
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0131020 A1

US 2003O131020A1

Karamanolis et al. (43) Pub. Date: Jul. 10, 2003

(54) NAMESPACE MANAGEMENT INA (57) ABSTRACT
DISTRIBUTED FILE SYSTEM

(76) Inventors: Christos Karamanolis, Sunnyvale, CA Method and System for performing a namespace operation in
(US); Zheng Zhang, San Jose, CA distributed file system. The file system is disposed O a
(US s s plurality of partition Servers, and each partition Server con

trols access to a Subset of hierarchically-related, shared
Correspondence Address: Storage objects. Each nameSpace operation involves a
HEWLETTPACKARD COMPANY namespace object and a target object that are part of the
Intellectual Property Administration shared Storage objects. Namespace operations received at
P.O. BOX 272400 each partition Server are Serialized. In response to an unlink
Fort Collins, CO 80527-2400 (US) namespace operation, a reference in the namespace object to

the target object is removed, and after removal the target
(21) Appl. No.: 09/962,865 object is modified in accordance with the unlink operation.

In response to a link operation, the target object is modified
(22) Filed: Sep. 25, 2001 consistent with the link operation. After modification of the

target object, a reference to the target object is inserted in the
Publication Classification namespace object. A log record is Stored in association with

each nameSpace operation when the operation is started, and
(51) Int. Cl." ... G06F 12/00 a log record is deleted upon completion of the associated
(52) U.S. Cl. .. 707/200 operation.

pointer
0--> backpointer

Patent Application Publication Jul. 10, 2003 Sheet 1 of 5 US 2003/0131020 A1

F.G. 1

Patent Application Publication Jul. 10, 2003. Sheet 2 of 5 US 2003/0131020 A1

S2 166 154 - C 164 a ?t ar

\; · 8 8 8- . f

pointer
O--> backpointer

Patent Application Publication Jul. 10, 2003. Sheet 3 of 5 US 2003/0131020 A1

NAMESPACE
OPERATION
PROCESSING

EssaEigasiilasassistasiae.

302

Serialize processing of namespace
operations received at the partition

SeVeS
sessessessessessessiassassissassississississistasieri

304

For each unlink namespace operation,
first remove the link from the

namespace object to the target object,
and then modify the target object

consistent with the unlink operation
eisis assassassississississistasissassississists.

306

For each link namespace operation,
first modify the target object consistent
with the link operation, and then add in
the namespace object a reference to

the target object
gressessessessianassassissississiscarisis:

308

Scan for orphan objects and return to
available storage

Patent Application Publication Jul. 10, 2003 Sheet 4 of 5 US 2003/0131020 A1

FIG.S

FIG. 6

Patent Application Publication Jul. 10, 2003. Sheet 5 of 5 US 2003/0131020 A1

es. 33 3: .
3.

E.

FIG. 7

FG.8

US 2003/O131020 A1

NAMESPACE MANAGEMENT IN A DISTRIBUTED
FILE SYSTEM

RELATED APPLICATION/PATENT

0001. This application/patent is related to the application/
patent entitled, "Namespace Management in a Distributed
File System,” by Karamanolis et al., filed on the same date
as this application/patent, and having client docket number
10012008-1.

FIELD OF THE INVENTION

0002 The present invention generally relates to distrib
uted file Systems, and more particularly to management of a
namespace in a distributed file System.

BACKGROUND

0003) A partition-based approach to achieve high scal
ability for access to distributed Storage Services is currently
being explored. The partition-based approach addresses the
inherent scalability problems of cluster file systems, which
are due to contention for the globally shared resources. In a
partition-based approach, the resources of the System are
divided into partitions, with each partition Stored on a
different partition Server. Shared acceSS is controlled on a
per-partition basis.
0004 All implementations of partition-based distributed
Storage Services must maintain namespaces, which generally
are distributed and reference objects that reside in multiple
partitions. A namespace provides a mapping between names
and physical objects in the System (e.g., files). A user usually
refers to an object by a textual name. The textual name is
mapped to a lower-level reference that identifies the actual
object, including a location and object identifier. The
namespace is implemented by means of directories, which
are persistent files of <name, reference> pairs.
0005 The requirement for consistency of the namespace
can be formalized in terms of four properties:

0006 1. One name is mapped to exactly one object.

