(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200111884 B2
(10) Patent No. 781130

(54)

(51)

(21)
(87)
(30)
(31)

(43)
(43)
(44)

(71)
(72)
(74)

(56)

Title

Group chain reaction encoder with variable number of associated input data for

each output group code

International Patent Classification(s)
HO3M 013/00

Application No: 200111884
WIPO No: WOO01/20786

Priority Data

Number (32) Date
09/399201 1999.09.17
Publication Date : 2001.04.17

Publication Journal Date : 2001.06.14
Accepted Journal Date: 2005.05.05

Applicant(s)
Digital Fountain

Inventor(s)
Michael G. Luby

Agent/Attorney

(22) Application Date: 2000.09.15

(33) Country
us

SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NSW 2001

Related Art
AU 62536/99
WO 1998/032231

PURSLEY M.B. ET AL;"VARIABLE.."VOL.37,NO.11,1/11/89 PP 1105

AU 200111884

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

under (51) replace the existing symbol by "HO3M 13/47" and
under (54) the title should read "GROUP CHAIN REACTION
ENCODER WITH VARIABLE NUMBER OF ASSOCI-
ATED INPUT DATA FOR EACH OUTPUT GROUP CODE"

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
22 March 2001 (22.03.2001)

I 0.0 G A

(10) International Publication Number

PCT

WO 01/20786 Al

(51) International Patent Classification’: HO3M 13/47

(21) International Application Number: PCT/US00/25405

(22) International Filing Date:

15 September 2000 (15.09.2000)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

(71) Applicant (for all designated States except US): DIGITAL
FOUNTAIN [US/US]; 600 Alabama Street, San Francisco,

(72) Inventor; and

(75) lnventor/Applicant (for US only): LUBY, Michael, G.

English

[US/US]; 1133 Miller Avenue, Berkeley, CA 94708 (US).

(74) Agents: ALBERT, Philip, H. et al.; Townsend and
Townsend and Crew LLP, Two Embarcadero Center,
Eighth Floor, San Francisco, CA 94111 (US).

English (81) Designated States (narional): AE, AG. AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH. GM, HR,

09/399,201 17 September 1999 (17.09.1999) US HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS. LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(57) Abstract: An encoder uses an
input file of data and a key to produce

- a group of output symbols. A group of

output symbols with key I is generated
by determining a weight, W(T), for the
group of output symbols to be generated,
selecting W(I) of the input symbols
associated with the group according to
a function of 1, and generating the output
symbol values B(I) from a predetermined
value function F(I) of the selected W(T)
input symbols. An encoder can be called
repeatedly to generate multiple groups
of output symbols or multiple output
symbols. The groups of output symbols
are generally independent of each other,
and an unbounded number (subject to
the resolution of I) can be generated,
if needed. A decoder receives some
or all of the output symbols generated.
The number of output symbols needed
to decode an input file is equal to, ar
slightly greater than, the number of input
symbols comprising the file, assuming
that input symbols and output symbols
represent the same number of bits of
data.

CA 94110 (US).
=== (54) Title: GROUP CHAIN REACTION ENCODER WITH VARIABLE NUMBER OF ASSOCIATED INPUT DATA FOR EACH
=== QUTPUT GROUP CODE
= 10
— 100
— \
=
—— e
——] 10
—
= > ns
— E/ taout Syroa |00 S0 S EncO0ER /
—
——]
D coindunsi Nurmber of irgas / l%
Sywmots K
08 Transmt medute
140 /l ! —J
2 143
o o I
[+ o] / 163 158 l Recesrs motide _]
£ -
Q o Fae | SO SO S 84,1 80,3 5L} -
— - Rusessrmbler +
° Lt Regsoerstor
@ -

woO 01720786 A1 |NIEANQUADIED £ 0O L A

(84) Designated States (regional): ARIPO patent (GH. GM, (48) Date of publication of this corrected version:
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian 26 Apnil 2001
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY. DE, DK, ES, FI, FR, GB, GR. [E,
IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, : :
(15) Information about Correction:
Cl, CM, GA, GN, GW. ML, MR, NE, SN, TD, TG). see PCT Gazette No. 1772001 of 26 April 2001, Section IT

Published:

— With internationul search report.

— Before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendmenis. ning of each regular issue of the PCT Gazette.

= —10-10-2001.2:00 -FAX 415 576--0302---——— -TOWNSEND&TOWNSEND&CREW —~ " = ~—-~—————{{JS002540%

) -

PATENT
Attorney Docket No.: 19186-000610

INFORMATION ADDITIVE GROUP CODE GENERATOR AND
DECODER FOR COMMUNICATION SYSTEMS

10

BACKGROUND OF THE INVENTION

The present invention relates to encoding and decoding data in

commuunications systems and more specifically to communication systems that encode
15 and decode data to account for errors and gaps in communicated data, and to efficiently
utilize communicated data emanating from more than one source.

