wo 2013/049074 A1 [N I/ P00 00O 0 OO R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/049074 A1

4 April 2013 (04.04.2013) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
. L AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2012/057136 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
25 September 2012 (25.09.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
61/541,059 29 September 2011 (29.09.2011) Us
13/423,035 16 March 2012 (16032012) Us (84) Designated States (unless otherwise indicated, fO}" every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
TION [US/US]; 500 Oracle Parkway, M/S 5op7, Redwood UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Shores, California 94065 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Taventors: LI, Zhenyu; No. 20 Chengfu Road 39-252, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Haidian District, Beijing (CN). LIU, Lidan; No. 40 Huay- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
anbeili Chaoyalig District Beijing (’CN) S TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
’ ’ : ML, MR, NE, SN, TD, TG).
(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP, Published:

650 California Street, Fourteenth Floor, San Francisco,
California 94108 (US).

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR SUPPORTING AUTOMATICALLY DEPLOYING/UNDEPLOYING APPLICATION
COMPONENTS IN A TRANSACTIONAL MIDDLEWARE MACHINE ENVIRONMENT

Machine A 101

Deployment
Agent A
11

Machine B 102

Deployment
AgentB
12

Machine C 103 /

Deployment]

AgentC
13

i Deployment %

i
i

Deployment Center 106

Machine D 110

Data
Repository
105

User Input

Palicy 107

116

=}

L Domain A0S FIGURE 1
(57) Abstract: A system and method can support automatically deploying application components in a transactional middleware ma-
chine environment. A deployment center can receive one or more application packages, each of which contains binary files for one
or more transactional servers and configuration information that describes relationship and parameters of the one or more transac-
tional servers in the application package. The deployment center can further generate one or more distribution packages for each
transactional middleware machine in the transactional middleware machine environment based on the one or more application pack-
ages. Then, the deployment center can deploy the one or more distribution packages to the plurality of transactional middleware ma-
chines in the transactional middleware machine environment.

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

SYSTEM AND METHOD FOR SUPPORTING AUTOMATICALLY
DEPLOYING/UNDEPLOYING APPLICATION COMPONENTS IN A TRANSACTIONAL
MIDDLEWARE MACHINE ENVIRONMENT

Copyright Notice:

[0001] A portion of the disclosure of this patent document contains material which is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0002] The present invention is generally related to computer systems and software such as
middleware, and is particularly related to supporting a transactional middleware machine

environment.

Background:
[0003] A transactional middleware system, or transaction oriented middleware, includes

enterprise application servers that can process various transactions within an organization. With
the developments in new technologies such as high performance network and multiprocessor
computers, there is a need to further improve the performance of transactional middleware.

These are the generally areas that embodiments of the invention are intended to address.

Summary:

[0004] Described herein is a system and method for supporting automatically deploying
application components in a transactional middleware machine environment. A deployment
center can receive one or more application packages, each of which contains binary files for one
or more transactional servers and configuration information that describes relationship and
parameters of the one or more transactional servers in the application package. The deployment
center can further generate one or more distribution packages for each transactional middleware
machine in the transactional middleware machine environment based on the one or more
application packages. Then, the deployment center can deploy the one or more distribution
packages to the plurality of transactional middleware machines in the transactional middleware

machine environment.

Brief Description of the Figures:

[0005] Figure 1 shows an illustration of a transactional middleware machine environment

that supports a dynamic resource broker, in accordance with an embodiment of the invention.

-1-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

[0006] Figure 2 illustrates an exemplary flow chart for supporting automatically
deploying/undeploying application components in a transactional middleware machine
environment, in accordance with an embodiment of the invention.

[0007] Figure 3 shows an illustration of the internal structure of an application package in a
middleware machine environment, in accordance with an embodiment of the invention.
[0008] Figure 4 shows an illustration of the internal structure of an application directory in a
middleware machine environment, in accordance with an embodiment of the invention.
[0009] Figure 5 shows an illustration of preparing an application package, in accordance
with an embodiment of the invention.

[0010] Figure 6 shows an illustration of creating a machine list in a GUI Console, in
accordance with an embodiment of the invention.

[0011] Figure 7 shows an illustration of uploading application packages, in accordance with
an embodiment of the invention.

[0012] Figure 8 shows an illustration of creating a domain in a transactional middleware
environment, in accordance with an embodiment of the invention.

[0013] Figure 9 shows an illustration of binding a physical machine to a virtual machine in a
domain, in accordance with an embodiment of the invention.

[0014] Figure 10 shows an illustration of adding an application package to a virtual machine
in a domain, in accordance with an embodiment of the invention.

[0015] Figure 11 shows an illustration of setting up multiple virtual machines in a domain, in
accordance with an embodiment of the invention.

[0016] Figure 12 shows an illustration of the internal structure of the data repository, in
accordance with an embodiment of the invention.

[0017] Figure 13 shows an illustration of the structure of an application directory, in
accordance with an embodiment of the invention.

[0018] Figure 14 shows more details of the transactional middleware machine environment
that supports a dynamic resource broker in Figure 1, in accordance with an embodiment of the

invention.

Detailed Description:

[0019] Described herein is a system and method for supporting a transactional middleware
system that can take advantage of fast machines with multiple processors, and a high
performance network connection. A dynamic resource broker can dynamically scale up/down a
transactional system in the transactional middleware machine environment by adding/removing
groups and machines according to the resource usage changes. The transactional middleware

machine environment can comprise a deployment center in the transactional middleware

-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

machine environment, wherein the deployment center maintains one or more deployment
policies for the transactional middleware machine environment, and one or more deployment
agents, each of which is associate with a transactional middleware machine of a plurality of
transactional middleware machines in a transactional domain in the transactional middleware
machine environment. The deployment center operates to receive machine usage information
from the one or more deployment agents, and dynamically scale up or down resource used in
the transactional domain based on the resource usage information collected by the one or more
deployment agents.

[0020] In accordance with an embodiment of the invention, the system comprises a
combination of high performance hardware, e.g. 64-bit processor technology, high performance
large memory, and redundant InfiniBand and Ethernet networking, together with an application
server or middleware environment, such as WebLogic Suite, to provide a complete Java EE
application server complex which includes a massively parallel in-memory grid, that can be
provisioned quickly, and can scale on demand. In accordance with an embodiment, the system
can be deployed as a full, half, or quarter rack, or other configuration, that provides an
application server grid, storage area network, and InfiniBand (IB) network. The middleware
machine software can provide application server, middleware and other functionality such as, for
example, WebLogic Server, JRockit or Hotspot JVM, Oracle Linux or Solaris, and Oracle VM. In
accordance with an embodiment, the system can include a plurality of compute nodes, IB switch
gateways, and storage nodes or units, communicating with one another via an IB network.
When implemented as a rack configuration, unused portions of the rack can be left empty or
occupied by fillers.

