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(57) Abstract: An ultrasound imaging system according to the present disclosure may include or be operatively associated with an
ultrasound transducer configured to acquire echo signals responsive to ultrasound pulses transmitted toward a medium. The system
may include a channel memory configured to store the acquired echo signals, a neural network coupled to the channel memory and
configured to receive one or more samples of the acquired echo signals, one or more samples of beamformed signals based on the
acquired echo signals, or both, and to provide imaging data based on the one or more samples of the acquired echo signals, the one
or more samples of beamformed signals, or both, and may further include a display processor configured to generate an ultrasound
image using the imaging data provided by the neural network. The system may further include a user interface configured to display
the ultrasound image produced by the display processor.
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ULTRASOUND IMAGING SYSTEM WITH A NEURAL NETWORK FOR IMAGE
FORMATION AND TISSUE CHARACTERIZATION

TECHNICAL FIELD
[001] The present disclosure pertains to ultrasound systems and methods for obtaining ultrasonic

images and/or tissue information using a neural network.

BACKGROUND

[002] Ultrasound is a widely used imaging modality in medical imaging as it can provide real-
time non-invasive imaging of organs and tissue for diagnosis, pre-operative care and planning, and
post-operative patient monitoring. In a conventional ultrasound imaging system, a transducer probe
transmits ultrasound toward the tissue to be imaged and detects echoes responsive to the ultrasound.
Acquired echo signals (also referred to as radio frequency or RF signals) are passed through a
series of signal processing components, including for example a beamformer which combines raw
channel data (e.g., RF signals from multiple transducer elements) or partially beam-formed signals
of patches of transducer elements into fully beamformed signals, a demodulator which extracts
quadrature signals from the beamformed signals, and one or more filters, to produce an image data
(e.g., pixel information that may be used to produce a 2D or 3D ultrasound image). The various
signal processing components of a conventional ultrasound system implement model-based
algorithms in order to transform the input signal to a desirable output. That is, the signal
processing components of a conventional ultrasound system have been pre-programmed to
manipulate the input signals to produce an output based on our understanding of ultrasound physics.

[003] For example, a conventional beamformer may perform delay and sum beamforming (see
FIG. 8). As shown in FIG. 8, the beamformer receives the per-channel RF signals 813, which
correspond to echoes 811 of a reflector 810 as detected by elements 805 of the array. The raw RF
signals 813 are then delayed by an appropriate amount of time 814to temporally align them (as
shown at 816) and then combined (at 818) into a beamformed signal 819, which may also be
referred to as beamformed RF signal or summed RF signal. In some cases, the temporally aligned
signals may be multiplied by a factor (as shown at 815) before they are summed. In some cases, a
microbeamformer may be included, for example in the transducer probe, which performs partial
beamforming of signals received by patches of elements (e.g., a subset of the elements detecting

echoes in any given transmit/receive cycle) and thereby reduces the number of channel inputs into
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the main beamformer. The beamformed signals are typically coupled to further downstream signal
processing components to extract information about the signal properties, such as signal intensity
or power or, in the case of Doppler imaging, for extracting frequency shift data from multiple
temporal samples of RF data in order to obtain fluid velocity information, which information is
then processed for generating images based on the signal properties.

[004] Conventional ultrasound system, while providing a significant advancement in medical
imaging, may still benefit from further improvements. For example, conventional signal
processing components (e.g., beamformers and other signal and image processors) rely on and
implement our understanding of ultrasound into hard-wired circuitry or pre-programmed general
purpose processors. Thus, these conventional signal processing components are not particularly
adaptive and may be limited by hardware limitations or the imperfections in the physical models
implemented thereon. Therefore, improvements in this area may be desirable. Also, current
ultrasound systems generally require the user to carefully watch the ultrasound system display,
coordinate transducer movements and manipulate user controls to precisely record the desired
anatomy or pathology of interest. After capturing the desired images the user will typically review
the images and manually annotate specific anatomy or pathology. Techniques for simplifying
operation of an ultrasound imaging system without sacrificing image and/or diagnostic information

quality may thus also be desirable.

SUMMARY

[005] The present disclosure describes a system which utilizes a machine-trained neural networks
(e.g., a machine-trained algorithm) developed through one or more machine learning algorithms to
output image data and/or a variety of tissue information. In some embodiments, the neural network
may be a deep neural network capable of analyzing patterns using a with a multi-dimensional (2-or
more dimensional) data set, which may also be thought of as localized data sets, and where the
location of data within the data set and the data values may both contribute to the analyzed result.

[006] An ultrasound imaging system according to the present disclosure may include or be
operatively associated with an ultrasound transducer configured to acquire echo signals responsive
to ultrasound pulses transmitted toward a medium. The system may include a channel memory
configured to store the acquired echo signals, a neural network coupled to the channel memory and
configured to receive one or more samples of the acquired echo signals, one or more samples of

beamformed signals based on the acquired echo signals, or both, and to provide imaging data based
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on the one or more samples of the acquired echo signals, the one or more samples of beamformed
signals, or both, and may further include a display processor configured to generate an ultrasound
image using the imaging data provided by the neural network. The system may further include a
user interface configured to display the ultrasound image produced by the display processot.

[007] In some embodiments, the system may include a data selector configured to select a subset
of echo signals from the acquired echo signals stored in the channel memory and provide the subset
of echo signals to the neural network, wherein the echo signals in the subset are associated with
adjacent points within a region of imaged tissue. In some such embodiments, the system may
further include a beamformer configured to receive a set of the echo signals from the acquired echo
signals and to combine the set of echo signals into a beamformed RF signal, wherein the neural
network is further configured to receive the beamformed RF signal and to provide imaging data
based, at least in part, on the beamformed RF signal. In some such embodiments, the data selector
may be further configured to selectively couple the subset of echo signals or the beamformed RF
signal to the neural network to as input data based on a control signal received by the data selector.
In some embodiments, the control signal may be generated responsive to user input. In other
embodiments, the control signal may be based at least in part on the imaging mode during
acquisition of the echo signals.

[008] In some embodiments, the neural network may include a deep neural network (DNN), a
convolutional neural network (CNN), or a combination thereof. In some embodiments, the
imaging data provided by the neural network may include B-mode imaging data which may be
used by the display processor to produce an anatomy ultrasound image (e.g., a grayscale also
referred to as B-mode image), and/or it may include Doppler imaging data, which may be used to
produce a flow image (e.g., a colorflow Doppler image, a spectral Doppler image, or a color power
angio image). In yet further examples, the imaging data may include vector flow imaging data,
which may be used to produce a flow image providing a graphical representation of transmit-beam-
independent velocities of the tissue (e.g., blood flow) within the field of view. In yet further
embodiments, the imaging data may include tissue strain imaging data, wall shear stress data
associated with an anatomical structure containing a fluid therein, contrast-enhanced imaging data
(e.g., imaging data identifying the presence of ultrasound contrast media, such as microbubbles or
another ultrasound contrast medium, in the imaged regions), or any combinations thereof.

[009] In some embodiments, the neural network may be further configured to receive auxiliary

data as input, which may include ultrasound transducer configuration information, beamformer
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configuration information, information about the medium, or combinations thercof, and the
imaging data provided by the neural network may be further based on the auxiliary data.

[010] In some embodiments, the neural network may be operatively associated with a training
algorithm configured to receive an array of training inputs and known outputs, wherein the training
inputs include echo signals, beamformed signals, or combinations thereof associated with a region
of imaged tissue and the known outputs include known properties of the imaged tissue. In some
such embodiments, the known properties provided to the training algorithm may be obtained using
an imaging modality other than ultrasound, for example magnetic resonance imaging (MRI),
computed tomography (CT), or other currently known or later developed imaging modalities. In
some embodiments, the neural network may be implemented in hardware, for example where each
or at least some of the nodes of the network are represented by hard-wired electrical pathways in an
integrated circuit (e.g., an application specific integrated circuit (ASIC). In some embodiments, the
neural network may be implemented, at least in part, in a computer-readable medium comprising
executable instructions which when executed by a processor coupled to the channel memory, the
beamformer, or both, cause the processor to perform a machine-trained algorithm to produce the
imaging data based on the one or more samples of the acquired echo signals, the one or more
samples of beamformed signals, or both.

[011] According to further embodiments, an ultrasound imaging system of the present disclosure
may be operatively associated with an ultrasound transducer which is operable to acquire echo
signals responsive to ultrasound pulses transmitted by the transducer toward a medium and the
system may include channel memory which stores the acquired echo signals, a neural network
configured to receive an input array comprising samples of the acquired echo signals corresponding
to a location within a region of imaged tissue and trained to propagate the input through the neural
network to estimate pixel data associated with the location within the region of imaged tissue, and a
display processor configured to generate an ultrasound image including the location within the
region of imaged tissue using the pixel data provided by the neural network.

