发明名称
多功能涂覆液组合物

摘要
本发明涉及一种含有银化合物作为主要成分的多功能涂覆液组合物，具体而言，涉及一种含有银具有特定结构的银络合物以及金属或非金属化合物或至少一种其混合物的多功能涂覆液组合物。本发明的多功能涂覆液组合物能够呈现多种颜色、以及简单的银色，并表现出多功能的效果，即，表现出以下性质中的至少一种性质：导电性和/或导热性、抗菌性、抗静电性、阴离子和远红外线辐射性和反射性。
1. 一种具有优异的表面性质的多功能涂覆膜的制备方法，所述方法包括：
 (i) 形成含有络合物的银涂覆液，所述络合物通过将由化学式 1 表示的银化合物
 与由化学式 2 表示的氨基甲酸铵化合物，由化学式 3 表示的碳酸铵化合物，由化学式 4 表示
 的碳酸氢铵化合物或其混合物反应而获得；
 (ii) 向所述涂覆液中加入显色剂以提供多功能涂覆液；和
 (iii) 将所述多功能涂覆液涂布在基材上以形成多功能涂覆膜；

[化学式 1]
\[
\text{Ag}_nX
\]
[化学式 2]
\[
\begin{array}{c}
\text{R}_1 \\
\text{NCONH} \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\end{array}
\]

[化学式 3]
\[
\begin{array}{c}
\text{R}_1 \\
\text{O} \\
\text{R}_2 \\
\text{HNOCONH} \\
\text{R}_3 \\
\text{R}_4 \\
\end{array}
\]

[化学式 4]
\[
\begin{array}{c}
\text{R}_1 \\
\text{O} \\
\text{R}_2 \\
\text{HNOCOH} \\
\text{R}_3 \\
\end{array}
\]

其中

\(X \) 是选自由氧、硫、卤素、氰基、氯酸根、碳酸根、硝酸根、亚硝酸根、硫酸根、磷酸根、硫

酸根、氯酸根、高氯酸根、四氯硼酸根、乙酰丙酮基、羧酸根及其衍生物所组成的组的取代基；

\(n \) 为 1 至 4 的整数；并且

\(R_1, R_2, R_3, R_4 \) 和 \(R_5 \) 独立地为选自由氢、羟基、\(C_1-C_{30} \) 烷氧基、\(C_1-C_{30} \) 烷基、\(C_5-C_{30} \) 环烷基、\(C_5-C_{30} \) 氧基、\(C_1-C_{30} \) 苯基、官能团取代的 \(C_1-C_{30} \) 苯基、官能团取代的 \(C_5-C_{30} \)

芳基、\(C_1-C_{30} \) 烷氧基、官能团取代的 \(C_1-C_{30} \) 烷基、官能团取代的 \(C_5-C_{30} \) 芳基、环烷化合物、聚合物或其衍生物组成的组中的取代基，其中，当 \(R_1, R_2, R_3, R_4, R_5 \) 和 \(R_6 \) 为

没有取代基或取代有官能团的烷基或芳烷基时，碳酸能够包含选自 N、S 和 O 的杂原子，并且

\(R_1 \) 和 \(R_2 \) 或者 \(R_4 \) 和 \(R_5 \) 能够独立地通过带有或不带有杂原子的 \(C_1-C_{10} \) 烷基彼此连接以形成环。

2. 如权利要求 1 所述的多功能涂覆膜的制备方法，其中，所述显色剂选自金属化合物、非金属化合物及其混合物，并且基于所述多功能涂覆液的总重，其含量为 0.01 重量%至 30

重量%。

3. 如权利要求 2 所述的制备多功能涂覆膜的方法，其中，所述金属化合物选自含有选自 Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Y、Nb、Mo、Ru、Rh、Pd、

Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Sb、Bi、As、Se、Eu、Sm、

Th、Ac、Ce 和 Pr 中的至少一种金属的金属前体、金属有机酸盐和金属氧化物。
4. 如权利要求 3 所述的多功能涂覆膜的制备方法，其中，所述金属化合物选自草酸镧、乙酸金、草酸钯、2-乙基已酸铜、辛酸钴、辛酸银、硬脂酸钴、苯二甲酸镍、苯二甲酸锌、2-乙基已酸铜、硬脂酸铁、甲酸镍、环烷酸钴、柠檬酸锌、新癸酸镍、磷酸铜、硫酸钴、硫酸镍、氯化锌、硫酸铝、磷酸锌、二甲基氧化物、乙酸钴、乙酰丁酸、硫化基酸十二烷基酯、乙酰丙酮镍及其混合物。

