发明名称
一种陶瓷釉面砖及其制备方法

摘要
本发明涉及一种陶瓷釉面砖的制备方法，其特征在于，通过在喷涂有透明釉面的坯体上以陶瓷喷墨形式喷涂组合物，再经1100℃～1250℃高温烧成35～120min，制得具有立体视觉效果的陶瓷釉面砖，其中，所述喷涂的组合物包括溶解于溶剂中的醋酸锌粉体和分散于溶剂中的纳米级氧化铝粉体。其中所述溶剂为丙二醇及其水溶液，所述醋酸锌粉体和纳米级氧化铝的质量比为1：1～1：4。此工艺和所含组合物的质量比为32～45%，以及所述溶剂中丙二醇水溶液中组合物的质量百分比为50～60%。本发明制备的陶瓷釉面砖吸水率低，强度高，并能够产生立体视觉效果。
权利要求书

1. 一种陶瓷釉面砖的制备方法，其特征在于，通过在喷涂有透明釉面的砖坯上以陶瓷喷墨形式喷涂组合物，再经1100℃～1250℃高温烧制35～120min，制得具有立体视觉效果的陶瓷釉面砖；其中，所述喷涂的组合物包括溶解于溶剂中的醋酸铵粉体和分散于溶剂中的纳米级或亚微米级氧化铝粉体，其中所述溶剂为丙二醇及其水溶液，所述醋酸铵粉体和纳米级或亚微米级氧化铝的质量比为1：1～1：4，二者总和占所述组合物质量百分比为32～45%，以及所述溶剂中丙二醇水溶液占组合物的质量百分比为50～60%。

2. 根据权利要求1所述的方法，其特征在于，在喷涂有所述组合物的砖坯上再喷两次所述透明釉后再喷所述组合物，再经所述高温烧制所得所述具有多层支架视觉效果的陶瓷釉面砖。

3. 根据权利要求1所述的方法，其特征在于，先配制溶剂溶液，然后于超声波搅拌机中使粉体分散于所述溶液中，分散时间为10～50min。

4. 根据权利要求1至3中任一项所述的方法，其特征在于，所述溶剂中还包括占组合物质量百分比为0.01～1%的结合剂。

5. 权利要求1至3中任一项所述的方法，其特征在于，所述溶剂中还包括占组合物质量百分比为0.01～2%的分散剂。

6. 根据权利要求1至3中任一项所述的方法，其特征在于，所述溶剂中还包括占组合物质量百分比为0.01～5%的表面活性剂。

7. 根据权利要求1至3中任一项所述的方法，其特征在于，还包括与醋酸铵粉体和纳米级或亚微米级氧化铝粉体一起分散于溶剂中的占组合物质量百分比为0.01～0.5%的着色剂，所述着色剂为水溶性盐或亚微米级陶瓷染料粉体。

8. 根据权利要求5所述的方法，其特征在于，所述分散剂是1-甲基戊醇、聚乙二醇200和聚乙二醇400中的任意一种。

9. 根据权利要求4所述的方法，其特征在于，所述结合剂是壳聚糖。

10. 根据权利要求6所述的方法，其特征在于，所述表面活性剂为烷基酚聚氧乙烯醚和油酸中的任意一种。

11. 一种根据权利要求1至10中任一项所述的方法制得的具有立体视觉效果的陶瓷釉面砖。
一种陶瓷釉面砖及其制备方法

[0001] 本申请是申请号为 201210293216.2，申请日为 2012 年 8 月 17 日，发明名称为“一种陶瓷喷墨墨水组合物及陶瓷釉面砖”的发明专利申请的分案申请。