Transmission of files between a sender and a recipient over &
communications channel has been the subject of much li.teramre. Preferably, a recipient
desires to receive an exact copy of data transmitted over a channel by a sender with some

20 level of certainty. Where the channel does pot have perfect fidelity (which covers most
all physically realizable systems), one concern is how to deal with data lost or garbled in
transmission. Lost data (erasures) are often easier to deal with than garbled data (errors)
because the recipient cannot always tell when garbled data is data received in error.
Ma;ny crror correcting codes have been developed to correct for erasures (so called

25 *“erasure codes™) and/or for errors (“error-correcting codes”, or “ECC's™). Typically, the
part.i_culm: code used is chosen based on some information about the infidelities of the
channel through which the data is being transmitted and the nature of the data being
transmitted. For example, where the channe) is known to have long periods of infidelity,

Enpfangc AMENDED SHEET

10

15

20

25

30

WO 01/20786 . PCT/US00/25405

2
a burst error code might be best suited for that application. Where only short, infrequent
errors are expected a simple parity code might be best.

File transmission between multiple senders and/or multiple receivers over
a communications channel has also been the subject of much literature. Typically, file
transmission from multiple senders requires coordination among the multiple senders to
allow the senders to minimize duplication of efforts. In a typical multiple sender system
sending one file to a receiver, if the senders do not coordinate which data they will
transmit and when, but instead just send segments of the file, it is likely that a receiver
will receive many useless duplicate segments. Similarly, where different receivers join a
transmission from a sender at different points in time, a concern is how to ensure that all
data the receivers receive from the sender is useful. For example, suppose the sender is
continuously transmitting data about the same file. If the sender just sends segments of
the original file and some segments are lost, it is likely that a receiver will receive many
useless duplicate segments before receiving one copy of each segment in the file.

Another consideration in selecting a code is the protocol used for
transmission. In the case of the global intemetwork of networks known as the “Internet”
(with a capital “I""), a packet protocol is used for data transport. That protocol is called
the Internet Protocol or “IP” for short. When a file or other block of data is to be
transmitted over an IP network, it is partitioned into equal size input symbols and input
symbols are placed into consecutive packets. Being packet-based, a packet oriented
coding scheme might be suitable. The “size” of an input symbol can be measured in bits,
whether or not the input symbol is actually broken into a bit stream, where an input
symbol has a size of M bits when the input symbol is selected from an alphabet of 2™
symbols.

The Transport Control Protocol (“TCP”) is a point-to-point packet control
scheme in common use that has an acknowledgment mechanism. TCP is good for
one-to-one communications, where the sender and recipient both agree on when the
transmission will take place and be received and both agree on which transmitters and
receivers will be used. However, TCP is often not suitable for one-to-many or
many-to-many communications or where the sender and the recipient independently
determine when and where they will transmit or receive data.

Using TCP, a sender transmits ordered packets and the recipient
acknowledges receipt of each packet. If a packet is lost, no acknowledgment will bc sent

10

15

20

25

30

WO 0120786 _ PCT/US00/25405

3
to the sender and the sender will resend the packet. Packet loss has a number of causes.
On the Internet, packet loss often occurs because sporadic congestion causes the buffering
mechanism in a router to reach its capacity, forcing it to drop incoming packets. With
protocols such as TCP/IP,‘ the acknowledgment paradigm allows packets to be lost
without total failure, since lost packets can just be retransmitted, either in response to a
lack of acknowledgment or in response to an explicit request from the recipient. Either
way, an acknowledgment protocol requires a back channel from the recipient to the
sender.

Although acknowledgment-based protocols are generally suitable for
many applications and are in fact widely used over the current Internet, they are
inefficient, and sometimes completely infeasible, for certain applications. In particular,
acknowledgment-based protocols perform poorly in networks with high latencies, high
packet loss rates, uncoordinated recipient joins and leaves, and/or highly asymmetric
bandwidth. High latency is where acknowledgments take a long time to travel from the
recipient back to the sender. High latency may result in the overall time before a
retransmission being prohibitively long. High packet loss rates also cause problems
where several retransmissions of the same packet may fail to arrive, leading to a long
delay to obtain the last one or last few unlucky packets.

“Uncoordinated recipient joins and leaves” refers to the situation where
each recipient can join and leave an ongoing transmission session at their own discretion.
This situation is typical on the Internet, next-generation services such as “video on
demand” and other services to be offered by network providers in the future. In the
typical system, if a recipient joins and leaves an ongoing transmission without
coordination of the senders, the recipient will likely perceive a loss of large numbers of
packets, with widely disparate loss patterns perceived by different recipients.

Asymmetric bandwidth refers to the situation is where a reverse data path
from recipient to sender (the back channel) is less available or more costly than the
forward path. Asymmetric bandwidth may make it prohibitively slow and/or expensive
for the recipient to acknowledge packets frequently and infrequent acknowledgments may
again introduce delays.

Furthermore, acknowledgment-based protocols do not scale well to
broadcasting, where one sender is sending a file simultaneously to multiple users. For

example, suppose a sender is broadcasting a file o multiple recipients over a satellite

10

15

20

25

30

WO 01720786 PCT/US00/25405

4
channel. Each recipient may experience a different pattern of packet loss. Protocols that
rely on acknowledgment data (either positive or negative) for reliable delivery of the file
require a back channel from each recipient to the sender, and this can be prohibitively
expensive to provide. Furthermore, this requires a complex and powerful sender to be
able to properly handle all of the acknowledgment data sent from the recipients. Another
drawback is that if different recipients lose different sets of packets, rebroadcast of
packets missed only by a few of the recipients causes reception of useless duplicate
packets by other recipients. Another situation that is not handled well in an
acknowledgment-based communication system is where recipients can begin a receiving
session asynchronously, i.e., the recipient could begin receiving data in the middle of a
transmission session.