5. 如权利要求 2 所述的多功能涂覆膜的制备方法，其中，所述非金属化合物选自硅化铝、氯化物和有机聚合树脂。

6. 如权利要求 5 所述的多功能涂覆膜的制备方法，其中，所述硅化合物选自 3-氨基丙基三乙基氧烷、氨基三乙基氧烷、正硅酸四乙酯、乙烯基三乙基氧烷、乙烯基甲基二甲氧化硅、辛基三乙基氧烷、苯基 Y-氨基丙基三甲基氧化硅烷、氨基新己基三甲基氧化硅烷及其混合物；所述氟化合物选自 2,2-双（4-羟基苯基）六氟丙烷、3,5-双（三氟甲基）苯胺、十二氟-1-庚醇、2,4-二氯苯胺、4-氟苯乙酸、二乙酰二苯甲酮、2-氟联苯、四氟氢醛及其混合物；并且所述有机聚合树脂选自聚丙烯、聚碳酸酯、聚丙烯酸酯、聚甲基丙烯酸甲酯、乙酸纤维素、聚氯乙烯、聚氨酯、聚酯、醇酸树脂、环氧树脂、三聚氰胺树脂、酚醛树脂、苯酚改性醇酸树脂、苯氧改性醇酸树脂、乙烯基改性醇酸树脂、硅改性醇酸树脂、丙烯酸三聚氰胺树脂、聚氨酯酸树脂和环氧树脂。

7. 如权利要求 2 所述的多功能涂覆膜的制备方法，其中，所述显色剂选自辛酸钴、环烷酸钴、四丁基氧化物、3-氨基丙基三乙基氧烷、乙酰烷氧烷二丙醇锌和聚氨酯树脂。

8. 如权利要求 1 所述的多功能涂覆膜的制备方法，其中，所述多功能涂覆液还包含选自溶剂、稳定剂、分散剂、粘合剂树脂、还原剂、表面活性剂、湿润剂、触变剂和流平剂中的至少一种。

9. 如权利要求 8 所述的多功能涂覆膜的制备方法，其中，所述溶剂为选自水、醇、二醇、乙酸酯、醚、酮、脂肪烃、芳香烃和卤代烃溶液中的至少一种。

10. 如权利要求 1 所述的多功能涂覆膜的制备方法，其中，所述基材以粉末、薄片、珠、球、纤维、膜、片材、碎片、棒、线或须的形式提供。

11. 如权利要求 1 所述的多功能涂覆膜的制备方法，所述方法还包括其涂布后的干燥、烘烤或干燥并烘烤。

12. 如权利要求 11 所述的多功能涂覆膜的制备方法，其中，所述干燥在 80°C 至 200°C 的温度进行，所述烘烤在 300°C 至 700°C 的温度进行。

13. 一种多功能涂覆膜，所述多功能涂覆膜通过如权利要求 1 至 12 中任一项所述的方法获得。

14. 一种多功能涂覆液组合物，所述多功能涂覆液组合物包含：

通过将由化学式 1 表示的银化合物与由化学式 2 表示的氨基甲酸烷化合物、由化学式 3 表示的碳酸铵化合物、由化学式 4 表示的碳酸氢铵化合物或其混合物反应而获得的银络合物，和

选自金属化合物、非金属化合物及其混合物的显色剂：

[化学式 1] Ag,X
[化学式 2]
其中
X 是选自由氧、硫、卤素、氰基、氯酸根、硫酸根、硝酸根、亚硝酸根、磷酸根、磷酰根、硫酰酸根、氯酸根、高氯酸根、四氟磷酸根、乙酰丙酮基、羧酸根及其衍生物所组成的基团；

n 为 1 至 4 的整数；并且

R₁、R₂、R₃、R₄、R₅ 和 R₆ 独立地为选自由氢、羟基、C₁-C₂₀烷氧基、C₁-C₂₀烷基、C₅-C₂₀环烷基、C₆-C₂₀芳基、(C₁-C₂₀)芳基、(C₁-C₂₀)烷基、官能团取代的 C₁-C₂₀烷基、官能团取代的 C₅-C₂₀芳基、杂环化合物、聚合物或其衍生物组成的组中的取替基，其中，当 R₁、R₂、R₃、R₄、R₅ 和 R₆ 为没有取代基或取代有官能团的烷基或芳烷基时，碳链能够包含选自 N、S 和 O 的杂原子，并且 R₁ 和 R₂ 或者 R₃ 和 R₄ 能够独立地通过带有或不带有杂原子的 C₁-C₁₀ 亚烷基彼此连接以形成环。

