored in a table in the conversion
function library (224) that contains the function. The argument signatures are used by the
custom conversion library (218) to determine whether the types of the arguments specified
by a conversion rule for a particular conversion function match the argument signature of the
particular conversion function. If the types of the arguments specified by a conversion rule
for a particular conversion function do not match the argument signature of the particular
conversion function, the custom conversion library (218) converts the types of the arguments
specified by the conversion rule for the conversion function to match the argument signature

of the conversion function.

In the example of Figure 1, the application messages (240) have a format specified in the
message model (244). The message model (244) is metadata that defines the structure and
the format used to create, access, and manipulate the application messages (240) converted
from the application messages (241) received from the feed source (213). Typically the
same message model (244) is established on the feed adapter (208) and the subscribing client
device (210) by the stream administration server (212) when the stream administration
server (212) brokers the message stream (280) to the subscribing client device (210). A
message model may be implemented using a structured document, such as, for example, an
XML document, a Java object, C++ object, or any other implementation as will occur to

those of skill in the art.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
11

In the example of Figure 1, the conversion module (220), the custom conversion library
(218), and the conversion functions of the conversion function libraries (224) process the
data contained in the application messages (240) using the message library (225). The
message library (225) is a software module that includes a set of functions for creating,
accessing, and manipulating messages (240) according to the message model (244). The
message library (225) is accessible to the conversion module (220), the custom conversion
library (218), and the conversion functions of the conversion function libraries (224) through

a message API (227) exposed by the message library (225).

Before the custom conversion library (218) of Figure 1 performs data processing on the
application messages, the custom conversion library (218) receives application messages
(241) having an input message format from the feed source (213). The custom conversion
library (218) of Figure 1 may receive the source stream messages through a receiving
transport engine (not shown) of the feed adapter (208). The receiving transport engine is a
software module that operates in the transport layer of the network stack and may be
implemented according to the TCP/IP protocols, UDP/IP protocols, or any other data
communication protocol as will occur to those of skill in the art. The receiving transport
engine may provide the received application messages (241) directly to the custom
conversion library (218) or to the messaging middleware (276), which in turn, provides the

source stream messages to the custom conversion library (218).

The messaging middleware (276) of Figure 1 is a software component that provides high
availability services between the feed adapter (208), any backup feed adapter that may exist,
the subscribing client device (210), and the feed source (213). After the custom conversion
library (218) of Figure 1 performs data processing on the application messages (241)
received from the feed source (213), the messaging middleware (276) receives the
application messages (240) having an output message format from the custom conversion
library (218). The messaging middleware (276) then provides the received application
messages (240) having the output message format to the transport engine (278) for
transmission to a subscribing client device (210) on the message stream (280). The custom
conversion library (218) interacts with the messaging middleware (276) through a messaging

middleware API (266) exposed by the messaging middleware (276).

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
12

The transport engine (278) of Figure 1 is a software component operating in the transport
and network layers of the OSI protocol stack promulgated by the International Organization
for Standardization. The transport engine (278) provides data communications services
between network-connected devices. The transport engine may be implemented according
to the UDP/IP protocols, TCP/IP protocols, or any other data communications protocols as
will occur to those of skill in the art. The transport engine (278) is a software module that
includes a set of computer program instructions for application message conversion
according to embodiments of the present invention. The transport engine (278) operates
generally for application message conversion according to embodiments of the present
invention by transmitting application messages (240) having an output message format to a
message receiving device (210) on the message stream (280). The messaging middleware
(276) operates the transport engine (278) through a transport API (268) exposed by the
transport engine (278). The transport engine (278) transmits the application messages (240)
by encapsulating the application messages provided by the messaging middleware (276) into
packets and transmitting the packets through the message stream (280) to the subscribing
client device (210).

The subscribing client device (210) in exemplary system of Figure 1 connects to the high
speed, low latency data communications network (200) through a wireline connection (264).
The subscribing client device (210) of Figure 1 is a computer device capable of subscribing
to the message streams transmitted by various feed adapters. In a financial market data
environment, for example, a subscribing client device may subscribe to a tick to receive the
bid and ask prices for a particular security on a message stream provided by a feed adapter

controlled by a financial securities broker.

In the example of Figure 1, the subscribing client device (210) has installed upon it an
application (238), a message library (248), a message model (244), messaging middleware
(252), a stream administration library (272), and a transport engine (256). The application
(238) is a software component that processes data contained in the application messages
(240) received from the feed adapter (208). The application (238) may process the data for
utilization by the subscribing client device (210) itself, for contributing the data to another

feed adapter, or for contributing the data to some other device. In a financial market data

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
13

environment, the application installed on the subscribing client device may be a program
trading application that buys or sells financial securities based on the quoted prices contained
in ticks. The application may also be a value-adding application that contributes information
to a tick such as, for example, the best bid and ask prices for a particular security, that is not
typically included in the ticks provided by the feed source (213). The subscribing client
device may then transmit the ticks to a feed adapter for resale to other subscribing client

devices.

The application (238) processes the data contained in the application messages (240) using
the message library (248). The message library (248) is software module that includes a set
of functions for creating, accessing, and manipulating messages (240) according to a
message model (244). The message library (248) is accessible to the application (238)
through a message API (250) exposed by the message library (248). Similar to the message
library (225) installed on the feed adapter (208), the message library (248) of Figure 1
interprets the received application messages (240) using the message model (244). As
mentioned above, the message model (244) is metadata that specifies the structure and the

format for interpreting the application messages (240) received on the message stream (280).

The communications between the subscribing client device (210) and the stream
administration server (212) may be implemented using a stream administration library (272).
The stream administration library (272) is a set of functions contained in dynamically linked
libraries, statically linked libraries, or dynamically loaded Java classes available to the
application (238) through a stream administration library API (274). Through the stream
administration library (272), the application (238) of the subscribing client device (210) may
request to subscribe to messages from a feed adapter, modify an existing message
subscription, or cancel a subscription. Functions of the stream administration library (272)
used by the application (238) may communicate with the stream administration server (212)
through network (200) by calling member methods of a CORBA object, calling member
methods of remote objects using the Java Remote Method Invocation (‘RMI’) API, using
web services, or any other communication implementation as will occur to those of skill in

the art.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
14

‘CORBA’ refers to the Common Object Request Broker Architecture, a computer industry
specifications for interoperable enterprise applications produced by the Object Management
Group (‘OMG’). CORBA is a standard for remote procedure invocation first published by
the OMG in 1991. CORBA can be considered a kind of object-oriented way of making
remote procedure calls, although CORBA supports features that do not exist in conventional
RPC. CORBA uses a declarative language, the Interface Definition Language (“IDL”), to
describe an object’s interface. Interface descriptions in IDL are compiled to generate ‘stubs’
for the client side and ‘skeletons’ on the server side. Using this generated code, remote
method invocations effected in object-oriented programming languages, such as C++ or

Java, look like invocations of local member methods in local objects.