Several complex schemes have been suggested to improve the
performance of acknowledgment-based schemes, such as TCP/IP for multicast and
broadcast. However none has been clearly adopted at this time, for various reasons. For
one, acknowledgment-based protocols also do not scale well where one recipient is
obtaining information from multiple senders, such as in a low earth orbit (“LEQ”)
satellite broadcast network. In an LEO network, the LEO satellites pass overhead quickly
because of their orbit, so the recipient is only in view of any particular satellite for a short
time. To make up for this, the LEO network comprises many satellites and recipients are
handed off between satellites as one satellite goes below the horizon and another rises. If
an acknowledgment-based protocol were used to ensure reliability, a complex hand-off
protocol would probably be required to coordinate acknowledgments returning to the
appropriate satellite, as a recipient would often be receiving a packet from one satellite
yet be acknowledging that packet to another satellite.

An alternative to an acknowledgment-based protocol that is sometimes
used in practice is a carousel-based protocol. A carousel protocol partitions an input file
into equal length input symbols, places each input symbol into a packet, and then
continually cycles through and transmits all the packets. A major drawback with a
carousel-based protocol is that if a recipient misses even onc packct, then the recipient
has to wait another entire cycle before having a chance at receiving the missed packet.
Another way to view this is that a carousel-based protocol can cause a large amount of

useless duplicatc data reception. For example, if a recipient receives packets from the

10

15

20

25

30

WO 01/20786 o PCT/US00/25405

5
beginning of the carousel, stops reception for a while, and then starts receiving again at
the beginning of the carousel, a large number of useless duplicate packets are received.

One solution that has been proposed to solve the above problems is to
avoid the use of an aclmoWledgment-based protocol, and instead use erasure codes such
as Reed-Solomon Codes to increase reliability. One feature of several erasure codes is
that, when a file is segmented into input symbols that are sent in packets to the recipient,
the recipient can decode the packets to reconstruct the entire filé once sufficiently many
packets are received, generally regardless of which packets armve. This property removes
the need for acknowledgments at the packet level, since the file can be recovered even if
packets are lost. However, many erasure code solutions either fail to solve the problems
of acknowledgment-based protocol or raise new problems. A

One problem with many erasure codes is that they require excessive
computing power or memory to operate. One coding scheme that has been recently
developed for communications applications that is somewhat efficient in its use of
computing power and memory is the Tomado coding scheme. Tomado codes are similar
to Reed-Solomon codes in that an input file is represented by K input symbols and is used
to determine N output symbols, where N is fixed before the encoding process begins.
Encoding with Tornado codes is generally much faster than encoding with Reed-Solomon
codes, as the average number of arithmetic operations required to create the N Tormado
output symbols is proportional to N (on the order of tens of assembly code operations
times N) and the total number of arithmetic operations required to decode the entire file is
also proportional to N.

Tomado codes have speed advantages over Reed-Solomon codes, but with
several disadvantages. First, the number of output symbols, N, must be determined in
advance of the coding process. This leads to inefficiencies if the loss rate of packets is
overestimated, and can lead to failure if the loss rate of packets is underestimated. This is
because a Tornado decoder requires a certain number of output symbols (specifically,

K + A output symbols, where A is small compared to K) to decode and restore the
original file and if the number of lost output symbols is greater than N - (K + A), then the
original file cannot be restored. This limitation is generally acceptable for many
communications problems, so long as N is selected to be greater than K + A by at least

the actual packet loss, but this requires an advance guess at the packet loss.

o0

[XXX]

L] .

e L4
(X]

e seee 00 oo
L]
L
.

1. ¥AR. 2005 15:45 SPRUSON AND FERGUSON 61292615486 NO. 7329 B 1/16

10

20

2§

30

-6-

Another disadvantage of Tomado codes is that they require the encoder and
decoder to agree in some manner on a graph structure. Tornado codes require a pre-
processing stage at the decoder where this graph is constructed, a process that slows the
decoding substantially. Furthermore, a graph is specific to a file size, so a new graph
needs to be generated for each file size used. Furthermore, the graphs needed by the
Torpado codes are complicated to construct, and require different custom settings of
parameters for different sized files to obtain the best performance. These graphs are of
significant size and require a significant amount of memory for their storage at both the
sender aud the recipient.

In addition, Tomado codes generate exactly the same output symbol values with
respect to a fixed graph and input file. These output symbols comprise the K original
input symbols and N-K redundant symbols. Furthermore, N can practically only be a
small multiple of K, such as 1.5 or 2 times K. Thus, it is very likely that a recipient
obtaining output symbols generated from the same input file using the same graph from
more than one sender will receive a large number of useless duplicate output symbols.
That is because the N output symbols are fixed ahead of time and are the same N output
symbols that are transmitted from each transmitter each time the symbols are sent and are
the same N symbols received by a recciver. For example, suppose N=1500, K=1000 and
a recciver receives 900 symbols from one satellite before that satellite dips over the
horizon. Unless the satellites are coordinated and in sync, the Tornado code symbols
received by the receiver from the next satellite might not be additive because that ncxt
satellite is transmitting the same N symbols, which is likely to result in the recerver
receiving copies of many of the already received 900 symbols before receiving 100 new
symbols needed to recover the input file.