15. 如权利要求 14 所述的多功能涂覆液组合物，其中，基于所述组合物的总重，所述显色剂的含量为 0.01 重量% 至 30 重量%。

16. 如权利要求 14 所述的多功能涂覆液组合物，其中，所述金属化合物选自含有选自 Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Y、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Sb、Bi、As、Se、Eu、Sm、Th、Ac、Ce 和 Pr 中的至少一种金属的金属前体、金属有机酸盐和金属氧化物。

17. 如权利要求 14 所述的多功能涂覆液组合物，其中，所述非金属化合物选自硅化合物、氯化合物和有机聚合树脂。

18. 如权利要求 15 所述的多功能涂覆液组合物，其中，所述显色剂选自三氯化锆、环烷酸钙、四丁氧基钛、3-氨基丙基三乙氧基硅烷、乙酰烷氧基二异丙醇铝和聚氨酯树脂。
多功能涂覆液组合物

技术领域

[0001] 以下公开涉及一种基于银化合物的多功能涂覆液组合物，特别是，涉及一种含有具有特定结构的银络合物以及金属化合物、非金属化合物或包含它们中的至少一种的混合物的多功能涂覆液组合物。

背景技术

[0002] 银 (Ag) 因其独特的性质，包括高导电性和抗菌活性，已被广泛应用于各种工业领域，包括贵金属饰物或硬币、器皿、电学、电器、照明、复印机、显示电极、电子波屏蔽、抗菌剂等。近年来，具有多功能涂覆层的商品受到青睐，所述多功能涂覆层除具有如导电性、抗菌性、光泽、抗静电性以及阴离子和远红外线发射性等银所独有的性质外，还能够实现各种其他功能。

[0003] 一般说来，本领域技术人员已知的涂覆方法包括镀覆、磁控溅射、离子等离子沉积、化学气相沉积、物理气相沉积、浸涂、流化床涂覆、原子层沉积 (ALD)、喷涂、旋转涂、导电沉积、静电涂覆或凹版涂覆等。当然，这些方法可应用于银涂覆。当基于银前体的还原而使用银涂覆液组合物时，为实现除银的基本性质外作为多功能涂层的各种特性，需要涂覆能够对基材赋予功能性的底涂层或者在银涂层上涂布另外的功能涂层。若以上述方式使银涂层多功能化，如导电性、抗菌性、抗静电性、阴离子和远红外线发射或光泽等银所独有的性质会劣化。近来，相关领域已经进行了积极的研究。然而，相关领域中所提出的多功能化方法繁琐且复杂。

发明内容

[0004] 技术问题

[0005] 如上所述，根据所述相关领域的银涂覆组合物需要复杂的方法来实现多功能涂覆层，因而成本效率低或会造成银涂层自身品质劣化。因此，本发明的一个实施方式涉及提供一种涂覆液组合物及其制备方法，所述涂覆液组合物能够实现各种颜色并可通过简单的方法获得，同时提供多功能，包括导电和／或导热性、抗菌性、抗静电性、阴离子和远红外线发射性或反射性。

[0006] 本发明的另一个实施方式涉及提供一种制造多功能涂覆膜的方法，所述方法包括使用多功能涂覆液组合物在各种基材上形成多功能涂覆膜。

[0007] 技术方案

[0008] 为解决上述技术问题，本发明人进行了深入研究，并发现当向包含具有特定结构的银络合物的涂覆液中加入不同类型和量的金属化合物或非金属化合物时，除显色性外还可以实现选自导电和／或导热性、抗菌性和反射性中的一种或多种不同功能。本发明基于这一发现。

[0009] 在一个一般性的方案中，提供了一种基于银络合物的多功能涂覆液组合物。更具体而言，提供了一种含银多功能涂覆液组合物及其制备方法，所述组合物包含具有特定结构的银络合物和金属化合物、非金属化合物或含有它们中的至少一种的混合物。此外所用
术语“多功能”是指涂层组合物除显色性外还具有选自导电和/或导热性、抗菌性、抗静电性、阴离子和远红外线发射性和反射性的一种或多种功能。