The Java™ Remote Method Invocation API is a Java application programming interface for
performing remote procedural calls published by Sun Microsystems™. The Java™ RMI
API is an object-oriented way of making remote procedure calls between Java objects
existing in separate Java™ Virtual Machines that typically run on separate computers. The
Java™ RMI API uses a remote procedure object interface to describe remote objects that
reside on the server. Remote procedure object interfaces are published in an RMI registry
where Java clients can obtain a reference to the remote interface of a remote Java object.
Using compiled ‘stubs’ for the client side and ‘skeletons’ on the server side to provide the
network connection operations, the Java™ RMI allows a Java client to access a remote Java

object just like any other local Java object.

Before the application (238) processes the data contained in the messages (240), the
application (238) receives the messages (240) from the messaging middleware (252), which,
in turn, receives the application messages (240) from the feed adapter (208) through the
transport engine (256). The messaging middleware (252) is a software component that
provides high availability services between the subscribing client device (210), the feed
adapter (208), any backup feed adapters, and the stream administration module (212). In
addition, the messaging middleware (252) provides message administration services for the
stream administration server (212). Such message administration services may include
restricting the ability of the application (238) to send and receive messages on a message

stream to messages that satisfy certain constraints. The application (238) and the stream

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
15

administration library (272) interact with the messaging middleware (252) through a
messaging middleware API (254).

The transport engine (256) of Figure 1 is a software component operating in the transport
and network layers of the OSI protocol stack promulgated by the International Organization
for Standardization. The transport engine (256) provides data communications services
between network-connected devices. The transport engine may be implemented according
to the UDP/IP protocols, TCP/IP protocols, or any other data communications protocols as
will occur to those of skill in the art. The transport engine (256) is a software component
that receives application message (240) from the feed adapter (208). The transport engine
(256) receives the application messages (240) by receiving packets through the message
stream (280) from the feed adapter (208), unencapsulating the application messages (240)
from the received packets, and providing the application messages (240) to the messaging
middleware (252). The messaging middleware (252) operates the transport engine (256)
through a transport API (258) exposed by the transport engine (256).

The servers and other devices illustrated in the exemplary system of Figure 1 are for
explanation, not for limitation. Devices useful in application message conversion using feed
adapters according to embodiments of the present invention may be implemented using
general-purpose computers, such as, for example, computer servers or workstations, hand-
held computer devices, such as, for example, Personal Digital Assistants (‘PDAs’) or mobile
phones, or any other automated computing machinery configured for data processing

according to embodiments of the present invention as will occur to those of skill in the art.

The arrangement of servers and other devices making up the exemplary system illustrated in
Figure 1 are for explanation, not for limitation. Although the connections to the network
(200) of Figure 1 are depicted and described in terms of wireline connections, readers will
note that wireless connections may also be useful according to various embodiments of the
present invention. Furthermore, data processing systems useful according to various
embodiments of the present invention may include additional servers, routers, other devices,
and peer-to-peer architectures, not shown in Figure 1, as will occur to those of skill in the

art. Networks in such data processing systems may support many data communications

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
16

protocols, including for example Transmission Control Protocol (‘TCP’), Internet Protocol
(‘IP’), HyperText Transfer Protocol (‘"HTTP’), Wireless Access Protocol (‘WAP’),

Handheld Device Transport Protocol (‘“HDTP’), and others as will occur to those of skill in
the art. Various embodiments of the present invention may be implemented on a variety of

hardware platforms in addition to those illustrated in Figure 1.

Application message conversion using a feed adapter in accordance with the present
invention in some embodiments may be implemented with one or more feed adapters,
message receiving devices, and stream administration servers. These devices and servers
are, in turn, implemented to some extent at least as computers, that is, automated computing
machinery. For further explanation, therefore, Figure 2 sets forth a block diagram of
automated computing machinery comprising an exemplary feed adapter (208) useful in
application message conversion using a feed adapter according to embodiments of the
present invention. The feed adapter (208) of Figure 2 includes at least one computer
processor (156) or ‘CPU’ as well as random access memory (168) (‘RAM”) which is
connected through a high speed memory bus (166) and bus adapter (158) to processor (156)

and to other components of the feed adapter.

Stored in RAM (168) are a conversion module (220), custom conversion library (218), a
configuration policy (222), conversion function libraries (224), application messages (240),
application messages (241), a message model (244), message library (225), messaging
middleware (276), and transport engine (278). Each application message (240, 241) is a
quantity of data that includes one or more data fields and is transmitted from one device to
another on a message stream. Application messages are typically created and processed by
applications operating in application layers above the network and transport layers of a
network protocol stack. As mentioned above, an application message may represent
numeric or textual information, images, encrypted information, computer program
instructions, and so on. In a financial market data environment, for example, a message is
commonly referred to as a ‘tick’ and includes financial market data such as, for example,
financial quotes or financial news. Each application message (240, 241) may be
implemented using a structured document such as, for example, an XML document, a Java

object, C++ object, or any other implementation as will occur to those of skill in the art. The

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
17

message model (244) is metadata that defines the structure and format for creating and
interpreting the application messages (240) having an output message format. The message
model (244) may be implemented using a structured document such as, for example, an
XML document, a Java object, C++ object, or any other implementation as will occur to
those of skill in the art. The conversion module (220), the custom conversion library (218),
the configuration policy (222), the conversion function libraries (224), the message library
(225), the messaging middleware (276), and the transport engine (278) illustrated in Figure 2
are software components, that is computer program instructions, that operate as described

above with reference to Figure 1 regarding the feed adapter.

Also stored in RAM (168) is an operating system (154). Operating systems useful in feed
adapters according to embodiments of the present invention include UNIX™, Linux"™,
Microsoft NT™, IBM’s ATX™, IBM’s i5/0S™, and others as will occur to those of skill in
the art. The operating system (154), the conversion module (220), the custom conversion
library (218), the configuration policy (222), the conversion function libraries (224), the
application messages (240), the application messages (241), the message model (244), the
message library (225), the messaging middleware (276), and the transport engine (278) in
the example of Figure 2 are shown in RAM (168), but many components of such software

typically are stored in non-volatile memory also, for example, on a disk drive (170).