技术领域
[0002] 本发明涉及一种利用陶瓷喷墨墨水制备一种能使透明釉产生立体视觉效果的陶瓷釉面砖及其制备方法。

背景技术
[0003] 陶瓷产品因其吸水率低，强度硬度高，结构致密，耐磨，产品理化性能优越而广泛应用于家装和建筑领域。随着计算机技术的发展，数字化技术越来越广泛的应用于传统制造业中，成为制造行业一项重要的技术，对产品的质量和创新起着至关重要的作用。数码喷墨打印技术是 20 世纪 70 年代末开发成功的一种非接触式的数字印刷技术，近几年来被运用于建筑陶瓷领域。陶瓷喷墨打印技术能够实现产品个性化设计与制造，也能够提高生产效率，特别适合于设计复杂的图案，进一步提高了建筑陶瓷的装饰效果。将喷墨打印技术应用于陶瓷装饰手段，可以实现非接触、高性能等优点，并可通过自动控制设备对其实施自动化控制。该技术的广泛应用是陶瓷装饰技术的一次革命，具有非常广阔的发展前景。
[0004] 陶瓷喷墨打印的关键技术之一就是陶瓷喷墨墨水。陶瓷喷墨墨水是指含有某些特殊物质的悬浮液或乳浊液，其中还含有溶剂、分散剂、结合剂、表面活性剂及其他辅料。陶瓷喷墨墨水按功能分主要分为功能陶瓷喷墨墨水和陶瓷装饰喷墨墨水两类。功能陶瓷喷墨墨水是含有 ZrO₂、TiO₂、BaTiO₃ 和 PZT 等特殊物质的墨水，其在陶瓷基体表面赋予新的力学、光催化和电学等方面的性能，主要运用于功能陶瓷领域。而陶瓷装饰喷墨墨水运用于传统建筑陶瓷的装饰领域，目前主要是含有陶瓷颜料和着色剂的墨水。
[0005] 陶瓷喷墨墨水中的粉体密度和固体含量较大，非常容易聚团，从而堵塞喷头。另外，陶瓷喷墨墨水主要是利用其中分散的粉体烧成后所表现的各种性能或颜色来赋予基体新的性能或是装饰效果。因此，陶瓷喷墨墨水不仅需要考虑与喷墨打印机匹配的问题，还要考虑墨水中粉体高温烧成后所表现的性能是否满足要求。
[0006] 现有国内对陶瓷喷墨墨水的研究主要集中于墨水显色、粒度等方面，而对陶瓷装饰用反应性墨水的研究未见报导。例如公开号 CN101108920 公布一种高分子微细化无机颜料以及其制法，利用水玻璃将硅酸钠（Pr₂O₅）与矿化剂包覆形成微粒，再与氧化硅（SiO₂）及氧化锆（ZrO₂）混合烧成微粉无机颜料，可提升无机颜料微细化后颜料的色浓度。公开号 CN102432340A 公开一种非水解胶凝硅酸盐制备硅酸锌基陶瓷色料的方法，其通过引入合适的矿化剂降低硅酸锌的合成温度，并将着色剂包裹在硅酸锌基体中，从而提高色料的高温稳定性和化学稳定性，期望能够制备经高温煅烧后仍能实现需要的显色效果的陶瓷色料。

发明内容
本发明的目的在于提供一种装饰用反应性陶瓷喷墨墨水，利用其中包含的特殊粉体烧成后所表现的性能赋予基体新的装饰效果。

在此本发明提供一种陶瓷喷墨墨水组合物，包括溶解于溶剂中的醋酸锌、以及分散于溶剂中的纳米级或亚微米级氧化铝粉体，其中所述溶剂包括丙二醇水溶液。另外，在本发明中纳米级为通常含义的尺度级，粒度直径在100nm以下。亚微米级为通常含义的尺度级，粒度直径在100nm～1.0μm之间。

由于醋酸锌能极好的溶于水和醇中，可以使溶剂中氧化铝等粉体的固含量相对较大，且由于悬浮于溶剂中的粉体颗粒极小，形成的组合物溶液均匀稳定，粉体悬浮性高不易结团，因此本发明的墨水组合物适用于作为陶瓷喷墨印刷装饰方法用墨水墨水。当本发明的墨水喷涂于砖块上，砖块经过高温烧成后组合物中的溶剂成份将会分解挥发掉，其不会对陶瓷制品的物理化学性能产生影响。此外其中的氧化铝粉体含量高可以适用于制备陶瓷制品，且能满足陶瓷产品需经高温烧结、并具有强度硬度高、结构致密、耐磨的特性。