0010 在另一个一般性的方案中，提供了一种制备多功能涂层的方法，所述方法包括使用所述多功能涂层液在许多种基材的表面上形成涂层，所述涂层能够实现各种颜色，并具有选自电导和/或导热性、抗菌性和反射性中的一种或多种不同功能。

0011 此处所公开的多功能涂层液可以涂布于氧化铝、二氧化钛涂层的云母或玻璃片，从而提供具有各种颜色和银所独有的性质的珠光颜料。也可以将所述多功能涂层液涂覆在丙烯酸-丁二烯-苯乙烯 (ABS) 或聚碳酸酯 (PC) 上来提供主要芯料 (master chip)，再将它们以适当比例混合并进行如注射或挤出等成型加工。以此方式，可以获得具有各种颜色和抗菌性的塑性产品。此外，当将多功能涂层液涂覆在锤或铜超细粉上时，可以获得具有优异的导电性和氧化稳定性的导电性材料，并且所述材料的成本效率很高。

0012 在一个具体实施方式中，提供了一种用于生成多功能涂层膜的多功能涂层液组合物，所述多功能涂层膜能够实现各种颜色，并具有选自导电和/或导热性、抗菌性和反射性中的一种或多种不同功能。所述多功能涂层液组合物包含银络合物和选自金属化合物、非金属化合物及其混合物的显色剂。

0013 在另一具体实施方式中，提供了一种用于制备具有优异的表面性质的多功能涂层膜的方法，所述方法包括：

0014 (i) 形成含有银络合物的银涂层；

0015 (ii) 向所述银涂层中加入显色剂以提供多功能涂层液；和

0016 (iii) 将所述多功能涂层液涂布在基材上以形成多功能涂层膜。

0017 此处所使用的银络合物是指具有 Ag[氨基甲酸铵化合物、碳酸铵化合物或碳酸氢铵化合物]络合物结构的银络合物，所述银络合物通过将银化合物与选自氨基甲酸铵化合物、碳酸铵化合物、碳酸氢铵化合物及其混合物中的至少一种物质反应而获得。本申请人提交的韩国专利申请第 2006-0011083 号中公开了这种银络合物。

0018 通过以下对实施方式的描述，本发明的优点、特征和方案将会变得显而易见。

0019 在一个方案中，提供了一种多功能涂层液组合物，所述多功能涂层液组合物包含：通过将由化学式 1 表示的银化合物与选自由化学式 2 表示的氨基甲酸铵化合物、由化学式 3 表示的碳酸铵化合物、由化学式 4 表示的碳酸氢铵化合物中的化合物或其混合物反应而获得的银络合物，和选自金属化合物、非金属化合物及其混合物的显色剂。

0020 在另一方案中，提供了一种用于制备具有优异的表面性质的多功能涂层膜的方法，所述方法包括：

0021 (i) 形成含有银络合物的银涂层，所述银络合物通过将由化学式 1 表示的银化合物与选自由化学式 2 表示的氨基甲酸铵化合物、由化学式 3 表示的碳酸铵化合物、由化学式 4 表示的碳酸氢铵化合物中的化合物或其混合物反应而获得；

0022 (ii) 向所述银涂层中加入显色剂以提供多功能涂层液；和

0023 (iii) 将所述多功能涂层液涂布在基材上以形成多功能涂层膜。

0024 [化学式 1]

0025 Ag,X

0026 [化学式 2]
在以上化学式中，X 是选自自由氧、硫、卤素、氨基、氮酸根、磷酸根、亚硝酸根、硫化酸根、磷酸根、硫酸根、磷酸根、氯酸根、高氯酸根、四氟硼酸根、乙酰丙酮基、羧酸根及其衍生物所组成的组的取代基。

n 为 1 至 4 的整数；并且

R₁ 至 R₅ 独立地表示氢、羟基、C₁₂-C₅₀ 烷氨基、C₁-C₅₀ 烷基、C₂-C₅₀ 烷烃基、C₆-C₂₀ 芳基、(C₆-C₂₀) 芳基、(C₁-C₅₀) 烷基、官能团取代的 C₁-C₅₀ 烷基、官能团取代的 C₆-C₂₀ 芳基、环烷化合物、聚合物或其衍生物。其中，当 R₁ 至 R₅ 表示没有取代基或取代有官能团的烷基或芳烷基时，各碳链还可以包含选自 N、S 和 O 的杂原子，并且 R₁ 和 R₂ 或者 R₁ 和 R₅ 可以独立地通过带或不带环原子的 C₁-C₁₀ 亚烷基彼此连接以形成环。