[0021] In accordance with an embodiment of the invention, referred to herein as “Sun Oracle
Exalogic” or “Exalogic”, the system is an easy-to-deploy solution for hosting middleware or
application server software, such as the Oracle Middleware SW suite, or WebLogic. As
described herein, in accordance with an embodiment the system is a “grid in a box” that
comprises one or more servers, storage units, an |B fabric for storage networking, and all the
other components required to host a middleware application. Significant performance can be
delivered for all types of middleware applications by leveraging a massively parallel grid
architecture using, e.g. Real Application Clusters and Exalogic Open storage. The system
delivers improved performance with linear I/O scalability, is simple to use and manage, and
delivers mission-critical availability and reliability.

[0022] In accordance with an embodiment of the invention, a transactional system, e.g.
Tuxedo, can be a set of software modules that enables the construction, execution, and
administration of high performance, distributed business applications and has been used as

transactional middleware by a number of multi-tier application development tools. The

-3-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

transactional system is a platform that can be used to manage distributed transaction processing
in distributed computing environments. It is a platform for unlocking enterprise legacy
applications and extending them to a services oriented architecture, while delivering unlimited
scalability and standards-based interoperability.

[0023] A dynamic resource broker can automatically deploy application components of a
transaction system, e.g. a Tuxedo, in a transactional middleware machine environment. Thus,
the transactional system can take advantage of fast machines with multiple processors, e.g.
Exalogic middleware machines, and a high performance network connection, e.g. an Infiniband
(IB) network.

Dynamic Resource broker

[0024] In accordance with an embodiment of the invention, a dynamic resource broker
allows the users to automatically deploy/undeploy transactional middleware applications to
different remote machines. This can be beneficial to the users of the transactional middleware
applications. For example, as a command line style middleware product, Tuxedo applications
can also be deployed to a single machine or multiple network-connected machines manually.
However, using the manual mode, users need to login every machine to deploy their
applications even when there are a large number of network-connected machines.

[0025] Figure 1 shows an illustration of a transactional middleware machine environment
that supports automatically deploying/undeploying application components, in accordance with
an embodiment of the invention. As shown in Figure 1, the transactional middleware machine
environment 100 includes a plurality of transactional middleware machines, such as Machines A-
D 101-103 and 110.

[0026] A dynamic resource broker can include components such as: a data repository 105
on Machine D 110, a deployment center 106 on Machine D 110, and one or more deployment
agent, Agents 111-113, each of which resides on a transactional middleware machine, Machine
A-C 101-103 in the transactional middleware machine environment 100.

[0027] The data repository 105 resides in a memory. The data repository 105 can be used
to store the related information, such as: application packages, distribution packages and
configuration files. The deployment center 106 run by the one or more microprocessors. The
deployment center 106 can receive all the user inputs 107 and is responsible for distributing the
instructions/packages to the destination machines, Machines A-C 101-103, based on one or
more deployment policies 116. Furthermore, the deployment center 106 is responsible for
receiving the execution result from the destination machines, Machines A-C 101-103. Each
deployment agent, Agent 111-113, is responsible for receiving the distribution packages,

executing the deployment/un-deployment/management tasks, and providing the execution result

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

back to the deployment center 106.

[0028] In an example as shown in Figure 1, a user can first upload the application packages
to the data repository 105. Then, the user can create a domain, Domain A 109, which includes
two machines: Machine A 101 and Machine B 102. Then, the user can notify the deployment
center 106 to perform the deployment tasks. The deployment center 106 can deploy the
distribution packages to Machine A 101 and Machine B 102 and boot Domain A 109.

[0029] Additionally, Domain A 109 can include a third machine, Machine C 103, as the
candidate machine that may be dynamically activated at runtime. For example, when the CPU
usage of Machine B 102 increases to 100%, the deployment center can activate Machine C 103
to share the load with Machine B 102. The deployment center 106 can distribute the packages to
Machine C, and instruct the deployment agent, Agent C 113, to perform management tasks,
such as Tuxedo Management Information Base (MIB) operations. Once the management tasks
have been successfully performed, Machine C 103 can be dynamically added to Domain A, and
all the servers and services on Machine C 103 can be activated.

[0030] Figure 2 illustrates an exemplary flow chart for supporting automatically
deploying/undeploying application components in a transactional middleware machine
environment, in accordance with an embodiment of the invention. As shown in Figure 2, at step
201, a data repository can receive one or more application packages, wherein each application
package contains binary files for one or more transactional servers and configuration information
that describes relationship and parameters of the one or more transactional servers in the
application package. Then, at step 202, a deployment center can generate one or more
distribution packages on the one or more microprocessors for each transactional middleware
machine of a plurality of transactional middleware machines in the transactional middleware
machine environment based on the one or more application packages. Finally, at 203, the
deployment center can deploy the one or more distribution packages to the plurality of
transactional middleware machines in the transactional middleware machine environment.
[0031] In accordance with an embodiment of the invention, and as disclosed below, the
deployment of a transactional application, such as a Tuxedo application, includes several steps:
application packages distribution, Tuxedo system environment setup, Tuxedo configuration files
generation, and Tuxedo system booting, each of which will be discussed in the following

sections.

Application Package
[0032] In accordance with an embodiment of the invention, an application package is an
archive package that can be prepared by the users or customers and deployed on one or more

middleware machines. An application package contains the compiled binary files and other

-5-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

environment files and can be organized based on the machine which is to be deployed with the
transactional applications.

[0033] For example, a transactional application, such as a Tuxedo application, can be based
on one or more application packages, each of which can be a zip file. The Tuxedo application
(domain) can be defined in a TUXCONFIG, or UBBCONFIG configuration file, that specifies a
set of machines, servers, and other resources. The Tuxedo application can exist on a single
machine or across multiple network-connected machines. Users can first upload their application
packages, in order to deploy the Tuxedo application.

[0034] Figure 3 shows an illustration of the internal structure of an application package in a
middleware machine environment, in accordance with an embodiment of the invention. As
shown in Figure 3, an application package 300 can include multiple tiers, e.g. Tier 1 301, Tier 2
302, and Tier 3 303.

[0035] Tier 1 301 includes a name for the application package 300, which can be unique
within all the uploaded application package names.

[0036] Tier 2 302 can be a child directory under Tier 1 301. Tier 2 302 contains a name that
stands for the information about the platform the application package 300 can be deployed to. As
show in Figure 3, Tier 2 can be used to represent a machine type, OEL55_64_ExaX22X8664.
[0037] Tier 3 303 includes child directories Tier 2 302, which contains the compiled binary
files used by the transactional system, such as application servers, TMS servers, clients and so
on. As show in Figure 3, under OEL55_64 ExaX22X8664 (Tier 2 302), the sub-directory
“servers” can have two compiled server binary files: server1 and server2.