优选地，所述醋酸锌和纳米级或亚微米级氧化铝的质量比为1：1～1：4，二者总和占所述陶瓷喷墨墨水组合物质量百分比为32～45%。

优选地，所述溶剂中丙二醇水溶液占组合物的质量百分比为50～60%。此外，优选地选用浓度为15～30wt%的丙二醇水溶液。

此外，优选在未分散有粉体固含量的溶剂中事先在其中加入少量的分散剂、结合剂和/或表面活性剂，以增加本发明墨水组合物的稳定性。优选地，所述溶剂中还包括占组合物质量百分比为0.01～1%的结合剂；和/或占组合物质量百分比为0.01～5%的表面活性剂；和/或占组合物质量百分比为0.01～2%的分散剂。

优选地本发明中使用的所述分散剂是1-甲基戊醇、聚乙二醇200和聚乙二醇400中的一种。

优选地本发明中使用的所述结合剂是缩聚糖。

优选地本发明中使用的所述表面活性剂为烷基芳聚氧乙烯醚醇和油酸中的任意一种。

本发明陶瓷喷墨墨水组合物中的固含量除上述纳米级或亚微米级氧化铝粉体之外，还可以进一步包括占组合物质量百分比为0.01～0.5%的着色剂。优选地所述着色剂为水溶性盐或亚微米级陶瓷色料粉体。通过进一步增加少量的着色剂，其不会影响组合物原有的性能，还能够使其烧制后呈现所需的色调。

配制本发明陶瓷喷墨墨水组合物时，优选先配制溶剂溶液，然后于超声波搅拌机中使粉体分散于所述溶液中，分散时间为10～50min。以此制备的产品均匀稳定，悬浮性高，符合喷墨打印墨水的要求。

本发明还提供一种陶瓷釉面砖的制备方法，其特征在于通过在喷涂有透明釉面的砖块上以陶瓷喷墨形式喷涂本发明的陶瓷喷墨墨水组合物，经1100℃～1250℃高温煅烧35min～120min，即可制得具有多层次立体视觉效果的陶瓷釉面砖。还可以在喷涂有所述陶瓷喷墨墨水组合物的砖块上再次喷涂所述透明釉后再次喷涂所述陶瓷喷墨墨水组合物，再经所述高温煅烧，这样制得的陶瓷釉面砖层次感更强烈。将本发明的墨水组合物应用于适宜的透明釉表面，其中包括的在高温下不会烧失的成份（例如氧化铝、钠、色料等）能与透明釉在高温下发生物理化学反应，从而使其透明釉失透。其可以使大部分透明釉失透，使制备
的陶瓷釉面砖产生多层次立体视觉效果，失去部分感觉浮在釉面最上面，结合半失透及透明部分承托出多层次的立体效果，且并不影响有面印花图案效果。

【0019】关于透明釉，本发明优选包括以下成分的透明釉：SiO₂：55～60%；Al₂O₃：15～17%；(K₂O+N₂O)：6～9%；CaO：4～7%；BaO：2～7%；ZnO：3～5%。

【0020】本发明的方法制备的陶瓷喷墨墨水均匀稳定，悬浮性高不易结团，悬浮液中固含量的粒度也符合喷墨打印墨水的要求，可适用于通过陶瓷喷墨打印机将本发明的组合物喷涂于陶瓷砖坯表面，且颜色、图案可调。透明釉上喷印本发明的陶瓷喷墨墨水，经高温烧成，能使其大部分透明釉失透，使陶瓷釉面砖产生多层次立体视觉效果。本发明还提供一种通过本发明的方法制备的陶瓷釉面砖，该陶瓷釉面砖具有多层次立体视觉效果。