Therefore, what is needed is a simple erasure code that does not require
excessive computing power or memory at a sender or recipient to implement, and that can
be used to efficiently distribute a file in a system with one or more senders and/or one or
more reciptents without necessarily needing coordination between senders and recipients.

SUMMARY

In accordance with a first aspect of the present invention, there is provided a
method of generating a group of output symbols, a group being at least two output
symbols wherein each output symbol is selected from an output alphabet and the group is
such that an input file, comprising an ordered plurality of input symbols each selected

from an input alphabet, 1s recoverable from a set of such groups, the method comprising

[RALMBCC)04623.doc:wvib

COMS ID No: SBMI-01160747 Received by IP Australia: Time (H:m) 15:48 Date (Y-M-d) 2005-03-11

11, ¥AR 2005 15:46 SPRUSON AND FERGUSON €1292615486 NO. 7323 F. 8/16

20

28

30

-7-

the steps of obtaining a key I for the group, wherein the key is selected from a key
alphabet and the number of possible keys in the key alphabet is effectively unbounded
relative to the number of input symbols in the input file for any expectcd size of input file;
calculating, according to a predetermined function of I, a list AL(I) for the group, wherein
AL(I) is an indication of W(I) associated input symbols associated with the group, and
wherein weights W are positive integers that vary between at least two values and are
greater than one for at least one value of I and generating an output symbol value for each
output symbol in the group from a predetermined function of the associated input symbols
indicated by AL(I).

In accordance with a second aspect of the present invention, there is provided a
mcthod of encoding a plurality of groups of output symbols, each according to the first
aspect above, the method further comprising steps of generating key I for each of the
groups of output symbols to be generated and outputting each of the generated groups of
output symbols as an output sequence to be transmitted through a data erasure channel.

In accordance with a third aspect of the present invention, there is provided a
method of transmitting data from a source to a destination over a packet communication
channel, comprising the steps of arranging the data to be transmitted as an ordered set of
input symbols, each selected from an input alphabet and having a position in the data;
generating a plurahity of groups of output symbols, wherein each output symbol is
selected from an output alphabet, wherein each group of the plurality of groups is
generated by the steps of selecting, from a key alphabet, a key I for the group being
generated; determining a weight, W(I), as a function of I, wherein weights W are positive

integers that vary between at least two values and over the key alphabet and are greater

than one for at least some kcys in the key alphabet; selecting W(I) of the input symbols
according to a function of T, thus forming a list AL(I) of W(I) input symbols associated
with the group; determining a number, G(I), of output symbols in the group and
calculating a value B(I) of each output symbol in the group from a predetermined value
function of the associated W(I) input symbols; packetizing at least one of the groups of
output symbols of at lcast one of the plurality of groups into each of a plurality of packets;
transmitting the plurality of packets over the packet communication channel; receiving at
least some of the plurality of packets at the destination and decoding the data from the
plurality of received packets.

In accordance with a fourth aspect of the present invention, there is provided a

method of generating a group of output symbols, a group being at least two ontput

(RALTBCC]04623 .doc:wxb

COMS ID No: SBMI-01160747 Received by IP Australia: Time (H:m) 15:48 Date (Y-M-d) 2005-03-11

file://R:/I4tiCCJ04623.il

11, MAR 2005 15:46 SPRUSON AND FERGUSON 61292615486 NO. 7329 F 9/16

20

25

30

-8-

symbols wherein each output symbol is selected from an output alphabet and the group is
such that an input file, comprising an ordered plurality of input symbols each selected
from an input alphabet, is recoverable from a set of such groups, the method comprising
the steps of determining, for a given group, a list AL that indicates W associated input
symbols to be associated with the group, where W is a positive integer, where at least two
groups have different values for W associated therewith, where W is greater than one for
at least one group, and where the number of possible groups is effectively unbounded
relative to the number of input symbols in the input file for any expected size of input file
and generating an output symbol value for each output symbol in the group from a
predetermined function of the W associated input symbols indicated by AL.

In accordance with a fifth aspect of the present invention, there is provided a
method of transmitting the information content of an input file, where the input file is an
ordered plurality of input symbols each selected from an input alphabet and the input file
is recoverable from a set of output symbols each selected from an output alphabet, the
method comprising the steps of generating a plurality of groups of output symbols, a
group being one or more output symbols wherein each group of the plurality of groups is
generated by the steps of determining a list AL that indicates W associated input symbols
to be associated with the group, where W is a positive integer, at least two groups have
different values for W associated therewith, W 1s greater than one for at least one group,
and the number of possible groups is effectively unbounded rclativé to the number of
input symbols i the input file for any expected size of input file and generating an output
symbol value for each output symbol in the group from a predetermined function of the
W associated input symbols indicated by AL and transmitting the generated plurality of
groups.