[0038] Furthermore, Tier 3 303 can contain different environmental files, such as Tuxedo
machine level ENVFILE, Tuxedo group level ENVFILE, Tuxedo server level ENVFILE, and
Tuxedo server level RCMD file. Additionally, under Tier 3 303, there can be sub-directories,
where users can organize their applications.

[0039] Additionally, Tier 3 303 can contain a universal bulletin board configuration file, such
as a Tuxedo UBB_part file, which is a group level UBBCONFIG file. The Tuxedo UBB_part file
contains the GROUPS, RMS, SERVERS, SERVICES, ROUTINGS sections of a complete
UBBCONFIG file and is mainly used to describe the relationship and parameters of all the
servers within this package. The Tuxedo UBB_part file can be used to generate the
UBBCONFIG file when decide to deploy this package to a machine and its content can be

modified at that time.

Application Directory
[0040] In accordance with an embodiment of the invention, an application package can be

used repeatedly in a transactional middleware machine environment. For example, an

-6-

10

15

20

WO 2013/049074 PCT/US2012/057136

application package can be applied to different domains, different machines in one domain or a
single machine in one domain for multiple times.

[0041] Additionally, the dynamic resource broker can generate distribution packages that are
deployed to the destination machines based on the application packages. After a distribution
package is deployed to a destination machine, the transactional system can create an
application directory on the destination machine.

[0042] Figure 4 shows an illustration of the internal structure of an application directory in a
middleware machine environment, in accordance with an embodiment of the invention. As
shown in Figure 4, an application directory, such as a Tuxedo application directory APPDIR 401,
can include multiple subdirectories, APP1 402 and APP2 403, for containing distribution
packages for different applications. The structure of a deployed Tuxedo application 400 under
the application directory, APPDIR 401, can resemble the structure of the application packages,

with the exception of the Tuxedo UBB_part file.

Upload Application Package

[0043] In accordance with an embodiment of the invention, users can upload one or more
prepared application packages to a data repository. Once the upload of the application packages
is successful, the system allows the users to fill an application package information list, the

content of which is shown in the following Table 1.

ltem Description
Application Package Name The application package name, for example
APP1.
Tuxedo Version The Tuxedo Version this package is built on, for

example, TUX11g. This item is just used for the
users to indicate when they use this package
later.

Supported Operation System The Operation System this package can be
deployed to. This information will be
compared with the corresponding item in
Machine list when deploy. E.g. “Oracle
Enterprise Linux 5.5” and “Oracle Solaris 11
Express”.

Tuxedo Word Size To describe the word size this package is build
on. For example, 32 bit or 64 bit. This
information can be compared with the
corresponding item in Machine list when
deploy.

Machine Architecture To describe which machine architecture this
package can apply to. The candidate is:
“Exalogic X2-2, X86-64" and “Exalogic X2-2,

-7-

WO 2013/049074 PCT/US2012/057136

SPARC”. This can be compared with the
corresponding item in Machine list when

deploy.
Services The all services names supplied by this
package. For example, TOUPPER1, TOUPPER?2.
Dependent Services The dependent service of this package. That

means when users deploy this package, they
must assure the packages which contain the
dependent service are also deployed. This
information is just for users to reference, the
system will not check it automatically.

Data Base Type If the application within this package relates to
the Data Base, then please indicate the Data
Base Type. This information is just for users to
reference later, the system will not check it
automatically.

Data Base Version If the application within this package relates to
the Data Base, then please indicate the Data
Base Version. This information is just for users
to reference later, the system will not check it
automatically.

Table 1

Create Machine List

[0044] In accordance with an embodiment of the invention, before a domain is created,
users can create a list of machines that the application packages are deployed to. For each
machine, users can fill a form that describes this particular machine. The content of the form is

shown in the following Table 2.

ltem Description
Logical Name It’s the logical name of this machine and is named by the
customer. The length of it must be 30 characters or less. This
name must be unique among all the machines and can be the
same with the machine’s physical name.
Physical Name It's the physical name of a processor, for example, the value
produced by the UNIX system uname -n command. The length
of it must be 30 characters or less.
Operation System The operation system installed on this machine.
Machine Architecture To describe this machine’s architecture. The candidate is:
“Exalogic X2-2, X86-64" and “Exalogic X2-2, SPARC”. This will be
compared with the “Machine Architecture” item in application
package list when deploy.
C/C++ and COBOL compilers This specifies the cc version and so on. And this information is
just for users to reference.
Tuxedo installation Specifies the Tuxedo’s installation OS version. This information

-8-

10

15

20

WO 2013/049074 PCT/US2012/057136

will be compared with the corresponding item “Supported
Operation System” in application package list when deploy an
application package to this machine. Now this feature only
supports: “Oracle Enterprise Linux 5.5” and “Oracle Solaris 11
Express”.

Tuxedo Word Size To describe the word size of the Tuxedo installed on this
machine. For example, 32 bit or 64 bit. This information will be
compared with the corresponding item “Tuxedo Word Size” in
application package list when deploy an application package to
this machine.

Tuxedo Version The Tuxedo Version, for example, TUX11g. This item is just used
for the users to reference when they use this machine.

TUXDIR The TUXDIR for the Tuxedo system installed on this machine.
We only acknowledge one TUXDIR directory in one machine.

Data Base Type All the Data Base types installed on this machine. This item is
just used for the users to reference when they use this machine.

Data Base Version All the Data Base Versions installed on this machine. This item is

just used for the users to reference when they use this machine.

Table 2

[0045] In the above machine list, all the machines can be named by its logical names. The
logical name of a machine can be unique in the machine list, and the logical name of a machine
can be the same as a physical name of the machine. Thus, one physical machine can have
more than one logical name and have more than one instance in the machine list. Therefore, the
users can specify multiple logical names for one physical machine, and deploy the different
application packages to the same machine, e.g. in the case of the faked MP model in a testing

environment.

UBBCONFIG Automatic Generation Rules

[0046] In accordance with an embodiment of the invention, users can choose to
automatically generate configuration files for the transactional servers, e.g. the UBBCONFIG file
for each Tuxedo server. The UBBCONFIG file can include different sections, such as a
RESOURCE section, a MACHINES section, a GROUPS section, a RMS section, a
NETGROUPS section, a NETWORK section, a SERVERS section, a SERVICES section, a
ROUTING Section.

[0047] Attached is Appendix A that provides further information regarding supporting a
dynamic resource broker in a transactional middleware machine system, and various other
aspects of the platform described throughout this disclosure. The information in Appendix A is
provided for illustrational purposes and should not be construed to limit all of the embodiments of

the invention.

