wo 2013/116581 A1 |[IN I N0F 0000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

8 August 2013 (08.08.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/116581 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/50 (2006.01) GO6F 15/16 (2006.01)

International Application Number:
PCT/US2013/024242

International Filing Date:
1 February 2013 (01.02.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/366,039 3 February 2012 (03.02.2012) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: WANG, Ju; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). CALDER, Bradley Gene;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). SKJOLSVOLD, Arild E; c¢/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: MANAGING PARTITIONS IN A SCALABLE ENVIRONMENT

DEFINED PARTITIONING SYSTEM INTERFACES

RECEIVE ONE OR MORE APPLICATION- 910

[4

INSTANCES INCLUDING THE INTERFACES, THE|
MASTER ROLE INSTANCES CORRESPONDING

CREATE PLURALITY OF MASTER ROLE
920

TO A MASTER STORAGE OBJECT

!

ASSIGN LEASE FOR MASTER STORAGE
OBJECT, THE INSTANCE THAT IS ASSIGNED |,
THE LEASE BEING THE DICTATOR MASTER

ROLE INSTANCE

930

ASSIGN, BY DICTATOR MASTER ROLE
INSTANCE, A GROUP OF PARTITIONS TOA |~
PLURALITY OF PARTITION SERVERS

940

!

PERFORM JOBS CORRESPONDING TO AN
APPLICATION USING THE PLURALITY OF I~
PARTITION SERVERS

950

FIG. 9

(57) Abstract: Systems and methods are provided that enable a general
framework for partitioning application-defined jobs in a scalable environ-
ment. The general framework decouples partitioning of a job from the other
aspects of the job. As a result, the effort required to define the applica-
tion-defined job is reduced or minimized, as the user is not required to
provide a partitioning algorithm. The general framework also facilitates
management of masters and servers performing computations within the dis-
tributed environment.

WO 2013/116581 A1 |IIWAT 00TV AV VT O A

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

MANAGING PARTITIONS IN A SCALABLE ENVIRONMENT
BACKGROUND

[0001] Cloud computing environments provide a potential platform for allowing
users to have access to large amounts of computing resources without having to invest in
corresponding infrastructure. Instead, the computing environment can be provided as a
service by a cloud computing provider. This can allow a user to tune the requested
computing resources to match the size and importance of a computing job. However,
taking full advantage of the additional computing resources available as a service may
require dividing computing tasks into smaller portions, so that multiple physical or virtual
processors can be used to perform a task.
SUMMARY

[0002] In various embodiments, systems and methods are provided that enable a
general framework for partitioning application-defined jobs in a scalable environment.
The general framework decouples partitioning of a job from the other aspects of the job.
As a result, the effort required to define the application-defined job is reduced or
minimized, as the user is not required to provide a partitioning algorithm. The general
framework also facilitates management of masters and servers performing computations
within the distributed environment.
[0003] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid, in isolation, in determining the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The invention is described in detail below with reference to the attached
drawing figures, wherein:
[0005] FIGS. 1 to 3 schematically show various aspects of an example of a
distributed computing environment, in accordance with aspects of the present invention;
[0006] FIG. 4 schematically shows the interaction between various interfaces for
performing a job in a generic partitioning environment, in accordance with aspects of the
present invention;
[0007] FIG. 5 shows an example of a generic partitioning environment, in

accordance with aspects of the present invention;

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

[0008] FIG. 6 shows an example of providing backup machines for active master
roles among, in accordance with aspects of the present invention;
[0009] FIG. 7 is a block diagram of an exemplary computing environment suitable
for use in implementing embodiments of the present invention;
[0010] FIG. 8 shows another example of providing backup machines for master
roles, in accordance with aspects of the present invention;
[0011] FIGS. 9 to 10 show examples of methods according to various
embodiments of the invention; and
[0012] FIG. 11 shows an exemplary aspect of providing backup machines for
master roles relative to fault domains and upgrade domains, in accordance with aspects of
the present invention.

