

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2009342391 B2

- (54) Title
Method and apparatus for encoding a feedback signal
- (51) International Patent Classification(s)
H04L 1/16 (2006.01) **H04L 1/18** (2006.01)
H04B 7/06 (2006.01) **H04W 72/00** (2009.01)
- (21) Application No: **2009342391** (22) Date of Filing: **2009.03.17**
- (87) WIPO No: **WO10/105413**
- (43) Publication Date: **2010.09.23**
(44) Accepted Journal Date: **2013.08.29**
- (71) Applicant(s)
Huawei Technologies Co., Ltd.
- (72) Inventor(s)
Fan, Shuju;Li, Jing;Ma, Xueli;Wang, Zongjie
- (74) Agent / Attorney
Phillips Ormonde Fitzpatrick, 367 Collins Street, Melbourne, VIC, 3000
- (56) Related Art
US 2006/0036922 A1
US 2006/0074612 A1

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织
国际局

(43) 国际公布日
2010 年 9 月 23 日 (23.09.2010)

PCT

(10) 国际公布号

WO 2010/105413 A1

(51) 国际专利分类号:
H04L 1/16 (2006.01) H04W 72/00 (2009.01)
H04L 1/18 (2006.01) H04B 7/06 (2006.01)

(21) 国际申请号: PCT/CN2009/070846

(22) 国际申请日: 2009 年 3 月 17 日 (17.03.2009)

(25) 申请语言: 中文

(26) 公布语言: 中文

(71) 申请人(除美国外的所有指定国): **华为技术有限公司 (HUAWEI TECHNOLOGIES CO., LTD.)** [CN/CN]; 中国广东省深圳市龙岗区坂田华为基地总部办公楼, Guangdong 518129 (CN)。

(72) 发明人: 及

(75) 发明人/申请人(仅对美国): **范叔炬 (FAN, Shuju)** [CN/CN]; 中国广东省深圳市龙岗区坂田华为基地总部办公楼, Guangdong 518129 (CN)。**李婧 (LI, Jing)** [CN/CN]; 中国广东省深圳市龙岗区坂田华为基地总部办公楼, Guangdong 518129 (CN)。**马雪**

利 (MA, Xueli) [CN/CN]; 中国广东省深圳市龙岗区坂田华为基地总部办公楼, Guangdong 518129 (CN)。**王宗杰 (WANG, Zongjie)** [CN/CN]; 中国广东省深圳市龙岗区坂田华为基地总部办公楼, Guangdong 518129 (CN)。

(74) 代理人: **北京同立钧成知识产权代理有限公司 (LEADER PATENT & TRADEMARK FIRM)**; 中国北京市海淀区西直门北大街 32 号枫蓝国际 A 座 8F-6, Beijing 100082 (CN)。

(81) 指定国(除另有指明, 要求每一种可提供的国家保护): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW。

[见续页]

(54) Title: FEEDBACK SIGNAL CODING METHOD AND APPARATUS

(54) 发明名称: 反馈信号编码方法及装置

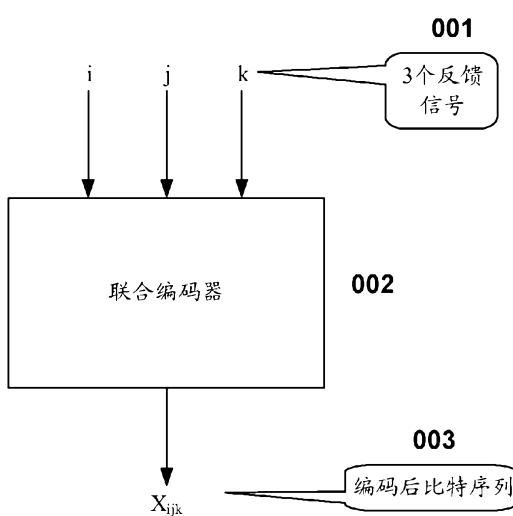


图 1 /FIG. 1

001 THREE FEEDBACK SIGNALS
002 JOINT CODER
003 CODED BIT SERIES

(57) Abstract: A feedback signal coding method and apparatus. The method includes the following steps: coding feedback signals for three carriers; through HS-DPCCH transmitting the bit series that have been coded and output. The step of coding feedback signals for three carriers includes the following aspects: the feedback signals for the three carriers are mapped to codes of one code block; the codes can be selected from the code block; and the codes in the code block have a certain code distance relationship. Embodiments of the invention provide methods of joint coding of feedback signals for three carriers in the TC mode. Through the methods, signals are transmitted in a single code channel, power overhead is saved and system performance is improved.

[见续页]

(84) **指定国** (除另有指明, 要求每一种可提供的地区保护): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), 欧亚 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧洲 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO,

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)。

本国际公布:

— 包括国际检索报告(条约第 21 条(3))。

(57) 摘要:

本发明实施例涉及一种反馈信号编码方法及装置, 其中方法包括: 编码三个载波的反馈信号; 在 HS-DPCCH 上发送编码输出的比特序列; 其中, 所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为一码组中的码字; 所述码字可以从码组中选取; 所述码组中码字满足特定的码距关系。本发明实施例提供了一种在 TC 模式下, 对三个载波的反馈信号进行联合编码的方法, 采用单码道发送, 节约了功率开销, 提高了系统的性能。

METHOD AND APPARATUS FOR ENCODING FEEDBACK SIGNAL

FIELD OF THE INVENTION

[0001] The present invention relates to the field of communication technologies, and in particular, to a method and apparatus for encoding feedback signals.

5

BACKGROUND OF THE INVENTION

[0002] In a physical layer hybrid automatic repeat request (HARQ) procedure, a User Equipment (UE) monitors a High Speed-Shared Control Channel (HS-SCCH). If no data is received, the UE has no action, which can be understood that: the UE does not transmit information to a base station (a Node B), and in this case, feedback information acquired by the Node B is Discontinuous

10 Transmission (DTX) information. If data is received, data on a High Speed-Downlink Shared Channel (HS-DSCH) is detected according to control channel information. If the received data is correct, acknowledgement (ACK) information is transmitted to the Node B; if the received data is incorrect, Negative acknowledgement (NACK) information is transmitted to the Node B. The DTX, ACK, and NACK information are uniformly referred to as hybrid automatic repeat 15 request-acknowledgement (HARQ-ACK) information. After being encoded, the HARQ-ACK information is further transmitted to the Node B through an uplink High Speed-Dedicated Physical Control Channel (HS-DPCCH). The Node B receives and translates the feedback information. If the feedback information is ACK, new data is transmitted; if the feedback information is NACK, the data is re-transmitted; if the feedback information is DTX, the new data is re-transmitted.

20 [0003] In the Third Generation Partnership Project (3GPP) standards, a Dual Carrier-High Speed Downlink Packet Access (DC-HSDPA) technology is introduced for improving user experience. Based on the technology, several HARQ-ACK encoding solutions are provided in the prior art, and are specifically illustrated as follows.

[0004] In the Release 5 (R5) version of 3GPP TS25.212, a single-carrier encoding solution is 25 provided. In this case, a total of three feedback signals are required to be transmitted, namely, ACK, NACK, and DTX, in which ACK and NACK are required to use codewords, as shown in Table 1-1:

METHOD AND APPARATUS FOR ENCODING FEEDBACK SIGNAL

FIELD OF THE INVENTION

The present invention relates to the field of communication technologies, and in particular, to a method and apparatus for encoding feedback signals.

BACKGROUND OF THE INVENTION

In a physical layer hybrid automatic repeat request (HARQ) procedure, a User Equipment (UE) monitors a High Speed-Shared Control Channel (HS-SCCH). If no data is received, the UE has no action, which can be understood that: the UE does not transmit information to a base station (a Node B), and in this case, feedback information acquired by the Node B is Discontinuous

0 Transmission (DTX) information. If data is received, data on a High Speed-Downlink Shared Channel (HS-DSCH) is detected according to control channel information. If the received data is correct, acknowledgement (ACK) information is transmitted to the Node B; if the received data is incorrect, Negative acknowledgement (NACK) information is transmitted to the Node B. The DTX, ACK, and NACK information are uniformly referred to as hybrid automatic repeat
5 request-acknowledgement (HARQ-ACK) information. After being encoded, the HARQ-ACK information is further transmitted to the Node B through an uplink High Speed-Dedicated Physical Control Channel (HS-DPCCH). The Node B receives and translates the feedback information. If the feedback information is ACK, new data is transmitted; if the feedback information is NACK, the data is re-transmitted; if the feedback information is DTX, the new data is re-transmitted.

20 In the Third Generation Partnership Project (3GPP) standards, a Dual Carrier-High Speed Downlink Packet Access (DC-HSDPA) technology is introduced for improving user experience. Based on the technology, several HARQ-ACK encoding solutions are provided in the prior art, and are specifically illustrated as follows.