0007 2. One object may be referenced by one or
OC CS.

0008. 3. If there exists a name that references an
object, then that object exists.

0009 4. If an object exists, then there is at least one
name in the namespace that references the object.

0.010 Changes to the global namespace take the form of
one of two classes of operations: link operations that insert
a reference to an object, for example, a newly created object;
and unlink operations that remove a reference to an object.
Any of the above operations potentially spans more than one
Server in a distributed System. The Server containing the
directory (or “namespace object”) and the server containing
the referenced object may be physically Separated.
0.011 Some systems presently use 2-phase commit to
implement distributed nameSpace operations. However, to
provide recoverability in the event of System failure during
a namespace operation, atomic commitment protocols per
form Synchronous logging in the critical path of the opera
tions, thereby incurring considerable overhead.

Jul. 10, 2003

0012. In addition to the overhead, atomic commitment
protocols lock System resources acroSS all the Sites involved
in an operation for the duration of the multi-phase commit,
thereby increasing contention for resources Such as free
block lists and block allocation maps. Atomic commitment
protocols also follow a conservative approach for recovery
from failure: in the presence of failure, incomplete opera
tions are typically aborted rather than attempting to com
plete the operation.

0013 A system and method that address the aforemen
tioned problems, as well as other related problems, are
therefore desirable.

SUMMARY OF THE INVENTION

0014. In various embodiments, the present invention per
forms namespace operations in a distributed file System. The
file System is disposed on a plurality of partition Servers, and
each partition Server controls access to a Subset of hierar
chically-related, shared Storage objects. Each namespace
operation involves a nameSpace object and a target object
that are part of the shared Storage objectS. Namespace
operations received at each partition Server are Serialized. In
response to an unlink nameSpace operation, a reference in
the nameSpace object to the target object is removed, and
after removal the target object is modified in accordance
with the unlink operation. In response to a link operation, the
target object is modified consistent with the link operation.
After modification of the target object, a reference to the
target object is inserted in the namespace object. A log
record is Stored in association with each nameSpace opera
tion when the operation is started, and a log record is deleted
upon completion of the associated operation.
0015 Various example embodiments are set forth in the
Detailed Description and Claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 Various aspects and advantages of the invention
will become apparent upon review of the following detailed
description and upon reference to the drawings in which:
0017 FIG. 1 is a functional block diagram of an example
distributed file system that is implemented with partition
SerVerS.,

0018 FIG. 2 is a block diagram that illustrates links from
example namespace objects to an example target object and
links from the target objects back to the namespace object;
0019 FIG. 3 is a graph that illustrates the logical rela
tionships between objects in an example namespace;
0020 FIG. 4 is a flowchart of a process for performing
namespace operations in accordance with one embodiment
of the invention;
0021 FIG. 5 illustrates a protocol for performing a link
namespace operation in accordance with one embodiment of
the invention;
0022 FIG. 6 illustrates a protocol for performing an
unlink nameSpace operation in accordance with one embodi
ment of the invention;

0023 FIG. 7 illustrates a link-unlink conflict scenario
where a failure occurs during execution of a link operation,

US 2003/O131020 A1

and before recovery is initiated an unlink operation is started
for the same namespace object; and
0024 FIG. 8 illustrates an unlink-link conflict scenario
where a failure occurs during execution of an unlink opera
tion, and before recovery is initiated a link operation is
Started for the same nameSpace and target objects.

DETAILED DESCRIPTION

0.025 In various embodiments, the present invention pro
vides a set of protocols for implementing the two main
classes of operations (link and unlink) performed in distrib
uted nameSpaces. The protocol minimizes the runtime over
head incurred in Support of recoverability from host and
communications failures by reducing the number of Syn
chronous input/output operations in the critical path of the
operation. In addition, the protocols avoid locking distrib
uted resources by Serializing operations at each partition
Server. In most failure Scenarios, the protocols use aggres
Sive recovery techniques to re-play incomplete operations.
Overall, the invention reduces communications overhead,
reduces Synchronous I/O and increases operation concur
rency.