[012] In some embodiments, the neural network may be trained to output pixel data indicative of
intensities of the echo signals in the samples provided to the neural network. In some embodiments,
the neural network may be trained to output pixel data indicative of Doppler frequencies associated
with the echo signals in the samples provided to the neural network. In yet further embodiments,
the neural network may be trained to output pixel data indicative of tissue strain within the imaged

region, wall shear stress of a bodily structure within the imaged region, multi-component velocity
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information about flow within the imaged region, or any combinations thereof. In some
embodiments, the display processor may be configured to buffer multiple sets of pixel data, each
associated with a sub region within a field of view of the ultrasound transducer and accompanied
by spatial information indicative of the sub region within the field of view of the ultrasound
transducer, and to construct the ultrasound image by arranging the sets of pixel data based on their
spatial information. In some embodiments, the neural network may include a plurality of
propagation pathways including a first pathway configured to output first pixel data indicative of
intensities of the echo signals in the samples and a second pathway configured to output second
pixel data indicative of Doppler frequencies associated with the echo signals in the samples, and
the display processor may be configured to generate an ultrasound image comprising an overlay of
image components including a first image component comprising an anatomy image generated
using the first pixel data and a Doppler image generated using the second pixel data.

[013] According to further embodiments, an ultrasound imaging system of the present disclosure
may be operatively associated with an ultrasound transducer which is operable to acquire echo
signals responsive to ultrasound pulses transmitted by the transducer toward a region of interest in
a medium, and the system may include a channel memory configured to store the acquired echo
signals, a beamformer configured to receive to sets of the acquired echo signals and generate
beamformed RF signals corresponding to scan lines or scan regions within the medium, a neural
network configured to receive an input array comprising samples of the beamformed RF signals
and trained to propagate the input through the neural network to estimate pixel data associated with
the plurality of scan lines or scan regions within the medium, and a display processor configured to
generate an ultrasound image of the region of interest using the pixel data provided by the neural
network. In some such embodiments, the beamformer may include a beamformer memory
configured to store a plurality of beamformed RF signals generated over multiple transmit-receive
cycles. In some such embodiments, the neural network may be trained to output first pixel data
indicative of intensities of the sets of echo signals, second pixel data indicative of Doppler
frequencies associated with the sets echo signals, or both, and the display processor may be
configured to generate an ultrasound image including an anatomy image component generated
using the first pixel data, a flow image component generated using the second pixel data, or an
overlay image wherein the anatomy image is overlaid with a spatially-corresponding flow image

component.
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[014] A method of ultrasound imaging according to the present disclosure may include
generating echo signals responsive to ultrasound transmitted by a transducer operatively coupled to
an ultrasound system, storing the echo signals in channel memory, beamforming a plurality of the
echo signals from the channel memory to produce beamformed signals, coupling samples of the
echo signals, the beamformed signals, or a combination thereof, to a neural network trained to
output imaging data responsive to the samples the echo signals, the beamformed signals, or a
combination thereof, and generating an ultrasound image based, at least in part, on the imaging
data produced provided by the neural network. The imaging data output by the neural network
may include B-mode imaging data, Doppler imaging data, vector flow imaging data, strain imaging
data, wall shear stress of an anatomical structure containing a fluid therein, contrast-enhanced
imaging data, or any combinations therecof. In some embodiments, the step of coupling samples of
the echo signals, the beamformed signals, or a combination thereof, comprises coupling the
samples to a deep neural network (DNN) or a convolutional neural network (CNN). In some
embodiments, the step of coupling samples of the echo signals, the beamformed signals, or a
combination thereof, comprises selectively coupling, responsive to user input, echo signals or
beamformed signals as input data to the neural network, and selecting a corresponding operational
mode of the neural network based on the selected input data. In some embodiments, the selecting
of the operational mode may be based on user input or it may be automatic by the system, such as
based on an imaging mode of the ultrasound system during acquisition of the echo signals. In
some embodiments, the method may further include training the neural network using imaging data
obtained from an imaging modality other than ultrasound. In some embodiments, the method may
further include beamforming the echo signals, demodulating the beamformed signals to obtain
quadrature data, generating sets of training ultrasound images based on the quadrature data, and
using the acquired echo signals and corresponding training ultrasound images to further train the
neural network.

[015] Any of the methods described herein, or steps thereof, may be embodied in non-transitory
computer-readable medium comprising executable instructions, which when executed may cause a

processor of a medical imaging system to perform method or steps embodied therein.

BRIEF DESCRIPTION OF THE DRAWINGS

[016] FIG. 1 is block diagram of an ultrasound system in accordance with principles of the

present inventions.
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[017] FIG. 2 is an illustration of aspects of input data selection for a neural network in
accordance with principles of the present inventions.

[018] FIG. 3 is block diagram of an input data selector accordance with further principles of the
present inventions.

[019] FIG. 4 is block diagram of an ultrasound system in accordance with some examples of the
present invention.

[020] FIG. 5 is block diagram of another ultrasound system in accordance with further examples
of the present inventions.

[021] FIG. 6 is block diagram of yet another ultrasound system in accordance with the principles
of the present inventions.

[022] FIG. 7 1s a flow diagram of a process of producing ultrasound images in accordance with

the principles of the present inventions.

[023] FIG. 8 is an illustration of conventional beamforming technique.
DESCRIPTION
[024] The following description of certain exemplary embodiments is merely exemplary in

nature and is in no way intended to limit the invention or its applications or uses. In the following
detailed description of embodiments of the present systems and methods, reference is made to the
accompanying drawings which form a part hereof, and in which are shown by way of illustration
specific embodiments in which the described systems and methods may be practiced. These
embodiments are described in sufficient detail to enable those skilled in the art to practice the
presently disclosed systems and methods, and it is to be understood that other embodiments may be
utilized and that structural and logical changes may be made without departing from the spirit and
scope of the present system. Morcover, for the purpose of clarity, detailed descriptions of certain
features will not be discussed when they would be apparent to those with skill in the art so as not to
obscure the description of the present system. The following detailed description is therefore not to
be taken in a limiting sense, and the scope of the present system is defined only by the appended
claims.

[025] An ultrasound system according to the present disclosure may utilize a neural network, for
example a deep neural network (DNN), a convolutional neural network (CNN) or the like, to

bypass certain processing steps in conventional ultrasound imaging. In some examples, the neural



WO 2018/127498 PCT/EP2018/050087

network may be trained using any of a variety of currently known or later developed machine
learning techniques to obtain a neural network (e.g., a machine-trained algorithm or hardware-
based system of nodes) that are able to derive or calculate the characteristics of an image for
display from raw channel data (i.c., acquired radio frequency (RF) echo signals) or in some cases,
from partially- or fully-beamformed signals. Neural networks may provide an advantage over
traditional forms of computer programming algorithms in that they can be generalized and trained
to recognize data set features by analyzing data set samples rather than by reliance of specialized
computer code. By presenting appropriate input and output data to a neural network training
algorithm, the neural network of an ultrasound system according to the present disclosure can be
trained to produce images and/or tissue characterization and diagnostic information (e.g., flow
information, tissue content or type, strain/stress data, etc.) without the need for a physically-derived
model to guide system operation.

[026] An ultrasound system in accordance with principles of the present invention may include
or be operatively coupled to an ultrasound transducer configured to transmit ultrasound pulses
toward a medium and generate echo signals responsive to the ultrasound pulses. The ultrasound
system may include channel memory configured to store the acquired echo signals (raw RF
signals), a beamformer which may perform transmit and/or receive beamforming and which may
include a beamformer memory configured to store beamformed signals generated based on the
echo signals, and a display for displaying ultrasound images generated by the ultrasound imaging
system. The ultrasound imaging system may include a neural network, which may be implemented
in hardware and/or software components, which is machine trained to output ultrasound images
from a variety of inputs including the raw RF signals, beamformed signals, or combinations thereof.
In some embodiments, the neural network may be trained to output ultrasound images from
beamformed signals without utilizing conventional signal processing of the beamformed signals
(e.g., for demodulating and extracting echo intensity or other type of signal information). In yet
further examples, the neural network may be trained to output ultrasound images and/or a variety
of tissue characterization or diagnostic information (collectively referred to herein as tissue
information) from raw RF signals, beamformed signals, or combinations thereof.

[027] The neural network according to the present disclosure may be hardware- (e.g., neurons are
represented by physical components) or software-based (e.g., neurons and pathways implemented
in a software application), and can use a variety of topologies and learning algorithms for training

the neural network to produce the desired output. For example, a software-based neural network
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may be implemented using a processor (e.g., single or multi-core CPU, a single GPU or GPU
cluster, or multiple processors arranged for parallel-processing) configured to execute instructions,
which may be stored in computer-readable medium, and which when executed cause the processor
to perform a machine-trained algorithm for producing ultrasound images and/or outputting tissue
information from one or more of the above identified inputs. The ultrasound system may include a
display or graphics processor, which is operable to arrange the ultrasound image and/or additional
graphical information, which may include annotations, tissue information, which may also be
output by the neural network, and other graphical components, in display window for display on
the display of the ultrasound system. In some embodiments, the ultrasound images and tissue
information may additionally be provided to a storage device, such as a picture archiving and
communication system (PACS) or a local or network-connected storage device, for reporting
purposes or future machine training (e.g., to continue to enhance the performance of the neural
network). In yet further examples, imaging data obtained from a variety of different imaging
modalities (e.g., magnetic resonance imaging (MRI), computed tomography (CT), or another),
which may be stored, for example in PACS, may alternatively or additionally be used to train the
neural network. As will be appreciated, systems according to the present disclosure may include a
two-way communication link coupling the system, and more specifically the neural network to
source(s) of training data (e.g., a storage device) and/or to other machine-trained systems for
ongoing feedback and training.