25 In the Release 5 (R5) version of 3GPP TS25.212, a single-carrier encoding solution is provided. In this case, a total of three feedback signals are required to be transmitted, namely, ACK, NACK, and DTX, in which ACK and NACK are required to use codewords, as shown in Table 1-1:

Table 1-1 Single-Carrier HARQ-ACK Encoding Solution

ACK	1	1	1	1	1	1	1	1	1	1	1
-----	---	---	---	---	---	---	---	---	---	---	---

NACK	0	0	0	0	0	0	0	0	0	0	0
------	---	---	---	---	---	---	---	---	---	---	---

In the Release 8 (R8) version of the 3GPP TS25.212, a dual-carrier encoding solution is provided, and the solution requires nine feedback signals, in which eight codewords are used (DTX does not use any codeword), as shown in Table 1-2:

5 **Table 1-2 Dual-Carrier HARQ-ACK Encoding Solution**

The UE only detects data block on a primary carrier.											
ACK	1	1	1	1	1	1	1	1	1	1	1
NACK	0	0	0	0	0	0	0	0	0	0	0
The UE only detects a data block on an secondary carrier.											
ACK	1	1	1	1	1	0	0	0	0	0	0
NACK	0	0	0	0	0	1	1	1	1	1	1
The UE detects data blocks on both of primary and secondary carriers.											
Primary carrier feedback signal	Secondary carrier feedback signal										
ACK	ACK	1	0	1	0	1	0	1	0	1	0
ACK	NACK	1	1	0	0	1	1	0	0	1	1
NACK	ACK	0	0	1	1	0	0	1	1	0	0
NACK	NACK	0	1	0	1	0	1	0	1	0	1

Currently, researches about Ternary Cell (TC) technologies have not been started yet, and the inventors find by studying the prior art that: if the prior art is adopted to solve the feedback problem in TC, the most direct method is to adopt three code channels, each carrier uses one code channel,

0 and then the encoding solution as shown in Table 1-1 is adopted; or two code channels are adopted. One carrier uses the encoding solution as shown in Table 1-1, and the other two carriers use the encoding solution as shown in Table 1-2. Disadvantages of the two methods lie in that, excessive power is required to be consumed, the generally consumed power is 2 to 3 times of that for the single carrier, and a system Cubic Metric (CM) value is increased, thus affecting the system 15 performance.

A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission or a suggestion that the document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

The present invention provides a method and a device for transmission of feedback signals of three carriers.

According to one aspect of the present invention, a method for transmission of feedback information is provided. The method includes:

transmitting, by a base station, data to a user equipment, UE, on at most three carriers simultaneously;

receiving, by the base station, encoded feedback information of the three carriers from the UE in response to reception of the data;

wherein the encoded feedback information of the three carriers is encoded Hybrid Automatic Repeat Request-Acknowledgement, HARQ-ACK, signals of the three carriers;

wherein the encoded HARQ-ACK signals of the three carriers is a codeword into which HARQ-ACK signals of the three carriers are mapped according to the following mapping relationship between the HARQ-ACK signals of the three carriers and the codeword:

Table 1-3

NACK-NACK-NA CK	1	1	1	1	0	1	0	1	0	0										
--------------------	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--

wherein DTX represents discontinuous transmission, ACK represents acknowledgement, NACK represents negative acknowledgement.

According to another aspect of the present invention, a device of base station is provided. The

5 base station includes:

means for transmitting data to a user equipment, UE, on at most three carriers simultaneously;

means for receiving encoded feedback information of the three carriers from the UE in response to reception of the data;

wherein the encoded feedback information of the three carriers is encoded Hybrid Automatic

0 Repeat Request-Acknowledgement, HARQ-ACK, signals of the three carriers;

wherein the

encoded HARQ-ACK signals of the three carriers is a codeword into which HARQ-ACK signals of the three carriers mapped according to mapping relationship between the HARQ-ACK signals of the three carriers and the codeword as shown in the above Table 1-3.

The present invention provide a method and apparatus for transmission of feedback signals of three carriers in TC mode. In the present invention, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

0 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic structure of a HARQ-ACK joint encoder in TC mode according to an embodiment of the present invention;

FIG. 2 is a flow chart of a method for encoding feedback signals according to another embodiment of the present invention; and

25 FIG. 3 is a schematic structure of an apparatus for encoding feedback signals according to further another embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic structure of a HARQ-ACK joint encoder in TC mode according to an embodiment of the present invention. In TC mode, a Node B transmits data to a UE on at most three carriers simultaneously, and after receiving at most three data blocks, the UE is required to transmit feedback for receiving the data each, in which feedback information includes DTX, ACK, and NACK. The UE synthesizes the feedback information of the three carriers, namely, encodes the

feedback information into a 10-bit 0-1 sequence, and transmit to the Node B through a HS-DPCCH. The Node B selects a decode space to decode the feedback information according to the sending mode.

As shown in FIG. 1, the input signals of the joint encoder are feedback signals for a UE receiving data, i, j, and k are feedback signals for receiving data from three carriers. Values of i, j, and k may be DTX, ACK, or NACK. The output signal of the joint encoder is a 10-bit 0-1 sequence, represented with X_{ijk} . Functions of the joint encoder are that the UE encodes feedback signals of at most three carriers, and transmits the outputted bit sequence on a HS-DPCCH.

When the Node B applies three carriers to send data, seven data sending modes exist with reference to Table 1-7.

Table 1-7 Data Sending Mode With TC

	Carrier 1	Carrier 2	Carrier 3
Mode 1	On	Off	Off
Mode 2	Off	On	Off
Mode 3	Off	Off	On
Mode 4	On	On	Off
Mode 5	On	Off	On
Mode 6	Off	On	On
Mode 7	On	On	On

In Table 1-7, "On" indicates that data is sent on the carrier, and "Off" indicates that data is not sent on the carrier or the carrier is deactivated.

Each of the sending modes corresponds to a decoding space, with reference to Table 1-8. After receiving the encoded feedback signals of the UE, the Node B may select a decoding space according to a sending mode, and decode the feedback signals in the decoding space.

Table 1-8 Relationship Between Sending Modes And Decoding Spaces

Sending Mode	Decoding Space
Mode 1	DTX, N-D-D, A-D-D
Mode 2	DTX, D-N-D, D-A-D
Mode 3	DTX, D-D-N, D-D-A
Mode 4	DTX, D-N-D, D-A-D, N-D-D, A-D-D, N-N-D, A-N-D, N-A-D, A-A-D
Mode 5	DTX, N-D-D, A-D-D, D-D-N, D-D-A, N-D-N, N-D-A, A-D-N, A-D-A
Mode 6	DTX, D-N-D, D-A-D, D-D-N, D-D-A, D-N-N, D-N-A, D-A-N, D-A-A
Mode 7	DTX, D-N-D, D-A-D, N-D-D, A-D-D, N-N-D, A-N-D, N-A-D, A-A-D, D-D-N, D-D-A, N-D-N, N-D-A, A-D-N, A-D-A, D-N-N, D-N-A, D-A-N, D-A-A, N-N-N, N-N-A, N-A-N, N-A-A, A-N-N, A-N-A, A-A-N, A-A-A

In Table 1-8, for example, a feedback signal N-D-A is an abbreviation of NACK-DTX-ACK, which indicates that feedback information of Carrier 1 is NACK, feedback information of Carrier 2 is DTX, and feedback information of Carrier 3 is ACK. Other feedback signals are similar to this.

0

Embodiment 1 of a method for encoding feedback signals

FIG. 2 is a flow chart of a method for encoding feedback signals according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:

Step 101: encode feedback signals of three carriers to output a bit sequence.

Step 102: transmit the bit sequence on a HS-DPCCH.

The Step 101 may specifically include mapping the feedback signals of the three carriers into a codeword selected from a codebook. The codebook satisfies a particular code distance relationship, which may be acquired through computer searching or by using other methods. Under a condition that a certain requirement (such as compatibility) is satisfied, a principle of selecting a codebook is that the smallest code distance is maximized, and the number of the smallest code distances is minimized.

The codebook of this embodiment includes 26 codewords in total, and these codewords are selected from the codebook comprising codewords G1 to G16 and H1 to H10. For code distance relationships between codewords, reference can be made to Table 1-9.