In accordance with a sixth aspect of the present invention, there is provided a
method of transmitting data from a source through a plurality of channels, comprising the
steps of arranging the data to be transmitted as an ordered set of input symbols;
gencrating a plurality of groups of output symbols for each of the plurality of channels, a
group being at least two output symbols, wherein each group of the plurality of groups is
generated by the steps of selecting, from a key alphabet, a key I for the group being
generated, wherein the key alphabet contains many more members than the number of
input symbols in the ordered set of input symbols; determining a weight, W(I), as a
function of I, wherein weights W are positive integers that vary between at least two
values and are greater than one for at least some keys in the key alphabet; selecting W(I)

TRALIBCCJ04623 doc:wxb

COMS ID No: SBMI-01160747 Received by IP Australia: Time (H:m) 15:48 Date (Y-M-d) 2005-03-11

1. AR 2005 15:46 SPRUSON AND FERGUSON £1292615486 NO. 7323 E 10/16

20

S

30

-8a-

of the input symbols according to a function of I, thus forming a list AL(I) of W(I) input
symbols associated with the group; determining a number, G(I), of output symbols in the
group and calculating a value B(I) of each of the G(I) output symbols in the group from a
predetermined value fimction of the associated W(I) input symbols; packetizing at least
onc of the plurality of groups into each of a plurality of packets and transmitting the
plurality of packets over the plurality of channels, wherein at least two of the plurality of

channels carry packets contaiming groups generated with distinct values for key I.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a communications system according to one

embodiment of the present invention.

(THE NEXT PAGE IS PAGE 9)

|R\LIBCC)04623.doc:wxb

COMS ID No: SBMI-01160747 Received by IP Australia: Time (H:m) 15:48 Date (Y-M-d) 2005-03-11

10

15

20

25

30

WO 0120786 PCT/US00/25405

9

Fig. 2 is a block diagram showing the encoder of Fig. 1 is greater detail.

Fig. 3 is an illustration of how a group of output symbols might be
generated from a set of associated input symbols.

Fig.4isa 'block diagram of a basic decoder as might be used in the
communications system shown in Fig. 1.

Fig. 5 is a block diagram of an alternative decoder.

Fig. 6 is a flowchart of a process that might be used by a decoder, such as
the decoder shown in Fig. 5, to recover input symbols from a set of groups of output
symbols.

Fig. 7 is a flowchart of process that might be used by a receive organizer,
such as the receive organizer shown in Fig. 5, to organize received groups of output
symbols.

Fig. 8(a) is a flowchart of process that might be used by a recovery
processor, such as the recovery processor shown in Fig. S, to process received groups of
output symbols.

Figs. 8(b)-(c) form a flowchart of portions of a variation of the process of
Fig. 8(a), with Fig. 8(b) showing steps performed in the recovery process including
deferred processing and Fig. 8(c) showing the deferred processing.

Fig. 9 is a block diagram showing the associator of Fig. 2 in greater detail.

Fig. 10 is a flowchart of one process that might be used by an associator,
such as the associator shown in Fig. 9, to quickly determine the association of input
symbols with groups of output symbols.

Fig. 11 is a block diagram showing the weight selector of Fig. 2 in greater
detail.

Fig. 12 is a flowchart of a process that might be used by a weight selector,
such as the weight selector shown in Fig. 11, to determine a weight for a given group of
output symbols.

Fig. 13 is a flowchart of a process for decoding for a decoder that does not
need to be particularly efficient.

Fig. 14 is a block diagram of a more efficient decoder.

Fig. 15 is a flowchart of a process for decoding as might be implemented
using the decoder of Fig. 14 for decoding more efficiently than the decoding described

with reference to Figs. 12-13.

10

15

20

25

30

WO 01720786 A PCT/US00/25405

10

Fig. 16 is a diagram illustrating an example of a document and received
groups of output symbols for the decoding process of Fig. 15.

Fig. 17 illustrates the contents of tables in a decoder during the decoding
process shown in Fig. 15..

Fig. 18 is a diagram illustrating the contents of a weight sort table as might
be used during the decoding process shown in Fig. 15.

Fig. 19 illustrates an execution list that might be formed during the
decoding process shown in Fig. 15.

Fig. 20 illustrates the progress of the recovery process in the form of a plot
of decodable set size versus number of input symbols recovered for an ideal distribution.

Fig. 21 illustrates the progress of the recovery process in the form of a plot
of decodable set size versus number of input symbols recovered for a robust weight
distribution.

Fig. 22 is an illustration of a point-to-point communication system
between one sender (transmitter) and one receiver using an encoder and a decoder as
illustrated in previous figures.

Fig. 23 is an illustration of a broadcast communication system between
one sender and multiple receivers (only one of which is shown) using an encoder and a
decoder as illustrated in previous figures.

Fig. 24 is an illustration of a communication system according to one
embodiment of the present invention where one receiver receives groups of output
symbols from multiple, usually independent, senders.

Fig. 25 is an illustration of a communication system according to one
embodiment of the present invention where multiple, possibly independent, receivers
receives groups of output symbols from multiple, usually independent, senders to receive
an input file in less time than if only one receiver and/or only one sender is used.

Appendix A is a source code listing of a program for implementing a

weight distribution.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the examples described herein, a coding scheme denoted as “group
chain reaction coding” is described, preceded by an explanation of the meaning and scope

of various terms used in this description.