DETAILED DESCRIPTION
Overview
[0013] Due to increases in the speed of data transmission over networks and
improvements in other network features, it is increasingly possible to perform large scale
computing tasks in an environment where computing resources are distributed over a large
network. A user in a first location can submit a job or computing task to a computing
service and have the task performed on a group of computers that the user has no direct
knowledge of. The computing resources for performing the user’s task may be distributed
over multiple locations. A first group of computing resources located in one or more
locations can store the data and other information for performing the user’s computing
task, while a second group of computing resources, in the same locations or possibly in a
different set of one or more locations, can be used to perform the computing task.
[0014] Access to a variety of distributed computing resources allows a user to
perform job tasks without concern for where the computing resources are located. The
distributed resources also provide an opportunity for a user to scale up (or scale down) the
amount of resources used in order to meet goals for a computing task, such as completing
the computing task by a specified time. However, using distributed computing resources
poses a number of challenges for a user. Conventionally, a user or application designer
would need to divert resources away from designing an application or job in order to
determine how to take advantage of a specific distributed computing environment.
[0015] In various embodiments, systems and methods are provided that enable a
generic framework for building scalable applications in a distributed environment, such as

a cloud computing environment. The generic framework can allow the partitioning of jobs

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

or work items to be decoupled from performing computations associated with the jobs or
work items. This allows the owner of a distributed environment to provide resources to a
user in an accessible or simplified manner while still providing a high availability for the
distributed resources. The generic framework reduces the complexity of designing
applications for a distributed environment by providing a framework for handling features
such as scalability, fault tolerance, and/or availability while reducing or minimizing the
amount of effort required to address these features. As a result, the framework can allow
an application designer to focus on the application instead of spending additional time on
requirements of the distributed environment.

Definitions

[0016] A “key” is one of the basic concepts used in a generic partitioning
framework. A key is a value from a namespace or domain. An example of a namespace is
an identifier corresponding to all storage accounts in a cloud computing environment. In
such an example, a key can correspond to an account name, account number, or another
identifier that allows a specific account to be referenced. Another example of a
namespace is the range of possible alphanumeric values for an input parameter for a job.
Preferably, the keys that span a namespace will also have some method of organization so
that keys can be described as a range of serial values. For example, the keys can be
organized numerically, alphabetically, based on hashed values, or in any other convenient
serial manner that allows a range of keys to be defined based on specifying two keys as a
range beginning and a range end.

[0017] A “partition” is a range defined by a low (inclusive) and high (exclusive)
key. A partition can never be an empty range. If desired, a single partition may contain
the entire range of the domain. Partitions are defined to be mutually exclusive, so that
there is not an overlap between the ranges of two different partitions. The union of all
partitions will span the entire domain or namespace.

[0018] A “partition server” is a virtual machine within a cloud computing
environment that corresponds to a role instance for serving zero or more partitions. A
partition is not served by more than one partition server at the same time. However, a
given partition server may not have any partitions that are currently being served by the
partition server. A partition server can include both application-defined interfaces and
fixed interfaces (defined by the partitioning system) for performing various actions.

[0019] A “partition master” is a role that manages partition servers for a given type

of role, such as by assigning and unassigning partitions to partition servers. The partition

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

master role also monitors partition servers, such as by verifying that the partition servers
are still serving assigned partitions. Typically, this role is redundant for fault tolerance. A
partition master can include both application-defined interfaces and fixed interfaces
(defined by the partitioning system) for performing various actions.

[0020] An “application-defined interface” refers to a computation, operation, or
other function defined by a client for performance by a role instance. An application-
defined interface can be created for either a partition master or partition server role. An
application-defined interface is in contrast to a “fixed interface” for a partitioning system.
A fixed interface refers to an application interface that is provided as part of the
partitioning system. A client cannot modify the action of a fixed interface. However, an
application-defined interface can be used in conjunction with a fixed interface. For
example, a fixed interface for a master role can be to send a heartbeat message every time
period to verify the status of any servers being managed by the master role. A
corresponding fixed interface for a server role can be an interface to respond to the
heartbeat message in an appropriate manner. An example of an application-defined
interface can be an interface that adds additional information to a heartbeat message, while
another example can be an interface to extract such additional information from a
heartbeat message. In this situation, the sending of the heartbeat message itself is a fixed
interface. A user or application cannot modify the protocol for sending the message.
However, the interface for defining the message content can be modified by a user. The
basic structure of the interface for supplementing the information in a heartbeat message
may be provided by the system. However, since a client can modify the content provided
by this interface, such an interface is defined herein as an application-defined interface.
[0021] As another example, application-defined interfaces can be used in
conjunction with fixed interfaces to provide the overall feature of load balancing. The
interfaces for assigning partitions to a partition server or splitting a partition into two
partitions are fixed interfaces. However, application-defined interfaces can provide
expressions for when load balancing actions should occur, like changing partition
assignments between machines or deciding when to split a partition.