[028] FIG. 1 shows an example ultrasound system according to principles of the present
disclosure. The ultrasound system 100 includes channel memory 110, a neural network 160, an
optional display processor 140, and a user interface 124. The example in FIG. 1 also shows an
ultrasound transducer 113, a transmit/receive controller 120, beamformer 122, beamformer
memory 123, signal processor 126, imaging data processor 121, scan converter and multiplaner
reformatter 133, input data selector 162, and a storage component 150. The components and
arrangement thereof shown in FIG. 1 is exemplary only, and modifications such as the addition,
omission, or rearrangement of one or more of the illustrated components is contemplated without
departing from the scope of the present disclosure.

[029] As described, the ultrasound transducer 113 may acquire echo signals responsive to
ultrasound signals transmitted toward a medium to be imaged (e.g., tissue). The ultrasound
transducer 113 may include an array of elements capable, under control from a transmit/receive

controller 120, to transmit pulses of ultrasound toward the medium and detect echoes responsive to
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the transmit pulses. The transmit/receive controller 120 controls the transmission of ultrasound
signals by the transducer 113 and the reception of ultrasound echo signals by individual elements
or groups of elements (e.g., in the case of a transducer including a microbeamformer (uBF)) of the
array. The ultrasound transducer 113 is communicatively coupled to channel memory 110, which
receives and stores the echo signals acquired by the ultrasound transducer 113. The channel
memory 110 may be configured to store per-element or group (in the case of microbeamformed
signals) echo signals (also referred to as raw RF signals or simply RF signals, or per-channel data).
The pre-channel data may be accumulated in memory over multiple transmit/receive cycles.

[030] The channel memory 110 may couple the RF signals to a neural network 160, which is
trained to produce imaging data, extract tissue information, or any combinations thereof, directly
from the RF signals, e.g.. without the need for conventional beamforming or downstream signal
processing. In some embodiments, the RF signals from the channel memory 110 are coupled to the
neural network 160 via an input data selector 162. The input data selector 162 may be configured
to select, for each point or region of interest (ROI) in an imaging field of view, a corresponding
array of m echo signal samples from each or a subset of elements of the transducer array. In some
examples, the input data selector 162 may be configured to select the samples such that the centers
of the samples of echo signals correspond approximately to the round trip time delay and thus to
the depth of interest (see e.g., FIG. 2). As shown in FIG. 2, m samples of echo signals ¢; (i.e. per-
channel data represented by ei, €2, €3,... en) are shown to have been selected based on having their
centers corresponding to the depth of interest. In some examples, as long as the data segment
lengths are long enough to include the information from each echo surrounding the depth of
interest, it may not be strictly necessary to center the depth of interest within the echo segments. In
some embodiments, the data selector 162 may thus be configured to select a subset of echo signals
from the acquired echo signals, which are associated with adjacent points within a region of
imaged tissue. After selection of the appropriate input data set, imaging and other tissue data
extraction would be performed implicitly by the neural network 160 without the reliance on
conventional beamforming.

[031] To train a neural network 160 according to the present disclosure, training sets which
include multiple instances of input arrays and output classifications, {Xi,Yn}, may be presented to
the training algorithm(s) of the neural network 160 (e.g., an AlexNet training algorithm, as
described by Krizhevsky, A., Sutskever, . and Hinton, G. E. “ImageNet Classification with Deep
Convolutional Neural Networks,” NIPS 2012 or its descendants). In the training data set, the input

10
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data [Xi] may include per-channel echo signals, ¢.g., as illustrated in FIG. 2, optionally together
with auxiliary data, described further below, and the output data [Yi] may include any known
properties of the tissue corresponding to the sample of echo signals (e.g., known velocities in the
case of blood flow or other tissue motion imaging, known strain/stress values, or echo intensity
data for producing anatomy imaging information, etc.). The input [Xi] and output [Yi] data of the
training data sets may be acquired by an ultrasound imaging system which has components for
conventional ultrasound imaging or an imaging system configured for another type of imaging
modality (e.g., an MRI scanner, CT scanner, and others). In some embodiments the system 100
may also include conventional beamforming, signal and image processing components such that it
may be used, when operated in a conventional mode, to acquire input and output data sets for use
as training sets to the training algorithm. For example, different types of tissue may be scanned
(e.g., ultrasonically scanned) using a transducer which is operatively associated with a spatial
localization system (e.g., an EM or ultrasonically tracked probe), which can spatially correlate the
point or region of interest of tissue being scanned to the output data (e.g., the imaging data and/or
tissue characterization information to be used as the output in the training set). In further examples,
the neural network 160 may be trained using a suitable ultrasound simulation such as the Field II
program (as described by J.A. Jensen: A Mode! for the Propagation and Scattering of Ultrasound
in Tissue, J. Acoust. Soc. Am. 89, pp. 182-191, 1991), which takes as input the spatial distribution
of points representing scatterers in an image field together with data about the geometry of the
ultrasound transducer and the transmitted pulse and outputs computed ultrasonic data representing
the per-element echo signals (also referred to as simulated echoes). The system 100 may use this
type of data for training purposes, e.g., by using the simulated echoes and auxiliary data about the
transducer and transmitted pulses for one or more given points in space and present them to the
neural network as input training data [Xi] with the corresponding output data [Yi] being the
scatterer densities from the simulation. Other algorithms or techniques may additionally or
alternatively be used for training the neural network 160. Also, as noted, in some cases, the output
data (e.g., imaging data and/or known properties of tissue) may be obtained using an imaging
modality different from ultrasound, for example MRI, CT or others or any combinations thereof.
The neural network 160 may thus be trained to produce imaging data, and in some case images of
higher quality (e.g., higher resolution) than may otherwise be possible through conventional

ultrasound image processing directly from the RF signals.
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[032] A neural network training algorithm associated may be presented with thousands or even
millions training data sets in order to train the neural network 160 to directly estimate or output
imaging data or other tissue properties based on the raw measurement data (i.e., raw acquired RF
signals) without reliance on an explicit model of the mput/output relationship (e.g., pre-
programmed physics-based models typically implemented in conventional beamformers, signal
processors or imaging data processors of existing ultrasound systems). That is, hundreds,
thousands, or millions of training data sets may be presented to a machine learning algorithm to
develop a network of artificial neurons or nodes arranged in accordance with any one of a variety
of topographies or models. The neurons of the neural network are typically connected in layers and
signals travel from the first (input) layer to the last (output) layer. With advancements in modern
neural networks and training algorithms, a neural network comprising hundreds of thousands to
millions of neurons or nodes and connections therebetween may be developed. The signals and
state of the artificial neurons in a neural network 160 may typically be real numbers, typically
between 0 and 1, and a threshold function or limiting function may be associated with each
connection and/or node itself, such that the signal must equal or exceed the threshold/limit before
propagating.

[033] The output of the training process may be a set of weights (also referred to as connection or
node weights) which may be used by the neural network 160 during operation (e.g., to adjust the
threshold or limiting functions controlling propagation through the layers of the neural net). Once
trained, the neural network 160 may be configured to operate on any input array, Xk, to produce
one or more output values that can be interpreted loosely as a probability or confidence estimate
that Xk is a member of the output set Yn (c.g. that the sample of echo signals correspond to a set of
pixel image data). The output sets, Yn, can also represent numerical value ranges. In this manner,
a set of RF signals may be provided as input to the neural network 160, the set of RF signals
corresponding to a subset of a given spatial locations (e.g., a region of interest in the imaged tissue)
within the medium and the neural network may provide as output a set of corresponding pixel data
for producing a portion of the image at the given spatial location. In some examples, by changing
the weights of the neural network, this system can be dynamically reconfigured to produce images
of a wide variety of different characteristics. In some embodiments, the neural network 160 may
be a deep-learning or simply deep neural network (DNN) and/or an adaptive neural network. In
some embodiments, a deep neural network (DNN), such as a deep convolutional neural networks

(deep CNN) also referred to as fully convolutional network (FCN), may be used to localize objects
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within an image on a pixel by pixel basis. In examples, the input training arrays, Xi, may be
formed from the image data surrounding each point in an image. Each training array may be
classified into one or more output sets or values based on the set membership of the output point or
pixel in question. As such, the ultrasound system 100 may be configured to output ultrasound
images, for example, without performing any of the conventional steps of RF filtering,
demodulations, compression, etc. Rather, the image data formation would be accomplished
implicitly within the neural network.