由化学式 1 表示的化合物的具体实例包括但不限于：氧化银、硫氯酸、硫化银、氯化银、氯化银、硝酸银、磷酸银、硝酸银、硫酸银、磷酸银、高氯酸银、四氟硼酸银、乙酰丙酮银、乙酸银、乳酸银、草酸银及其衍生物。

在化学式 2 至 4 中，R₁ 至 R₅ 的具体实例包括但不限于氢、甲基、乙基、丙基、丁基、异丁基、戊基、己基、乙基己基、庚基、辛基、异辛基、壬基、癸基、十二烷基、十六烷基、十八烷基、二十二烷基、环丙基、环戊基、环己基、烯丙基、甲基、甲基基、甲基基、乙基基、乙基基、丙基基、丁基基、戊基基、己基基、庚基基、辛基基和戊基基等化合物，以及由它们衍生的化合物，如聚烯丙胺或聚乙烯基及其衍生物。

由化学式 2 表示的化合物的具体实例包括选自自由氨基甲酸胺、乙基氨基甲酸乙胺、异丙基氨基甲酸异丙胺、正丁基氨基甲酸正丁胺、异丁基氨基甲酸异丁胺、叔丁基氨基甲酸叔丁胺、2- 乙基己基氨基甲酸 2- 乙基己基胺、十八烷基氨基甲酸十八烷基胺、2- 乙基氨基甲酸 2- 乙基氨基乙胺、2- 氨基乙胺基甲酸 2- 氨基乙胺基乙胺、二丁基氨基甲酸二
丁铵、双十八烷基氨基甲酸钠十八烷基铵、甲基癸基氨基甲酸甲基癸铵、六亚甲基亚氨基氨基甲酸六亚甲基氨基甲酸及氨基甲酸胺、 childcare 甲基氨基甲酸钠及胺、乙基己基氨基甲酸盐及胺、异丙基双氨基甲酸三亚乙基二铵、苄基氨基甲酸苄基铵、三乙氧基甲硅烷基丙基氨基甲酸三乙氧基甲硅烷基丙基铵及其衍生物组成的组中的至少一种化合物或其混合物。由化学式 3 表示的碳酸铵化合物的具体实例包括选自由碳酸铵、乙基羧酸乙铵、异丙基羧酸异丙铵、正丁基羧酸正丁铵、异丁基羧酸异丁铵、叔丁基羧酸叔丁铵、2- 乙基己基碳酸 2- 乙基己铵、2- 甲氧基乙基碳酸 2- 甲氧基乙铵、2- 氯基乙基碳酸 2- 氯基乙铵、十八烷基硅烷十八烷基铵、二丁基磷酸二丁铵、双十八烷基磷酸双十八烷基铵、甲基癸基磷酸甲基癸铵、六亚甲基亚氨基磷酸六亚甲基氨基铵、吗啉磷酸吗啉铵、苄基磷酸苄基铵、三乙氧基甲硅烷基丙基磷酸三乙氧基甲硅烷基丙基铵、异丙基磷酸三亚乙基二铵及其衍生物组成的组中的至少一种化合物或其混合物。由化学式 4 表示的磷酸氢铵化合物的具体实例包括选自由磷酸氢铵、磷酸氢异丙铵、磷酸氢叔丁铵、磷酸氢苄基铵、2- 乙基己铵、磷酸氢 2- 甲氧基乙铵、磷酸氢 2- 氯基乙铵、磷酸氢双十八烷基铵、磷酸氢氯吡啶铵、磷酸氢三亚乙基二铵及其衍生物组成的组中的至少一种化合物或其混合物。
说明书