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

An Example of Automatic Deployment in Tuxedo

[0048] In the following sections, an example is used for illustrating the procedure of
automatically deploying or undeploying Tuxedo applications in a transactional middleware
environment. In this example, two Tuxedo applications, APP1 and APP2, can be automatically
deployed on two middleware machines, Icinx 24 and lcIin16. In other examples, different

configurations can be used in a transactional middleware environment without limitation.

Create a Tuxedo Domain

[0049] In accordance with an embodiment of the invention, users can prepare the application
packages before creating a domain in a transactional middleware for deploying transactional
applications. In this example, every machine in the domain uses one application package. In
other examples, a machine can have one or more application packages as needed.

[0050] Figure 5 shows an illustration of preparing an application package 500, in
accordance with an embodiment of the invention. As shown in Figure 5, an application package,
APP1.zip 501, can include a UBB_part section 502 and a servers section 503. The following

Listing 1 shows the UBB_part section sections in APP1.zip.

*GROUPS:

Gl LMID=simplel GRPNO=30

*SERVERS

APP1/OEL55_ 64 ExaX22X8664/servers/simpservl
SRVGRP=G1 SRVID=20
CLOPT="-A"

*SERVICES
TOUPPER1

Listing 1

[0051] The above Figure 5 and Listing 1 illustrate the application package, APP1.zip, for
deploying a first application, APP1.

[0052] Additionally, in this example, another application package, APP2.zip, can be prepared
in a similar fashion for deploying a second application, APP2.

[0053] Figure 6 shows an illustration of creating a machine list for a domain in a GUI
Console, in accordance with an embodiment of the invention. As shown in Figure 6, the GUI
Console use a machine form 600 to define different properties associated with a particular
machine with a logical name, Iclnx24 601. Also as shown in Figure 6, the entries in the machine

form 600 can be based on Table 2 as disclosed above.

-10-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

[0054] Additionally, in this example, another similar machine form (not shown) can be used
for setting up a second machine in the system.

[0055] Figure 7 shows an illustration of uploading an application package, in accordance
with an embodiment of the invention. As shown in Figure 7, an application package form 700
can be displayed for requiring a user to file, when users successfully upload an application
package 701. Also as shown in Figure 7, the various entries in the machine form 700 can be
based on Table 2 as disclosed above.

[0056] Similarly, there can be another application package form (not shown) for uploading
the application package, APP2.zip.

[0057] Figure 8 shows an illustration of creating a domain in a transactional middleware
environment, in accordance with an embodiment of the invention. As shown in Figure 8, the
users can create a domain with a unique domain name, e.g. DOM1 801. This domain can be
configured to include machines from a machine list 802 and to run application packages from a
package list 803.

[0058] When a domain is created in a transactional middleware environment, different
templates can be used to automatically generate the configuration files for deployment. For
example, the contents of the automatically generated Tuxedo configuration files can be detailed
in Appendix A.

[0059] Additionally, in Tuxedo, there can be two default UBBCONFIG templates: one
UBBCONFIG template for RESOURCES part named UBB_Resource, and another UBBCONFIG
template for MACHINES part named UBB_Machine. Also, users can define additional templates
and save them to the data repository.

[0060] As shown in Figure 8, at the time when DOM1 801 is created, users can choose the
default UBB_Resource template and can indicate that the domain is in MP mode. Furthermore,

users can modify and add the values to the RESOURCES section in the configuration file.

Create Virtual Machines in a Tuxedo Domain

[0061] In accordance with an embodiment of the invention, users can create one or more
virtual machines in a domain. A virtual machine is a symbol that does not stand for a real
physical machine. A logical machine from the machine list can be bound to the virtual machine.
The naming rule for a virtual machine can be the same as that of a logical machine, and a name
for a virtual machine can be unique among all the virtual machines within one domain.

[0062] Figure 9 shows an illustration of binding a logical machine to a virtual machine in a
domain, in accordance with an embodiment of the invention. As shown in Figure 9, a virtual
machine M1 902 is created in DOM1 901. Additionally, users can bind a logical machine, Icinx24

903, from the machine list to the virtual machine M1 902, and can indicate that this logical

-11-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

machine, lclnx24 903, is the master for the domain DOM1 901. Then, the default UBB_
Resource section 904 can be added to the UBBCONFIG file and the content can be modified
according to the information related to Iclnx24 903 in the machine list. Furthermore, users can
also modify or add the values to corresponding items of MACHINES section 905 and NETWORK
section 906.

[0063] Figure 10 shows an illustration of adding an application package to a virtual machine
in a domain, in accordance with an embodiment of the invention. As shown in Figure 10, users
can add an application package, APP1 1003, from the package list to a virtual machine M1 1002
in a domain, DOM1 1001. Then, the UBB_part from the application package APP1, e.g. the
default UBB_Resource section 1004, can be added to the UBBCONFIG file and the content can
be modified according to the information of the logical machine Icinx24, which is bound to the
virtual machine M1 1002. Additionally, users can modify or add the values to items in
MACHINES, GROUPS, SERVERS and SERVICES sections 1005-1009.

[0064] Figure 11 shows an illustration of setting up multiple virtual machines in a domain, in
accordance with an embodiment of the invention. As shown in Figure 11, users can create
multiple virtual machines, such as a virtual machine, M1 1102 and a virtual machine, M2 1103, in
a domain, DOM1 1101. Furthermore, the users can bind a logical machine to a virtual machine.
For example, a logical machine, Icinx16, can be bound to the virtual machine M1 1002 and
responsible for running application package AZPP1, and a logical machine, Iclnx24, can be
bound to the virtual machine M2, and responsible for running another application package,
APP2.

[0065] The system can compare the information in the application package form with the
machine form, every time when an archive package is added to a virtual machine bound to a

logical machine. If there is an error, the system can report the error to the users.

Configure a Tuxedo Domain

[0066] In accordance with an embodiment of the invention, the system can provide
configuration templates for each machine in a domain.

[0067] In Tuxedo, users can select and modify the default DMCONFIG templates from the
data repository. Additionally, the data repository can provide a setenv.ksh template for each
machine. Users can use the setenv.ksh template to set various environment variables for
Tuxedo applications, e.g. TUXDIR, PATH, and APPDIR.

[0068] Furthermore, the system provides a deployment descriptor and an undeployment
descriptor for each machine according to the above information. Users can modify the two
descriptors according to their own requirements.

[0069] The deployment descriptor is a script describing the steps which can be taken after

-12-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

the distribution package is distributed to the destination machines. The following Listing 2 shows

an exemplary deployment descriptor.