The exemplary feed adapter (208) of Figure 2 includes bus adapter (158), a computer
hardware component that contains drive electronics for high speed buses, the front side bus
(162), the video bus (164), and the memory bus (166), as well as drive electronics for the
slower expansion bus (160). Examples of bus adapters useful in feed adapters useful
according to embodiments of the present invention include the Intel Northbridge, the Intel
Memory Controller Hub, the Intel Southbridge, and the Intel I/O Controller Hub. Examples
of expansion buses useful in feed adapters useful according to embodiments of the present
invention may include Peripheral Component Interconnect (‘PCI’) buses and PCI Express

(‘PCI¢’) buses.

The exemplary feed adapter (208) of Figure 2 also includes disk drive adapter (172) coupled
through expansion bus (160) and bus adapter (158) to processor (156) and other components

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
18

of the exemplary feed adapter (208). Disk drive adapter (172) connects non-volatile data
storage to the exemplary feed adapter (208) in the form of disk drive (170). Disk drive
adapters useful in feed adapters include Integrated Drive Electronics (‘IDE’) adapters, Small
Computer System Interface (‘SCSI’) adapters, and others as will occur to those of skill in the
art. In addition, non-volatile computer memory may be implemented in a feed adapter as an
optical disk drive, electrically erasable programmable read-only memory (so-called
‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as will occur to those of skill in the
art.

The exemplary feed adapter (208) of Figure 2 includes one or more input/output (‘1/O’)
adapters (178). 1/0 adapters in feed adapters implement user-oriented input/output through,
for example, software drivers and computer hardware for controlling output to display
devices such as computer display screens, as well as user input from user input devices (181)
such as keyboards and mice. The exemplary feed adapter (208) of Figure 2 includes a video
adapter (209), which is an example of an I/O adapter specially designed for graphic output to
a display device (180) such as a display screen or computer monitor. Video adapter (209) is
connected to processor (156) through a high speed video bus (164), bus adapter (158), and
the front side bus (162), which is also a high speed bus.

The exemplary feed adapter (208) of Figure 2 includes a communications adapter (167) for
data communications with other computers (182) and for data communications with a high
speed, low latency data communications network (200). Such data communications may be
carried out serially through RS-232 connections, through external buses such as a Universal
Serial Bus (‘USB’), through data communications networks such as IP data communications
networks, and in other ways as will occur to those of skill in the art. Communications
adapters implement the hardware level of data communications through which one computer
sends data communications to another computer, directly or through a data communications
network. Examples of communications adapters useful for application message conversion
using a feed adapter according to embodiments of the present invention include modems for
wired dial-up communications, IEEE 802.3 Ethernet adapters for wired data
communications network communications, and IEEE 802.11b adapters for wireless data

communications network communications.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
19

Although Figure 2 is discussed with reference to exemplary feed adapters, readers will note
that automated computing machinery comprising exemplary message receiving devices,
such as, for example, subscribing client devices, and exemplary stream administration
servers useful in application message conversion using a feed adapter according to
embodiments of the present invention are similar to the exemplary feed adapter (208) of
Figure 2. That is, such exemplary stream administration servers and feed adapters include
one or more processors, bus adapters, buses, RAM, video adapters, communications
adapters, 1/0 adapters, disk drive adapters, and other components similar to the exemplary

feed adapter (208) of Figure 2 as will occur to those of skill in the art.

For further explanation, Figure 3 sets forth a flowchart illustrating an exemplary method for
application message conversion using a feed adapter according to embodiments of the
present invention. The method of Figure 3 includes providing (300) a feed adapter (208)
capable of application message conversion. The feed adapter (208) of Figure 3 includes a
plurality of conversion functions (302). Each conversion function (302) is capable of
converting data from one format to another format. As mentioned above, the conversion
functions (302) may be contained in conversion function libraries that are loaded during the

initialization of the feed adapter (208).

For additional explanation of the conversion functions (302), consider a set of exemplary
conversion functions in a financial market data environment. Such exemplary conversion
functions useful in application message conversion using a feed adapter according to

embodiments of the present invention may include the following functions:

FMD_Symbol opraSymbol(opra_message * message);

FMD _StrikePrice opraStrikePrice(opra_message * message);

FMD_ExpireDate opraExpireDate(opra_message * message);

FMD_ Volume opraVolumn(opra message * message); and

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
20

¢ FMD_SecurityType stringSecurityType(string security type).

The exemplary conversion functions above may be used by a feed adapter to convert
application messages having an OPRA format to application messages having a proprictary
financial market data (‘FMD’) format. The exemplary function ‘opraSymbol’ receives a
reference to an application message having the OPRA format, extracts the symbol for a
financial security from the application message having the OPRA format, converts the
symbol from an OPRA format to an FMD format, and returns the converted symbol having
the FMD format to the calling application. The exemplary function ‘opraStrikePrice’
receives a reference to an application message having the OPRA format, extracts the strike
price for a financial security from the application message having the OPRA format,
converts the strike price from an OPRA format to an FMD format, and returns the converted
strike price having the FMD format to the calling application. The exemplary function
‘opraExpireDate’ receives a reference to an application message having the OPRA format,
extracts the expiration date for a financial security from the application message having the
OPRA format, converts the expiration date from an OPRA format to an FMD format, and
returns the converted expiration data having the FMD format to the calling application. The
exemplary function ‘opraVolume’ receives a reference to an application message having the
OPRA format, extracts the volume for a financial security from the application message
having the OPRA format, converts the volume from an OPRA format to an FMD format,
and returns the converted volume having the FMD format to the calling application. The
exemplary function ‘stringSecurityType’ receives a string representing a type of financial
security, converts the string to a security type having a FMD format, and returns the security
type having the FMD format to the calling application. Readers will note that the exemplary
conversion functions above are for explanation and not for limitation. Other conversion
functions as will occur to those of skill in the art may also be useful in application message

conversion according to embodiments of the present invention.

The method of Figure 3 also includes establishing (304), on the feed adapter, a configuration
policy (222). The configuration policy (222) is a data structure that specifies a conversion
rule (306) from an input message format to an output message format using at least one of

the conversion functions (302). The conversion rule (306) is a data structure that contains a

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
21

set of instructions for converting an application message from one format to another format.
Although the configuration policy (222) depicted in Figure 3 includes only one conversion
rule (306), readers will note that a configuration policy useful according to the present
invention may include any number of conversion rules. In fact, a configuration policy
according to the present invention often includes multiple conversion rules because the
configuration policy may specify a specific conversion rule for each type of application
message received from a feed source. In a financial market data environment, for example,
the configuration policy may specify one conversion rule for a message containing quote
data for a security and another conversion rule for a message containing sale data for a
security. In the example of Figure 3, the configuration policy (222) may be established
(304) on the feed adapter (208) by a system administrator, by a stream administration server
that brokers the establishment of a message stream from the feed adapter (208) to a message

receiving device, or any other entity as will occur to those of skill in the art.