三乙氧基硅烷、甲基三乙氧基硅烷、正硅酸四乙酯、乙烯基三乙氧基硅烷、乙烯基甲基二甲氧基硅烷、乙烯基三乙氧基硅烷、苯基
\(\gamma\) 氨基丙基三甲氧基硅烷、氨基丙基三甲氧基硅烷等；氯化合物，如 2,2-双(4-羟基苯基)六氟丙烷、3,5-双(三氟甲基)苯胺、十二氟-1-庚醇、2,4-二氯苯胺、4-氯苯基酯、二乙烯二胺甲酮 (dicaprobenzophenone)、2-氟联苯、四氟氨酯等；和有机聚合树脂，如聚丙烯、聚丙烯酸酯、聚丙烯酸酯、聚甲基丙烯酸甲酯、乙酸纤维素、聚氯乙烯、聚氯酯、聚酯、醇酸树脂、环氧树脂、三聚氰胺树脂、酚醛树脂、苯酚改性醇酸树脂、环氧改性醇酸树脂、乙烯基改性醇酸树脂、硅改性醇酸树脂、丙烯酸三聚氰胺树脂、聚异氟酸酯树脂和环氧氯树脂等。在本发明范围内也可以使用其它非金属化合物。

[0047] 在银涂覆液中可以加入需要量的显色剂，只要其不会对获得的涂覆液组合物的特性产生不利影响即可。一般而言，基于组合物的总重，显色剂的用量可以为 0.01 重量%至 30 重量%，更特别为 0.1 重量%至 10 重量%。若显色剂的用量低于 0.01 重量%，则不能充分显示所需要的颜色。另一方面，若显色剂的用量大于 30 重量%，则铝络合物或其它成分的量相对降低，导致获得的涂覆膜的其它特性劣化。

[0048] 步骤 (ii) 获得的多功能涂覆液组合物除包含铝络合物和显色剂之外，还可以包含其它添加剂，如溶剂、稳定剂、分散剂、粘合剂树脂、还原剂、表面活性剂、湿润剂、触变剂或流平剂。

[0049] 可用在涂覆液中的溶剂可选自水、醇、二醇、乙酸酯、醚、酮、脂肪烃、芳香烃或卤代烃溶剂。溶解剂的实例包括乙醇、甲醇、乙醇、异丙醇、1-甲基丙烯醇、丙氧基乙醇、甘油、乙酸乙酯、乙酸丁酯、乙酸甲基乙氧基、乙酸甲基乙酸乙酯、乙酸甲基乙酸乙酯、1-乙基-2-吡咯烷酮、二亚甲基、己烷、庚烷、十二烷、石蜡油、溶剂油、苯、甲苯、二甲苯、氯仿、二氯甲烷、四氯化碳和氯仿中的至少一种。

[0050] 可用在涂覆液中的稳定剂选自：带有或不带有羟基的伯胺、仲胺或叔胺化合物；选自氨基甲酸酯化合物、双酰胺化合物和双酰胺化合物的酸盐化合物；选自膦化合物、亚磷酸酯（盐）化合物和磷酰酯（盐）化合物的磷化合物；选自硫醇或硫化物的硫化合物；或其混合物。可用作稳定剂的胺化合物的具体实例包括甲胺、乙胺、正丙胺、异丙胺、正丁胺、异丁胺、异戊胺、正己胺、2-乙基己胺、正庚胺、正辛胺、壬胺、癸胺、十二烷胺、十六烷胺、十八烷胺、二十二烷胺 (docodecylamine)、环己胺、环戊胺、环己胺、烯丙胺、羟胺、氢氧化胺、甲氧基胺、2-乙醇胺、甲基乙氧基胺、2-三丙基胺、2-甲基丙胺、甲氧基丙胺、氢氧基乙胺、乙氧基胺、正丁氧基胺、2-异丙氧基胺、甲氧基乙氧基乙胺、甲氧基乙氧基乙氧基乙胺、二乙胺、二丙胺、二乙醇胺、六亚甲基亚胺、吗啉 (morpholine)、哌啶、哌嗪、乙二胺、丙二胺、六亚甲基二胺、三亚乙二胺、2,2-(亚乙二氧基)双乙胺、三乙胺、三乙醇胺、吡咯、咪唑、吡啶、氯乙胺、二甲基缩醛、3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、苯胺、芳香胺、氨基苄胺、苯胺及其衍生物和聚合物，如聚烯丙胺或聚乙烯亚胺及其衍生物。