附图说明

【0021】图1为本发明的一个示例实施例中陶瓷釉面砖的烧成曲线图。

具体实施方式

【0022】下面通过对本发明做更进一步的说明。应理解所述内容是用于更具体地说明发明，而非限制发明。

【0023】陶瓷制品包括釉面砖和无釉砖，本发明主要涉及釉面砖。釉面砖表面可以做各种图案和花纹，相比无釉抛光砖，釉面砖可以实现色彩和图案丰富。根据原材料的不同，釉面砖可以分为陶瓷釉面砖和瓷质釉面砖两大类。陶瓷釉面砖，由陶土烧制而成，吸水率较高，强度相对较低。瓷质釉面砖，由瓷土烧制而成，吸水率较低，强度相对较高。要注意的是，上面所说的吸水率和强度的比较都是相对的，也有一些陶瓷釉面砖的吸水率和强度比瓷质釉面砖高。坯料和釉料的原材料选择通常依需要的制品而定。

【0024】釉面陶瓷砖生产过程，公之的通常包括原料制备工序、素坯成型工序、釉面（化妆土）工序、印花工序以及烧成工序。成型制得的素坯在施釉之前通常还需要进行干燥使之含水率小于1.5%。一般通过淋、撒、喷等方式施上面釉。上面釉（化妆土）后进行印花工序，印花可以是多道印花，可以是网印或滚筒印花，当前较新颖的是喷墨打印方式印花，以此在砖坯上形成花釉层。印花后通常还需要经过二道干燥工序再入窑烧成。烧成温度和烧成时间根据坯、釉料的原料及其配比确定。烧成制度对釉面发生的缺陷也有较大的影响。冷却带冷、热配比要适当，正确掌握不同阶段的温度与气氛要求。防止因氧化不足，还原气氛过强，还原时间过长等而使制品烟熏。温度也要控制在釉料所允许的温度范围内或提高溶剂的熔融温度。

【0025】在此，本发明提供一种适用于通过陶瓷喷墨印制装饰方法实现对陶瓷砖面进行装饰的墨水组合物，及其制备方法。

【0026】本发明提供的陶瓷喷墨墨水组合物包括能够溶解于溶剂中的醋酸钾、以及分散于溶剂中的氧化铝粉体。在本发明的一个具体实施例中，选择使用浓度为15 ～ 30wt%的丙二醇水溶液作为溶剂。关于溶剂占组合物的质量百分比可以选择为50 ～ 60%。当本发明的墨水喷涂于砖坯上，砖坯通过高温烧成后组合物中的溶剂成份将会分解挥发掉，其不对其陶瓷制品的性能产生影响。由于醋酸钾能极好的溶于水和醇中，可以使用溶剂中的氧化铝等粉体的固含量较大，且由于悬浮于溶剂中的粉体颗粒极小，因为本发明的墨水组合物适
用于作为陶瓷喷墨印刷装饰方法用的喷墨墨水。

【0027】关于氧化铝粉，本发明优选纳米级或亚微米级氧化铝。所述纳米级为通常含有的尺度级，粒度直径在100nm以下。亚微米级为通常含有的尺度级，粒度直径在100nm～1.0μm之间。

【0028】在制备本发明的墨水组合物时加入溶剂中的醋酸锆和纳米级或亚微米级氧化铝的质量比为1:1～1:4，且二者总和占所述组合物总质量百分比为32～45%。此外，还可以根据需要在溶剂中添加质量百分比为0.01～0.5%的着色剂，这样可以使其于烧成后呈现所需的色彩。优选地所述着色剂为水溶性染或亚微米级陶瓷色料粉末（粒度为100nm～1.0μm以下）。

【0029】此外，作为溶剂，还可以使其中含有适量的分散剂、结合剂和/或表面活性剂。本发明中结合剂的使用量可以为0.01～1wt%；表面活性剂的使用量可以为0.01～5wt%；以及分散剂的使用量可以为0.01～2wt%。另，分散剂可以是1-甲基戊醇或聚乙烯醇400或聚乙二醇400；结合剂可以是壳聚糖等；表面活性剂可以是烷基酚聚氧乙烯醚、油酸等。