10

IS

20

25

30

WO 01/20786 _ PCT/US00/25405

11

With group chain reaction coding, groups of output symbols are generated
by the sender from the input file as needed. Each group of output symbols can be
generated without regard to how other groups of output symbols are generated. At any
point in time, the sender can stop generating groups of output symbols and there need not
be any constraint as to when the sender stops or resumes generating groups of output
symbols. Once generated, these groups of output symbols can then be placed into packets
and transmitted to their destination, with each packet containing one or more groups of
output symbols. In a specific example of group chain reaction coding, each group
comprises one output symbol and this results in a system with similar performance and
behavior as the chain reaction coding system described in Luby I.

As used herein, the term “file” refers to any data that is stored at one or
more sources and is to be delivered as a unit to one or more destinations. Thus, a
document, an image, and a file from a file server or computer storage device, are all
examples of “files” that can be delivered. Files can be of known size (such as a one
megabyte image stored on a hard disk) or can be of unknown size (such as a file taken
from the output of a streaming source). Either way, the file is a sequence of input
symbols, where each input symbol has a position in the file and a value.

Transmission is the process of transmitting data from one or more senders
to one or more recipients through a channel in order to deliver a file. If one sender is
connected to any number of recipients by a perfect channel, the received data can be an
exact copy of the input file, as all the data will be received correctly. Here, we assume
that the channel is not perfect, which is the case for most real-world channels, or we
assume that the data emanates from more than one sender, which is the case for some
systems, or we assume some portion of the transmitted data is purposely dropped en
route, which is the case for some systems. Of the many channel imperfections, two
imperfections of interest are data erasure and data incompleteness (which can be treated
as a special case of data erasure). Data erasure occurs when the channel loses or drops
data. Data incompleteness occurs when a recipient does not start receiving data until
some of the data has already passed it by, the recipient stops receiving data before
transmission ends, or the recipient intermittently stops and starts again receiving data.

As an example of data incompleteness, a moving satellite sender might be
transmitting data representing an input file and start the transmission before a recipient is

in range. Once the recipient is in range, data can be received until the satellite moves out

10

15

20

25

30

WO 01/20786 PCT/US00/25405

12
of range, at which point the recipient can redirect its satellite dish (during which time it is
not receiving data) to start receiving the data about the same input file being transmitted
by another satellite that has moved into range. As should be apparent from reading this
description, data incompléteness is a special case of data erasure, since the recipient can
treat the data incompleteness (and the recipient has the same problems) as if the recipient
was in range the entire time, but the channel lost all the data up to the point where the
recipient started receiving data. Also, as is well known in the communication systems
design, detectable errors can be the equivalent of erasures by simply dropping all data
blocks or symbols that have detectable errors.

As another example, routers purposely drop packets when their buffers are
full or nearly full (congested), and routers can also purposely drop packets to be fair to
competing packets and/or to enforce rate limitations.

In some communication systems, a recipient receives data generated by
multiple senders, or by one sender using multiple connections. For example, to speed up
a download, a recipient might simultaneously connect to more than one sender to transmit
data conceming the same file. As another example, in a multicast transmission, multiple
multicast data streams might be transmitted to allow recipients to connect to one or more
of these streams to match the aggregate transmission rate with the bandwidth of the
channel connecting them to the sender. In all such cases, a concem is to ensure that all
transmitted data is of independent use to a recipient, i.e., that the multiple source data is
not redundant among the streams, even when the transmission ratcs are vastly different
for the different streams, and when there are arbitrary patterns of loss.

In general, transmission is the act of moving data from a sender to a
recipient over a channel connecting the sender and recipient. The channel could be a
real-time channel, where the channel moves data from the sender to the recipient as the
channel gets the data, or the channel might be a storage channel that stores some or all of
the data in its transit from the sender to the recipient. An example of the latter is disk
storage or other storage device. In that example, a program or device that generates data
can be thought of as the sender, transmitting the data to a storage device. The recipient is
the program or device that reads the data from the storage device. The mechanisms that
the sender uses to get the data onto the storage device, the storage device itself and the

mechanisms that the recipient uses to get the data from the storage device collectively

10

15

20

25

30

WO 0120786 PCT/US00/25405

13
form the channel. If there is a chance that those mechanisms or the storage device can
lose data, then that would be treated as data erasure in the channel.

When the sender and recipient are separated by a data erasure channel, it is
preferable not to transmit an exact copy of an input file, but instead to transmit data
generated from the input file that assists with recovery of erasures. An encoder is a
circuit, device, module or code segment that handles that task. One way of viewing the
operation of the encoder is that the encoder generates groups of output symbols from
input symbols, where a sequence of input symbol values represent the input file. Each
input symbol would thus have a position, in the input file, and a value. A decoderis a
circuit, device, module or code segment that reconstructs the input symbols from the
groups of output symbols received by the recipient.

Group chain reaction coding is not limited to any particular type of input
symbol, but the type of input symbol is often dictated by the application. Typically, the
values for the input symbols are selected from an alphabet of 2 symbols for some
positive integer M. In such cases, an input symbol can be represented by a sequence of M
bits of data from the input file. The value of M is often determined based on the uses of
the application, on the channel and on the maximum size of a group. For example, for a
packet-based Internet channel, a packet with a payload of size of 1024 bytes might be
appropriate (a byte is eight bits). In this example, assuming each packet contains one
group of output symbols and eight bytes of auxiliary information, and assuming all
groups comprise four output symbols, an input symbol size of M=(1024 - 8)/4, or 254
bytes would be appropriate. As another example, some satellite systems use the MPEG
packet standard, where the payload of each packet comprises 188 bytes. In that example,
assuming each packet contains one group of output symbols and four bytes of auxiliary
information, and assuming all groups comprise two output symbols, a symbol size of
M=(188 - 4)/2, or 92 bytes would be appropriate. In a general-purpose communication
system using group chain reaction coding, the application-specific parameters, such as the
input symbol size (i.e., M, the number of bits encoded by an input symbol), might be
variables set by the application.