The configuration policy (222) of Figure 3 may be implemented using a structured document
such as, for example, an eXtensible Markup Language (‘XML’) document. For optimal
runtime performance, however, the feed adapter (208) typically converts a configuration
policy to a binary table. For further explanation, consider an exemplary configuration policy
useful in application message conversion using a feed adapter according to embodiments of
the present invention in a financial market data environment. Such an exemplary

configuration policy may be implemented in XML as follows:

<configuration policy>
<load library="OPRA2FMD”>
<conversion_rule intype=“Opra.Sale” outtype="FMD.Sale”>

<action field= “FMD.Sequence”™

1

2

3

4

5: sequence()
6 </action>

7 <action field= “FMD.SecurityType™>
8 stringSecurityType(“O”)

9 </action>

10: <action field= “FMD.Symbol”>

10

15

20

25

WO 2008/068233 PCT/EP2007/063194
22

11: opraSymbol(&opraMessage)

12: </action>

13: <action field= “FMD.ExpireDate”>

14: opraExpireDate(&opraMessage)

15: </action>

16: <action field= “FMD.StrikePrice”>

17: opraStrikePrice(&opraMessage)

18: </action>

19: <action field= “FMD.Volume”>

20: opraVolume(&opraMessage)

21: </action>

22: <action field= “FMD.SalePrice”>

23: opraSalePrice(&opraMessage)

24. </action>

25: <action field= “FMD.StrikePrice”>

26: opraStrikePrice(&opraMessage)

27: </action>

28: <action>

29: routeMessage()

30: </action>

31: </conversion_rule>

32: </configuration_policy>

In the example above, lines 1 and 32 contain markup tags that denote the beginning and the

end, respectively, of the exemplary configuration policy. Line 2 of the exemplary

configuration policy instructs a feed adapter to load the conversion function library

identified as ‘OPRA2FMD.” The OPRA2FMD conversion function library contains the

function definitions for some of the conversion functions specified in the exemplary

configuration policy above. In the example above, lines 3 and 31 contain markup tags that
denote the beginning and the end, respectively, of an exemplary conversion rule specified by
the exemplary configuration policy. The exemplary conversion rule specifies nine ‘actions’

to be performed by a feed adapter to convert an application message having an OPRA format

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
23

to an application message having a FMD format when the feed adapter receives an
application message having an OPRA format representing a sale on participating OPRA
exchange. Each of the first eight actions specified in the exemplary conversion rule above
instruct a feed adapter to execute a conversion function using an application message having
an OPRA format and to store the return result in an application message having the FMD
format. The last action specified in the conversion rule instructs a feed adapter to route the
application message having the FMD format to the appropriate message receiving devices.
Readers will note that the exemplary configuration policy above is for explanation and not
for limitation. Other configuration policies as will occur to those of skill in the art may also
be useful in application message conversion using a feed adapter according to embodiments
of the present invention. Readers will also note that the XML implementation, the markup
tags, and structure of the exemplary configuration policy above is also for explanation and
not for limitation. Many other implementations, markup tags, or structures may be used to

implement configuration policies useful according to embodiments of the present invention.

The method of Figure 3 includes receiving (308), in the feed adapter, an application message
(310) having the input message format. The feed adapter (208) may receive (308) the
application message (310) having the input message format according to the method of
Figure 3 by receiving one or more transport packets from a feed source that includes the
application message (310) having the input message format and unencapsulating the

application message (310) from the received transport packets.

The method of Figure 3 also includes converting (312), by the feed adapter, the application
message (310) having the input message format to an application message (320) having the
output message format according to the conversion rule (306) of the configuration policy
(222). Converting (312) the application message (310) having the input message format to
an application message (320) having the output message format according to method of
Figure 3 includes calling (314) each of the conversion functions (302) used to specify the
conversion rule (306) in dependence upon the application message (310) having the input
message format, receiving (316), in return from each of the called conversion functions, a
value (322), and storing (318) each of the received values (322) in the application message
(320) having the output message format. In the method of Figure 3, calling (314) cach of the

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
24

conversion functions (302), receiving (316), in return from each of the called conversion
functions, a value (322), and storing (318) each of the received values (322) in the
application message (320) having the output message format may be carried out in a

conversion module or a custom conversion library installed on the feed adapter (208).

In the example of Figure 3, the input message format of the application message (310)
includes one or more input field formats specifying the message fields in the application
message (310). Similarly, the output message format of the application message (320)
includes one or more output field formats specifying the message fields in the application
message (320). To provide conversions between an input field format and an output field
format, one of the conversion functions (302) of Figure 3 is capable of converting data from
the input field format to the output field format and returning the converted data having the
output field format. For example, one of the conversion functions may be capable of
converting a number stored in an ASCII text field format to a double precision number field
format. In addition, one of the conversion functions (302) of Figure 3 is capable of
calculating a value in dependence upon the application message (310) having the input
message format and returning the calculated value for storage in the application message
(320) having the output message format. For example, consider a financial market data
environment. In such an environment, one of the conversion functions may be capable of

converting pence to pounds or converting pounds to pence.

After a feed adapter converts the application message having the input message format to an
application message having the output message format, the feed adapter may transmit the
application message having the output message format to a message receiving device. For
further explanation, therefore, Figure 4 sets forth a flowchart illustrating a further exemplary
method for application message conversion using a feed adapter according to embodiments
of the present invention that includes transmitting (402), by the feed adapter to a message
receiving device on a message stream (280), the application message (320) having the output

message format.

The method of Figure 4 is similar to the method of Figure 3. That is, the method of Figure 4

includes providing (300) a feed adapter (208) capable of application message conversion.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
25

The feed adapter (208) of Figure 4 includes a plurality of conversion functions (302). Each
conversion function (302) of Figure 4 is capable of converting data from one format to
another format. The method of Figure 4 is also similar to the method of Figure 3 in that the
method of Figure 4 includes establishing (304), on the feed adapter, a configuration policy
(222) that specifies a conversion rule (306) from an input message format to an output
message format using at least one of the conversion functions, receiving (308), in the feed
adapter, an application message (310) having the input message format, and converting
(312), by the feed adapter, the application message (310) having the input message format to
an application message (320) having the output message format according to the conversion

rule (306) of the configuration policy (222).

The method of Figure 4 also includes brokering (400), by a stream administration server,
establishment of the message stream (280) from the feed adapter (208) to the message
receiving device. The message stream (280) of Figure 4 represents a data communication
channel between a communications endpoint of a message receiving device and a
communications endpoint of the feed adapter (208). A message stream may be implemented
as a multicast data communication channel using the UDP/IP protocols or a unicast data
communication channel using TCP/IP protocols as discussed above with reference to Figure

1.