【0030】关于本发明陶瓷喷墨墨水的制备方法，其可以包括以下步骤：

【0031】1）按比例称量原料；

【0032】2）先将溶剂、结合剂和表面活性剂混合成均匀溶液；

【0033】3）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入特殊粉体和着色剂，混合分散均匀即得到成品。

【0034】本发明方法制备的喷墨墨水组合物均匀稳定，悬浮性高，符合喷墨打印墨水的要求。在透明油墨喷印，经高温（1100℃～1250℃）烧成，能使大部分透明釉失透，使陶瓷釉面砖产生多层次立体视觉效果。失透部分感觉浮在釉面最上面，结合半失透及透明部分承托出多层次的立体效果，且并不影响釉面印花图案效果。

【0035】下面进一步例举本发明的陶瓷喷墨墨水的制备过程，应理解下面的实施例仅是示意性的，并非用于限定发明。且以下各实施例中的原料百分比，如无特别说明，均是指质量百分比。使用的超声波搅拌机是济宁和超声波电子设备有限公司生产，机器参数：超声功率：150~1500W（可调），频率：20~40kHz，电源：200V, 50Hz。

【0036】实施例1

【0037】1）将57份丙二醇水溶液（丙二醇质量分数30%），0.2份1-甲基戊醇，0.08份壳聚糖，3份烷基酚聚氧乙烯醚混合均匀，得到稳定溶液；

【0038】2）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入20份醋酸锆和20份纳米级氧化铝，混合分散15min，即得到喷墨墨水组合物成品。

【0039】实施例2

【0040】1）将56份丙二醇水溶液（丙二醇质量分数30%），3份聚乙二醇200，0.05份壳聚糖，1份油酸混合均匀，得到稳定溶液；

【0041】2）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入15份醋酸锆，25份纳米级氧化铝和0.3份FeCl₃，混合分散15min，即得到喷墨墨水组合物成品。

【0042】实施例3

【0043】1）将55份丙二醇水溶液（丙二醇质量分数25%），3份聚乙二醇200，0.07份壳聚糖，2份烷基酚聚氧乙烯醚混合均匀，得到稳定溶液；
【0044】2）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入 12 份醋酸
锆、28 份纳米级氧化铝和 0.2 份 CuCl₂，混合分散 20min，即得到成品。
【0045】实施例 4
【0046】1）将 56 份丙二醇水溶液（丙二醇质量分数 25%）、2.5 份聚乙二醇 400,0.08 份壳聚
糖、1.5 份油酸混合均匀，得到稳定溶液；
【0047】2）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入 10 份醋酸
锆、30 份纳米级氧化铝和 0.3 份 CrCl₃，混合分散 20min，即得到成品。
【0048】实施例 5
【0049】1）将 55 份丙二醇水溶液（丙二醇质量分数 20%）、2.5 份聚乙二醇 400,0.05 份壳聚
糖、2.5 份烷基酚聚氧乙烯醚混合均匀，得到稳定溶液；
【0050】2）将溶液放入超声波搅拌机中，在搅拌和超声波分散过程中，缓慢加入 10 份醋酸
锆、30 份纳米级氧化铝和 0.1 份亚微米级锌黄料（佛山市南海区陶都颜料有限公司,
TD-208D），混合分散 30min，即得到成品。
【0051】由于醋酸锆能极好的溶于水和醇中，可以使溶液中的氧化铝等粉体的固含量相对
较大，且由于悬浮于溶液中的粉体颗粒极小，因为本发明的墨水组合物适用于作为陶瓷喷
墨印刷装饰方法用的墨水墨水。
【0052】本发明还提供一种陶瓷釉面砖的制备方法，其特征在于通过在喷涂有透明釉面的
砖坯上以陶瓷喷墨形式喷涂本发明的陶瓷喷墨墨水组合物，经 1100℃～1250℃高温烧煅
烧，35～120min，即可制得具有多层次立体视觉效果的陶瓷釉面砖。
【0053】还可以在喷涂有所述陶瓷喷墨墨水组合物的砖坯上再次喷涂所述透明釉后再次
喷涂所述陶瓷喷墨墨水组合物，再经上述高温烧煅，这样制得的陶瓷釉面砖层次感更强烈。
【0054】将本发明的墨水组合物应用于适宜的透明釉表面，其可以使大部分透明釉失透，
使制备的陶瓷釉面砖产生多层次立体视觉效果。
【0055】关于透明釉，本发明优选包括以下各份量的透明釉：SiO₂：55～60％；Al₂O₃：15～17％；
(K₂O+N₂O)：6～9％；CaO：4～7％；BaO：2～7％；ZnO：3～5％。
【0056】本发明提供的墨水组合物应用于陶瓷釉面砖，其中包括的在高温下不会烧失的成
份（例如氧化铝、锌、颜料等）能与透明釉在高温下发生物理化学反应，从而使透明釉失透，
并产生多层次立体视觉效果。
【0057】下面进一步举例本发明的陶瓷釉面砖的制备过程，应理解下面的实施例仅是示例性
的，并非用于限定发明。且以下各实施例中的原料百分比，如无特别说明，均指质量百分比。
【0058】实施例 6
【0059】1）准确称量 100g 乳浊釉 a（乳浊釉 a 配方如下表所示）,0.2gCMC（羧甲基纤维素
钠）、0.25g 三聚磷酸钠、80g 水、300g 球石投入到干净的球磨罐中，将球磨罐放入快速球磨
机中球磨 20min，得到浆料 A；
【0060】乳浊釉 a 配方
【0061】
<table>
<thead>
<tr>
<th>编号</th>
<th>长石</th>
<th>石英</th>
<th>高岭土</th>
<th>方解石</th>
<th>碳酸钡</th>
<th>锌白</th>
<th>氧化锆</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45</td>
<td>6</td>
<td>7</td>
<td>28</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