Table 1-9 Code Distance Relationships Between Codewords

	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10
G1	0	6	6	6	6	4	6	4	6	4	6	6	6	4	4	4	10	4	4	4	4	6	4	4	6	
G2	6	0	6	6	6	4	4	6	4	6	6	6	4	6	4	4	4	10	4	4	4	6	6	4	6	
G3	6	6	0	6	4	6	6	4	4	6	6	6	4	4	6	4	4	4	10	4	6	4	4	6	6	
G4	6	6	6	0	4	6	4	6	6	4	6	6	4	4	4	6	4	4	4	10	6	4	6	4	4	
G5	6	6	4	4	0	4	6	6	6	6	6	4	6	6	4	4	4	6	6	10	6	4	4	4	4	
G6	4	4	6	6	4	0	6	6	6	6	6	4	4	4	6	6	6	6	4	4	6	10	4	4	4	
G7	6	4	6	4	6	6	0	4	6	6	6	4	6	4	6	4	4	6	4	6	4	4	10	6	4	
G8	4	6	4	6	6	6	4	0	6	6	6	4	4	6	4	6	6	4	6	4	4	6	10	4	4	
G9	6	4	4	6	6	6	6	6	0	4	6	4	6	4	6	6	4	6	4	4	4	4	4	10	6	
G10	4	6	6	4	6	6	6	4	0	6	4	4	6	6	4	6	4	4	6	4	4	4	4	6	10	
G11	6	6	6	6	6	6	6	6	6	6	0	6	6	6	6	4	4	4	4	4	4	4	4	4	4	
G12	6	6	6	6	4	4	4	4	4	4	6	0	6	6	6	6	4	4	4	4	6	6	6	6	6	
G13	6	4	4	4	6	4	6	4	6	4	6	6	0	6	6	6	4	6	6	6	4	6	4	6	6	
G14	4	6	4	4	6	4	4	6	4	6	6	6	6	0	6	6	6	4	6	6	4	6	6	4	6	
G15	4	4	6	4	4	6	6	4	4	6	6	6	6	0	6	6	6	4	6	6	4	4	6	6	4	
G16	4	4	4	6	4	6	4	6	6	4	6	6	6	6	0	6	6	6	4	6	4	6	4	4	6	
H1	10	4	4	4	4	6	4	6	4	6	4	4	4	4	6	6	6	6	0	6	6	6	4	6	4	
H2	4	10	4	4	4	6	6	4	6	4	4	4	4	6	4	6	6	6	0	6	6	6	4	4	6	
H3	4	4	10	4	6	4	4	6	6	4	4	4	4	6	6	4	6	6	6	0	6	4	6	6	4	
H4	4	4	4	10	6	4	6	4	4	6	4	4	6	6	6	6	4	6	6	6	0	4	6	4	6	
H5	4	4	6	6	10	6	4	4	4	4	4	6	4	4	6	6	6	6	6	4	4	0	4	6	6	
H6	6	6	4	4	6	10	4	4	4	4	4	6	6	6	4	4	4	4	6	6	4	0	6	6	6	
H7	4	6	4	6	4	4	10	6	4	4	4	6	4	6	4	6	6	4	6	4	6	6	0	4	6	
H8	6	4	6	4	4	4	6	10	4	4	4	4	6	6	4	6	4	4	6	4	6	6	6	4	0	6
H9	4	6	6	4	4	4	4	4	10	6	4	6	4	6	6	4	6	4	4	6	6	6	6	0	4	
H10	6	4	4	6	4	4	4	4	6	10	4	6	6	4	4	6	4	6	6	4	6	6	6	6	0	

A value in Table 1-9 represents a code distance between two codewords, for example, the code distance between G1 and G2 is 6, the code distance between G1 and G6 is 4, and so on.

Further, in step 101, for mapping the feedback signals into a codeword selected from the 5 codebook, reference can be made to Table 1-10.

Table 1-10 Mapping Solution Between Feedback Signals And Codewords

Feedback signal of Carrier 3	Feedback signal of Carrier 1	Feedback signal of Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	G8	H8
	NACK	H3	H7	H9
	ACK	G3	G4	H6
NACK	DTX	H1	G6	G10
	NACK	G2	H2	G16
	ACK	G12	G15	G5
ACK	DTX	G1	G14	G7
	NACK	H4	H5	G11
	ACK	H10	G9	G13

It can be seen from Table 1-10 that, in this embodiment, the feedback signal D-N-D is mapped into G8; the feedback signal D-A-D is mapped into H8; the feedback signal N-D-D is mapped into H3; the feedback signal N-N-D is mapped into H7; the feedback signal N-A-D is mapped into H9; the feedback signal A-D-D is mapped into G3; the feedback signal A-N-D is mapped into G4; the feedback signal A-A-D is mapped into H6; the feedback signal D-D-N is mapped into H1; the feedback signal D-N-N is mapped into G6; the feedback signal D-A-N is mapped into G10; the feedback signal N-D-N is mapped into G2; the feedback signal N-N-N is mapped into H2; the feedback signal N-A-N is mapped into G16; the feedback signal A-D-N is mapped into G12; the feedback signal A-N-N is mapped into G15; the feedback signal A-A-N is mapped into G5; the feedback signal D-D-A is mapped into G1; the feedback signal D-N-A is mapped into G14; the feedback signal D-A-A is mapped into G7; the feedback signal N-D-A is mapped into H4; the feedback signal N-N-A is mapped into H5; the feedback signal N-A-A is mapped into G11; the feedback signal A-D-A is mapped into H10; the feedback signal A-N-A is mapped into G9; and the feedback signal A-A-A is mapped into G13.

Still further, in this embodiment, codeword values, namely bit sequences, corresponding to each codeword are provided, and mapping relationships between codewords and bit sequences may be referred to Table 1-11. As can be seen from Table 1-11, the codebook comprises 26 codeword values with the smallest code distance of 4.

Table 1-11 Mapping Relationships Between Codewords And Bit Sequences

Codeword	Bit sequence									
	1	0	0	0	1	0	1	0	1	0
G1	1	0	0	0	1	0	1	0	1	0
G2	0	0	1	1	1	0	0	0	0	1
G3	1	1	1	1	1	1	1	1	1	1
G4	1	0	1	0	0	1	0	1	0	0
G5	1	1	1	1	0	0	0	1	1	0
G6	1	1	1	0	0	1	1	0	0	1
G7	0	0	1	0	0	1	0	0	1	1
G8	0	0	1	1	0	0	1	1	0	0
G9	0	1	1	0	1	0	1	1	0	1
G10	0	1	1	1	1	1	0	0	1	0
G11	0	1	0	1	0	1	1	0	0	0
G12	0	1	0	0	0	0	0	1	1	1
G13	1	0	0	1	1	1	0	1	0	1
G14	0	0	1	0	1	1	1	1	1	0
G15	1	1	1	0	1	0	0	0	0	0
G16	1	0	1	1	0	0	1	0	1	1
H1	0	1	1	1	0	1	0	1	0	1
H2	1	1	0	0	0	1	1	1	1	0
H3	0	0	0	0	0	0	0	0	0	0
H4	0	1	0	1	1	0	1	0	1	1
H5	0	0	0	0	1	1	1	0	0	1
H6	0	0	0	1	1	0	0	1	1	0
H7	1	1	0	1	1	0	1	1	0	0
H8	1	1	0	0	1	1	0	0	1	1

H9	1	0	0	1	0	1	0	0	1	0
H10	1	0	0	0	0	0	1	1	0	1

Table 1-11 is a specific example. The present invention is not limited to merely the mapping relationships shown in Table 1-11, and those mapping relationships obtained by performing simple transformation on the basis of Table 1-11 also falls within the scope of the present invention, such as random changing of a sequence between columns on the basis of Table 1-11, or negation of a certain column value.

This embodiment provides a method for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead, increases system capacity, and improves system performance, but does not affect CM value. Furthermore, in this embodiment, codebook satisfying a particular code distance relationship is selected, and a mapping solution between feedback signals and codewords is provided, so that signal error detection costs (including Radio Link Control (RLC) re-transmission cost and physical layer re-transmission cost) are minimized, thus improving data transmission efficiency.

Embodiment 2 of a method for encoding feedback signals

The method of this embodiment includes: encoding feedback signals of three carriers to output

5 a bit sequence, and transmitting the bit sequence on a HS-DPCCH.

The encoding the feedback signals of the three carriers may specifically include: mapping the feedback signals of the three carriers into a codeword selected from a codebook. The codebook satisfies a particular code distance relationship, which may be acquired through computer searching or by using other methods. Under a condition that a certain requirement (such as compatibility) is 20 satisfied, a principle of selecting a codebook is that the smallest code distance is maximized, and the number of the smallest code distances is minimized.