Each group of output symbols has a value for each of the output symbols
in the group. In one preferred embodiment, which we consider below, each group of
output symbols has an identifier called its “‘key.” Preferably, the key of each group of

output symbols can be easily determined by the recipient to allow the recipient to

10

15

20

25

30

WO 01/20786 V _ PCT/US00/25405

14
distinguish one group of output symbols from other groups of output symbols.
Preferably, the key of a group of output symbols is distinct from the keys of all other
groups of output symbols. Also preferably, as little data as possible is included in the
transmission in order for é recipient to determine the key of a received group of output
symbols.

In a simple form of keying, the sequence of keys for consecutive groups of
output symbols generated by an encoder is a sequence of consecutive integers. In this
case, each key is called a “sequence number”. In the case where there is one group of
output symbol values in each transmitted packet, the sequence number can be included in
the packet. Since sequence numbers can typically fit into a small number of bytes, e.g.,
four bytes, including the sequence number along with the group of output symbol values
in some systems is economical. For example, using UDP Internet packets of 1024 bytes
each, allocating four bytes in each packet for the sequence number incurs only a small
overhead of 0.4%.

In other systems, it is preferable to form a key from more than one piece of
data. For example, consider a system that includes a recipient receiving more than one
data stream generated from the same input file from one or mo;e senders, where the
transmitted data is a stream of packets, each containing one group of output symbols. If
all such streams use the same set of sequence numbers as keys, then it is likely that the
recipient will receive groups of output symbols with the same sequence numbers. Since
groups of output symbols with the same key, or in this case with the same sequence
number, contain identical information about the input file, this causes useless reception of
duplicate data by the recipient. Thus, in such a situation it is preferred that the key
comprise a unique stream identifier paired with a sequence number.

For example, for a stream of UDP Internet packets, the unique identifier of
a data stream could include the IP address of the sender and the port number that the
sender is using to transmit the packets. Since the IP address of the sender and the port
number of the stream are parts of the header of each UDP packet, there is no additional
space required in each packet to ensure that these parts of the key are available to a
recipient. The sender need only insert a sequence number into each packet together with
the corresponding group of output symbols, and the recipient can recreate the entire key
of a received group of output symbols from the sequence number and from the packet

header. As another example, for a stream of IP multicast packets the unique idcntifier of

10

15

20

25

30

WO 01120786 PCT/US00/25405

15
a data stream could include the IP multicast address. Since the IP multicast address is
part of the header of each IP multicast packet, the remarks made above about UDP
packets apply to this situation as well.

Keying by.the position of the group of output symbols is preferred when it
is possible. Position keying might work well for reading groups of output symbols from a
storage device, such as a CD-ROM (Compact Disk Read-Only-Memory), where the key
of a group of output symbols is its position on the CD-ROM (i.e., track, plus sector, plus
location within the sector, etc.). Position keying might also work well for a circuit based
transmission system, such as an ATM (Asynchronous Transfer Mode) system, where
ordered cells of data are transmitted under tight timing constraints. With this form of
keying, the recipient can recreate the key of a group of output symbols with no space
required for explicitly transmitting the key. Position keying, of course, requires that such
position information be available and reliable.

Keying by position might also be combined with other keying methods.
For example, consider a packet transmission system where each packet contains more
than one group of output symbols. In this case, the key of the group of output symbols
might be constructed from a unique stream identifier, a sequence number, and the
position of the group of output symbols within the packet. Since daté erasures generally
result in the loss of entire packets, the recipient generally receives a full packet. In this
case, the recipient can recreate the key of a group of output symbols from the header of
the packet (which contains a unique stream identifier), the sequence number in the packet,
and the position of the group of output symbols within the packet.

Another form of keying that is preferred in some systems is random
keying. In these systems, a random (or pseudo-random) number is generated, used as at
least part of the key for each group of output symbols and explicitly transmitted with the
group of output symbols. One property of random keying is that the fraction of keys that
have the same value is likely to be small, even for keys generated by different senders at
different physical locations (assuming the range of possible keys is large enough). This
form of keying may have the advantage over other forms in some systems because of the
simplicity of its implementation.

As explained above, group chain reaction coding is useful where there is
an expectation of data erasure or where the recipient does not begin and end reception

exactly when a transmission begins and ends. The latter condition is referred to herein as

10

15

20

25

30

WO 01720786 PCT/US00/2540S

16
“data incompleteness”. These conditions do not adversely affect the communication
process when group chain reaction coding is used, because the group chain reaction
coding data that is received is highly independent so that it is information additive. If
most arbitrary collections.of groups of output symbols are independent enough to be
largely information additive, which is the case for the group chain reaction coding
systems described herein, then any suitable number of packets can be used to recover an
input file. 1f a hundred packets are lost due to a burst of noise causing data erasure, an
extra hundred packets can be picked up after the burst to replace the loss of the erased
packets. If thousands of packets are lost because a receiver did not tune into a transmitter
when it began transmitting, the receiver could just pickup those thousands of packets
from any other period of transmission, or even from another transmitter. With group
chain reaction coding, a receiver is not constrained to pickup any particular set of packets,
so it can receive some packets from one transmitter, switch to another transmitter, lose
some packets, miss the beginning or end of a given transmission and still recover an input
file. The ability to join and leave a transmission without receiver-transmitter coordination

greatly simplifies the communication process.