Brokering (400), by a stream administration server, establishment of the message stream
(280) from the feed adapter (208) to the message receiving device according to the method
of Figure 4 may be carried out by receiving a subscription request from a message receiving
device to subscribe to messages from the feed adapter (208). The subscription request may
be implemented as an XML document, a call to a member method of a RMI object on the
message receiving device, or any other implementation as will occur to those of skill in the
art. The subscription request may include topics of the messages that the message receiving
device requests to receive from the feed adapter (208). A topic represents the characteristics
of the messages that the message receiving device requests. Using a topic, a message
receiving device may specify the group of messages for receipt from the feed adapter (208).
In a financial market data environment, for example, a message receiving device may use a

topic to request ticks from an OPRA feed source that contains quotes of an IBM option

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
26

traded on the Chicago Board Options Exchange (‘CBOE’) that includes the best bid and best
ask for the IBM option on the CBOE.

In the example of Figure 4, brokering (400), by a stream administration server, establishment
of the message stream (280) from the feed adapter (208) to the message receiving device
may also include providing the message receiving device with a destination address for the
feed adapter (208). The destination address for the feed adapter (208) is a multicast address
or a unicast address used by the message receiving device to listen for messages from the
feed adapter (208). Using the destination address provided by the stream administration
server, the message receiving device may establish the message stream (280) from the feed

adapter (208) to the message receiving device.

Before the stream administration server provides the destination address for the feed adapter
(208), the stream administration server in the example of Figure 4 may perform several
security services to ensure that the message receiving device only receives messages from
the feed adapter (208) for which the message receiving device is authorized to receive. In
the method of Figure 4, brokering (400), by a stream administration server, establishment of
the message stream (280) from the feed adapter (208) to the message receiving device may
also be carried out by authenticating the message receiving device and authorizing the
message receiving device to receive messages from the feed adapter (208) on the message
stream (280). Authenticating the message receiving device may be carried out by verifying
client security credentials provided by the message receiving device with the subscription
request. The client security credentials may be implemented as a digital signature in a public
key infrastructure, a security token, or any other security data as will occur to those of skill
in the art for authenticating the identity of the originator of the subscription request.
Authorizing the message receiving device to receive messages from the feed adapter (208)
on the message stream (280) may be carried out by identifying the privileges associated with
the authenticated message receiving device in dependence upon an authorization policy. An
authorization policy is a set of rules governing the privileges of authenticated message

receiving devices requesting to receive data from the feed adapter (208).

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
27

The method of Figure 4 also includes transmitting (402), by the feed adapter (208) to a
message receiving device on a message stream (280), the application message (320) having
the output message format. The feed adapter (208) may transmit (402) the application
message (320) having the output message format to a message receiving device on a
message stream (280) according to the method of Figure 4 by encapsulating the application
message (320) into one or more transport packets and transmitting the transport packets
through the message stream (280) to the message receiving device according to the UDP/IP
protocols, TCP/IP protocols, or any other data communications protocols as will occur to

those of skill in the art.

As mentioned above, each conversion function may have an argument signature that
specifies the order, number, and type of arguments that the particular conversion function
receives and returns. When the types of arguments specified by a conversion rule for a
particular conversion function do not match the argument signature of the conversion
function, the feed adapter may convert the types of the arguments specified by the
conversion rule to match the argument signature of the conversion function. For further
explanation, therefore, Figure 5 sets forth a flowchart illustrating a further exemplary
method for application message conversion using a feed adapter according to embodiments
of the present invention that includes converting (510) types (506) of arguments specified by
a conversion rule (306) for a conversion function (302) to match the argument signature

(500) of the conversion function.

The method of Figure 5 is similar to the method of Figure 3. That is, the method of Figure 5
includes providing (300) a feed adapter (208) capable of application message conversion.
The feed adapter (208) of Figure 5 includes a plurality of conversion functions (302). Each
conversion function (302) of Figure 5 is capable of converting data from one format to
another format. The method of Figure 5 is also similar to the method of Figure 3 in that the
method of Figure 5 includes establishing (304), on the feed adapter, a configuration policy
(222) that specifies a conversion rule (306) from an input message format to an output
message format using at least one of the conversion functions, receiving (308), in the feed
adapter, an application message (310) having the input message format, and converting

(312), by the feed adapter, the application message (310) having the input message format to

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
28

an application message (320) having the output message format according to the conversion

rule (306) of the configuration policy (222).
In the example of Figure 5, each of the conversion functions (302) has an argument signature
(500). The argument signature (500) of each function (302) specifies the order, number, and
type of arguments that the conversion function receives and returns. The argument signature
(500) of each function (302) of Figure 5 may be stored in a function table in a conversion
function library that contains the function. The argument signature (500) may be stored in
such a function table using codes to represent argument types. Examples of codes used to
represent argument types in application message conversion using a feed adapter may
include the following exemplary codes:

e ‘I’ to represent a 32-bit integer argument,

e ‘L’ to represent a 64-bit integer argument,

e ‘F’ to represent a 32-bit floating point number argument,

e ‘D’ to represent a 64-bit double floating point number argument,

e ‘S’ to represent a string argument,

e ‘B’ to represent a byte array argument,

e ‘?’ to represent any type of argument,

e ‘V’to represent a variable argument, and

e ‘v’ to represent that no return argument is available.

Using combinations of the exemplary codes above, a feed adapter may represent the

argument signature (500) of each conversion function (302) as entry in a function table of

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
29

the conversion function library that contains the function. Examples of entries that may be
used to represent the argument signatures (500) useful in application message conversion

according to embodiments of the present invention may include the following entries:

e SB
o L(II
e FD
o V(2

The exemplary entry ‘S(B’ represents an argument signature for a conversion function that
receives a byte array argument and returns a string argument. The exemplary entry ‘LI
represents an argument signature for a conversion function that receives four integer
arguments and returns a 64-bit integer argument. The exemplary entry ‘F(D’ represents an
argument signature for a conversion function that receives a 64-bit double floating point
number argument and returns a 32-bit floating point number argument. The exemplary entry
‘v(?’ represents an argument signature for a conversion function that receives any type of

argument and does not provide a return argument.