Specifically, the codebook in this embodiment includes 24 codewords in total, and these codewords are selected from the codebook comprising codewords A1 to A6, B1 to B6, C1 to C6, and D1 to D6. For code distance relationships between the codewords, reference can be made to

25 Table 1-12.

Table 1-12 Code Distance Relationships Between Codewords

	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
A1	0	6	6	6	6	6	10	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
A2	6	0	6	6	6	6	4	10	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
A3	6	6	0	6	6	6	4	4	10	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5

A4	6	6	6	0	6	6	4	4	4	10	4	4	5	5	5	5	5	5	5	5	5	5	5	5
A5	6	6	6	6	0	6	4	4	4	4	10	4	5	5	5	5	5	5	5	5	5	5	5	5
A6	6	6	6	6	6	0	4	4	4	4	4	10	5	5	5	5	5	5	5	5	5	5	5	5
B1	10	4	4	4	4	4	0	6	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5
B2	4	10	4	4	4	4	6	0	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5
B3	4	4	10	4	4	4	6	6	0	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5
B4	4	4	4	10	4	4	6	6	6	0	6	6	5	5	5	5	5	5	5	5	5	5	5	5
B5	4	4	4	4	10	4	6	6	6	6	0	6	5	5	5	5	5	5	5	5	5	5	5	5
B6	4	4	4	4	4	10	6	6	6	6	6	0	5	5	5	5	5	5	5	5	5	5	5	5
C1	5	5	5	5	5	5	5	5	5	5	5	0	6	6	6	6	6	10	4	4	4	4	4	4
C2	5	5	5	5	5	5	5	5	5	5	5	6	0	6	6	6	6	4	10	4	4	4	4	4
C3	5	5	5	5	5	5	5	5	5	5	5	6	6	0	6	6	6	4	4	10	4	4	4	4
C4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	0	6	6	4	4	4	10	4	4	4
C5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	0	6	4	4	4	4	10	4	4
C6	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	0	4	4	4	4	4	4	10
D1	5	5	5	5	5	5	5	5	5	5	5	10	4	4	4	4	4	0	6	6	6	6	6	6
D2	5	5	5	5	5	5	5	5	5	5	5	4	10	4	4	4	4	4	6	0	6	6	6	6
D3	5	5	5	5	5	5	5	5	5	5	5	4	4	10	4	4	4	4	6	6	0	6	6	6
D4	5	5	5	5	5	5	5	5	5	5	5	4	4	4	10	4	4	4	6	6	6	0	6	6
D5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	10	4	4	6	6	6	6	0	6
D6	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	4	10	6	6	6	6	6	6	0

A value in Table 1-12 represents a code distance between two codewords, for example, the code distance between A1 and A1 is 0, the code distance between A1 and A2 is 6, the code distance between A1 and B1 is 10, and so on.

Further, for the mapping a feedback signal into a codeword selected from the codebook, reference can be made to Table 1-13.

Table 1-13 Mapping Solution Between Feedback Signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	D1	C1
	NACK	B1	C2	A2
	ACK	A1	B2	D2
NACK	DTX	A3	C2	C5
	NACK	D6	C2	A5
	ACK	D4	A4	B6

ACK	DTX	B3	C3	C4
	NACK	D5	A6	B4
	ACK	D3	B5	C6

It can be seen from Table 1-13 that, in this embodiment, the feedback signal D-N-D is mapped into D1; the feedback signal D-A-D is mapped into C1; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into C2; the feedback signal N-A-D is mapped into A2; the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into B2; the feedback signal A-A-D is mapped into D2; the feedback signal D-D-N is mapped into A3; the feedback signal D-N-N is mapped into C2; the feedback signal D-A-N is mapped into C5; the feedback signal N-D-N is mapped into D6; the feedback signal N-N-N is mapped into C2; the feedback signal N-A-N is mapped into A5; the feedback signal A-D-N is mapped into D4; the feedback signal A-N-N is mapped into A4; the feedback signal A-A-N is mapped into B6; the feedback signal D-D-A is mapped into B3; the feedback signal D-N-A is mapped into C3; the feedback signal D-A-A is mapped into C4; the feedback signal N-D-A is mapped into D5; the feedback signal N-N-A is mapped into A6; the feedback signal N-A-A is mapped into B4; the feedback signal A-D-A is mapped into D3; the feedback signal A-N-A is mapped into B5; and the feedback signal A-A-A is mapped into C6.

Referring to Table 1-13, in this embodiment, some feedback signals are encoded into the same codeword, for example, the feedback signals N-N-D, D-N-N, and N-N-N are all encoded into C2. During decoding procedure, the Node B may select a decoding space according to a sending mode, and decodes the feedback signals in the decoding space, so that when the sending mode is Modes 1 to 6, a codeword transmitted in this embodiment is capable of being correctly decoded; when the sending mode is Mode 7, and the Node B decodes a feedback signal to obtain a codeword C2, it is decided that the feedback signal is N-N-N.

Still further, in this embodiment, codeword values, namely bit sequences, corresponding to each codeword are provided, and mapping relationships between codewords and bit sequences may be referred to Table 1-14. As can be seen from Table 1-14, the codebook comprises 24 codeword values.

Table 1-14 Mapping Relationships Between Codewords And Bit Sequences

Codeword	Bit sequence										
A1	1	1	1	1	1	1	1	1	1	1	1
A2	0	0	1	1	0	0	1	1	0	0	0
A3	1	1	0	0	0	1	1	0	0	0	0
A4	1	0	0	1	0	0	0	0	1	1	1
A5	0	1	0	0	1	0	0	1	1	1	0
A6	0	0	1	0	1	1	0	0	0	0	1
B1	0	0	0	0	0	0	0	0	0	0	0

B2	1	1	0	0	1	1	0	0	1	1
B3	0	0	1	1	1	0	0	1	1	1
B4	0	1	1	0	1	1	1	1	0	0
B5	1	0	1	1	0	1	1	0	0	1
B6	1	1	0	1	0	0	1	1	1	0
C1	1	1	1	1	1	0	0	0	0	0
C2	0	1	0	1	0	1	0	1	0	1
C3	0	1	1	0	0	0	1	0	1	1
C4	1	0	1	0	0	1	0	1	1	0
C5	0	0	0	1	1	1	1	0	1	0
C6	1	0	0	0	1	0	1	1	0	1
D1	0	0	0	0	0	1	1	1	1	1
D2	1	0	1	0	1	0	1	0	1	0
D3	1	0	0	1	1	1	0	1	0	0
D4	0	1	0	1	1	0	1	0	0	1
D5	1	1	1	0	0	0	0	1	0	1
D6	0	1	1	1	0	1	0	0	1	0

Table 1-14 is a specific example. The present invention is not limited to merely the mapping relationships shown in Table 1-14, and those mapping relationships obtained by performing simple transformation on the basis of Table 1-14 also falls within the scope of the present invention, such as random changing of a sequence between columns on the basis of Table 1-14, or negation of a certain column value.

In this embodiment, 26 feedback signals are encoded with 24 codewords, and when the sending mode is Mode 7, a decoding error may occur to the Node B, for example, the feedback signal N-N-D or D-N-N of the UE is decoded into N-N-N, such that a bit error rate is affected. However, since fewer codewords are adopted, the entire system performance can be improved. In a scenario of a higher requirement of the system performance, this embodiment has good applicability.

This embodiment provides a method for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

15 **Embodiment 3 of a method for encoding feedback signals**

A difference between this embodiment and Embodiment 2 lies in a mapping solution between feedback signals and codewords. For the mapping solution of this embodiment, reference can be made to Table 1-15.

It can be seen from Table 1-15 that, in this embodiment, the feedback signal D-N-D is mapped into D1; the feedback signal D-A-D is mapped into C1; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into C2; the feedback signal N-A-D is mapped into A2; the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into B2; the feedback signal A-A-D is mapped into D2; the feedback signal D-D-N is mapped into A3; the

feedback signal D-N-N is mapped into C5; the feedback signal D-A-N is mapped into C4; the feedback signal N-D-N is mapped into C2; the feedback signal N-N-N is mapped into C2; the feedback signal N-A-N is mapped into A5; the feedback signal A-D-N is mapped into D3; the feedback signal A-N-N is mapped into A4; the feedback signal A-A-N is mapped into B6; the feedback signal D-D-A is mapped into B3; the feedback signal D-N-A is mapped into B4; the feedback signal D-A-A is mapped into D5; the feedback signal N-D-A is mapped into C3; the feedback signal N-N-A is mapped into D4; the feedback signal N-A-A is mapped into D6; the feedback signal A-D-A is mapped into B5; the feedback signal A-N-A is mapped into A6; and the feedback signal A-A-A is mapped into C6.

Table 1-15 Mapping Solution Between Feedback Signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	D1	C1
	NACK	B1	C2	A2
	ACK	A1	B2	D2
NACK	DTX	A3	C5	C4
	NACK	C2	C2	A5
	ACK	D3	A4	B6
ACK	DTX	B3	B4	D5
	NACK	C3	D4	D6
	ACK	B5	A6	C6

Code distance relationships between codewords and mapping relationships between codewords and codeword values according to this embodiment may be the same as those in Embodiment 2, with reference to Tables 1-12 and 1-14.