A Basic Implementation

Transmitting a file using group chain reaction coding involves generating,
forming or extracting input symbols from an input file, encoding those input symbols into
one or more groups of output symbols, where each group of output symbols is generated
based on its key independently of all other groups of output symbols, and transmitting the
groups of output symbols to one or more recipients over a channel. Receiving (and
reconstructing) a copy of the input file using group chain reaction coding involves
receiving some set or subset of groups of output symbols from one of more data streams,
and decoding the input symbols from the values and keys of the received groups of output
symbols.

As will be explained, the decoder can recover an input symbol from the
values of one or more groups of output symbols and possibly from information about the
values of other input symbols that have already been recovered. Thus, the decoder can
recover some input symbols from some groups of output symbols, which in turn allows

the decoder to decode other input symbols from those decoded input symbols and

10

15

20

25

30

WO 01/20786 . PCT/US00/25405

17
previously received groups of output symbols, and so on, thus causing a “chain reaction”
of recovery of input symbols of a file being reconstructed at the recipient.

Aspects of the invention will now be described with reference to the
figures. '

Fig. 1 is a block diagram of a communications system 100 that uses group
chain reaction coding. In communications system 100, an input file 101, or an input
stream 105, is provided to an input symbol generator 110. Input symbol generator 110
generates a sequence of one or more input symbols (IS(0), IS(1), IS(2), ...) from the input
file or stream, with each input symbol having a value and a position (denoted in Fig. 1 as
a parenthesized integer). As explained above, the possible values for input symbols, i.e.,
its alphabet, is typically an alphabet of 2™ symbols, so that each input symbol codes for
M bits of the input file. The value of M is generally determined by the use of
communication system 100, but a general purpose system might include a symbol size
input for input symbol generator 110 so that M can be varied from use to use. The output
of input symbol generator 110 is provided to an encoder 115.

Key generator 120 generates a key for each group of output symbols to be

- generated by the encoder 115. Each key is generated according to one of the methods

described previously, or any comparable method that insures that a large fraction of the
keys generated for the same input file are unique, whether they are generated by this or
another key generator. For example, key generator 120 may use a combination of the
output of a counter 123, a unique stream identifier 130, and/or the output of a random
generator 135 to produce each key. The output of key generator 120 is provided to
encoder 115.

From each key I provided by key generator 120, encoder 115 generates a
group of output symbols, with a set of symbol values B(I), from the input symbols
provided by the input symbol generator. The b values of each group of output symbols is
generated based on its key and on some function of one or more of the input symbols,
referred to herein as the group of output symbol’s “associated input symbols” or just its
“associates”. The selection of the function (the “value function) and the associates is
done according to a process described in more detail below. Typically, but not always, M
is the same for input symbols and output symbols, i.e., an input symbol is the same length

as an output symbol.

10

20

25

30

WO 0120786 PCT/US00/25405

18

In some embodiments, the number K of input symbols is used by the
encoder to select the associates. If K is not known in advance, such as where the input is
a streaming file, K can be just an estimate. The value K might also be used by encoder
115 to allocate storage fdr input symbols.

Encoder 115 provides groups of output symbols to a transmit module 140.
Transmit module 140 is also provided the key of each such group of output symbols from
the key generator 120. Transmit module 140 transmits the groups of output symbols, and
depending on the keying method used, transmit module 140 might also transmit some
data about the keys of the transmitted groups of output symbols, over a channel 145to a
receive module 150. Channel 145 is assumed to be an erasure channel, but that is not a
requirement for proper operation of communication system 100. Modules 140, 145 and
150 can be any suitable hardware components, software components, physical media, or
any combination thereof, so long as transmit module 140 is adapted to transmit groups of
output symbols and any needed data about their keys to channel 145 and receive module
150 is adapted to receive groups of output symbols and potentially some data about their
keys from channel 145. The value of K, if used to determine the associates, can be sent
over channel 145, or it may be set ahead of time by agreement of encoder 115 and
decoder 155.

As explained above, channel 145 can be a real-time channel, such as a path
through the Intemet or a broadcast link from a television transmitter to a television
recipient or a telephone connection from one point to another, or channel 145 can be a
storage channel, such as a CD-ROM, disk drive, Web site, or the like. Channel 145 might
even be a combination of a real-time channel and a storage channel, such as a channel
formed when one person transmits an input file from a personal computer to an Internet
Service Provider (ISP) over a telephone line, the input file is stored on a Web server and
is subsequently transmitted to a recipient over the Internet.

Because channel 145 is assumed to be an erasure channel, communications
system 100 does not assume a one-to-one correspondence between the groups of output
symbols that exit receive module 150 and the groups of output symbols that go into
transmit module 140. In fact, where channel 145 comprises a packet network,
communications sy<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>