[0051] 步骤 (iii) 通过将由步骤 (ii) 获得的多功能涂覆液涂布在基材上而进行，以形成多功能涂覆膜。

[0052] 此处所用的基材可以是允许涂覆的任何基材。基材的具体实例包括但不限于：塑料，如聚酰胺 (P1)、聚对苯二甲酸乙二醇酯 (PET)、聚萘二甲酸乙二醇酯 (PEN)、聚酯
说明 书

说明 书

另外，基材可以以粉末、薄膜、球、纤维、膜、片材、碎片、棒、线、须等形式提供，不过不限于这些形式。

本文所公开的多功能涂覆液组合物可以对各种基材赋予均一的涂覆特性，因此可用于银络合物与显色剂的组合，在如上所述的具有各种形式和材料的基材表面上实现优异的显色。同时，根据银组分和显色剂的特定类型，所述多功能涂覆液组合物可形成具有如导电性和/或导热性、抗菌性、抗静电性、阴离子和远红外线发射性或反射性等一种以上性质的多功能涂膜。

根据涂覆液的物理性质和基材的特定类型，所述多功能涂覆液可以通过选自旋涂、浸涂、喷涂、浸渍、流涂、刮板涂覆、滴涂（dispensing）、喷墨印刷、胶版印刷、网纹印刷、移印（pad printing）、凹版印刷、柔版印刷、压印印刷、刻印（imprinting）、静电印刷、光刻、流化涂覆、原子层沉积（ALD）涂覆、化学气相沉积（CVD）、物理气相沉积（PVD）、离子等离子体涂覆、静电涂覆、电沉积涂覆等中的任何一种方法来涂布。

在步骤 (iii) 中将多功能涂覆液涂布在基材上之后，可以将其干燥、烘烤或干燥并烘烤，以形成涂覆膜。当基材为塑料、树脂或橡胶基材时，可以在涂布后干燥涂覆液，从而形成涂覆膜。当基材为由选自各种陶瓷材料、金属材料、非金属材料如碳、碳纳米管（CNT）、硅或硫、金属盐化合物和各种纸中的任一种制成的基材时，可以烘烤或者干燥并烘烤涂覆液，以形成涂覆膜。干燥和烘烤可以根据基材的特定类型在适当的温度范围内进行。涂覆液可以在 80°C 至 200°C 的温度干燥，或者在 300°C 至 700°C 的温度烘烤。当干燥温度低于 80°C 时，涂覆液会因干燥速率低而无法得到有效干燥。另一方面，当干燥温度较高时，某些类型的基材可能会劣化。当烘烤温度低于 300°C 时，涂膜对于基材的粘合不充分，并且不会形成均一的涂覆膜。另一方面，超过 700°C 的过高的烘烤温度会导致基材的劣化并且成本效益较低。

有利效果

本文所公开的多功能涂覆液组合物能够实现各种颜色和银色，还可以提供如导电性和/或导热性、抗菌性、抗静电性、阴离子和远红外线发射性和反射性等性质中的一种以上性质。

另外，还可以根据加入到多功能涂覆液组合物中的金属或非金属化合物的具体类型和量，来提供不同的颜色和功能，同时避免了需要采用复杂的方法。

具体实施方式

下面描述实施例。以下实施例仅出于说明性目的，并不意在限制本公开的范围。

实施例 1
在配制有搅拌器的反应器中，将 2.1kg (6.94mol) 2-乙基己基氨基甲酸 2-乙基己基铵和 0.825kg (5.08mol) 异丁基氨基甲酸异丁铵溶解在 5.2kg 异丙醇中。接下来，向其中加入
1kg (4.31mol) 氧化铝，并使反应在室温进行。观察到，最初作为黑色浆料存在
的反应混合物随着反应进行而颜色变浅，之后变得透明，从而产生络合物。反应进行 2 小时后，获得无色透明溶液。向该溶液中加入 0.125kg 作为稳定剂的 2-羟基-2-甲基丙胺，然后搅拌。之后，通过 0.45 μm 的膜过滤器过滤反应混合物。进行热重量分析 (TGA) 后，获得银含量为
10.05 重量%的涂覆液。

向 100g 由实施例 1 获得的银涂覆液中加入 5 重量%的量的辛酸锆 (Jinyang Chemical Corp.), 并在室温进行反应 12 小时，获得稳定的多功能涂覆液。