0026. As described above, the two main classes of
namespace operations are link and unlink. Other nameSpace
operations can be either reduced to or composed by these
two primitives. Table 1 below illustrates mappings of
example file Service operations to the associated nameSpace
operations.

TABLE 1.

File Service operation Namespace primitive(s)

create/mkdir
remove/rmdirfunlink
Cale

obtain a new object + link
unlink
link (to dir) + unlink(from dir)

0.027 FIG. 1 is a functional block diagram of an example
distributed file system 100 implemented with partition serv
ers 102-1-102-in. File system objects, such as files 104 and
directories 106, are stored in different partitions 108 and 110,
respectively, which may be geographically distributed
depending on System requirements. Each partition is con
trolled by one partition Server, which coordinates operations
that may affect the State of the resources it owns, for example
allocating or de-allocating blocks in response to requests
from clients 112-1-112-m. Objects may be migrated and/or
replicated according to locality of access, type of content,
reliability and numerous other parameters.
0028. The namespace in distributed file system 100 is
implemented using directories, which are placed in one or
more partitions, depending on System requirements. A direc
tory may be placed in a different partition Server from the
children (subdirectories or files) of the directory. For
example, a file with inode number 1001, which resides in
partition 108, is referenced with the name “passwd from a
directory in partition 110.

0029 FIG. 2 is a block diagram that illustrates links from
example namespace objects to an example target object and
links from the target object back to the namespace objects.
Namespace objects 152 and 154 correspond, for example, to
the directory entries 106 in FIG. 1, and target object 156

Jul. 10, 2003

corresponds to a file 104. It will be appreciated that a target
object could alternatively be a Sub-directory.
0030. In traditional file systems, objects are assigned a
link-count. The link-count is an integer that represents the
number of references (forward pointers) to the object in the
namespace. In the present invention, back-pointers are used
instead of a link-count. A back-pointer refers back to the
parent namespace object. For example, nameSpace objects
152 and 154 reference target object 156 with forward
pointers 160 and 162. Target object 156 includes back
pointers 164 and 166.
0031) A back-pointer includes a reference (e.g., site and
inodeif) to the parent directory and the name and generation
number of the corresponding link. The generation number is
a number that uniquely identifies a specific name to object
binding. Because the generation numbers are unique, correct
execution Semantics can be guaranteed when operations are
replayed in the case of failures. Back-pointers are used in
maintaining consistency of the namespace in the event of
conflicting operation execution and/or operation recovery. In
one embodiment, back-pointers are implemented as part of
the i-node Structure. Alternatively, the back-pointers are
implemented as Separate files.

0032 FIG. 3 is a graph that illustrates the logical rela
tionships between objects in an example nameSpace.
NameSpace 200 is a hierarchical name-space, where every
node (object) is referenced by one or more other nodes in the
hierarchy. Intermediate nodes 202, 204, and 206 in the
hierarchy are special naming objects, and the leaf nodes 212,
214, 216, 218, and 220 are data objects. The naming objects
and data objects can reside in any one of a number of
possible partition servers 102-1, 102-3, 102-3. The dashed,
directional lines illustrate the association of the respective
data objects with the partition servers in which the objects
are Stored.

0033. The execution of the link and unlink operations is
initiated by a client that invokes a request to the partition
Server where the affected directory resides (“namespace
Site”). The requests include parameters that are required for
the execution of the corresponding protocols, as shown in
Table 2 below.

TABLE 2

link(PNO) P: the parent directory's reference: <site, inodehs (site is
the namespace site where the request is sent).

unlink(PN) N: the name assigned to the object (string)
O: the objects reference: <site, inodetis.