Referring to Table 1-15, in this embodiment, also, some feedback signals are encoded into the same codeword, for example, the feedback signals N-N-D, N-D-N, and N-N-N are all encoded into C2. During decoding procedure, the Node B may select a decoding space according to a sending mode, and perform decoding procedure in the decoding space, so that when the sending mode is Modes 1 to 6, a codeword transmitted in this embodiment is capable of being correctly decoded; while when the sending mode is Mode 7, and the Node B decodes a feedback signal to obtain a codeword C2, it is decided that the feedback signal is N-N-N.

In this embodiment, 26 feedback signals are encoded with 24 codewords, and when the sending mode is Mode 7, a decoding error may occur to the Node B, for example, the feedback signal N-N-D or N-D-N of the UE is decoded into N-N-N, such that a bit error rate is affected. However, since fewer codewords are adopted, the entire system performance can be improved. In a

scenario of a higher requirement of the system performance, this embodiment has good applicability.

This embodiment provides a method for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 4 of a method for encoding feedback signals

A difference between this embodiment and Embodiment 2 lies in a mapping solution between feedback signals and codewords. For the mapping solution of this embodiment, reference can be made to Table 1-16.

Table 1-16 Mapping Solution Between Feedback signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	D1	C1
	NACK	B1	C2	C5
	ACK	A1	A4	D3
NACK	DTX	A3	A2	C4
	NACK	C2	C2	A5
	ACK	D3	B2	B6
ACK	DTX	B3	B4	D4
	NACK	D4	C3	D6
	ACK	B5	A6	C6

It can be seen from Table 1-16 that, the feedback signal D-N-D is mapped into D1; the feedback signal D-A-D is mapped into C1; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into C2; the feedback signal N-A-D is mapped into C5; the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into A4; the feedback signal A-A-D is mapped into D3; the feedback signal D-D-N is mapped into A3; the feedback signal D-N-N is mapped into A2; the feedback signal D-A-N is mapped into C4; the feedback signal N-D-N is mapped into C2; the feedback signal N-N-N is mapped into C2; the feedback signal N-A-N is mapped into A5; the feedback signal A-D-N is mapped into D3; the feedback signal A-N-N is mapped into B2; the feedback signal A-A-N is mapped into B6; the feedback signal D-D-A is mapped into B3; the feedback signal D-N-A is mapped into B4; the feedback signal D-A-A is mapped into D4; the feedback signal N-D-A is mapped into D4; the feedback signal N-N-A is mapped into C3; the feedback signal N-A-A is mapped into D6; the

feedback signal A-D-A is mapped into B5; the feedback signal A-N-A is mapped into A6; and the feedback signal A-A-A is mapped into C6.

Code distance relationships between codewords and mapping relationships between codewords and codeword values according to this embodiment may be the same as those in Embodiment 2, with reference to Tables 1-12 and 1-14.

Referring to Table 1-16, in this embodiment, also, some feedback signals are encoded with the same codeword, for example, the feedback signals N-N-D, N-D-N, and N-N-N are all encoded into C2. During decoding procedure, the Node B may select a decoding space according to a sending mode, and perform decoding procedure in the decoding space, so that when the sending mode is Modes 1 to 6, a codeword transmitted in this embodiment is capable of being correctly decoded; while when the sending mode is Mode 7, and the Node B decodes a feedback signal to obtain a codeword C2, it is decided that the feedback signal is N-N-N.

In this embodiment, 26 feedback signals are encoded with 24 codewords, and when the sending mode is Mode 7, a decoding error may occur to the Node B, for example, the feedback signal N-N-D or N-D-N of the UE is decoded into N-N-N, such that a bit error rate is affected. However, since fewer codewords are adopted, the entire system performance can be improved. In a scenario of a higher requirement of the system performance, this embodiment has good applicability.

This embodiment provides a method for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 5 of a method for encoding feedback signals

The method of this embodiment includes: encoding feedback signals of three carriers to output a bit sequence, and sending the bit sequence on a HS-DPCCH.

The encoding the feedback signals of the three carriers may specifically include: mapping the feedback signals of the three carriers into a codeword selected from a codebook. The codebook satisfies a particular code distance relationship, which may be acquired through computer searching or by using other methods. Under a condition that a certain requirement (such as compatibility) is satisfied, a principle of selecting a codebook is that the smallest code distance is maximized, and the number of the smallest code distances is minimized.

Specifically, the codebook selected in this embodiment includes 26 codewords in total, and these codewords are selected from the codebook comprising codewords A1 to A6, B1 to B6, C1 to C6, D1 to D6, E1, and F1. For code distance relationships between the codewords, reference can be made to Tables 1-12 and 1-17.

Table 1-17 Code Distance Relationships Between Codewords

	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6	E1	F1
E1	6	6	6	4	4	4	4	4	4	6	6	6	7	7	3	7	3	3	3	3	7	3	7	7	0	10
F1	4	4	4	6	6	6	6	6	6	4	4	4	3	3	7	3	7	7	7	7	3	7	3	3	10	0

Further, for the mapping a feedback signal into a codeword selected from the codebook, reference can be made to Table 1-18.

Table 1-18 Mapping Solution Between Feedback Signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	D1	C1
	NACK	B1	C2	A2
	ACK	A1	B2	D2
NACK	DTX	B3	E1	C4
	NACK	D3	F1	A5
	ACK	D4	A6	B4
ACK	DTX	A3	C3	D6
	NACK	C5	C6	D5
	ACK	B5	A4	B6

- 5 It can be seen from Table 1-18 that, in this embodiment, the feedback signal D-N-D is mapped into D1; the feedback signal D-A-D is mapped into C1; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into C2; the feedback signal N-A-D is mapped into A2; the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into B2; the feedback signal A-A-D is mapped into D2; the feedback signal D-D-N is mapped into B3; the feedback signal D-N-N is mapped into E1; the feedback signal D-A-N is mapped into C6; the feedback signal N-D-N is mapped into D3; the feedback signal N-N-N is mapped into F1; the feedback signal N-A-N is mapped into A5; the feedback signal A-D-N is mapped into D6; the feedback signal A-N-N is mapped into A6; the feedback signal A-A-N is mapped into B4; the feedback signal D-D-A is mapped into A3; the feedback signal D-N-A is mapped into C3; the feedback signal D-A-A is mapped into D5; the feedback signal N-D-A is mapped into C4; the feedback signal N-N-A is mapped into C5; the feedback signal N-A-A is mapped into D4; the feedback signal A-D-A is mapped into B5; the feedback signal A-N-A is mapped into A4; and the feedback signal A-A-A is mapped into B6.
- 10
- 15

Still further, in this embodiment, codeword values corresponding to each codeword are provided, and the codeword values are bit sequences which may be referred to Table 1-19. As can

be seen from Table 1-19, the codebook comprises the 26 codeword values with the smallest code distance of 3.

Table 1-19 Mapping Relationships Between Codewords And Bit Sequences

Codeword	Bit sequence											
A1	1	1	1	1	1	1	1	1	1	1	1	1
A2	0	0	1	1	0	0	1	1	0	0	0	0
A3	1	1	0	0	0	1	1	0	0	0	0	0
A4	1	0	0	1	0	0	0	0	1	1	1	1
A5	0	1	0	0	1	0	0	1	1	0	0	0
A6	0	0	1	0	1	1	0	0	0	0	1	1
B1	0	0	0	0	0	0	0	0	0	0	0	0
B2	1	1	0	0	1	1	0	0	0	1	1	1
B3	0	0	1	1	1	0	0	1	1	1	1	1
B4	0	1	1	0	1	1	1	1	0	0	0	0
B5	1	0	1	1	0	1	1	0	0	0	1	1
B6	1	1	0	1	0	0	1	1	1	1	0	0
C1	1	1	1	1	1	0	0	0	0	0	0	0
C2	0	1	0	1	0	1	0	1	0	1	0	1
C3	0	1	1	0	0	0	1	0	1	1	1	1
C4	1	0	1	0	0	1	0	1	1	1	0	0
C5	0	0	0	1	1	1	1	0	1	1	0	0
C6	1	0	0	0	1	0	1	1	1	0	1	1
D1	0	0	0	0	0	1	1	1	1	1	1	1
D2	1	0	1	0	1	0	1	0	1	0	1	0
D3	1	0	0	1	1	1	0	1	0	1	0	0
D4	0	1	0	1	1	0	1	0	0	0	1	1
D5	1	1	1	0	0	0	0	1	0	1	0	1
D6	0	1	1	1	0	1	0	0	0	1	0	0
E1	0	0	0	0	1	0	1	0	1	1	1	1
F1	1	1	1	1	0	1	0	1	0	1	0	0

Table 1-19 is a specific example. The present invention is not limited to merely the mapping

5 relationships shown in Table 1-19, and those mapping relationships obtained by performing simple transformation on the basis of Table 1-19 also falls within the scope of the present invention, such as random changing of a sequence between columns on the basis of Table 1-19, or negation of a certain column value.