[034] The output of the neural network 160 may be coupled to a display processor 140, which
may arrange the subsets of pixel data based on their spatial attributes to construct an ultrasound
image of the field of view. In some examples, the display processor 140 may temporarily buffer, if
needed, the subsets of pixel data until pixel data for the entire image has been output by the neural
network. In some examples, prior to passing the output data to the display processor 140, the
output of the neural network may be passed through a data conditioner (not shown), which may be
configured to spatially and temporally process the output data to highlight certain spatial and/or
temporal characteristics thereof. In some examples, the data conditioner may perform multi-
resolution image processing. In further examples, the functionality of arranging the subsets of
pixel data into a desired format for display (e.g., into a 2D or 3D image) may be performed by a
scan converter and multiplanar reformatter 133, following which the ultrasound image may be
passed to the display processor 140 for additional image enhancement, annotations and/or
combination with other imaging data (e.g., graphical representations of tissue, blood flow, and/or
strain/stress information). The ultrasound imaging data (e.g., after formatting for display) may be
processed in the same manner as image data on a conventional ultrasound system. For example, it
may be displayed in real-time, e.g., on a display unit of the user interface 124, buffered into a
cineloop memory for displaying temporal sequences of images, and/or exported to a storage device
150 or a printing system. Stored ultrasound images (or pre-formatted/pre-annotated image data)
may be retrieved for subsequent analysis and diagnosis, inclusion in a report and/or for use as
training data. The ultrasound image data may be further processed using conventional techniques
to extract additional quantitative and/or qualitative information about the anatomy or characteristics
of the tissue being scanned.

[035] In further examples, the channel memory 110 may additionally or alternatively couple the
raw RF signals to a beamformer 122, which may perform conventional beamforming, such as

conventional delay and sum beamforming, dual apodization with cross-correlation, phase
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coherence imaging, capon beamforming and minimum variance beamforming, or Fourier
beamforming, all operating on the per-channel data to combine the information from the echo
signals and form an image line of the backscattered ultrasound energy from tissue. The
beamformed signals obtained through conventional beamforming may then, alternatively or
additionally, be coupled to the neural network 160, which may be trained to produce ultrasound
images and/or tissue characterization information from the conventionally beamformed signals
rather than from raw RF data but again bypassing downstream signal and image processing (€.g.,
RF signal filtering, amplitude detection, compression, etc.) of existing ultrasound systems. For
example, when using beamformed RF signals instead of per-channel signals, the e; in FIG. 2 would
represent beamformed RF signals corresponding to scanlines from the region of interest and as well
as neighboring lines of sight, or they could may represent beamformed RF signals corresponding to
scanlines generated from successive transmit events. An ultrasound image can then be produced
by the neural network and/or tissue characterization performed directly from the beamformed RF
signals.

[036] In some cases, the neural network 160 may be trained to use both raw RF data and
beamformed data for image production bypassing further downstream processing. Similar to the
earlier examples, appropriate training data sets may be provided to the training algorithm of the
neural network 160 in some cases optionally with auxiliary data. For example, sets of beamformed
RF signals (over single or multiple transmit/receive cycles) may be stored in beamformer memory
123 and coupled to the neural network 160, e.g., via the input data selector 162. The input data
selector 162 may be similarly configured to select the appropriate set of beamformed RF signals
corresponding to the ROI and output an image or other information bypassing any subsequent
signal or imaging data processing. In yet further examples, the beamformer 122 may be configured
to perform partial beamforming, for example by delaying the individual ultrasonic echo signals by
the appropriate amount and align the per-element echo data together corresponding to a specific
depth along a scan line, but without performing the summation step. These partially beamformed
signals may then be provided to an appropriately trained neural network to reconstruct the
ultrasound image therefrom.

[037] As with the prior example, the training data sets may be used optionally additionally with
auxiliary data during the training process. The auxiliary data may include information about the
programming of the beamformer 122, properties of the transducer 113 (e.g., number, arrangement,

and/or spacing of elements of the array, type of array, etc.), known information about the anatomy
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being imaged, and/or the spatial location of the point or region of interest (e.g., as may be obtained
by a transducer tracking system). Other types of information, for example in the case of training
sets from different imaging modalities, may also be provided as auxiliary information to the
training algorithm. As illustrated in FIG. 1, in yet further example, this concept may be extended
further downstream of the signal processing path of a conventional ultrasound system, e.g., to
utilize at least partially processed RF signals, e.g., demodulated quadrature data or I/Q data
produced by a signal processor 126, as input to the neural network 160 to obtain a ultrasound
image without further subsequent image processing such as conventional amplitude detection,
speckle reduction, reduction of flash or other artefacts, etc.) as may be performed by the one or
more imaging data processors 121 (e.g., B-mode, Doppler, and/or vector flow imaging processors)
of a current ultrasound system.

[038] In some examples, the neural network160 may be trained to operate in a plurality of modes
based on the input data type (e.g., per-channel data, beamformed signals, quadrature data, or a
combination thereof). In such examples, an input data selector 362 may include an input type
selector 364, which may selectively couple the type of data and activate the appropriate operational
mode of the neural network 160. The input type selection may be responsive to a control signal,
which may be generated responsive to user input or which may be a pre-programmed default based
on the imaging mode. As shown in FIG. 3, the input type selector 364 may include a switch 367
and a mode selector 365. The switch 367 may be configured to selectively couple a sample of the
appropriate type of input data based to the neural network based on a select signal received from
the mode selector 365. The mode selector may also transmit a mode control signal to the neural
network to active the appropriate operational mode based on the selected input data.

[039] As previously described, the system 100 may include conventional beamforming, signal
and image processing components such that it may produce ultrasound images in conventional
manner, which images can be stored (e.g., in storage 150) and used as training data for further
enhancements of the neural network 160. That is, the system 100 may be operable in a neural net
mode during which ultrasound images may be produced in part based on outputs from the neural
network 160, and may also be operable in a conventional mode during which ultrasound images
may be produced through conventional signal and image processing, the modes being user
selectable.

[040] For example, the system 100 may include a signal processor 126 which is configured to

process the received echo signals in various ways, such as by bandpass filtering, decimation, I and
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Q component separation, and harmonic signal separation. The signal processor 126 may also
perform additional signal enhancement such as speckle reduction, signal compounding, and noise
elimination. The processed signals may be coupled to one or more imaging data processors, ¢.g., a
B-mode processor, a Doppler processor, a Vector Flow Imaging (VFI) processor, etc. The B-mode
processor can employ amplitude detection for the imaging of structures in the body. The Doppler
processor may be configured to estimate the Doppler shift and generate Doppler image data. In
some examples, the Doppler processor may include an auto-correlator, which estimates velocity
(Doppler frequency) based on the argument of the lag-one autocorrelation function and which
estimates Doppler power based on the magnitude of the lag-zero autocorrelation function. Motion
can also be estimated by known phase-domain (for example, parametric frequency estimators such
as MUSIC, ESPRIT, etc.) or time-domain (for example, cross-correlation) signal processing
techniques. Other estimators related to the temporal or spatial distributions of velocity such as
estimators of acceleration or temporal and/or spatial velocity derivatives can be used instead of or
in addition to velocity estimators. In some examples, the velocity and power estimates may
undergo threshold detection to reduce noise, as well as segmentation and post-processing such as
filling and smoothing. The velocity and power estimates may then be mapped to a desired range of
display colors in accordance with a color map. The VFI processor may be configured to estimate
beam-angle-independent velocity vector data from the acquired echo signals, for example using the
transverse oscillation method or synthetic aperture method (e.g., as described by Jensen et al., in
“Recent advances in blood flow vector velocity imaging,” 2011 1EEE International Ultrasonics
Symposium, pp. 262-271, the disclosure of which is incorporated herein by reference in its entirety
for any purpose), or any other currently known or later developed vector flow imaging technique.
[041] The signals produced by the B-mode processor, and or flow data (e.g., color data or VFI
data produced by the Doppler processor and the VFI processor, respectively) may be coupled to the
scan converter and multiplanar reformatter 133, which may be configured to arrange the data in the
spatial relationship from which they were received in a desired image format. For example, the
scan converter and multiplanar reformatter 133 may arrange the echo signal into a two dimensional
(2D) sector-shaped format, or a pyramidal or otherwise shaped three dimensional (3D) format. The
scan converter and multiplanar reformatter 133 may also be configured to convert echoes which are
received from points in a common plane in a volumetric region of the body into an ultrasonic
image (e.g., a B-mode image) of that plane, for example as described in U.S. Pat. No. 6,443,896

(Detmer). The output of the scan converter and multiplanar reformatter may be coupled to the
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display processor 140, which may perform additional image processing and/or add annotation. In
some examples, the display processor 140 may be operable generate an image of the 3D dataset as
viewed from a given reference point, ¢.g., as described in U.S. Pat. No. 6,530,885 (Entrekin et al.).
[042] Image data obtained from the conventional mode of system 100 or another conventional
ultrasound system may be used to train the neural network 160 of system 100 to essentially mimic
conventional ultrasound imaging, or alternatively as described, the neural network 160 of system
100 may be trained to mimic the image quality of other types of imaging modalities, such as MRI,
CT, etc. Further examples of ultrasound systems according to embodiments of the present

disclosure will now be described with reference also to FIGS. 4-6.