0034 Elsewhere in this discussion, the objects operated
upon by a namespace operation will be referred to as the
namespace object and the target object. Relative to the link
and unlink operations described in Table 2, the namespace
object is the parent directory (P), and the target object is the
object identified by the operation (N).
0035 FIG. 4 is a flowchart of a process for performing
namespace operations in accordance with one embodiment
of the invention. By imposing a certain order on the execu
tion of namespace operations, all possible inconsistencies in
the namespace (i.e., inconsistencies introduced by inter
rupted operations) are reduced to instances of “orphan”
objects. An orphan object is an object that physically exists

US 2003/O131020 A1

in the System, but is not referenced by any object/name in the
namespace. The required execution order for link and unlink
operations can be generalized as:

0036 1. Remove the reference from the namespace
object, if necessary.

0037 2. Perform any needed changes on the target
object.

0038. 3. Insert a reference in the namespace object,
if necessary.

0.039 The above generalized process applies to every
distributed namespace operation. In terms of the link and
unlink primitives, the generalized process can be more
particularly Stated as follows:

0040 link: add the reference to the namespace at the
last Stage of the execution.

0041) unlink: remove the reference from the
namespace is the very first Stage of the execution.

0.042 For either operation, the only possible inconsis
tency in the event of a failure is a target object that is not
referenced by any naming object in the namespace. Han
dling orphan objects is easier than handling invalid refer
CCCS.

0043. At step 302, each of the partition servers serializes
namespace operations as operations are received. That is,
each partition Server processes one namespace operation at
a time. Even though the Serialization may have Some nega
tive impact on concurrency of operations, Serialization
eliminates locking of the global nameSpace and thereby
provides concurrency across the partition Servers.
0044 Step 304 describes the processing of an unlink
namespace operation, which is based on the generalized
Steps identified above. In the nameSpace object referenced
by the unlink operation, the link to the target object is first
removed. The target object is then modified in accordance
with the unlink operation. In the target object, the back
pointer is removed. If the target object then contains no more
back-pointers, the Space occupied by the target object is
returned to a pool of available Storage.
0.045 Step 306 describes the processing of a link
namespace operation. In a link operation, the target object is
first modified to point to the nameSpace object. Then the
namespace object is updated to point to the target object.
0.046 By ordering the steps of the link and unlink opera
tions as just described, the namespace hierarchy will remain
consistent, even in the event of a System or communications
failure. However, an unexpected interruption during the
processing of a namespace operation may result in orphan
objects in the nameSpace. At Step 308, the process Scans the
namespace for objects having no back-pointers. The orphan
objects are returned to the pool of available Storage. In one
embodiment, the Scan is performed automatically at pre
Scribed intervals. In another embodiment, the Scan is initi
ated by an administrator.
0047 A log file is used while performing namespace
operations in Support of recoverability in the event of a
System or communications failure. Log records are written
to the log file to record various data that describe the
operations in process. The Structure of a log record is shown

Jul. 10, 2003

in Table 3. The fields refer to the name of the object binding
that is to be created or removed, in the case of link and
unlink respectively. The creation and reclamation of a log
record mark the beginning and the end of the execution of
a nameSpace operation. An open log record implies that the
operation has not been completed. The contents of the log
record(s) are used in the process of recovering from a System
or communication failure.

TABLE 3

Operation type namespace object object object generation#
(link?unlink) (directory) ref ale reference

site inodeff site inodeff

0048. There are two sites involved in the execution of
link and unlink operations: the nameSpace Site, where the
referencing directory ("namespace object”) resides; and the
object site, where the referenced object (“target object')
resides. Depending on the System implementation, these two
Sites may be remote from one another, and the protocol
execution involves message transmission between the two
Sites. Table 4 provides a legend for the message diagrams of
FIGS. 5-8, which further describe protocol execution. In
order to keep the discussion simple, all disk operations other
than log accesses are assumed to be Synchronous.

TABLE 3

act An atomic operation on stable storage.
-> A communication message across sites.
Xn A potential failure position. A failure at this

point may affect anything after the
immediately preceding atomic action.
Creation (or update)/reclamation of a log
record; synchronous (force write) or
asynchronous (lazy), respectively.

D-f- Creation/removal of a <name, references
pair (directory entry).
Creation/removal of a back pointer.