This embodiment provides a method for encoding feedback signals of three carriers in TC

10 mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 6 of a method for encoding feedback signals

A difference between this embodiment and Embodiment 5 lies in a mapping solution between feedback signals and codewords. For the mapping solution of this embodiment, reference can be 15 made to Table 1-20.

Table 1-20 Mapping Solution Between Feedback Signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	A2	B2
	NACK	B1	E1	D2
	ACK	A1	C5	B4
NACK	DTX	A3	F1	C1
	NACK	C2	C6	D5
	ACK	C4	A6	D3
ACK	DTX	B3	C3	B6
	NACK	B5	D4	A4
	ACK	D6	D1	A5

It can be seen from Table 1-20 that, in this embodiment, the feedback signal D-N-D is mapped into A2; the feedback signal D-A-D is mapped into B2; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into E1; the feedback signal N-A-D is mapped into D2;

- 5 the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into C5; the feedback signal A-A-D is mapped into B4; the feedback signal D-D-N is mapped into A3; the feedback signal D-N-N is mapped into F1; the feedback signal D-A-N is mapped into C1; the feedback signal N-D-N is mapped into C2; the feedback signal N-N-N is mapped into C6; the feedback signal N-A-N is mapped into D5; the feedback signal A-D-N is mapped into C4; the 0 feedback signal A-N-N is mapped into A6; the feedback signal A-A-N is mapped into D3; the feedback signal D-D-A is mapped into B3; the feedback signal D-N-A is mapped into C3; the feedback signal D-A-A is mapped into B6; the feedback signal N-D-A is mapped into B5; the feedback signal N-N-A is mapped into D4; the feedback signal N-A-A is mapped into A4; the feedback signal A-D-A is mapped into D6; the feedback signal A-N-A is mapped into D1; and the 15 feedback signal A-A-A is mapped into A5.

Code distance relationships between codewords and mapping relationships between codewords and codeword values according to this embodiment may be the same as those in Embodiment 5 of the method for encoding feedback signals, with reference to Tables 1-12 and 1-17.

- This embodiment provides a method for encoding feedback signals of three carriers in TC 20 mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 7 of a method for encoding feedback signals

The method of this embodiment includes: encoding feedback signals of three carriers to output a bit sequence, and transmitting the bit sequence on a HS-DPCCH.

The encoding the feedback signals of the three carriers may specifically include: mapping the feedback signals of the three carriers into a codeword selected from a codebook. The codebook satisfies a particular code distance relationship, which may be acquired through computer searching or by using other methods. Under a condition that a certain requirement (such as compatibility) is satisfied, a principle of selecting a codebook is that the smallest code distance is maximized, and the number of the smallest code distances is minimized.

Specifically, the codebook selected in this embodiment includes 26 codewords in total, and these codewords are selected from the codebook comprising codewords A1 to A6, B1 to B6, C1 to C6, D1 to D6, E1, and F1. For code distance relationships between the codewords, reference can be made to Table 1-21.

Table 1-21 Code Distance Relationships Between Codewords

	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6	E2	F2
A1	0	6	6	6	6	6	10	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	7	3	
A2	6	0	6	6	6	6	4	10	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	
A3	6	6	0	6	6	6	4	4	10	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	
A4	6	6	6	0	6	6	4	4	4	4	10	4	5	5	5	5	5	5	5	5	5	5	5	3	7	
A5	6	6	6	6	0	6	4	4	4	4	4	10	4	5	5	5	5	5	5	5	5	5	5	7	3	
A6	6	6	6	6	6	0	4	4	4	4	4	4	10	5	5	5	5	5	5	5	5	5	5	5	3	
B1	10	4	4	4	4	4	0	6	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	3	
B2	4	10	4	4	4	4	6	0	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	
B3	4	4	10	4	4	4	6	6	0	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	
B4	4	4	4	10	4	4	6	6	6	0	6	6	5	5	5	5	5	5	5	5	5	5	5	5	7	
B5	4	4	4	4	10	4	6	6	6	6	0	6	5	5	5	5	5	5	5	5	5	5	5	3	7	
B6	4	4	4	4	4	10	6	6	6	6	6	0	5	5	5	5	5	5	5	5	5	5	5	5	3	
C1	5	5	5	5	5	5	5	5	5	5	5	5	0	6	6	6	6	6	10	4	4	4	4	6	4	
C2	5	5	5	5	5	5	5	5	5	5	5	5	6	0	6	6	6	6	4	10	4	4	4	2	8	
C3	5	5	5	5	5	5	5	5	5	5	5	5	6	6	0	6	6	6	4	4	10	4	4	4	6	
C4	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	0	6	6	4	4	4	10	4	6	
C5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	0	6	4	4	4	10	4	6	
C6	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	0	4	4	4	4	10	6	
D1	5	5	5	5	5	5	5	5	5	5	5	5	10	4	4	4	4	4	0	6	6	6	6	6	4	
D2	5	5	5	5	5	5	5	5	5	5	5	5	4	10	4	4	4	4	6	0	6	6	6	6	8	
D3	5	5	5	5	5	5	5	5	5	5	5	5	4	4	10	4	4	4	6	6	0	6	6	6	4	
D4	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	10	4	4	6	6	6	0	6	4	
D5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	4	10	4	6	6	6	0	6	4	
D6	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	4	4	10	6	6	6	6	0	4	
E2	7	5	5	3	7	3	3	5	5	7	3	7	6	2	6	6	4	6	4	8	4	4	4	6	4	
F2	3	5	5	7	3	7	7	5	5	3	7	3	4	8	4	4	6	4	6	2	6	6	4	6	10	

Further, for the mapping a feedback signal into a codeword selected from the codebook, reference can be made to Table 1-22.

Table 1-22 Mapping Solution Between Feedback Signals And Codewords

Carrier 3	Carrier 1	Carrier 2		
		DTX	NACK	ACK
DTX	DTX	*	D1	C1
	NACK	B1	C2	A2
	ACK	A1	B2	D2
NACK	DTX	B6	C5	C6
	NACK	D4	E2	A3
	ACK	D3	A5	F2
ACK	DTX	A6	C4	C3
	NACK	D5	A4	B5
	ACK	D6	B3	B4

It can be seen from Table 1-22 that, in this embodiment, the feedback signal D-N-D is mapped into D1; the feedback signal D-A-D is mapped into C1; the feedback signal N-D-D is mapped into B1; the feedback signal N-N-D is mapped into C2; the feedback signal N-A-D is mapped into A2; the feedback signal A-D-D is mapped into A1; the feedback signal A-N-D is mapped into B2; the feedback signal A-A-D is mapped into D2; the feedback signal D-D-N is mapped into B6; the feedback signal D-N-N is mapped into C5; the feedback signal D-A-N is mapped into C6; the feedback signal N-D-N is mapped into D4; the feedback signal N-N-N is mapped into E2; the feedback signal N-A-N is mapped into A3; the feedback signal A-D-N is mapped into D3; the feedback signal A-N-N is mapped into A5; the feedback signal A-A-N is mapped into F2; the feedback signal D-D-A is mapped into A6; the feedback signal D-N-A is mapped into C4; the feedback signal D-A-A is mapped into C3; the feedback signal N-D-A is mapped into D5; the feedback signal N-N-A is mapped into A4; the feedback signal N-A-A is mapped into B5; the feedback signal A-D-A is mapped into D6; the feedback signal A-N-A is mapped into B3; and the feedback signal A-A-A is mapped into B4.

Still further, in this embodiment, codeword values corresponding to each codeword are provided, and the codeword values are bit sequences which may be referred to Table 1-23. As can be seen from Table 1-23, the codebook comprises 26 codeword values.