[043] Example 1
[044] FIG. 4 shows a block diagram of an ultrasound system 400 in accordance with principles

of the present invention. The system 400 includes channel memory 410 which is communicatively
coupled to an ultrasound transducer 413. The ultrasound transducer 413 may include an ultrasound
transducer array 414, which may be provided in a probe 412, such as a handheld probe or a probe
which is at least partially controlled or actuated by a machine. In other embodiments, the
ultrasound transducer array 414 may be implemented using a plurality of patches, each comprising
a sub-array of transducer elements and the array 414 may be configured to be conformably placed
against the subject to be imaged. The ultrasound transducer 413 is operable to transmit ultrasound
(e.g., ultrasound pulses) toward a region of interest (ROI) within a medium (e.g., tissue of a patient)
and to receive echoes signals responsive to the ultrasound pulses, which signals can be used to
produce images of the region of interest (ROI). A variety of transducer arrays may be used, such
as linear arrays, curved arrays, or phased arrays. The array 414 may include, for example, a two
dimensional array of transducer elements capable of scanning in both elevation and azimuth
dimensions for 2D and/or 3D imaging. In some embodiments, the system 400 may include the
ultrasound transducer 413, which is typically removably coupled to an imaging base 415 (also
referred to as ultrasound system base). The imaging base 415 may include electronic components,
such as one or more signal and image processors, arranged to produce ultrasound images from
echoes acquired by the transducer 413, which electronic components are also collectively referred
to as imaging device. The imaging device may be a portable imaging device (e.g., provided in a
tablet or other handheld form factor) or it may be a traditional cart-based imaging device such as

the SPARQ or EPIQ ultrasound imaging devices provided by Philips.
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[045] The ultrasound transducer 413 may be coupled to the channel memory 410 via a
transmit/receive switch 418. The channel memory 410 is configured to store the acquired echo
signals acquired by the transducer 413. In some embodiments, the channel memory 410 may be
provided in the base 415 or it may be provided, at least partially, in the ultrasound transducer 413
or otherwise communicatively coupled between the transducer 413 and the base 415. The
ultrasound transducer 413 may also be coupled to a beamformer 422, which may be configured to
provide transmit beamforming, e.g., to control directionality of ultrasound pulses transmitted by the
array 414. In some embodiments, the array 414 may be coupled to a microbeamformer (not shown
here), which may be located in the probe 412 (see uBF in FIG. 1) or in the ultrasound system base
415. The microbeamformer may be configured to perform transmit and/or receive beamforming on
groups or patches of elements of the array, e.g., to enable a system with a reduced number of signal
channels between the transducer 413 and the base 415. The beamformer and/or microbeamformer
may control, under the direction of transmit/receive controller 410, the transmission and reception
of signals by the ultrasound transducer 413. As shown, the transducer 412 may be coupled to the
ultrasound system base via a transmit/receive (T/R) switch 418 typically located in the base. The
T/R switch 418 may be configured to switch between transmission and reception, €.g., to protect
the main beamformer 422 from high energy transmit signals. In some embodiments, the
functionality of the T/R switch 418 and other elements in the system may be incorporated within
the probe, such as a probe operable to couple to a portable system, such as the LUMIFY system
provided by PHILIPS. The probe 412 may be communicatively coupled to the base using a wired
or wireless connection. In some embodiments, the transducer, the channel memory, and hardware
storing the neural network, and/or a display processor can be located in the probe. A user interface
for displaying images created by the neural network can be communicatively coupled to the probe.
For example, the display can be coupled via a cable to the probe or via wireless communication, in
which the probe can include a wireless transmitter to send the image data to the display. In certain
embodiments, the system can include a graphics processing unit (GPU) to fully or partially train
the neural network in the system. For example, a GPU can be located in a probe with the
transducer, the channel memory and the hardware storing the neural network. Alternatively, the
GPU can be located separately from the probe, such as being located in a tablet or other computing
device, such as a smart phone.

[046] The transmission of ultrasonic pulses from the array 414 may be directed by the transmit
controller 420 coupled to the T/R switch 418 and the beamformer 422. The transmit controller
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may receive input from the user's operation of a user interface 424. The user interface 424 may
include one or more input devices such as a control panel 429, which may include one or more
mechanical controls (e.g., buttons, encoders, etc.), touch sensitive controls (e.g., a trackpad, a
touchscreen, or the like), and other known input devices. User input may be received via the
control panel 429 or in some cases, such as in the cases a touch sensitive display. Another function
which may be controlled by the transmit controller 420 is the direction in which beams are steered.
Beams may be steered straight ahead from (orthogonal to) the transmission side of the array 414, or
at different angles for a wider field of view.

[047] In accordance with some embodiments, the system 400 may also include a neural network
460. The neural network 460 may be configured to receive, from channel memory 410, an input
array comprising samples of the acquired echo signals corresponding to a location within a region
of imaged tissue. The neural network 460 may be trained to propagate the input through the neural
network to estimate pixel data associated with the location within the region of imaged tissue. The
neural network 460, which may be implemented in hardware, software, or combinations thereof,
may be trained for example as described herein to produce the pixel data directly from the input
array, e.g., bypassing conventional signal processing steps such as beamforming, RF filtering,
demodulation and I/Q data extraction, amplitude detection, etc. For example, the neural network
460 may be trained to output pixel data which is indicative of intensities (i.e., amplitude) of the
echo signals. In some embodiments, the neural network 460 may be trained to additionally or
alternatively output pixel data indicative of Doppler frequencies associated with the echo signals,
tissue strain within the imaged region, wall shear stress of a bodily structure within the imaged
region, multi-component velocity information about flow within the imaged region, or any
combinations thereof. The output of the neural network 460 responsive to any input array may thus
be pixel data associated with the same location in the field of view as the input array, the pixel data
including, for example, grayscale or RGB values that may be used to reconstruct an ultrasound
image. In some embodiments, the neural network 460 may include multiple propagation pathways,
each of which is configured to receive an input array (e.g., samples of echo signals) and each of
which produces different pixel data (e.g., predicts different aspects of the tissue associated with the
location of the acquired echo signals). For example, one propagation pathway may be trained for
outputting pixel data indicative of echo signal intensities (e.g., grayscale pixel values which may be
arranged into a grayscale image of the anatomy). Another propagation pathway, which may

analyze the input array concurrently, sequentially, or in a time-interleaved manner with the first
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pathway, may be trained for outputting pixel data indicative of Doppler information (e.g., RGB
values at a set of adjacent locations in the imaged region), which may be used to reconstruct a flow
image similar to a colorflow Doppler image, a color power angio image, and other types of
Doppler images (e.g., spectral Doppler or M-mode images, etc.)

[048] The output of the neural network 460 is coupled to a display processor 440, which is
operable to produce an ultrasound image including the location within the region of imaged tissue
using the pixel data. In some embodiments, the pixel data associated with any given input array
represents only a subset of the pixels needed to reconstruct a full image of the field of view. The
display processor 440 may include a buffer to temporarily store sets of pixel data from different
sub regions within the field of view and to construct the full image once sufficient pixel data has
been output by the neural network 460. The inputs to and outputs of the neural network may be
localized (e.g., associated with spatial information) such as to enable the display processor 440 to
spatially arrange the sets of pixel data. The ultrasound image produced by display processor 440
may then be coupled to the user interface 424, e.g., for displaying it to the user on a display 428,
and/or may also be coupled to a storage device 450, which may be a local storage device, a storage
device of a picture archiving and communication system (PACS), or any suitable networked
storage device.

[049] In some embodiments, the display processor 440 may optionally and additionally generate
graphic overlays for display with the ultrasound images. These graphic overlays may contain, e.g.,
standard identifying information such as patient name, date and time of the image, imaging
parameters, and other annotations. For these purposes, the display processor 440 may be
configured to receive input from the user interface 524, such as a typed patient name.