[0022] Each active partition master role or partition server role has a
corresponding storage object that controls the data corresponding to the role. An example
of a storage object is a binary large object or blob. For a partition server, the storage
object includes the identity of the partitions being served. Note that the storage object for

a partition server will typically not contain the underlying data corresponding to the

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

partition. By only storing partition identities while leaving the underlying data in a
separate data storage location, partitions can be moved from one server to another with a
minimum of data transfer. For a partition master, the storage object includes information
for establishing that a particular instance of the partition master is the active instance. The
storage object can optionally also include information regarding all storage objects for
servers being managed by the master. During operation, master and server roles can
maintain a lease on the corresponding storage object. When a lease on a storage object for
a role is broken, the corresponding role can be terminated.

[0023] As noted above, partition masters for a given type of role are preferably
redundant, so that at least one additional partition master is available if a failure occurs. A
“dictator” 1s defined as the partition master that current performs the partition master
functions for a given type of role. The dictator is the partition master that maintains the
lease for the storage object associated with the given partition master role.

[0024] The active partition master (dictator) can communicate with the partition
servers via heartbeats. The basic heartbeat is of type ‘keepalive’ and is always used. As
noted above, an application-defined interface can be used to add optional commands
and/or information to this heartbeat message.

Namespaces, Keys, and Partitions

[0025] In various embodiments, a generic partitioning framework is provided so
that a user or application can define a computation that is automatically partitioned for
processing in a distributed computing environment. To take advantage of the generic
partitioning framework, a user can define a computation based on a namespace. A
namespace corresponds to one or more computations or calculations that are optionally
performed on data associated with the namespace. The user-defined namespace can have
certain properties as described below. As long as the namespace has the necessary
properties, the generic partitioning framework will be able to automatically partition the
namespace based on the application-defined interfaces. This partitioning is accomplished
using only the user-defined namespace and fixed interfaces provided with the partitioning
system. By partitioning a namespace using only fixed interfaces of the generic
partitioning system, the partitioning is decoupled from any application-defined interfaces
provided by the user as well as being decoupled from the nature of the computation(s)
being performed.

[0026] A namespace or domain for a job can correspond to a set of identifiers for

the full range of a type of data that will be operated on and/or generated by a computation.

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

Additionally or alternately, a namespace or domain can correspond to a listing or range of
possible states that could be operated on and/or generated by the computation. Still
another option is that the namespace can correspond to a set of identifiers for multiple
instances of a calculation being performed in a distributed environment. It is not
necessary for all potential namespaces or domains for a computation to be identified.
Instead, the user can identify the namespaces or states that will be used for partitioning.
The identified namespaces or domains should span the entirety of the computations that a
user will desire to perform using a given role. The entirety of the computations can be
spanned by spanning the entirety of a data set operated on by a computation, by spanning
the entirety of instances of calculations within the computation, or in any other convenient
manner. Keys can be used to specify discrete values or states within a namespace. Keys
can also be used to specify a range of values. Since keys can be used to specify a range, it
is understood that the namespace should include some type of serial ordering, so that
specifying an upper key and a lower key will uniquely identify a range. This ordering can
be based on a conventional ordering, such as ordering based on an alphabet. Alternatively,
the ordering can be arbitrary, such as a serial order based on a file containing a listing of
the values within a namespace.

[0027] In addition to defining a namespace (including any computations performed
using that namespace), a user can also provide one or more application-defined interfaces
associated with a server role. An application-defined interface represents one or more
tasks or functions that a partition server can perform, the tasks or functions optionally
involving one or more namespaces. The application-defined interfaces for a server role
can include all tasks or functions that will be performed on a given namespace, so that
different server roles do not attempt to access the same data or states. Optionally, it is
contemplated that in an exemplary aspect a server role may also include sub-roles, so that
some application-defined interfaces within a role operate on different namespaces than
other application-defined interfaces within the same role. In a simple example, a client
may desire to perform a computation that involves performing at least one type of
calculation on a data set. In this situation, a client may define a single role of a server that
performs at least one type of calculation on requested element(s) from the data set. This
single role can represent one or more servers corresponding to role instances that are
configured to perform a scientific calculation, one or more related data mining functions
on a data set, or any other convenient computation. The computation and any related data

can be defined as part of the definition of a namespace for performing the computation.