In the example of Figure 5, the conversion rule (306) specifies one or more arguments (502)
for one of the conversion functions (302). Each argument (502) of Figure 5 has a type (506).
For further explanation, consider again the exemplary conversion rule discussed above and

reproduced below in part:

3: <conversion_rule intype=“Opra.Sale” outtype="FMD.Sale”>
7: <action field= “FMD.SecurityType”>
8: stringSecurityType(“O”)

9: </action>

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
30

31: </conversion_rule>

The exemplary conversion rule above species that the conversion function
‘stringSecurityType’ receives one argument and returns one argument. The argument
received by the conversion function ‘stringSecurityType’ has a type that is a string. The
string type of the argument received by the conversion function ‘stringSecurityType’ is
specified in the example above using the quotation marks around the character ‘O.” The
argument returned by the conversion function ‘stringSecurityType’ has a type that is
specified by the ‘FMD.SecurityType’ field. The field type of the ‘FMD.SecurityType’ field

is the type of the argument returned by the conversion function ‘stringSecurityType.’

In the method of Figure 5, converting (312), by the feed adapter, the application message
(310) having the input message format to an application message (320) having the output
message format according to the conversion rule (306) of the configuration policy (222)
includes determining (508) whether the types (506) of the arguments (502) specified by the
conversion rule (306) for the conversion function match the argument signature (500) of the
conversion function. Determining (508) whether the types (506) of the arguments (502)
specified by the conversion rule (306) for the conversion function match the argument
signature (500) of the conversion function according to the method of Figure 5 may be
carried out by parsing the conversion rule (306) to identify the conversion functions and the
type of arguments for each of the identified functions, looking up the argument signature for
cach identified functions in the function libraries containing each identified function, and
comparing each argument type for each identified function with the corresponding argument
type specified in the argument signature for the function. If each argument type for each
identified conversion function matches the corresponding argument type specified in the
argument signature for the conversion function, then the types (506) of the arguments (502)
specified by the conversion rule (306) for the conversion function match the argument
signature (500) of the conversion function. The types (506) of the arguments (502) specified
by the conversion rule (306) for the conversion function, however, do not match the
argument signature (500) of the conversion function if any of the argument types for each
identified conversion function do not match the corresponding argument type specified in

the argument signature for the conversion function.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
31

Converting (312), by the feed adapter, the application message (310) having the input
message format to an application message (320) having the output message format according
to the conversion rule (306) of the configuration policy (222) according to the method of
Figure 5 is carried out by continuing (512) with the application message conversion when if
the types (506) of the arguments (502) specified by the conversion rule (306) for the
conversion function match the argument signature (500). In the method of Figure 5,
continuing (512) with the application message conversion may be carried out by calling each
of the conversion functions (302) used to specify the conversion rule (306) in dependence
upon the application message (310) having the input message format, receiving, in return
from each of the called conversion functions, a value, and storing each of the received values

in the application message (320) having the output message format.

In the method of Figure 5, converting (312), by the feed adapter, the application message
(310) having the input message format to an application message (320) having the output
message format according to the conversion rule (306) of the configuration policy (222) is
carried out by converting (510) the types (506) of the arguments specified by the conversion
rule (306) for the conversion function to match the argument signature (500) of the
conversion function if the types (506) of the arguments (502) specified by the conversion
rule (306) for the conversion function do not match the argument signature (500).
Converting (510) the types (506) of the arguments specified by the conversion rule (306) for
the conversion function to match the argument signature (500) of the conversion function
may be carried out using standard type conversion algorithms as will occur to those of skill
in the art. After the feed adapter converts (510) the types (506) of the arguments specified
by the conversion rule (306) for the conversion function to match the argument signature
(500) of the conversion function, the method of Figure 5 continues (512) with application

message conversion as discussed above.

In view of the explanations set forth above in this document, readers will recognize that
application message conversion using a feed adapter according to embodiments of the

present invention provides the following benefits:

10

15

20

25

WO 2008/068233 PCT/EP2007/063194
32

e the ability to modify application message conversions performed by a feed adapter

by only altering the feed adapter configuration policy,

e the ability to extend feed adapter functionality using loadable conversion function

libraries, and

e the ability to reconfigure a feed adapter without recompiling the software installed on

the feed adapter.

Exemplary embodiments of the present invention are described largely in the context of a
fully functional computer system for application message conversion using a feed adapter.
Readers of skill in the art will recognize, however, that embodiments of the present
invention may also include a computer program product disposed on signal bearing media
for use with any suitable data processing system. Such signal bearing media may be
transmission media or recordable media for machine-readable information, including
magnetic media, optical media, or other suitable media. Examples of recordable media
include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic
tape, and others as will occur to those of skill in the art. Examples of transmission media
include telephone networks for voice communications and digital data communications
networks such as, for example, Ethernets™ and networks that communicate with the Internet
Protocol and the World Wide Web as well as wireless transmission media such as, for
example, networks implemented according to the IEEE 802.11 family of specifications.
Persons skilled in the art will immediately recognize that any computer system having
suitable programming means will be capable of executing the steps of the method of the
invention as embodied in a program product. Persons skilled in the art will recognize
immediately that, although some of the exemplary embodiments described in this
specification are oriented to software installed and executing on computer hardware,
nevertheless, alternative embodiments implemented as firmware or as hardware can be used

in embodiments of the present invention.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
33

CLAIMS

1. A method of application message conversion using a feed adapter, the method
comprising:

providing a feed adapter capable of application message conversion, the feed adapter
comprising a plurality of conversion functions, each conversion function capable of
converting data from one format to another format;

establishing, on the feed adapter, a configuration policy that specifies a conversion
rule from an input message format to an output message format using at least one of the
conversion functions;

receiving, in the feed adapter, an application message having the input message
format; and

converting, by the feed adapter, the application message having the input message
format to an application message having the output message format according to the

conversion rule of the configuration policy.

2. The method of claim 1 wherein converting, by the feed adapter, the application
message having the input message format to an application message having the output
message format according to the conversion rule of the configuration policy further
comprises:

calling each of the conversion functions used to specify the conversion rule in
dependence upon the application message having the input message format;

receiving, in return from each of the called conversion functions, a value; and

storing each of the received values in the application message having the output

message format.

3. The method of claim 1 wherein:
the input message format comprises an input field format;
the output message format comprises an output field format; and
one of the conversion functions is capable of:

converting data from the input field format to the output field format, and

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
34

returning the converted data having the output field format.

4. The method of claim 1 wherein one of the conversion functions is capable of:
calculating a value in dependence upon the application message having the input
message format; and

returning the calculated value.

5. The method of claim 1 wherein:

cach of the conversion functions has an argument signature;

the conversion rule specifies one or more arguments for a conversion function, each
argument having a type; and

converting, by the feed adapter, the application message having the input message
format to an application message having the output message format according to the
conversion rule of the configuration policy further comprises:

determining whether the types of the arguments specified by the conversion rule for
the conversion function match the argument signature of the conversion function, and

converting the types of the arguments specified by the conversion rule for the
conversion function to match the argument signature of the conversion function if the types
of the arguments specified by the conversion rule for the conversion function do not match

the argument signature.