[050] The neural network 460 may be operatively associated with a training algorithm 461 which
may be used to train the neural network 460, for example to initially train the network and/or to
continue to enhance the performance of the network after deployment. The training algorithm 461
may be operatively arranged to receive training data sets either from the system 400 or in some
case from other imaging system(s) 480, which may or may not use ultrasound as the modality for
imaging. For example, the training algorithm 461 may receive along with training input array a
corresponding known output array of the training data which includes known tissue parameters
(e.g., pixel data) associated with the same location in the tissue as the input array but which was

obtain using a modality different from ultrasound, for example MRI, CT, PET, PET-CT, etc.
[051] Example 2
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[052] FIG. 5 shows a block diagram of an ultrasound system 500 in accordance with further
principles of the present invention. Similar to the prior example, system 500 includes channel
memory 510 which is communicatively coupled to an ultrasound transducer 513. The ultrasound
transducer 513 may include an ultrasound transducer array 514, which may be provided in a probe
512, such as a handheld probe or a probe which is at least partially controlled or actuated by a
machine. In other embodiments, the ultrasound transducer array 514 may be implemented using a
plurality of patches, each comprising a sub-array of transducer elements and the array 514 may be
configured to be conformably placed against the subject to be imaged. The ultrasound transducer
513 is operable to transmit ultrasound (e.g., ultrasound pulses) toward a region of interest (ROI)
within a medium (e.g., tissue of a patient) and to receive echoes signals responsive to the
ultrasound pulses, which signals can be used to produce images of the region of interest (ROI). A
variety of transducer arrays may be used, such as linear arrays, curved arrays, or phased arrays.
The array 514 may include, for example, a two dimensional array of transducer elements capable of
scanning in both elevation and azimuth dimensions for 2D and/or 3D imaging. In some
embodiments, the system 500 may include the ultrasound transducer 513, which may be removably
coupled to an imaging base 515. The imaging base 515 may include electronic components, such
as one or more signal and image processors, arranged to produce ultrasound images from echoes
acquired by the transducer 513, which electronic components are collectively referred to as
imaging device. The imaging device may be a portable imaging device (e.g., provided in a tablet
or other handheld form factor) or it may be a traditional cart-based imaging device such as the
SPARQ or EPIQ ultrasound imaging devices provided by Philips. The ultrasound transducer 513
may be coupled to the channel memory 510 via a transmit/receive switch 518. The channel
memory 510 is configured to store the acquired echo signals acquired by the transducer 513. In
some embodiments, the channel memory 510 may be provided in the base 515 or it may be
provided, at least partially, in the ultrasound transducer 513 or otherwise communicatively coupled
between the transducer 513 and the base 515.

[053] The ultrasound transducer 513 may also be coupled to a beamformer 522. In this example,
the beamformer 522 may be configured to perform both transmit beamforming, e.g., to control
directionality of ultrasound pulses transmitted by the array 514, and receive beamforming, e.g., to
combine sets of acquired echo signals (i.e., raw RF signals) into beamformed RF signals
corresponding to scan lines or scan regions within the field of view of the array 514. In some

embodiments, the array 514 may also be coupled to a microbeamformer (see e.g., uBF in FIG. 1)
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which may be located in the transducer 513. The microbeamformer may be configured to perform
transmit and/or receive beamforming on groups or patches of elements of the array. The
beamformer and/or microbeamformer may control, under the direction of transmit/receive
controller 510, the transmission and reception of signals by the ultrasound transducer 513. As
shown, the transducer 512 may be coupled to the ultrasound system base via a transmit/receive
(T/R) switch 518 typically located in the base. The T/R switch 518 may be configured to switch
between transmission and reception, e.g., to protect the main beamformer 522 from high energy
transmit signals. In some embodiments, the functionality of the T/R switch 518 and other elements
in the system may be incorporated within the probe, such as a probe operable to couple to a
portable system, such as the LUMIFY system provided by PHILIPS. The transducer 513 may be
communicatively coupled to the base using a wired or wireless connection.

[054] The transmission of ultrasonic pulses from the array 514 may be directed by the transmit
controller 520 coupled to the T/R switch 518 and the beamformer 522. The transmit controller
may receive input from the user's operation of a user interface 524, which may include a display
528 for displaying ultrasound images and a control panel 529 including one or more mechanical or
software-based controls (also referred to as soft controls). In some examples, the display 528 may
be a touch sensitive display and may provide at least some of the soft controls. Another function
which may be controlled by the transmit controller 520 is the direction in which beams are steered.
Beams may be steered straight ahead from (orthogonal to) the transmission side of the array 514, or
at different angles for a wider field of view. As described, the beamformer 522 may combine raw
echo signals from individual elements or partially beamformed signals from groups of transducer
elements or patches of the array into a fully beamformed signal (also referred to as beamformed RF
signal). Beamformed RF signals from multiple transmit and receive cycles may be stored in a
beamformer memory, as needed.

[055] In accordance with some embodiments, the system 500 may also include a neural network
560. The neural network 560 may be configured to receive, from the beamformer 522, an input
array comprising samples of the beamformed RF signals. The neural network 560 may be trained
to propagate the input through the neural network to estimate pixel data associated with the
plurality of scan lines or scan regions.

[056] The neural network 560, which may be implemented in hardware, software, or
combinations thereof, may be trained for example as described herein to produce the pixel data

directly from the input array, e.g., bypassing conventional signal processing steps such as
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demodulation and I/Q data extraction, filtering, amplitude detection, etc. For example, the neural
network 560 may be trained to output pixel data which is indicative of intensities of the echo
signals summed in a given beamformed signal (i.e., the amplitude of the echoes from a given scan
line or from a given scan region). In some embodiments, the neural network 560 may be trained to
additionally or alternatively output pixel data indicative of Doppler frequencies associated with the
echo signals used to produce a given beamformed signal, tissue strain, wall shear stress of a bodily
structure, or multi-component velocity information about flow associated with a given scan line or
scan region, or any combinations thereof.

[057] The output of the neural network 560 responsive to any input array may thus be pixel data
associated with the same scan line or region in the field of view as the input array, the pixel data
including, for example, grayscale or RGB values that may be used to reconstruct an ultrasound
image. In some embodiments, the neural network 560 may include multiple propagation pathways,
each of which is configured to receive an input array (e.g., samples of beamformed RF signals) and
each of which produces different pixel data (e.g., predicts different aspects of the tissue associated
with the scan lines or regions corresponding to the combined echo signals in the respective
beamformed RF signals). For example, one propagation pathway may be trained to output pixel
data for generating an anatomy image and another propagation pathway may be trained to output
for generating a flow image, which may be processed concurrently, sequentially, or in a time-
interleaved manner, and the resulting different types of pixel data may be used to generate different
types of ultrasound image components which may be overlaid for display (e.g., similar to
conventional duplex B-mode/Doppler imaging) or otherwise concurrently displayed.

[058] The output of the neural network 560 may be coupled to a display processor 540, which is
operable to produce an ultrasound image including using the pixel data. In some embodiments, the
pixel data that is output by the neural network 560 responsive to any given input array may
represent only a single or a few of hundreds of scan lines or scan display processor 540 may
include temporarily buffer sets of pixel data from different scan lines or regions within the field of
view and construct a frame of the full image once sufficient pixel data has been received from the
neural network 560. In some cases, the buffering function may be performed by the neural
network which may supply to the display processor the necessary pixel data as may be needed to
reconstruct a full image frame. The ultrasound image produced by display processor 440

responsive to outputs of the neural network may be provided on a display of the system 500, and/or
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stored for subsequent use(s) such as additional training of the neural network, further analysis and
diagnosis, including in reports, etc.

Similar to system 400, in some embodiments, the display processor 540 may optionally and
additionally generate graphic overlays for display with the ultrasound images. These graphic
overlays may contain, e.g., standard identifying information such as patient name, date and time of
the image, imaging parameters, and other annotations. For these purposes, the display processor
540 may be configured to receive input from the user interface 524, such as a typed patient name.
As described, the neural network 560 may be operatively associated with a training algorithm 561
which may be used to train the neural network 560, for example prior to deployment and/or
subsequently in the field to further improve the performance of the network. The training
algorithm 561 may be operatively arranged to receive training data sets either from the system 500
or in some case from other imaging system(s) 580, which may utilize different imaging modalities

than system 500.

[059] Example 3
[060] FIG. 6 shows a block diagram of an ultrasound system 600 in accordance with further

principles of the present invention. System 600 has a similar arrangement of components as
system 400, however in this example the system is configured to propagate the inputs through the
neural network in phases. System 600 includes many components similar those in system 400, and
the similar components are numbered using similar reference numbers. For example, the system
600 include includes channel memory 610 which is communicatively coupled to an ultrasound
transducer 613. The ultrasound transducer 613 includes an ultrasound transducer array 614, which
may be located in probe 612, and which may be a one dimensional array or a two dimensional
array of transducer elements capable of scanning in both elevation and azimuth dimensions for 2D
and/or 3D imaging. A variety of transducer arrays may be used, such as linear arrays, curved
arrays, or phased arrays. The transducer 613 is thus operable to transmit ultrasound (e.g.,
ultrasound pulses) toward a region of interest (ROI) within a medium (e.g., tissue of a patient) and
to receive echoes signals responsive to the ultrasound pulses.

[061] The ultrasound transducer 613 may be coupled to the channel memory 610 via a
transmit/receive switch 618. The channel memory 610 is configured to store the acquired echo
signals. In some embodiments, the channel memory 610 may be provided in the ultrasound
imaging base 615 or it may be provided, at least partially, in the ultrasound transducer 613 or

otherwise communicatively coupled between the transducer 613 and the base 615. The ultrasound
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transducer 613 may also be coupled to a beamformer 622, which may be configured to provide
transmit beamforming, such as to control direction of the ultrasound pulses transmitted by the array
614. In some embodiments, the array 614 may be coupled to a microbeamformer. The
microbeamformer may be configured to perform transmit and/or receive beamforming on groups or
patches of elements of the array, e.g., to enable a system with a reduced number of signal channels
between the transducer 613 and the ultrasound imaging base 615. The beamformer and/or
microbeamformer may control, under the direction of transmit/receive controller 610, the
transmission and reception of signals by the ultrasound transducer 613. As shown, the transducer
612 may be coupled to the ultrasound system base via a transmit/receive (T/R) switch 618 typically
located in the base. The T/R switch 618 may be configured to switch between transmission and
reception. In some embodiments, the functionality of the T/R switch 618 and other elements in the
system may be incorporated within the probe, such as a probe operable to couple to a portable
system, such as the LUMIFY system provided by PHILIPS. The transducer 613 may be
communicatively coupled to the base using a wired or wireless connection.