#!/usr/bin/sh

. setenv.ksh

tlistpwd STUXDIR
tmloadcf -y UBBCONFIG

Listing 2

[0070] The undeployment descriptor is a script describing the steps which can be taken
when users want to undeploy the domain. The following Listing 3 shows an exemplary

undeployment descriptor.

. setenv.ksh
kill -9 tlisten
rm —rf SAPPDIR

Listing 3

[0071] In accordance with an embodiment of the invention, the distribution packages can be
generated to contain the modified setenv.ksh (setenv.cmd) template, UBBCONFIG, DMCONFIG,

deployment/undeployment descriptor and the compiled binary executable files.

Data Repository

[0072] In accordance with an embodiment of the invention, both the application packages
and the distribution packages can be stored in the data repository.

[0073] Figure 12 shows an illustration of the internal structure of the data repository, in
accordance with an embodiment of the invention. As shown in Figure 12, the data repository,
Repository 1201, includes an application package directory, AppPackage 1202, and a
deployment directory, DeployDir 1203. The original uploaded application packages are stored
under the AppPackage directory 1202, while the deployment units, such as domains, are stored
under the DeployDir directory 1203.

[0074] As shown in Figure 12, the domain name is ‘DOM1’, and the machine names are
‘Icinx24’ and ‘lcinx26’, each of which contains a DeployDescriptor, an UndeployDescriptor, and
various distribution packages.

[0075] Additionally, one application package can be added to a single machine in a domain
for multiple times, in which case the system can automatically create an index for it, e.g.
APP1_1, APP1_2, efc.

-13-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

Deploy/Undeploy a Tuxedo Domain

[0076] In accordance with an embodiment of the invention, the deployment center can
deploy the distribution archive files to every destination machine according to a distribution file.
Subsequently, the deployment agent can configure and set the Tuxedo system. If successful, the
system can record the status of the Tuxedo system into a status file. If the deployment of any
machine in the domain fails, the system can roll back the deployment operations that have been
done.

[0077] Figure 13 shows an illustration of the structure of an application directory, in
accordance with an embodiment of the invention. As shown in Figure 13, an application
directory, APPDIR 1301, is create to include multiple subdirectories, APP1 1302 and APP2
1303, for containing deployment file for different applications after a successful deployment.
[0078] Additionally, when the domain is in a shutdown status, then users can undeploy the
Tuxedo application. Furthermore, a deployment agent on a deployed machine can use the
undeployment descriptor to perform the undeployment tasks.

[0079] Figure 14 shows more details of the transactional middleware machine environment
that supports automatically deploying/undeploying application components in Figure 1, in
accordance with an embodiment of the invention. Same components in Figure 14 as those in
Figure 1 are denoted with the same reference numbers and the detail description thereof is
omitted.

[0080] As shown in Figure 14, the deployment center 106 comprises: a application package
receiving unit 1061 receiving one or more application packages, wherein each application
package contains binary files for one or more transactional servers and configuration information
that describes relationship and parameters of the one or more transactional servers in the
application package; a distribution package generating unit 1062 generating one or more
distribution packages for each transactional middleware machine of a plurality of transactional
middleware machines in the transactional middleware machine environment based on the one or
more application packages; and a distribution package deploying unit 1063 deploying the one or
more distribution packages to the plurality of transactional middleware machines in the
transactional middleware machine environment.

[0081] Preferably, each application package is allowed to contain information about a
platform that the application package can be deployed to.

[0082] Preferably, an application package is applied to different transactional domains,
wherein each transactional domain includes one or more transactional middleware machines.
[0083] Preferably, the one or more application directories are created on each transactional

middleware machine that is deployed with one or more transactional servers, based on the

-14-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

application packages.

[0084] Preferably, the deployment center 106 further comprises a deploying unit 1064
deploying multiple application packages into a same application directory.

[0085] Preferably, the deployment center 106 further comprises a configuration metadata
generating unit 1065 automatically generating configuration metadata for each transactional
middleware machine that is deployed with the one or more transactional servers based on the
configuration information in the application package.

[0086] Preferably, the data repository 105 stores the one or more application packages
uploaded by a user.

[0087] Preferably, the deployment center 106 further comprises a transactional application
deploying unit 1066 deploying a transactional application that includes multiple application
packages to either a single transactional middleware machine or multiple cross-connected
transactional middleware machines.

[0088] Preferably, each said application package is a compressed file that contains: a first
tier that contains names of the application package, a second tier that contains the configuration
information that describes relationship and parameters of the one or more transactional servers
in the application package, and a third tier that contains compiled binary files for the
transactional servers.

[0089] Preferably, the deployment center 106 further comprises a undeploying unit 1067
undeploying at least one distribution package from the plurality of transactional middleware
machines in the transactional middleware machine environment.

[0090] These units and components can be implemented by software and/or hardware.

Boot/Shutdown the Tuxedo application

[0091] In accordance with an embodiment of the invention, after the Tuxedo application is
deployed to the destination machine, the deployment center can connect with the deploy agents,
so that the users can choose to boot the whole system. When the system is successfully booted,
the system can record the status into a status file and update the status of the domain. The
users are allowed to perform the dynamic deployment, once the domain has been successfully
booted. On the other hand, the booted Tuxedo system may be shutdown if any error is found.
[0092] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present

disclosure, as will be apparent to those skilled in the software art.

-15-

10

15

20

25

30

WO 2013/049074 PCT/US2012/057136

[0093] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMSs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory |Cs), or any type of media or device
suitable for storing instructions and/or data.

[0094] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best
explain the principles of the invention and its practical application, thereby enabling others skilled
in the art to understand the invention for various embodiments and with various modifications
that are suited to the particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalence.

Appendix A

[0095] In accordance with an embodiment of the invention, the system can provide an
UBB_Resource template to the Tuxedo users for defining the RESOURCE section. When
creating a domain, a user can choose this template to generate the RESOURCES section for

UBBCONFIG. An exemplary item list in the template is shown in the following Table 3.

Item Value
IPCKEY 33333
MASTER NULL
When the users specify which machine is master, this item will
be generated automatically.
MODE User can specify SHM or MP.

Table 3

[0096] The items in the above Table 3 can be modified by the users except the MASTER
item. The MASTER item can be filled when the users specify which machine is a master in a
domain and which machine is the backup. Users can add other parameters besides these
parameters. Users can also create their own UBB_Resource templates and save them to the
system. In all templates, the MASTER can be filled by the system automatically following above

rules.

-16-

10

15

20

WO 2013/049074 PCT/US2012/057136

[0097] In accordance with an embodiment of the invention, the system can provide an
UBB_Machine template to the Tuxedo users. When creating a domain and specifying machine,
a user can choose this template to generate the MACHINES section for the UBBCONFIG file. An

exemplary item list in the template is shown in the following Table 4.