6. The method of claim 1 further comprising transmitting, by the feed adapter to a
message receiving device on a message stream, the application message having the output

message format.

7. The method of claim 6 further comprising brokering, by a stream administration
server, establishment of the message stream from the feed adapter to the message receiving

device.

8. The method of claim 6 wherein the message receiving device is a subscribing client

device.

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194

35
9. The method of claim 1 wherein the application message further comprises financial
market data.
10. An apparatus for application message conversion using a feed adapter, the apparatus

comprising a computer processor, a computer memory operatively coupled to the computer
processor, the computer memory having disposed within it computer program instructions
capable of:

providing a feed adapter capable of application message conversion, the feed adapter
comprising a plurality of conversion functions, each conversion function capable of
converting data from one format to another format;

establishing, on the feed adapter, a configuration policy that specifies a conversion
rule from an input message format to an output message format using at least one of the
conversion functions;

receiving, in the feed adapter, an application message having the input message
format; and

converting, by the feed adapter, the application message having the input message
format to an application message having the output message format according to the

conversion rule of the configuration policy.

11. The apparatus of claim 10 wherein converting, by the feed adapter, the application
message having the input message format to an application message having the output
message format according to the conversion rule of the configuration policy further
comprises:

calling each of the conversion functions used to specify the conversion rule in
dependence upon the application message having the input message format;

receiving, in return from each of the called conversion functions, a value; and

storing each of the received values in the application message having the output

message format.

12. The apparatus of claim 10 wherein:
cach of the conversion functions has an argument signature;
the conversion rule specifies one or more arguments for a conversion function, each

argument having a type; and

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
36

converting, by the feed adapter, the application message having the input message
format to an application message having the output message format according to the
conversion rule of the configuration policy further comprises:

determining whether the types of the arguments specified by the conversion rule for
the conversion function match the argument signature of the conversion function, and

converting the types of the arguments specified by the conversion rule for the
conversion function to match the argument signature of the conversion function if the types
of the arguments specified by the conversion rule for the conversion function do not match

the argument signature.

13. A computer program product for application message conversion using a feed
adapter, the computer program product disposed upon a signal bearing medium, the
computer program product comprising computer program instructions capable of:
establishing, on the feed adapter, a configuration policy that specifies a conversion
rule from an input message format to an output message format using at least one of a
plurality of conversion functions comprised on the feed adapter, each conversion function
capable of converting data from one format to another format;
receiving, in the feed adapter, an application message having the input message
format; and
converting, by the feed adapter, the application message having the input message format to
an application message having the output message format according to the conversion rule of

the configuration policy.

14. The computer program product of claim 13 wherein the signal bearing medium

comprises a recordable medium.

15. The computer program product of claim 13 wherein the signal bearing medium

comprises a transmission medium.

16. The computer program product of claim 13 wherein converting, by the feed adapter,
the application message having the input message format to an application message having
the output message format according to the conversion rule of the configuration policy

further comprises:

10

15

20

25

30

WO 2008/068233 PCT/EP2007/063194
37

calling each of the conversion functions used to specify the conversion rule in
dependence upon the application message having the input message format;

receiving, in return from each of the called conversion functions, a value; and

storing each of the received values in the application message having the output

message format.

17. The computer program product of claim 13 wherein:
the input message format comprises an input field format;
the output message format comprises an output field format; and
one of the conversion functions is capable of:
converting data from the input field format to the output field format, and

returning the converted data having the output field format.

18. The computer program product of claim 13 wherein one of the conversion functions
is capable of:

calculating a value in dependence upon the application message having the input
message format; and

returning the calculated value.

19. The computer program product of claim 13 wherein:

cach of the conversion functions has an argument signature;

the conversion rule specifies one or more arguments for a conversion function, each
argument having a type; and

converting, by the feed adapter, the application message having the input message
format to an application message having the output message format according to the
conversion rule of the configuration policy further comprises:

determining whether the types of the arguments specified by the conversion rule for
the conversion function match the argument signature of the conversion function, and

converting the types of the arguments specified by the conversion rule for the
conversion function to match the argument signature of the conversion function if the types
of the arguments specified by the conversion rule for the conversion function do not match

the argument signature.

WO 2008/068233 PCT/EP2007/063194

38

20. The computer program product of claim 13 further comprising computer program
instructions capable of transmitting, by the feed adapter to a message receiving device on a

message stream, the application message having the output message format.

WO 2008/068233

115

Feed Source 213

—

Feed Adapter

Input Stream 214\; U'

Feed Adapter 208 J, 219
c ,) s
y odnv;ars;ozr(x) Configuration] | Custom Conv.
odule 2281 1 policy 222 Library 218 '22
»— 200 I ==
7722222 | weseane | A2
Message Mode! 244 FConngtr)SI(;r; 4
Library 225 unc. Lib. 224
266 e — |
Messages | [ezesiiorzzzzzd |Messages!
240 Messaging 941
— Middleware 276 | teee— I 268
e 2 //
Transport Engine 278 '
\260
Feed Adapter
Qutput
Stream 216 *

¥

High Speed, Low Latency Data
Communications Network 200

264

PCT/EP2007/063194

High Speed, Low
Latency Data
Communications
Environment 201

Stream Administration
Server 212

Stream
Administration
Module 228

I IIAIS,

Authentication
Module 230

232
g—

Vo

Author.

Module
234

Auth.
Policy
235

Message Subscribing Client Device ZJQW//W l(250
Stream 280 Application | [Messages|fl | Message Ngssfage 4

254 238 240 | Model 244 Library 248 .