[062] The transmit controller 620 coupled to the T/R switch 618 and the beamformer 422 may
control the transmission and reception of ultrasonic pulses from the array 614, and may in some
cases receive input from the user's operation of a user interface 624. The user interface may
include a display 628 for displaying ultrasound images and a control panel 629 including one or
more mechanical or software-based controls (also referred to as soft controls). In some examples,
the display 628 may be a touch sensitive display and may provide at least some of the soft controls.
Another function which may be controlled by the transmit controller 620 is the direction in which
beams are steered. Beams may be steered straight ahead from (orthogonal to) the transmission side
of the array 614, or at different angles for a wider field of view.

[063] The system 600 may also include a neural network 660 configured to receive, from channel
memory 610, an input array comprising samples of the acquired echo signals corresponding to a
location within a region of imaged tissue. The neural network 660 may be trained to propagate the
input through the neural network to estimate pixel data associated with the location within the
region of imaged tissue and/or obtain other tissue information associated with the imaged region.
In this embodiment the neural network 460, which may be implemented in hardware, software, or
combinations thereof, may be configured to propagate the inputs in phases, which may mimic the
beamforming, signal processing and/or image processing steps of conventional ultrasound imaging.

That is, the neural network may be configured to propagate the input of echo signals in a first phase
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to obtain a predicted set of beamformed signals corresponding to the input echo signals as an
output of the first phase and then propagate the predicted set of beamformed signals as an input to a
second phase and obtain a set of predicted values associated with the locations in the tissue
represented by the beamformed signals. The predicted values output from phase two may be
quadrature components, which may then be passed through another one or more phases to obtain
pixel data for generating ultrasound images. In some embodiments, the second phase may be
configured to directly output the pixel data needed for generating the ultrasound image. The
input/output pairs of each phase may be varied in other examples, e.g., the first phase in another
example may predict quadrature data directly from the raw echo signals, and a second phase may
output pixel data corresponding to the quadrature data output from first phase. The phases may
thus be tailored as desired by providing the appropriate training data sets to a training algorithm
661 associated with neural network 660. Additionally and optionally, the neural network 660 may
further include different propagation pathways, each of which may be configured to receive a same
set of input data but provide a different type of ultrasound imaging data. These different pathways
may be defined in one or each of the plurality of phases of the neural network 660.

[064] The output of the neural network 660 (e.g., the output of the last phase thereof) may be
coupled to a display processor 640, which is operable to produce an ultrasound image including the
imaged region or quantitative information about tissue properties within the region of interest.
Images and/or quantitative information may be output to the user, e.g., via user interface 624 and/or
to a storage device 650. In some examples, the training algorithm 661 may be communicatively
coupled with the storage device 650 and may receive training data from the storage device, which
may include outputs of the system 600 from prior imaging sessions and/or imaging data from other
imaging system(s) 680, which may utilize ultrasonic or other imaging modalities.

[065] In some embodiments, any of the systems 400, 500, and 600 may also include conventional
signal and image processing components, which may be implemented in software and hardware
components including one or more CPUs, GPUs, and/or ASICs, and which may also receive
signals based on the acquired echo signal and which may process the received signals in
accordance with conventional phsysics-based pre-programmed models to derive imaging data for
producing ultrasound images. These images may be coupled to a training algorithm associated
with the neural networks of the respective system 400, 500, and 600 for further training of the

system.

26



WO 2018/127498 PCT/EP2018/050087

[066] FIG. 7 shows a flow diagram of a process in accordance with some examples of the present
disclosure. The process 700 may begin by storing the acquired echo signals or RF signals in
channel memory, as shown in block 702. The RF signals stored in channel memory correspond to
the echoes detected from the tissue being image response to ultrasound transmitted by a transducer
(e.g., transducer 113) operatively coupled to an ultrasound system (e.g., system 100). In some
embodiments, the method may also include generating beamformed RF signals from the echo
signals, as shown in block 704, and which signals may be stored in beamformer memory. Samples
of the per-channel RF signals may be coupled to a neural network (e.g., neural net 160), as shown
in 710, and may then propagate through the nodes of the network to output produce imaging data
and/or tissue information directly from the raw RF signals or beamformed RF signals, as shown in
block 712. In some examples, the neural network may be deep neural network (DNN) or a
convolutional neural network (CNN), which may be implemented in hardware (e.g., nodes
corresponding to hardware components) or software (e.g., where nodes are represented using
computer code). In some embodiments, the coupling of samples of raw or beamformed RF signals
may be selective, e.g., responsive to user input or automatically controlled by the system based on
the imaging mode or clinical application. The neural network may be trained to operate in a
plurality of different modes each associated with a type of input data (e.g., raw channel data or
beamformed data), and thus a corresponding operational mode of the neural network may be
selected (automatically or responsive to user inputs) based on the type of input data to the neural
network. The imaging data and/or tissue information output by the neural network may include B-
mode imaging data, Doppler imaging data, vector flow imaging data, strain imaging data, wall
shear stress of an anatomical structure containing a fluid therein, or any combinations thereof.
Ultrasound images may be produced and displayed using the imaging data and/or tissue
information provided by the neural network, e.g., as shown in block 716.

[067] In yet further examples, the acquired echo signals may be processed according to
conventional techniques, ¢.g., by beamforming the echo signals (as in block 704), demodulating the
beamformed signals by a signal processor (e.g., as shown in block 706) for example to obtain
quadrature data, and coupling the quadrature data to a conventional image processor (e.g., as
shown in block 708) to produce one or more model-based ultrasound images (also referred to as
training ultrasound images). As shown in FIG. 7, any of the conventionally obtained outputs (e.g.,
the 1/Q data and/or the model based imaging data) may be coupled, as training data, to the training

algorithm of the neural network as known outputs along with the acquired echo signals as known
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inputs, to further train the neural network. In some embodiments, the method may also include
steps for training the neural network using imaging data or tissue information obtained from an
imaging modality other than ultrasound.

[068] Further examples

[069] In some embodiments, the neural network of an ultrasound system according to the present
disclosure may be configured to perform ultrasonic tissue characterization, for example to
characterize fat content, plaque, or for ultrasonic contrast imagining, e.g., by presenting the neural
network during a training phase with appropriate training data sets of inputs and known outputs, for
example obtained through conventional ultrasound imaging or through imaging using a different
modality.

[070] For example, in ultrasonic liver imaging, ultrasonic attenuation and back-scattering (i.e.,
tissue echogenicity) increases in proportion to fat content while speed of ultrasound
correspondingly reduces. By quantifying the ultrasound attenuation, echogenicity and/or speed
from the beamformed RF echoes and correlating this attenuation with fat content, estimates of the
fat content of the liver (or other tissue or organs, in other applications) may be performed with
ultrasound. The customer-facing output of such a system may be quantitative (e.g., a single value
representing the fat fraction within the imaged tissue), which may be displayed onto an image of
the anatomy (e.g., for a specific point or region of interest) or it may be graphically represented,
with each quantitative value being color-coded and overlaid on a 2D image or a 3D volume
rendering of the liver (or other organ or tissue) similar to conventional overlays of blood flow or
clastography information. As described, a neural network

[071] To train a neural network to extract tissue information pertaining to tissue content (e.g., fat
content), the neural network may be presented with training data sets including localized raw RF
signals and/or beamformed RF signals as inputs and the corresponding quantified tissue parameter
(c.g., fat content or other type of tissue content), which may be obtained via the ultrasound
quantification method above or through other imaging or non-imaging process capable of
determining the tissue content of the tissue being imaged, as the known output. Once appropriately
trained, the neural network may be operable to implicitly extract this information directly from the
raw RF signals and/or beamformed RF signals without reliance on the ultrasound quantification
method used to initially obtain the training data.

[072] In another example, plaque characterization may be enhanced by a neural network

appropriately trained to replace existing vessel hemodynamics models that are preprogrammed in
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conventional ultrasound systems, such as may be used by intravascular ultrasound (IVUS) catheters
to provide colorized tissue map of plaque composition with lumen and vessel measurements. For
example, the VH algorithm provided by Philips Volcano can be said to generally utilize
beamformed ultrasound RF signals from an IVUS catheter and analyze the short-time windowed
RF spectral properties of these echo signals to classify the tissue into one of several different
categories such as fibrous tissue, necrotic core, dense calcium and fibro-fatty tissue. An image
may then be provided showing the distribution of these tissue types within a vessel wall. Thus, to
train the neural network of a system according to the present disclosure to provide relevant vessel
hemodynamic information, training data sets including IVUS-obtained RF signals may be provided
as input with corresponding known tissue classifications (e.g., fibrous, necrotic core, dense calcium,
etc.) as known outputs during a training phase of the neural network. Generally, raw RF signals
and/or beamformed RF signals and corresponding vascular pathology data obtained using an
existing IVUS system may be used to train an ultrasonic imaging system with a neural network to
estimate vascular tissue composition directly from the detected echoes and/or beamformed signals,
without the need for Fourier transforms and heuristic techniques that may currently be employed
by conventional IVUS systems.