Log+f-sa

0049 FIG. 5 illustrates the protocol for performing a link
namespace operation in accordance with one embodiment of
the invention. Block 402 contains operations performed at
the namespace Site, and block 404 contains operations
performed at the object Site. The directional lines represent
messages transferred between the client, nameSpace Site, and
object Site. The execution is initiated in response to a request
from a client. The first Step is the Synchronous creation of a
log record (406) in the namespace site. The Synchronous
creation means that the link operation does not progreSS until
the log record is written to retentive Storage. The link
operation requires one message round trip between the
namespace and object Sites and two Synchronous accesses to
Storage, one on the object Site to add the back pointer and
one on the nameSpace Site to create the directory entry. The
“addbptr message carries information that is used to create
the back pointer (408) on the object site. The link operation
requires two accesses to the log for the creation and recla
mation of the log record. Since the reclamation of the log
record is asynchronous, a reply is sent (410) to the client as
Soon as the directory entry is added, rather than waiting for
the log record to be reclaimed (412).
0050. The pseudocode below sets forth additional details
for an example implementation of the link operation. The

US 2003/O131020 A1

particular Structure of the code is further explained below in
relation to recovering namespace operations.
0051 Namespace Site:

Namespace site:
Link (PNO) {

if dir-entry D does not exist then
r:= {“link, P.O.N.,new genit());
Log+s(r);
Link body(r);

else
Reply to client (error);

Link body(r) {
info := r:
send “add bptr'+ info to Obi site;
Wait until reply received or Timeout:
if reply=ACK then

if D does not exist then
D+:
reply to client (success);
Log-A(r):

else f* LL(1) */
unlink execute; I?as in unlink op
Log-A(r):
reply to client (error);

else if reply=NACK then
reply to client (error);
Log-A(r):

Object site:
Add back-pointer(info) {

if back-pointer exists
(compare info vs. back-pointer) then
if same generation# then f* LL(2) */

send ACK back to namespace;
else f* LL(3) */

send NACK back to namespace site;
else

Bptr+:
Send ACK back to namespace;

0.052 FIG. 6 illustrates the protocol for performing an
unlink nameSpace operation in accordance with one embodi
ment of the invention. The first step performed at the
namespace Site in response to an unlink request is to
Synchronously create a log record (422) that describes the
unlink request. The log record that is Synchronously created
on the nameSpace Site contains all the necessary information
for recovery in the case of failure during the unlink opera
tion. The next step is to remove the reference (424) to the
target object from the nameSpace object at the nameSpace
Site. The namespace site replies (426) to the client as Soon
as the reference has been removed from the nameSpace
object. Since the orphan recovery proceSS reclaims orphan
objects at the object Site, the client proceSS can proceed as
Soon as the reference has been removed from the nameSpace
object at the namespace site.
0053. The unlink operation requires one message
roundtrip: the request to the object Site to remove the
backpointer (428) and the response from the object site. The
operation requires two accesses to the log, with the creation
of the log record being Synchronous, and reclaiming (430)
the log record being asynchronous.
0.054 The pseudocode below sets forth additional details
for an example implementation of the unlink operation. The
particular Structure of the code is further explained below in
relation to recovering namespace operations.

Jul. 10, 2003

0055 Namespace Site:

Namespace site:
Unlink(PN) {

if dir-entry D does exist then
r:= {“unlink'.P.D.O.N.D.gent);
Log+s(r);
D-:
Reply to client (success);
Unlink body(r);

else
Reply to client (error);

tain so {
info := r:
Send “remove-bptr-info to Obi site;
Wait until reply received or TimeOut:
if reply received (ACK or NACK) then

Log-A(r):

Object site:
Remove back-pointer(info) {
if back-pointer does not exist

/* UL(1) */
(info not equal to bptr) then

send NACK to namespace site;
else

Bptr-,
Send ACK to namespace;

0056)
protocols are generally either classified as conservative or

Recovery techniques for traditional transactional

aggressive. Relative to the present invention, conservative
recovery implies that the partial results of the original
operation execution are undone at both the nameSpace and
object Sites. In a worst-case Scenario, conservative recovery
unrolls the results of an operation that was Successful except
for the reclamation of the log record. With aggressive
recovery, the aim is to complete a partially performed
operation and bring the nameSpace and object Sites to
mutually consistent States, relative to the operation.