以与实施例 1 相似的方式获得多功能涂覆液，不同之处在于，以 20 重量%的量向
由实施例 1 获得的银涂覆液中加入环烷酸钙 (Jinyang Chemical Corp.)。

以与实施例 1 相似的方式获得多功能涂覆液，不同之处在于，以 30 重量%的量向
由实施例 1 获得的银涂覆液中加入 3-氨基丙基三乙氧基硅烷 (Aldrich)。

以与实施例 1 相似的方式获得多功能涂覆液，不同之处在于，以 10 重量%的量向
由实施例 1 获得的银涂覆液中加入聚氨酯树脂 HW-1217 (Hosung Chemex)。

以与实施例 1 相似的方式获得多功能涂覆液，不同之处在于，以 5 重量%的量向由
实施例 1 获得的银涂覆液中加入丁醇钛 (Aldrich)。

以与实施例 1 相似的方式获得多功能涂覆液，不同之处在于，以 5 重量%的量向由
实施例 1 获得的银涂覆液中加入乙酰氨基二异丙酯铝 (Ajinomoto fine-techno, AL-M)。

多功能涂覆膜的制备

由实施例 1 至 7 获得的多功能涂覆液用于制备下述各种多功能涂覆膜，并对这些
涂覆膜进行表征。

为制备多功能涂覆膜，制备涂覆用玻璃基材，并使用乙醇清洗该玻璃基材以除去
其表面上的灰尘，然后在干燥器中于 50℃干燥。对玻璃基材干燥至少 30 分钟后，将玻璃基
材放置在涂覆机中，并将 20ml 由实施例 2 获得的组合物倾注在玻璃基材上，然后以 500rpm
的速度旋转，以形成涂覆膜。继而在 500℃处理所述涂覆膜 5 分钟。获得的涂覆膜呈闪亮的
黑色，并显示出 12.4 Ω / □的表面电阻和 40%的反射率。

通过喷涂，使用由实施例 3 获得的涂覆液在除去了灰尘的玻璃基材上形成涂覆
膜。在 500℃处理该涂覆膜 5 分钟。获得的涂覆膜呈闪亮的黄色，并显示出 150 Ω / □的表
面电阻和 40%的反射率。
通过微凹版涂覆，使用由实施例 4 获得的涂覆液在 PET 膜上形成涂覆膜。在 150℃处理该涂覆膜 5 分钟。获得的涂覆膜呈淡红色。

首先，将 1kg 玻璃薄片（NGF Canada Ltd.，RCF-150）引入流化床反应器中，并将反应器的内部温度升高至 110℃。接下来，在使由实施例 5 获得的涂覆液组合物流化的同时，以所述涂覆液组合物涂覆该玻璃薄片 20 分钟。然后，在 150℃对所获得的涂覆膜进行干燥，产生灰色珠光颜料，继而将该灰色珠光颜料引入烘烤炉中，以在 500℃进行为时 10 分钟的烘烤。在此方式下，获得了闪光的浅灰色珠光颜料，其表面电阻为 300Ω/□并且反射率为 50%。

首先，将 1kg 铝粉（ECKA 20T, eckagranules）引入流化床反应器中，并将反应器的内部温度升高至 110℃。接下来，在使由实施例 1 获得的涂覆液组合物流化的同时，以所述涂覆液组合物涂覆所述铝粉 20 分钟。然后，在 150℃对所获得的涂覆膜进行干燥，产生银色导电颗粒，其表面电阻为 200mΩ/□并且反射率为 85%。

通过浸涂，使用由实施例 6 获得的涂覆液在玻璃基材上形成涂覆膜。在 500℃处理该涂覆膜 5 分钟。获得的涂覆膜呈闪亮的黑色，并显示出 100Ω/□的表面电阻和 35%的反射率。

通过微凹版涂覆，使用由实施例 7 获得的涂覆液在 PET 膜上形成涂覆膜。在 500℃处理该涂覆膜 5 分钟。获得的涂覆膜呈暗蓝色，并显出 2KΩ/□的表面电阻。

本文所公开的多功能涂覆液组合物能够实现各种颜色和银色，还可以提供如导电性、导热性能、抗菌性、抗静电性、阴离子和远红外线发射性和反射性等多种性质中的一种以上性质。

另外，还可以根据加入到多功能涂覆液组合物中的金属或非金属化合物的具体类型和量，来提供不同的颜色和功能，同时避免了需要采用复杂的方法。