[073] In yet further examples, the neural network may be trained to characterize tissue with
respect to the presence of ultrasonic contrast agents. In ultrasonic contrast imaging, per-channel
data from multi-pulse sequences (e.g. power modulation) are typically beamformed and then
combined to form an image representing the volume density of microbubble contrast agents across
the imaging field of view. The same may be implicitly (without beamforming and/or explicitly
calculating the volume density) be achieved by a neural network which is trained with input
training data in the form of per-channel data and/or at least partially beamofrmed data and
corresponding known volume density of microbubble contrast agents.

[074] In further examples, human hearts from multiple test subjects could be scanned using 1D
or 2D array transducers and the resulting images and/or 3D volumes could be segmented (manually
or automatically) into regions that are either a) within a cardiac chamber; or b) comprising
myocardial tissue. These images may be used to train the neural network 160 to perform cardiac
chamber recognition. In examples, the input data, [xi], may be per-channel data and optionally
auxiliary data as described above, while the output data would be a classification (i.e., either a) or
b). In examples, the neural network may include an appropriately trained semantic classifier to

perform this type of classification. The so trained neural network may then be used to segment and
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identify cardiac chambers directly from the raw or beamformed data without having to first
reconstruct an image of the anatomy and without reliance on image processing techniques. This
segmentation information could be used to suppress imaging artifacts, or it could be fed directly
into algorithms to quantify ejection fraction or other clinical parameters. The system may be
similarly trained to identify other types of tissue or anatomical structures (e.g., walls of vessels,
lung/pleura interface) and quantify relevant clinical parameters associated therewith (e.g., obtain a
nuchal translucency measurement).

[075] In various embodiments where components, systems and/or methods are implemented
using a programmable device, such as a computer-based system or programmable logic, it should
be appreciated that the above-described systems and methods can be implemented using any of
various known or later developed programming languages, such as “C”, “C++”, “FORTRAN”,
“Pascal”, “VHDL” and the like. Accordingly, various storage media, such as magnetic computer
disks, optical disks, electronic memories and the like, can be prepared that can contain information
that can direct a device, such as a computer, to implement the above-described systems and/or
methods. Once an appropriate device has access to the information and programs contained on the
storage media, the storage media can provide the information and programs to the device, thus
enabling the device to perform functions of the systems and/or methods described herein. For
example, if a computer disk containing appropriate materials, such as a source file, an object file,
an executable file or the like, were provided to a computer, the computer could receive the
information, appropriately configure itself and perform the functions of the various systems and
methods outlined in the diagrams and flowcharts above to implement the various functions. That is,
the computer could receive various portions of information from the disk relating to different
elements of the above-described systems and/or methods, implement the individual systems and/or
methods and coordinate the functions of the individual systems and/or methods described above.

[076] In view of this disclosure it is noted that the various methods and devices described herein
can be implemented in hardware, software and firmware. Further, the various methods and
parameters are included by way of example only and not in any limiting sense. In view of this
disclosure, those of ordinary skill in the art can implement the present teachings in determining
their own techniques and needed equipment to affect these techniques, while remaining within the
scope of the invention. The functionality of one or more of the processors described herein may be
incorporated into a fewer number or a single processing unit (e.g., a CPU) and may be

implemented using application specific integrated circuits (ASICs) or general purpose processing
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circuits which are programmed responsive to executable instruction to perform the functions
described herein.

[077] Although the present system may have been described with particular reference to an
ultrasound imaging system, it is also envisioned that the present system can be extended to other
medical imaging systems where one or more images are obtained in a systematic manner.
Accordingly, the present system may be used to obtain and/or record image information related to,
but not limited to renal, testicular, breast, ovarian, uterine, thyroid, hepatic, lung, musculoskeletal,
splenic, cardiac, arterial and vascular systems, as well as other imaging applications related to
ultrasound-guided interventions. Further, the present system may also include one or more
programs which may be used with conventional imaging systems so that they may provide features
and advantages of the present system. Certain additional advantages and features of this disclosure
may be apparent to those skilled in the art upon studying the disclosure, or may be experienced by
persons employing the novel system and method of the present disclosure. Another advantage of
the present systems and method may be that conventional medical image systems can be easily
upgraded to incorporate the features and advantages of the present systems, devices, and methods.

[078] Of course, it is to be appreciated that any one of the examples, embodiments or processes
described herein may be combined with one or more other examples, embodiments and/or
processes or be separated and/or performed amongst separate devices or device portions in
accordance with the present systems, devices and methods.

[079] Finally, the above-discussion is intended to be merely illustrative of the present system and
should not be construed as limiting the appended claims to any particular embodiment or group of
embodiments. Thus, while the present system has been described in particular detail with reference
to exemplary embodiments, it should also be appreciated that numerous modifications and
alternative embodiments may be devised by those having ordinary skill in the art without departing
from the broader and intended spirit and scope of the present system as set forth in the claims that
follow. Accordingly, the specification and drawings are to be regarded in an illustrative manner

and are not intended to limit the scope of the appended claims.
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CLAIMS

What is claimed is:

1. An ultrasound imaging system comprising:

an ultrasound transducer configured to acquire echo signals responsive to ultrasound pulses
transmitted toward a medium;

a channel memory configured to store the acquired echo signals;

a neural network coupled to the channel memory and configured to receive one or more
samples of the acquired echo signals, one or more samples of beamformed signals based on the
acquired echo signals, or both, and to provide imaging data based on the one or more samples of

the acquired echo signals, the one or more samples of beamformed signals, or both..

2. The ultrasound imaging system of claim 1, further comprising a data selector
configured to select a subset of echo signals from the acquired echo signals stored in the channel
memory and provide the subset of echo signals to the neural network, wherein the echo signals in

the subset are associated with adjacent points within a region of imaged tissue.

3. The ultrasound imaging system of claim 2, further comprising a beamformer
configured to receive a set of the echo signals from the acquired echo signals and to combine the
set of echo signals into a beamformed RF signal, wherein the neural network is further configured
to receive the beamformed RF signal and to provide imaging data based, at least in part, on the

beamformed RF signal.

4, The ultrasound imaging system of claim 3, wherein the data selector is further
configured to selectively couple the subset of echo signals or the beamformed RF signal to the

neural network to as input data based on a control signal received by the data selector.
5. The ultrasound imaging system of claim 1, further comprising a display processor

configured to generate an ultrasound image using the imaging data provided by the neural network;

and a user interface configured to display the ultrasound image responsive to the display processor.
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6. The ultrasound imaging system of claim 1, wherein the neural network comprises a

deep neural network (DNN) or a convolutional neural network (CNN).

7. The ultrasound imaging system of claim 1, wherein the imaging data provided by
the neural network includes B-mode imaging data, Doppler imaging data, vector flow imaging data,
tissue strain imaging data, wall shear stress of an anatomical structure containing a fluid therein,

contrast-enhanced imaging data, tissue content imaging data, or combinations thereof.

8. The ultrasound imaging system of claim 1, wherein the neural network is further
configured to receive auxiliary data as input, the auxiliary data including ultrasound transducer
configuration information, beamformer configuration information, information about the medium,
or combinations thereof, and wherein the imaging data provided by the neural network is further

based on the auxiliary data.

9. The ultrasound imaging system of claim 1, wherein the neural network is
operatively associated with a training algorithm configured to receive an array of training inputs
and known outputs, wherein the training inputs comprise echo signals, beamformed signals, or
combinations thereof associated with a region of imaged tissue and the known outputs comprise

known properties of the imaged tissue.

10. The ultrasound imaging system of claim 9, wherein the known properties are

obtained using an imaging modality other than ultrasound.

11. The ultrasound imaging system of claim 9, wherein the training algorithm is
communicatively coupled to a storage device selected from PACS, a networked storage device or a

local storage device for receiving the training inputs, the known outputs, or both.

12. The ultrasound imaging system of claim 1, wherein the neural network is
implemented, at least in part, in a computer-readable medium comprising executable instructions,
which when executed by a processor coupled to the channel memory, the beamformer, or both,

cause the processor to perform a machine-trained algorithm to produce the imaging data based on
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the one or more samples of the acquired echo signals, the one or more samples of beamformed

signals, or both.
13. The ultrasound imaging system of claim 1, wherein the neural network is
configured to receive one or more samples of the acquired echo signals and to provide imaging

data based on the one or more samples of the acquired echo signals.

14. The ultrasound imaging system of claim 5, further comprising a probe comprising

the transducer, the channel memory, the neural network and the display processor.

15. The ultrasound imaging system of claim 14, wherein the user interface is

electrically or wirelessly coupled to the ultrasound system.
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