Item Value

ADDRESS This is generated by the system according to the machine’s
logical name. Can’t be modified by the users.

LMID This is generated automatically by the system. The naming
rule is SITE1, SITE2..., can’t be modified by the users.

APPDIR Specified by the users when they add machines to one
domain.

TUXCONFIG Be default, it’s the SAPPDIR/tuxconfig. Because the

tuxconfig can be placed in raw disk, so users can fill it with
other value, and this feature will deploy tuxconfig to that
place according to it.

TUXDIR This is generated automatically by the system using the
TUXDIR specified by the machine list. Users can not modify
it.

Table 4

[0098] Users can add other parameters of MACHINES section to the UBBCONFIG file.
Users can also specify the TLOG to raw disk, and the system can delete it when undeploying
this domain. User can also create additional UBB_Machine templates and save them to the
system. The parameters replacement rule can follow the above.

[0099] In accordance with an embodiment of the invention, when the users add an
application package to one domain, the system can replace some parameters of the GROUPS
section in the UBB_part of that package. An exemplary item list in the template is shown in the

following Table 5.

Item Value
GROUPNAME This is generated automatically by the system. The naming
rule is GROUP1, GROUP2..., can’t be modified by the users.
LMID This is generated by the system according to the machine
which the package is deployed to.
GRPNO This is generated automatically by the system. It can’t be
modified by the customers.

Table 5

[00100] The system can keep the values of other parameters of GROUPS section in a

UBB_part file, and allows the users to modify them freely. Similarly, users can add other

-17-

10

15

20

25

WO 2013/049074 PCT/US2012/057136

parameters to the UBBCONFIG file.

[00101] In accordance with an embodiment of the invention, when adding an application
package to one domain, the system can replace some parameters of the RMS section in the
UBB_part of that package. An exemplary item list in the template is shown in the following Table
6.

Item Value

RMSNAME This is generated automatically by the system. The naming
rule is RMS1, RMS2..., can’t be modified by the users.

SRVGRP This will be replaced with the group’s new name which is
generated by the system before. This can’t be modified by the
customers.

RMID This is generated automatically by the system. The naming
ruleis 1, 2 and so on. It can’t be modified by the customers.

Table 6

[00102] The system can keep the values of other parameters i RMS section in a UBB_part
file, and allows the users to modify them freely. Similarly, the users can add other parameters to
the UBBCONFIG.

[00103] In accordance with an embodiment of the invention, all the parameters in the
NETGROUPS section can be filled by the users themselves if they need.

[00104] Inaccordance with an embodiment of the invention, the NETWORK sectionis also in
the UBB_Machine template. If the domain is in a MP mode, then system can automatically add
this section to the UBBCONFIG. An exemplary item listin the template is shown in the following
Table 7.

Item Value
LMID This is generated automatically by the system. The users can’t
modify it.
NADDR The system will generate //hostname:port_number, and users
can modify the port_number.
NLSADDR The system will generate //hostname:port_number, and users
can modify the port_number.

Table 7

[00105] Additionally, users can add other parameters to the NETWORK section.
[00106] In accordance with an embodiment of the invention, when adding an application
package to one domain, the system can replace some parameters of the SERVERS section in

the UBB_part of that package. An exemplary item list in the template is shown in the following

-18-

10

15

20

25

WO 2013/049074 PCT/US2012/057136

Table 8.

Item Value
SVRGRP This will be replaced with the group’s new name which is
generated by the system before. This can’t be modified by the
customers.
SRVID This is generated automatically by the system. The naming rule
is 1, 2..., can’t be modified by the users.

Table 8

[00107] The system can keep the values of other parameters of SERVERS section in
UBB_part file, and allows the users to modify them freely. Similarly, the users can add other
parameters to the UBBCONFIG.

[00108] In accordance with an embodiment of the invention, when adding an application
package to one domain, system can replace some parameters of the SERVICES section in the
UBB_part of that package. An exemplary item list in the template is shown in the following Table
9.

Item Value
SRVGRP If the UBB_part has this parameter, then system will replace it
with the corresponding group generated before.
Although this parameter is not a required parameter, we
recommend users to add it. When there’re same services in
different application packages, they can have different
operations.
ROUTING If the UBB_part has this parameter, then system will replace it
with the corresponding routing name generate by the system.

Table 9

[00109] The system can keep the values of other parameters of SERVICES section in
UBB_part file, and allows the users to modify them freely. Similarly, the users can add other
parameters to the UBBCONFIG.

[00110] In accordance with an embodiment of the invention, when adding an application
package to a domain, the system can replace some parameters of the ROUTING section in the
UBB_part of that package. An exemplary item list in the template is shown in the following Table
10.

-19-

WO 2013/049074 PCT/US2012/057136

Item Value
ROUTING_CRITERIA_NAME This is generated automatically by the system. The
naming rule is ROUTING1, ROUTING?2..., can’t be
modified by the users.
RANGES This parameter’s group will be replaced by the
system.

Table 10

5 [00111] The system can keep the values of other parameters of ROUTING section in
UBB_part file, and allows the users to modify them freely. Similarly, the users can add other
parameters to the UBBCONFIG.

10

-20-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

Claims:

What is claimed is:

1. A method for supporting automatically deploying application components in a
transactional middleware machine environment, comprising:

receiving one or more application packages, wherein each application package contains
binary files for one or more transactional servers and configuration information that describes
relationship and parameters of the one or more transactional servers in the application package;

generating one or more distribution packages on the one or more microprocessors for
each transactional middleware machine of a plurality of transactional middleware machines in
the transactional middleware machine environment based on the one or more application
packages; and

deploying the one or more distribution packages to the plurality of transactional

middleware machines in the transactional middleware machine environment.

2. The method of claim 1, further comprising allowing each application package to contain

information about a platform that the application package can be deployed to.

3. The method of claim 1, further comprising applying an application package to different
transactional domains, wherein each transactional domain includes one or more transactional

middleware machines.

4. The method of claim 1, further comprising creating one or more application directory on
each transactional middleware machine that is deployed with one or more transactional servers,

based on the application packages.

5. The method of claim 1, further comprising deploying multiple application packages into a

same application directory.
6. The method of claim 1, further comprising automatically generating configuration
metadata for each transactional middleware machine that is deployed with the one or more

transactional servers based on the configuration information in the application package.

7. The method of claim 1, further comprising providing a data repository that stores the one

or more application packages uploaded by a user.

21-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

8. The method of claim 1, further comprising deploying a transactional application that
includes multiple application packages to either a single transactional middleware machine or

multiple cross-connected transactional middleware machines.