0057 The recovery processes described herein may be
classified as aggressive In recovering from either a System or
communication failure the log at the nameSpace Site is
traversed for records that indicate incomplete operations.
The recovery processes assume that the presence of a log
record in the log file means that the associated operation did
not complete, even though the operation may have been
completed and the System failed prior to removal of the log
record. Generally, incomplete operations are re-executed
without creating a new log record. In the case of a link
operation a new generation number is not generated. This
makes re-execution of the operation and the corresponding
messages indistinguishable from operations that are not
being recovered.

0058 Recovery is initiated by the namespace site, in
either of two ways (as illustrated in the pseudocode below):
1) when the communication with a specific host (where
object-site operations are pending) timeouts; implemented

US 2003/O131020 A1

by routine "on timeout for record(r)”; or 2) when the
namespace Site recovers from a crash; implemented by
routine “total recovery”.

on timeOut for record (r) {
replay link?unlink (r):

total recovery {
for all records r in log do

replay link?unlink (r):

0059. There are three possible points where the execution
of the link operation may be interrupted due to failures, as
shown in FIG. 5:

0060) 1. X1-only the log record has been created,
the back pointer has not been added, and no Subse
quent link Step has been executed.

0061 2. X2-the back pointer is added, but the
namespace has not been updated.

0062. 3. X3-both the object and namespace have
been updated, but the log record has not been
reclaimed.

0.063. The pseudocode below describes the recovery pro
tocol for a link operation. The “if” clause distinguishes
failures that occur at point X3 from failures at X1 or X2. In
the latter case, the main body of the link operation. ("Link
body (r) is re-executed, without creating a new log record.

If the failure occurred at point X3 (“else” clause), the
recovery proceSS reclaims the log record of the original
execution; the rest of the operation has been completed.

replay link (r) {
if dir-entry D does not exist then

Link body (r):
ff same as in the failure-free case

else
Loga:

0064. If objects were annotated with traditional link
count attributes, the above procedure would risk unneces
Sarily incrementing the link-count of the target object. The
use of back pointers, which uniquely reference parent direc
tories and the operation that created the link, provides that
link operations can be safely re-executed in the event of
failures. Even if failures occur during the recovery process,
the recovery process can be re-initiated without risk of
having created inconsistencies at either the object or the
nameSpace Site.

0065. There are three possible points where the execution
of the unlink operation may be interrupted, as shown in FIG.
6:

0066 1. X1-the log is created but no other step has
been performed.

0067 2. X2-the namespace is updated, but the
back pointer has not been removed at the object Site.

Jul. 10, 2003

0068. 3. X3-both the namespace and the object site
(back pointer) have been updated, but the log record
has not been reclaimed.

0069. The pseudocode below describes the recovery pro
tocol for an unlink operation. The “if” clause distinguishes
failures that occur at point X1 from failures at X2 or X3. In
the latter case, the main body of the unlink operation
(“Unlink body(r)" set forth above in the pseudocode in
connection with FIG. 6) is re-executed without creating a
new log record. If the failure occurred at point X1, then only
the log record is reclaimed. The use of back pointers
provides that unlink operations and the recovery protocol
can be safely re-executed in the event of failures without
risking inconsistencies in the System.

replay unlink (r) {
if dir-entry D exists && generi matches then

D-:
reply to client (success);

Unlink body (r):
ff same as in the failure-free case
Loga:

0070 The protocols described herein seek to maximize
concurrency in performing namespace operations. The
present invention does not lock resources across the Sites
involved in a namespace operation, in contrast to transac
tion-type protocols. However, issues of conflicting opera
tions in the System must be addressed. AS between two link
operations, there are two potential conflicts: 1) link opera
tions that refer to the Same name entry and to the same
object; and 2) link operations that refer to the same name
entry but to different objects. For link operations that refer
to the same name entry and Same object, the first operation
to Successfully Set the back pointer is the one that eventually
Succeeds, even if recovery takes place and either of the link
operations is re-executed. When a link operation is executed
at the object site and a back pointer for the referenced name
entry already exists, one of two situations is possible:

0071 1. The generation# in the back pointer
matches the generationi in the payload of the “add
bptr message (commented as LL(2) in the
pseudocode for the object site for a link operation).
This implies that this operation has already been
completed Successfully at the object Site. An ACK is
returned to the nameSpace Site.