[0062] 2) 取 1g 浆料 A 均匀喷涂于 50×50mm 的生坯上，烘干，得到釉面 a；
[0064] 3) 准确称量 100g 透明釉 b（透明釉 b 配方如下表所示）、0.2g CMC、0.25g 三聚磷酸钠、80g 水、300g 球石投入到干净的球磨罐内，将球磨罐放入快速球磨机中研磨 20min，得到浆料 B；
[0065] 透明釉 b 配方

<table>
<thead>
<tr>
<th>编号</th>
<th>长石</th>
<th>石英</th>
<th>高岭土</th>
<th>方解石</th>
<th>碳酸钡</th>
<th>锌白</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>60</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

[0067] 4) 取 1g 浆料 B 均匀喷涂于釉面 a 上，烘干，得到釉面 B；
[0069] 5) 将实施例 1～8 制备的陶瓷墨水分别按 0.2ml/cm2 的用量均匀涂在五个釉面 B 上，再次烘干，得到陶瓷砖坯；
[0069] 6) 将五个陶瓷砖坯放在 SiC 垫板上，一起放入高温窑烧成，烧成曲线见图 1 所示，得到陶瓷釉面砖成品。
[0070] 其中上述长石的产地为韶关；高岭土的产地为湖南；方解石的产地为大浦。从各实施例产品效果可以看出，所有的陶瓷喷墨墨水均能使透明釉失透，并且根据陶瓷喷墨墨水的用量的不同，产生不同的装饰效果，用量多时，可以使施用部分模糊，从而产生朦胧的装饰效果，用量少时，可以是透明釉部分失透，从而达到多层次立体的装饰效果。由于各实施例掺加的着色剂不同，各产品表现出不同的色调特征，实施例 1 为乳白色、实施例 2 为棕色、实施例 3 为浅蓝色、实施例 4 为褐色、实施例 5 为黄色。
[0071] 产业应用性：本发明方法制备的陶瓷喷墨墨水组合物，均限稳定，悬浮性高，符合喷墨打印墨水的要求。在透明釉上喷印，经高温（1100℃～1250℃）烧成，能使大部分透明釉失透，使陶瓷釉面砖产生多层次立体视觉效果。
图1