9. The method of claim 1, wherein each said application package is a compressed file that
contains:

a first tier that contains names of the application package,

a second tier that contains the configuration information that describes relationship and
parameters of the one or more transactional servers in the application package, and

a third tier that contains compiled binary files for the transactional servers.

10. The method of claim 1, further comprising undeploying at least one distribution package
from the plurality of transactional middleware machines in the transactional middleware machine

environment.

1. A system for supporting automatically deploying application components in a
transactional middleware machine environment, comprising:
one or more Microprocessors;
a deployment center running on the one or more microprocessors in the transactional
middleware machine environment, wherein the deployment center is capable of:
receiving one or more application packages, wherein each application package
contains binary files for one or more transactional servers and configuration information
that describes relationship and parameters of the one or more transactional servers in
the application package;
generating one or more distribution packages for each transactional middleware
machine of a plurality of transactional middleware machines in the transactional
middleware machine environment based on the one or more application packages; and
deploying the one or more distribution packages to the plurality of transactional

middleware machines in the transactional middleware machine environment.

12. The system of claim 11, wherein each application package is allowed to contain

information about a platform that the application package can be deployed to.

13. The system of claim 11, wherein an application package is applied to different

transactional domains, wherein each transactional domain includes one or more transactional

22-

10

15

20

25

30

35

WO 2013/049074 PCT/US2012/057136

middleware machines.

14. The system of claim 11, wherein the one or more application directories are created on
each transactional middleware machine that is deployed with one or more transactional servers,

based on the application packages.

15. The system of claim 11, wherein the deployment center is capable of deploying multiple

application packages into a same application directory.

16. The system of claim 11, wherein the deployment center is capable of automatically
generating configuration metadata for each transactional middleware machine that is deployed
with the one or more transactional servers based on the configuration information in the

application package.

17. The system of claim 11, further comprising a data repository that stores the one or more

application packages uploaded by a user.

18. The system of claim 11, wherein the deployment center is capable of deploying a
transactional application that includes multiple application packages to either a single
transactional middleware machine or multiple cross-connected transactional middleware

machines.

19. The system of claim 11, wherein each said application package is a compressed file that
contains:

a first tier that contains names of the application package,

a second tier that contains the configuration information that describes relationship and
parameters of the one or more transactional servers in the application package, and

a third tier that contains compiled binary files for the transactional servers.
20. The system of claim 11, wherein the deployment center is capable of undeploying at
least one distribution package from the plurality of transactional middleware machines in the
transactional middleware machine environment.

21. A program that causes a computer to perform the method of any of claim 1 to 10.

22. A computer readable non-volatile media that stores the program of claim 21.

-23-

PCT/US2012/057136

WO 2013/049074

1/14

L 34N9OI4

Ol
(" 901 Jejus) swAoldeqg A
/ 9Ll A
1
01] ..
«— — ! Aaljod]
induy Jssn ... wswkoldsq ...
AN L J
\
\

GoL
Aojisoday

Eleq

0Ll @ aulysen

60l v ulewo(q

€Ll

9 uaby
swAoldag

€01 O suIyoe

4%

g juaby
swAoldag

c0l g sulyoep

bl

VY Jusby
swAoldag

10l ¥ sulyoen

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

2/14

Receiving one or more application packages, wherein each application package
contains binary files for one or more transactional servers and configuration 201

information that describes relationship and parameters of the one or more /\/
transactional servers in the application package

l

Generating one or more distribution packages on the one or more
microprocessors for each transactional middleware machine of a plurality of /\/202
transactional middleware machines in the transactional middleware machine

environment based on the one or more application packages

'

Deploying the one or more distribution packages to the plurality of transactional /\/203
middleware machines in the transactional middleware machine environment

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

3/14

—-> §
b D /\/
> >
P P
D
[— s o)
=
+=
= g ¢ -
g m c % ™
2 3 u
«-> E
i .
5 cCTTTT T T - ~/
| /
§5|&8 N
[Tp] <
3§ =
o)
e ——— -
e —— — - 3
//\\/
g T
I_
e ——————————— -
Q|
A

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

4/14

=
T 2
5 5
i |
|:
- » '-'=,J
= : :
T - .
i, CTTTTTTTTTTTT N s, ':
g% ; Ee g% %
O
kil . 3 n
——— e — -
2 | B 3
/ E——— e - /

8
A

402
403

-
prd

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

5/14

o
o

503
\/" . senvers —» serverd

FIGURE 5

0
502
\/\\
{1 UBB part
)5

OFL55 64 Ex
ax22X8664

501 f
A APP1 | —

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074

PCT/US2012/057136
6/14
600
Logical Nai 601
ogical Neme l[dnx24 /\/
Physical Name Idrx24
Operation System | Oracle Enterprise Linux 5.5
Machine)
Architecture Exalogic X2-2, X86-64
C/Ct+ and COBOL
. QCH: goc/gh+ 4.1.2 200807048
comilers
Tuxedo installation Oracle Enterprise Linux 5.5
Tuxedo Word Size oAbt
Tuxedo Version TUX11gRI
TUXDIR /nfs/Icfilerc/vol I/TUX11gR1
Data Base Type
Data Base Version
FIGURE 6

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

7114
700
lication Pacl 701
App o kage AP jar /\/
Tuxedo Version TUX11gR1
Supported I
Operation System Oracle Enterprise Linux 5.5
Tuxedo Word Size 64bit
Muachine .
Architecture Exalogic X2-2, X86-64
Services TOUPPER1
Dependent Services
Data Base Type
Data Base Version

FIGURE7

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

8/14
(802 (803
*RESOURCES J/
IPCKEY 3333 MACHINE | PACKAGE
DOMAIN LIST
ASTER ST | LIST
MODEL WP
oo~ \ 89
LOLNX24 | APPS
LOLNXT6 | APP
FIGURE 8

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136
9/14
904
I/\/
* MACHINE | PACKAGE
DOMAN LIST RESOURCES
IPCKEY 3333 LST_| LIT
oot~ N\ P01 DOMAINID SIVPAPP
MASTER SITE
MAXACCESSERS 50
MAXSERVERS £
902 MAXSERVICES 40
" MODEL NP
LDBAL Y
| VACHINE OPTIONS MIGRATE LAN
| SYSTEM ACCESS PROTECTED
| ot 905 LCLNX24 | APPf
A~ oo) -
903 LMID=SITE
APPDIR="NFSILCFILERCAVOLY/APP 1"
L PACKAGE TUXCONFIG="NFSLCFILERCVOLYAPP {/TUXCONFIG"
TUXDIR="NFSILCFILERCAVOLYTUXHGRT"
TYPE="A" .
AETIORK - LCLNX16 | APP_
"SITE N\