0072 2. The two generation#’s do not match. A
NACK is returned indicating that the back pointer
has been already added by another link operation
(commented as LL(3) in the pseudocode for the
object Site for a link operation).

0073. In situation 2, success depends on which operation
enters the namespace object first. Note, that the referenced
objects may reside in different partition Servers, and there
fore, the delivery order of the ACKs associated with the the
conflicting link operations cannot be predicted. Upon return
of an ACK for a link operation, the nameSpace is checked
again for the corresponding nameSpace object. If the
namespace object already exists (for example, inserted by
another link operation and referencing another target

US 2003/O131020 A1

object), the link operation fails and the results must be
undone at the object site. The functionality of the unlink
operation is re-used for this purpose (commented as LL(1)
in the pSuedocode for the namespace site for a link opera
tion).
0.074 AS between two unlink operations, the only poten
tial conflict occurs when the operations refer to the same
namespace object. Irrespective of the possible Scenarios in
which the Steps of the unlink operations may be interleaved,
only one operation Succeeds in removing the nameSpace
object. Thus, this class of conflicts is resolved by Serializa
tion of operations at the nameSpace Site.

0075 Conflicts between link and unlink operations are
not an issue in the absence of failures because the operations
are Serialized at the nameSpace Site. However, when a failure
results in incomplete execution of operations, there are two
cases of conflicts to be considered. The first case occurs
when a link operation fails at point X3 (see FIGS. 5 and 7),
and before recovery is initiated an unlink operation is started
for the same nameSpace object. The Second case occurs
when an unlink operation fails at points X2 or X3 (see FIGS.
6 and 8), and before recovery is initiated a link operation is
Started for the same nameSpace and target objects.

0.076 FIG. 7 illustrates a link-unlink conflict scenario
where a failure occurs during execution of a link operation,
and before recovery is initiated an unlink operation is started
for the same namespace object. The failure occurs at X3. The
recovery of the link operation is initiated after the Successful
completion of the unlink operation. Re-execution of the link
operation causes a back pointer to be added at the target
object and creation of a nameSpace object. Eventually, the
namespace is consistent, but overall this Scenario may
present unacceptable Semantics for the clients since had the
link-unlink Sequence completed without interruption from a
System failure, the target object would not be linked to the
namespace object.

0.077 Such scenarios can occur only in the presence of a
System failure of the namespace Site. To address these
Scenarios, the nameSpace Site does not process any new
operations following recovery from a System failure until all
incomplete operations in the log file are re-started (not
necessarily completed). In the example of FIG.7, the unlink
operation is not initiated until the link operation identified in
the log file has been re-started.

0078 FIG. 8 illustrates an unlink-link conflict scenario
where a failure occurs during execution of an unlink opera
tion, and before recovery is initiated a link operation is
Started for the same nameSpace and target objects. The
failure occurs at point X3 (or in another Scenario at X2 as
shown in FIG. 6). Failures at X2 or X3 may be caused by
a failure in communications between the nameSpace Site and
the object site. Thus, the recovery protocol described in
association with FIG. 7 is not helpful in this conflict
Scenario.

0079. In the illustrated conflict scenario, after the unlink
operation is partially completed the link operation Success
fully adds a new back pointer at the target object Site and
creates a namespace object at the nameSpace Site. The
recovery procedure for the unlink operation is initiated after
completion of the link operation. If in recovering the unlink
operation only the nameSpace object name is used to identify

Jul. 10, 2003

the nameSpace object to unlink, the unlink operation
removes the link just created by the link operation. This State
may be unacceptable since, in the absence of a failure, after
completing the unlink and link operations the namespace
object would be linked to the target object.
0080. To address this conflict, the unlink operation com
pares all fields of the unlink log record to fields of the
existing nameSpace object. If any of the fields do not match,
the recovery of the unlink operation is aborted and the log
record is reclaimed.