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

Additionally, one or more application-defined interfaces can be provided for the server
role, such as an application-defined interface for providing metrics regarding the
computation to a master role instance. A server role instance can determine the element or
elements of the data set to work on based on key values passed to the server. At least one
additional master role can manage the servers, including assigning data set partitions to the
one or More Servers.

[0028] Based on a namespace, a computation can be partitioned so that multiple
partition servers handle or perform different portions of processing for the namespace.
Each partition corresponds to a range of key values. When a partition is assigned to a
partition server, the server performs the desired computation for any requests that contain
a key value within the range corresponding to an assigned partition. The partitions
assigned to a server do not need to be consecutive relative to the serial ordering of the
namespace.

[0029] In a generic partitioning environment, a partition table can be used to track
the current assignments of partitions to partition servers. When an active master or dictator
assigns a partition to a server, the partition table can be updated first to reflect the
assignment. The partition table can then be used to determine the partition server that will
handle a client request based on the key specified in the client request. Optionally, one
partition table can be used to track the partition assignments for multiple roles, as opposed
to having a different partition table for each namespace that is partitioned. As an example,
an entry in a partition table can include the low key for a range, the high key for the range,
and the role instance or server instance that will perform a requested task on the data or
state corresponding to requested key. A partition table can also include other data, such as
an epoch number or version number, as will be discussed in greater detail below.
Managing Master and Server Role Instances

[0030] When performing a job, it will often be desirable to have several master
role instances to provide redundancy. However, to avoid conflicts, only one master role
instance can be the active master at a given time. When a plurality of master role
instances are present, the master role instances compete for a lease on the storage object
corresponding to the full namespace. The master role instance that is granted the lease
becomes the active master or dictator. In addition a master epoch number is stored in the
storage object for the master role instance. When a master becomes dictator it increments
this number, writes it back to the master role storage object, and subsequently uses the

epoch number to communicate with the corresponding partition servers. The active master

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

instance or dictator can also obtain a lease on the partition table or at least a portion of the
partition table. Partition servers will ignore heartbeats with a master epoch lower than the
highest epoch already seen, thus avoiding stale heartbeats from a master role that is no
longer the dictator.

[0031] One option is to use a separate dictatorship library to implement
dictatorship via storage object lease. Having a separate dictatorship library can offer
several advantages, such as allowing a role outside of the partitioning system to implement
redundancy. This allows roles that are not involved in partitioning to use the same method
for selecting an active master role.

[0032] Each server maintains a lease on its own storage object. Server storage
object names are generated by the master each time a server receives its first partition
assignment. Each server also stores its current partition assignment (list of partitions
including epoch numbers) in the storage object. A third party can forcefully terminate the
lease between a server and its storage object. This functionality can be used by the
partition master dictator to break server leases in the partition assignment protocols.

[0033] While having redundant instances of a master role allows for improved
performance when a failure event occurs, the redundant instances can also potentially
cause a problem due to stale updates. A stale update refers to a situation where a message
or instruction from a prior dictator is received by a server or data store after a new dictator
has been selected. The problem of stale updates may affect any role or piece of code
which maintains state in an external store where messages to the external store may be
delayed or re-ordered (e.g. over the internet), and where the state is read from that store
upon failover of the role.

[0034] As an example consider a partition master (dictator) that fails over in the
middle of updating the partition table for the role. First, the old master initiates an update
of row ‘X’ of the partition table. The old master then stops working. A redundant
instance of the master is selected as the new dictator. This new active master updates,
reads, or otherwise performs an action using row ‘X’ of the partition table. The update
from the old master then goes through after the action on row ‘X’ by the new active
master. If the update from the old master is incorporated into the partition table, the
update will cause the partition table to change without the new (current) master being
aware of the change. This can lead to an inconsistent state for the partition table.

[0035] One solution to the problem in the example above is to somehow block the

stale update from the old master. One option is to also allow partition masters to obtain

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

leases on portions of the partition table. A lease for a master can correspond to all of the
partitions in the table corresponding to a given namespace. Any convenient method for
specifying a lease range can be used. For example, if it is desired, a lease can span only a
portion of a partition and/or can span multiple partitions. When a new dictator is selected,
the masters will still compete for dictatorship via a lease, where an epoch number is
provided so the servers can block stale updates, such as stale heartbeat messages. In
addition, the master dictator can also acquire a lease on the (relevant part of the) partition
table before reading the table when building its state.