W pecdzizizzzzz227 e

Messaging Middleware Stream Administration

252 Library 272 258

A A A s i

Transport Engine 256
FIG. 1

WO 2008/068233 PCT/EP2007/063194

2/5
Display Device
180
1
U Feed Adapter 208
Video Adapter
209 RAM 168
ZLIIIIIIY,
Video Conversion - :
Configuration} |Custom Conv.
?{lijz Module 220 Policy 222 | | Library 218
o LTI [7 7
156 Bus 166 Message lerary OnV.erSK:)n unction
— — 225 Libraries 224
Front Messagesl] | Message | |Messages
Side 240 Model 244 il
Bus o _“
162 T
Messaging Middleware 276
Bus Adapter
158 - - -
o L A L e e
Transport Engine 278
Expansion
?gg Operating System 154
Communications I/O Adapter Disk Drive
Adapter 167 178 Adapter 172
U 1]]
Data Comm | | iher Computers
Network 182 User tnput Data Storage FIG. 2
100 — Device 181 170 '

WO 2008/068233

3/5

Provide A Feed Adapter Capable Of Application
Message Conversion 300

Establish, On The Feed Adapter, A Configuration
Policy That Specifies A Conversion Rule From An
Input Message Format To An Output Message
Format Using At Least One Of The Conversion
Functions 304

p—————1 Configuration Policy 222

Receive, In The Feed Adapter, An Application
Message Having The Input Message Format 308

PCT/EP2007/063194

(" Feed Adapter 208)

Conversion
Functions 302

(Conversion Rule 39_6)

O —/

Convert, By The Feed Adapter, The Application
Message Having The Input Message Format To
An Application Message Having The Output
Message Format According To The Conversion
Rule Of The Configuration Policy 312

Call Each Of The Conversion Functions Used
To Specify The Conversion Rule In
Dependence Upon The Application Message
Having The Input Message Format 314

Y

Receive, in Return From Each Of The Called

Application Message
Having An Input Messag
Format 310

Conversion Functions, A Value 316

Store Each Of The Received Values In The
Application Message Having The Output
Message Format 318

Received
Values 322

Application Message
Having An Output
Message Format 320

FIG. 3

WO 2008/068233 PCT/EP2007/063194

4/5

/
Provide A Feed Adapter Capable Of Application ‘ Feed Adapter 208 N

Message Conversion 300 ,
Conversion

Functions 302

Establish, On The Feed Adapter, A Configuration
Policy That Specifies A Conversion Rule From An

Input Message Format To An Output Message |——————{ Configuration Policy 222
Format Using At Least One Of The Conversion

Functions 304 @onversion Rule _31)_9

Receive, In The Feed Adapter, An Application j—- \ ~/
Message Having The Input Message Format 308

Application Message
Having An Input Messag
Format 310

Convert, By The Feed Adapter, The Application
Message Having The Input Message Format To
An Application Message Having The Qutput
Message Format According To The Conversion L

Rule Of The Configuration Policy 312

Application Message
Having An Qutput
Message Format 320

Broker, By A Stream Administration Server,
Establishment Of A Message Stream From The <
Feed Adapter To The Message Receiving Device

400
Message Stream
280

R

Transmit, By The Feed Adapter To A Message
Receiving Device On The Message Stream, The
Application Message Having The Output Message
Format 402

-t

FIG. 4

WO 2008/068233 PCT/EP2007/063194

5/5

‘ icati 4 Feed Adapter 208)
Provide A Feed Adapter Capable Of Application per cud

Message Conversion 300 Conversion Functions 302

Argument Signature 500
Establish, On The Feed Adapter, A Configuration

Palicy That Specifies A Conversion Rule From An
Input Message Format To An Output Message (——— Configuration Policy 222

Format Using At Least One Of The Conversion [

=

Conversion Rule 306
Arguments 502 ﬂ

Type 506 "

\C =/

Application Message
Having An Input Messag
Format 310

Functions 304

Receive, In The Feed Adapter, An Application 4——1—
Message Having The Input Message Format 308

]

Convert, By The Feed Adapter, The Application Message Having The Input Message Format To An
Application Message Having The Output Message Format According To The Conversion Rule Of
The Configuration Policy 312

508

Convert The Types Of The Arguments
Specified By The Conversion Rule For The Continue With Application
Conversion Function To Match The Argument Message Conversion 512
Signature Of The Conversion Function 510 |

Application Message

Having An Output
Message Format 320 FIG. 5

INTERNATIONAL SEARCH REPORT .

International application No

PCT/EP2007/063194

A. CLASSIFICATIOﬁ OF SUBJECT MATTER
ING. - H04L29/08

According to International Patent Classification (IPC) or fo both nationa! classification and IPC

B. FIELDS SEARCHED

HO4L - GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* |} Citation of document, with indication, where appropriate,.of the relevant passages

abstract
column 1, lines 1-34

column 5, lines 24-42 -

column 11, lines 48-64
claim 1

column 3, line 51 - column 4, line 46

5
column 8, line 12 - column 9, line 34

X US 5 987 432 A (ZUSMAN JOSEPH [US] ET AL) : 1-20
16 November 1999 (1999 -11- 16)

/’._,

m Further documents are listed in the continuation of Box C.

- E See patent family annex.

*- Spedial categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E* earlier document but published on or after the international
filing date *

L document which may throw doubts on priority claim(s) or_
which is citedto establish the publication date of another
citation or other special reason {as specified)

O document referring to an oral disclosure, use, exhlbmon or
other means

P ‘document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the pnnctple or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particuiar relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, sucti combination being obvious to a person skilled .
in the art.

'&" document member of the same patent family

Date of the actual complétion of the international search

24 April 2008

Date of mailing of the international search repont

06/05/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Lépez Monclds, I

Formm PCT/ISA/210 (second shest) (April 2005)

page' 1 of 2

Relevant to clai\m No.

INTEF“WATKDNA&.SEIURCFIREFK)RT

] International application No.

PCT/EP2007/063194

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document; with indication, where appropriate, of the relevant passages

Relevant to blaim No.

X

WO 99/00753 A (BELZBERG FINANCIAL MARKETS

& N [CA]; WILSON DONALD W [CA])

7 January 1999 (1999-01-07)

abstract
page 1, lines 6-12

page 3, 1ine 28 - page 4, line 10

page 4, line 29 - page 5, line 3
page 5, line 25 - page 6, line 3

- page 10, line 23 - page 13, line 22

US 2002/019812 Al (BOARD KAREN ELEANOR

[CA] ET AL) 14 February 2002 (2002-02-14)
abstract _ '
paragraphs [0002] - [0010], [0012] -
[0022], [0039]

claims 1,7,10,18-20

1-20"

1-20

Fom PCT/ISA/210 (continuation of second sheet) (April 2005)

- page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

. PCT/EP2007/063194
Patent document Publication - Patent tamily Publication
cited in search report date member(s) . date
Us 5987432 A 16-11-1999 NONE
WO 9900753 A 07-01-1999 AT 274209 T 15-09-2004
AU 740382 B2 01-11-2001
AU 8098698 A - 19-01-1999
CA 2295054 Al 07-01-1999
DE 69825753 D1 - 23-09-2004
- DE 69825753 T2 18-08-2005
EP 0992014 Al 12-04-2000 .
ES 2227849 T3 01-04-2005
HK 1023824 Al 18-03-2005
JP 2002506544 T 26-02-2002
PT 992014 T 31-12-2004
us 5864827 A 26-01-1999
US 2002019812 Al . 14-02-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