0081. The present invention is believed to be applicable
to a variety of data Storage management Systems and has
been found to be particularly applicable and beneficial in
distributed file systems. Other aspects and embodiments of
the present invention will be apparent to those skilled in the
art from consideration of the Specification and practice of the
invention disclosed herein. It is intended that the Specifica
tion and illustrated embodiments be considered as examples
only, with a true Scope and Spirit of the invention being
indicated by the following claims.

What is claimed is:
1. A computer-implemented method for performing

namespace operations in a distributed file System disposed
on a plurality of partition Servers, each partition Server
controlling access to a Subset of Shared Storage objects in the
distributed file System, wherein the shared Storage objects
are hierarchically related, and each nameSpace operation
involves a namespace object and a target object that are part
of the shared Storage objects, comprising:

Serializing nameSpace operations received at each parti
tion Server;

performing steps (a)-(d) in response to a link namespace
operation;

(a) writing a link log record that describes the link
operation to a log file in retentive Storage;

(b) modifying the target object consistent with the link
namespace operation after the writing Step;

(c) after the modifying step inserting a reference in the
namespace object to the target object; and

(d) deleting the link log record after the inserting step;
performing steps (e)-(h) in response to an unlink

nameSpace operation;

(e) writing an unlink log record that describes the unlink
operation to the log file in retentive Storage;

(f) removing a reference in the namespace object to the
target object after writing the log record;

(g) after the removing step, modifying the target object
consistent with the unlink nameSpace operation; and

(h) deleting the unlink log record after the modifying step
(g).

2. The method of claim 1, further comprising Sending to
a requester an acknowledgment that indicates completion of
the link operation after the inserting Step and before deleting
the link log record.

3. The method of claim 2, further comprising Sending to
a requester an acknowledgment that indicates completion of

US 2003/O131020 A1

the unlink operation after the removing Step and without
waiting for completion of the modifying step (g).

4. The method of claim 1, further comprising Sending to
a requester an acknowledgment that indicates completion of
the unlink operation after the removing Step and without
waiting for completion of the modifying step (g).

5. The method of claim 1, wherein a nameSpace Site is the
partition Server on which the namespace object is Stored, and
the target Site is the partition Server on which the target
object is Stored, the method further comprising, in response
to a recovery condition detected at the nameSpace Site, for
each link log record in the log file:

if a namespace object referenced by the link log record is
present on the nameSpace Site, then deleting the link log
record; and

if a namespace object referenced by the link log record is
not present on the namespace Site, then performing
Steps (b) through (d) for the namespace object and
target object referenced in the link log record.

6. The method of claim 5, further comprising for each
unlink log record in the log file:

if a namespace object referenced by the unlink log record
is present on the nameSpace Site, then performing Steps
(f) through (g); and

if a namespace object referenced by the unlink log record
is not present on the nameSpace Site, then performing
Step (g).

Jul. 10, 2003

7. The method of claim 6, further comprising, in recov
ering nameSpace operations in the log file in response to a
failure that requires rebooting the namespace Site, perform
ing recovery on all namespace operations in the log file
before processing newly received namespace operations.

8. The method of claim 6, further comprising:
Storing unique link generation numbers in association

with references from nameSpace objects to target
objects, respectively;

Storing in an unlink log record the link generation number
asSociated with the namespace object and target object
Specified in the unlink operation; and

in recovering an unlink namespace operation from the log
file, removing a reference from a nameSpace object to
a target object as Specified in an unlink log record only
if the link generation number in the unlink log record
matches the link generation number in the namespace
object.

9. The method of claim 6, further comprising sending to
a requester an acknowledgment that indicates completion of
the link operation after the inserting Step and before deleting
the link log record.

10. The method of claim 6, further comprising sending to
a requester an acknowledgment that indicates completion of
the unlink operation after the removing Step and without
waiting for completion of the modifying step (g).

k k k k k