NADDR="/LCLNX24:32333"
NLSADDR="//LCLNX24:32334'

FIGURE 9

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136
10/14
1004
7 MACHINE | PACKAGE
DOMAIN LIST *RESOURCES
IPCKEY 3333 LIST | LIST
1001 DOMAINID SIVPAPP
D0l N2 MASTER SITE
MAXACCESSERS 50
MAXSERVERS I
100 MAXSERVICES 4
MODEL NP
N LDBAL Y
| OPTIONS MIGRATE LAN
MACﬂNE SYSTEM ACCESS PROTECTED
LCLNX24 | *MACHINES 1005
LMD=SITE1
— PACKAGE APPDIR="NFSILCFILERCNOL1/APP_{"
|_ TUXCONFIG="NFSILCFILERCNOLYIAPP_1/TUXCONFIG'
APP1 TUXDIR="NFSILCFILERCA/OL1/TUX11GR"
o, TYPE="A"
LCLNX16 | APP 2
1003 *GROUPS -\ 1006
GROUPY

LMID=SITE1GRPNO-=1

1007
*SERVERS N\

APP1/QELS5_64_EXAX22X8664/SERVERS/SIMPSERVA
SRVGRP=GROUP1 SRVID=1
CLOPT="-A"

'SERVICES 1008
TOPPERRT ~ \”

NETWORK 1009
STE /\/ -
NADDR="ILCLNY24:32333

NLSADDR="//LCLNX24:32334'

FIGURE 10

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136
1114
DOMAIN LIST *RESOURCES MACHINE | PACKAGE
IPCKEY 39333 LIST [LBT
1101 DOMAINID SIVPAPP
DO\~ MASTER SITE1
MAXACCESSERS 50
MAXSERVERS 4
102 MAXSERVICES 4
| MODEL NP
M\ LDBAL Y
| OPTIONS MIGRATE LAN
MACﬂNE SYSTEM ACCESS PROTECTED
LCLNX24 | *MACHINES | oo
LAY, o=giTE
L PACKAGE APPDIR="NFS/LCFILERCNOL1/APP_{"
|_ TUXCONFIG="NFSILCFILERCNOLYIAPP_1/TUXCONFIG!
APP1 TUXDIR="NFSILCFILERCAOLYTUX!GRT"
TYPE="A"
|\ 103 LOLNKIG" -7 LCLNX16 | APP2
APPDIR="INFSILCFILERC/OLYAPP 2"
MACHINE TUXCONFIG="NFSILCFILERCNOL2IAPP 2TUXCONFIG!
TUXDIR="NFSILCFILERCAOL2TUX!GRY"
LOLXIE | g TYPEB
PACKAGE GROUP1
|_ LMID=SITE1 GRPNO=t
AP OROURZ. 1 ese2 GRreno=2
*SERVERS

APP1/QELS5_64_EXAX22X8664/SERVERS/SIMPSERVA
SRVGRP=GROUP1 SRVID=1
CLOPT="A’

APP2/OELS5_64_EXAX22X8664/SERVERS/SIMPSERV2
SRVGRP=GROUP2 SRVID=1
CLOPT="A"

*SERVICES

TOUPPERT

TOUPPER2

"NETWORK

STET ADDR="ILCLN 2432333
NLSADDR="/LCLAY 2432354
STES
NADDR="JLCLA16:32335
NLSADDR="/LCLAM16:32354"

FIGURE 11

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

12/14

[APP.1

1201 - APP2
Repository ———
1202

— deploynment —— DistributionFile

—— UBBCONFIG

—— De ir Domain — DOM1 ——
A0 " —— DVICONFIG

— StatusFile

 — MIB
1203
| o4 1 ———— DeployDescipior

— UndeployDescriptor

Distribution
Archive File

L 1d«16 2 ———— DeployDescipior

—— UndeployDesaiptor
Distribution
Archive File

FIGURE 12

SUBSTITUTE SHEET (RULE 26)

WO 2013/049074 PCT/US2012/057136

13/14
1302
7
CELS5 64 Ex
APP1 XX servers seneri
1301
_/\ ~ APPDR)
CELS5 64 Ex
APIi’Z P IXOXBE6A > servers sener2
P
1303
FIGURE 13

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/057136

WO 2013/049074

14/14

601 v ulewo(

ol vi 34N9I4d
(" 901 se1u80 Juswhodeq)
L SRS e mm——— -
9L) ! /901
"ll" -l llllllllll
{9901 | ! 5901
201 ! i
induj Jesn - —
]
i 7901 €901
// 290l 190}
\ \- Y,
\
AN

GolL
Aojisoday

eleq

0Ll @ sulyoen

€Ll

D jusby
wswAioldag

€0} O suIyoe

cll

g jusby
wswAioldag

Z0l g aulyoep

Ll

VY ueby
wswAioldag

10l ¥ sulyoen

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 12/57136

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 9/44 (2012.01)

USPC - 717/172
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 717/172
IPC(8): GOGF 9/44 (2012.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 717/168; 717/172; 717/177; 709/201(Keyword limited; terms below)
IPC(8): GO6F 9/44 (2012.01) (Keyword limited; terms below)

Electronic data base consulted during the intemmational search (name of data base and, where practicable, search terms used)

PubWEST (PGPB, USPT, EPAB, JPAB), Google (Scholar, Patents, Web); PatBase (All)

Terms used: transactional middleware application package binary file configuration information data server relationship parameter
generate distribution package deploy target platform domain machine create directory automatic metadata repository compressed file tier

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2003/0172135 A1 (Bobick et al.), 11 September 2003 (11.09.2003), entire document, 1-6, 8-9, 11-16, 18-19
- | especially Abstract, Claim 18, para [0056], [0068]-{0069], [0075], [0077], [0125], {0156], [0184]-

Y [0185], [0199], [0394], [0694], [0829], (0894], [0952] 7,10, 17, 20-22

Y US 6,640,238 B1 (Bowman-Amuah), 28 October 2003 (28.10.2003), entire document, 7,17, 21-22

especially Abstract; col 37, In 62 to col 38, In 2

Y US 2008/0256531 A1 (Gao et al.), 16 October 2008 (16.10.2008), entire document, especially 10, 20-22
Abstract, para [0049]

D Further documents are listed in the continuation of Box C. D
* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to un erstand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
c“ect:jialtlor:asstﬁh(i ;hec[’t‘.‘le’g)ca"m date of another citation or other v gocyment of particular relevance; the claimed invention cannot be
spe X pecilt . . considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than «g» gocument member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
15 November 2012 (15.11.2012) 2 9 N O V 2012
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/JUS, Commissioner for Patents Lee W. Young
P.0O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: 571-272-4300
Facsimile No. 571-273-3201 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report