Table 1-23 Mapping Relationships Between Codewords And Bit Sequences

Codeword	Bit sequence										
	1	1	1	1	1	1	1	1	1	1	1
A1	1	1	1	1	1	1	1	1	1	1	1
A2	0	0	1	1	0	0	1	1	0	0	0
A3	1	1	0	0	0	1	1	0	0	0	0
A4	1	0	0	1	0	0	0	0	1	1	1
A5	0	1	0	0	1	0	0	1	1	0	0
A6	0	0	1	0	1	1	0	0	0	0	1

B1	0	0	0	0	0	0	0	0	0	0
B2	1	1	0	0	1	1	0	0	1	1
B3	0	0	1	1	1	0	0	1	1	1
B4	0	1	1	0	1	1	1	1	0	0
B5	1	0	1	1	0	1	1	0	0	1
B6	1	1	0	1	0	0	1	1	1	0
C1	1	1	1	1	1	0	0	0	0	0
C2	0	1	0	1	0	1	0	1	0	1
C3	0	1	1	0	0	0	1	0	1	1
C4	1	0	1	0	0	1	0	1	1	0
C5	0	0	0	1	1	1	1	0	1	0
C6	1	0	0	0	1	0	1	1	0	1
D1	0	0	0	0	0	1	1	1	1	1
D2	1	0	1	0	1	0	1	0	1	0
D3	1	0	0	1	1	1	0	1	0	0
D4	0	1	0	1	1	0	1	0	0	1
D5	1	1	1	0	0	0	0	1	0	1
D6	0	1	1	1	0	1	0	0	1	0
E2	0	0	0	1	0	1	0	0	0	1
F2	1	1	1	0	1	0	1	1	1	0

Table 1-23 is a specific example. The present invention is not limited to merely the mapping relationships shown in Table 1-23, and those mapping relationships obtained by performing simple transformation on the basis of Table 1-23 also falls within the scope of the present invention, such as random changing of a sequence between columns on the basis of Table 1-23, or negation of a certain column value.

This embodiment provides a method for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

In view of the foregoing, the present invention provides solutions for HARQ-ACK technology in TC mode. According to the foregoing description, the present invention is further applicable to double code channels, which solves HARQ-ACK feedback problems of 4 carriers, 5 carriers, and 6 carriers.

For ease of description, in the embodiments of the present invention, definitions of the following terms are specified as follows:

SC: an encoding solution for single-carrier, that is, the encoding solution corresponding to Table 1-1;

DC: an encoding solution for dual-carrier, that is, the encoding solution corresponding to Table 1-2;

TC: an encoding solution for ternary-carrier, that is, the encoding solution according to the present invention;

for 4 carriers: the TC encoding solution may be applied in a first code channel, and the SC encoding solution may be applied in a second code channel; for 5 carriers: the TC encoding solution may be applied in a first code channel, and the DC encoding solution may be applied in a second

code channel; and for 6 carriers: the TC encoding solution may be applied in a first code channel, and the TC encoding solution may also be applied in a second code channel.

Embodiment 1 of an apparatus for encoding feedback signal

FIG. 3 is a schematic structure of an apparatus for encoding feedback signal according to

5 Embodiment 1 of the present invention. As shown in FIG. 3, the apparatus includes an encoder 1 and a transmitter 2. The encoder 1 is configured to encode feedback signals of three carriers to output a bit sequence, and the transmitter 2 is configured to transmit the bit sequence on a HS-DPCCH.

In this embodiment, the encoder 1 is further configured to map the feedback signals of the 0 three carriers into a codeword. The codeword is selected from the codebook comprising codewords G1 to G16 and H1 to H10. For code distance relationships between the codewords in the codebook, reference can be made to Table 1-9.

Specifically, in this embodiment, the encoder 1 may perform the encoding procedure according to the description in Embodiment 1 of method for encoding feedback signals aforementioned.

5 This embodiment provides an apparatus for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 2 of an apparatus for encoding feedback signals

The apparatus according to this embodiment may include an encoder and a transmitter. The

0 encoder is configured to encode feedback signals of three carriers to output a bit sequence, and the transmitter is configured to transmit the bit sequence on a HS-DPCCH.

In this embodiment, the encoder is further configured to map the feedback signals of the three carriers into a codeword selected from a codebook. The codebook comprises codewords A1 to A6, B1 to B6, C1 to C6, and D1 to D6. For code distance relationships between the codewords, 25 reference can be made to Table 1-12.

Specifically, in this embodiment, the encoder 1 may perform the encoding procedure according to the description in Embodiment 2 to Embodiment 4 of the method for encoding feedback signals aforementioned.

This embodiment provides an apparatus for encoding feedback signals of three carriers in TC

30 mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 3 of an apparatus for encoding feedback signals

The apparatus according to this embodiment may include an encoder and a transmitter. The encoder is configured to encode feedback signals of three carriers to output a bit sequence, and transmitter is configured to transmit the bit sequence on a HS-DPCCH.

In this embodiment, the encoder is further configured to map the feedback signals of the three carriers into a codeword selected from a codebook. The codebook comprises codewords A1 to A6, B1 to B6, C1 to C6, D1 to D6, E1, and F1. For code distance relationships between the codewords in the codebook, reference can be made to Table 1-17.

Specifically, in this embodiment, the encoder 1 may perform the encoding procedure according to the description in Embodiment 5 and Embodiment 6 of the method for encoding feedback signals.

This embodiment provides an apparatus for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

Embodiment 4 of an apparatus for encoding feedback signals

The apparatus according to this embodiment may include an encoder and a transmitter. The encoder is configured to encode feedback signals of three carriers to output a bit sequence, and the transmitter is configured to transmit the bit sequence on a HS-DPCCH.

In this embodiment, the encoder is configured to map the feedback signals of the three carriers into a codeword selected from a codebook. The codebook comprises codewords A1 to A6, B1 to B6, C1 to C6, D1 to D6, E1, and F1. For code distance relationships between the codewords in the codebook, reference can be made to Table 1-21.

Specifically, in this embodiment, encoder 1 may perform the encoding procedure according to the description in Embodiment 7 of the method encoding feedback signal.

This embodiment provides an apparatus for encoding feedback signals of three carriers in TC mode. In this embodiment, a single code channel is applied, which not only reduces power overhead and improves system performance, but does not affect CM value.

A Person skilled in the art may understand that all or part of the steps of the method according to the embodiments of the present invention may be implemented by a computer program code instructing hardware. The computer program code may be stored in a computer readable storage medium. When the computer program code runs in a computer unit, the steps of the method according to the embodiments of the present invention are performed. The storage medium may be

any medium that is capable of storing program codes, such as a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.

It should be noted that the above embodiments are merely provided for elaborating the technical solutions of the present invention, but not intended to limit the present invention.

5 Although the present invention has been described in detail with reference to the foregoing embodiments, it is apparent that persons skilled in the art can make various modifications and variations to the invention.

Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereto.

Claims

1. A method for transmission of feedback information, comprising:
 transmitting, by a base station, data to a user equipment, UE, on at most three carriers simultaneously;
 receiving, by the base station, encoded feedback information of the three carriers from the UE in response to reception of the data;
 wherein the encoded feedback information of the three carriers is encoded Hybrid Automatic Repeat Request-Acknowledgement, HARQ-ACK, signals of the three carriers;
 wherein the encoded HARQ-ACK signals of the three carriers is a codeword into which HARQ-ACK signals of the three carriers are mapped according to the following mapping relationship between the HARQ-ACK signals of the three carriers and the codeword:

ACK-DTX-DTX	1	1	1	1	1	1	1	1	1	1
NACK-DTX-DTX	0	0	0	0	0	0	0	0	0	0
DTX-ACK-DTX	1	1	1	1	1	0	0	0	0	0
DTX-NACK-DTX	0	0	0	0	0	1	1	1	1	1
DTX-DTX-ACK	1	1	0	0	0	1	1	0	0	0
DTX-DTX-NACK	0	0	1	1	1	0	0	1	1	1
ACK-ACK-DTX	1	0	1	0	1	0	1	0	1	0
ACK-NACK-DTX	1	1	0	0	1	1	0	0	1	1
NACK-ACK-DTX	0	0	1	1	0	0	1	1	0	0
NACK-NACK-DTX	0	1	0	1	0	1	0	1	0	1
ACK-DTX-ACK	1	0	1	1	0	1	1	0	0	1
ACK-DTX-NACK	0	1	0	1	1	0	1	0	0	1
NACK-DTX-ACK	0	0	0	1	1	1	1	0	1	0
NACK-DTX-NACK	1	0	0	1	1	1	0	1	0	0
DTX-ACK-ACK	0	1	1	1	0	1	0	0	1	0
DTX-ACK-NACK	1	0	1	0	0	1	0	1	1	0
DTX-NACK-ACK	0	1	1	0	0	0	1	0	1	1
DTX-NACK-NACK	0	0	0	0	1	0	1	0	1	1
ACK-ACK-ACK	1	1	0	1	0	0	1	1	1	0
ACK-ACK-NACK	0	1	1	0	1	1	1	1	0	0
ACK-NACK-ACK	1	0	0	1	0	0	0	0	1	1
ACK-NACK-NACK	0	0	1	0	1	1	0	0	0	1
NACK-ACK-ACK	1	1	1	0	0	0	0	1	0	1
NACK-ACK-NACK	0	1	0	0	1	0	0	1	1	0
NACK-NACK-ACK	1	0	0	0	1	0	1	1	0	1
NACK-NACK-NACK	1	1	1	1	0	1	0	1	0	0

wherein DTX represents discontinuous transmission, ACK represents acknowledgement, NACK represents negative acknowledgement.

2. The method of claim 1, wherein

the encoded feedback signals of the three carriers is transmitted through a, High Speed-Dedicated Physical Control Channel, HS-DPCCH.

3. The method of claim 1 or 2, further comprising:

selecting, by the base station, a decode space to decode the encoded feedback information of the three carriers according to a sending mode.

4. The method of claim 3, wherein the sending mode is as follows:

	Carrier 1	Carrier 2	Carrier 3
Mode 1	On	Off	Off
Mode 2	Off	On	Off
Mode 3	Off	Off	On
Mode 4	On	On	Off
Mode 5	On	Off	On
Mode 6	Off	On	On
Mode 7	On	On	On

wherein "On" indicates that data is sent on a carrier, and "Off" indicates that data is not sent on a carrier or a carrier is deactivated.

5. A base station, comprising:

means for transmitting data to a user equipment, UE, on at most three carriers simultaneously;

means for receiving encoded feedback information of the three carriers from the UE in response to reception of the data;

wherein the encoded feedback information of the three carriers is encoded Hybrid Automatic Repeat Request-Acknowledgement, HARQ-ACK, signals of the three carriers;

wherein the encoded HARQ-ACK signals of the three carriers is a codeword into which HARQ-ACK signals of the three carriers mapped according to the following mapping relationship between the HARQ-ACK signals of the three carriers and the codeword:

ACK-DTX-DTX	1	1	1	1	1	1	1	1	1	1
NACK-DTX-DTX	0	0	0	0	0	0	0	0	0	0
DTX-ACK-DTX	1	1	1	1	1	0	0	0	0	0
DTX-NACK-DTX	0	0	0	0	0	1	1	1	1	1
DTX-DTX-ACK	1	1	0	0	0	1	1	0	0	0

DTX-DTX-NACK	0	0	1	1	1	0	0	1	1	1
ACK-ACK-DTX	1	0	1	0	1	0	1	0	1	0
ACK-NACK-DTX	1	1	0	0	1	1	0	0	1	1
NACK-ACK-DTX	0	0	1	1	0	0	1	1	0	0
NACK-NACK-DTX	0	1	0	1	0	1	0	1	0	1
ACK-DTX-ACK	1	0	1	1	0	1	1	0	0	1
ACK-DTX-NACK	0	1	0	1	1	0	1	0	0	1
NACK-DTX-ACK	0	0	0	1	1	1	1	0	1	0
NACK-DTX-NACK	1	0	0	1	1	1	0	1	0	0
DTX-ACK-ACK	0	1	1	1	0	1	0	0	1	0
DTX-ACK-NACK	1	0	1	0	0	1	0	1	1	0
DTX-NACK-ACK	0	1	1	0	0	0	1	0	1	1
DTX-NACK-NACK	0	0	0	0	1	0	1	0	1	1
ACK-ACK-ACK	1	1	0	1	0	0	1	1	1	0
ACK-ACK-NACK	0	1	1	0	1	1	1	1	0	0
ACK-NACK-ACK	1	0	0	1	0	0	0	0	1	1
ACK-NACK-NACK	0	0	1	0	1	1	0	0	0	1
NACK-ACK-ACK	1	1	1	0	0	0	0	1	0	1
NACK-ACK-NACK	0	1	0	0	1	0	0	1	1	0
NACK-NACK-ACK	1	0	0	0	1	0	1	1	0	1
NACK-NACK-NACK	1	1	1	1	0	1	0	1	0	0

wherein DTX represents discontinuous transmission, ACK represents acknowledgement, NACK represents negative acknowledgement.

6. The base station of claim 5, wherein the encoded feedback signals of the three carriers is transmitted through a, High Speed-Dedicated Physical Control Channel, HS-DPCCH.
7. The base station of claim 5 or 6, further comprising: means for selecting a decode space to decode the encoded feedback information of the three carriers according to a sending mode.
8. The base station of claim 7, wherein the sending mode is as follows:

	Carrier 1	Carrier 2	Carrier 3
Mode 1	On	Off	Off
Mode 2	Off	On	Off
Mode 3	Off	Off	On
Mode 4	On	On	Off
Mode 5	On	Off	On
Mode 6	Off	On	On
Mode 7	On	On	On

wherein "On" indicates that data is sent on a carrier, and "Off" indicates that data is not sent on a carrier or a carrier is deactivated.

9. A computer program product, comprising computer program code, which, when executed by a computer unit, will cause the computer unit to perform the method steps according to any one of claims 1 to 4.

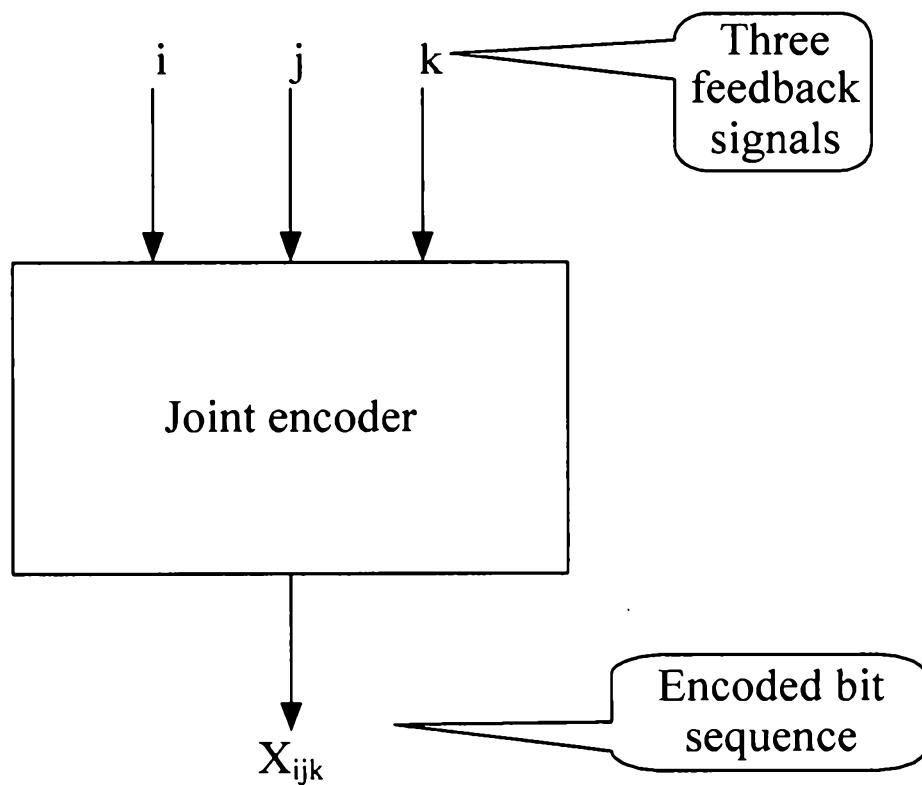


FIG. 1

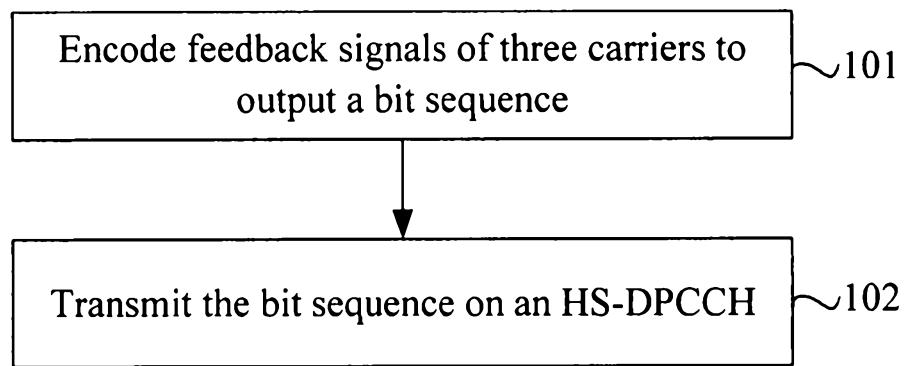


FIG. 2

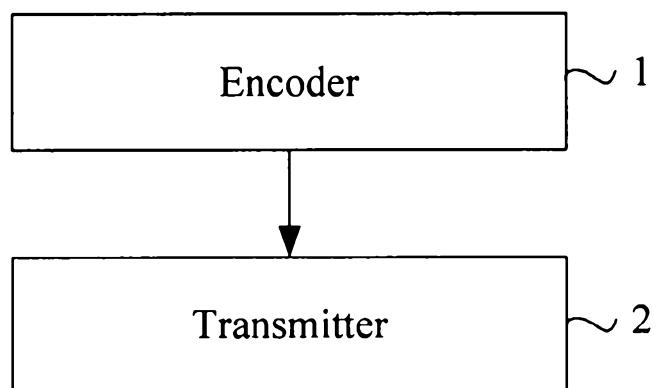


FIG. 3