[0036] More generally, both masters and servers can use the lease mechanism to
avoid stale updates by acquiring leases to blobs, tables, and/or other data structures when
the master or server is assigned to handle a data structure. When the master or server is no
longer assigned to the data structure, such as due to a failover or an explicit request by a
master to change an assignment, the lease is released.

[0037] Stale updates can also be a concern for communication between a master
and a server. Processing of messages from an old master can be avoided, for example, by
having a master obtain an epoch number when it becomes the dictator. The epoch number
is increased for every dictatorship failover. This epoch number can be transmitted on
every server heartbeat and/or other message from a master to a server. A server can ignore
any heartbeat with a lower epoch number than the highest epoch number the server has
seen. This high-watermark epoch number can be stored in the servers’ soft state. If a
master and a server are also communicating status via storage object leases, the above
method can be sufficient to avoid stale message issues. Alternatively, other convenient
solutions for avoiding stale messages between a master and a server can also be used.
[0038] A similar epoch number method can be used for each range partition to
avoid stale updates from a previously assigned server. For example, each partition can
have a current epoch number that is updated by the master when a change occurs for the
partition. Examples of changes for a partition include assignment of a partition to a new
server, splitting of a partition, and merging of two partitions. Assignments of a partition to
a new server can cause the epoch number to increase by one. Splitting of a partition into
two or more new partitions can cause each child partition to receive the parent’s epoch
number incremented by one. When two partitions are merged, the epoch number for the
merged partition can be the maximum epoch number for any of the partitions prior to
merge incremented by one. Alternatively, any other convenient method for tracking an

incrementing an epoch number for a partition can also be used.

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

[0039] As an example of how the partition epoch number may be used, consider a
system with a partition master, two partition servers S1 and S2, and a third server X. The
third server X can be, for example, a data server that contains the actual data set for the
namespace operated on by the partition master and servers S1 and S2. Servers S1 and S2
issue commands (or other messages) to X. Assume messages can be delayed on the way
from S1 or S2 to X, such as due to processing by a front-end for X. Unless X keeps track
of the highest epoch seen for a given range partition it is easy to see how a stale message
may be accepted by X. For example, a partition P with epoch 3 can initially be served by
server S1. S1 can send a message M1 to X. Message M1 contains a key corresponding to
partition P as well as the epoch number 3. The partition master then moves partition P
from S1 to S2. After assignment, S2 sends a message M2 to server X that includes the
new epoch number. X receives the message M2 prior to receiving message M1. This
renders M1 stale. X then receives stale message M1. By tracking the epoch number,
server X can recognize that the stale message M1 is from a server that no longer is
responsible for partition P.

[0040] To further avoid the potential for stale updates, an epoch validation library
can be used. An epoch validation library validates that a received message is not stale.
For example, when a server receives a message from a new dictator or receives a request
related to a new partition range, the server can check an epoch validation library to verify
that the message contains the current epoch number for the master or the partition.

[0041] FIG. 4 shows a schematic example of the relationship between roles,
partitions, and keys. In FIG. 4, a user 405 submits a request to perform an action on a
desired piece of data, such as accessing information in the user’s account. The data is
identified by a key. The client request and the key are passed to role 420 which handles
the type of request made by the client or user 405. Role 420 includes a client library 430
that defines how the role handles a given type of request. Based on the type of request and
the key, the role 420 consults the partition table 455 to find the current server that handles
the key range corresponding to the key in the request. The information in partition table
455 is populated based on the partition decisions made by partition master 460. Partition
master 460 is shown in FIG. 4 as being one of a plurality of potential partition masters.
The additional potential partition masters are for redundancy, and are not active until
needed. In the example in FIG. 4, a plurality of partition servers 465 are available as role

instances for performing tasks requested from the role 420. Based on partition table 455,

10

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

partition server N from plurality of partition servers 465 is handling the range of keys
corresponding to the key in the client request.

Example of Generic Partitioning Framework

[0042] FIG. 5 shows an example of a group of modules and/or interfaces for
providing a generic partitioning framework according to the invention. FIG. 5 also
displays examples of application-defined interfaces for providing computational jobs that
can take advantage of the generic partitioning environment. In FIG. 5, although the key or
namespace 1s provided by the user or application, the interfaces for partitioning a
namespace are fixed interfaces provided by the partitioning system. This decouples
partitioning of the namespace from performing the job or work item that operates on the
data corresponding to the namespace.

[0043] In FIG. 5, there are at least two types of components or interfaces that are
provided or designated by the user. The user provides a definition for a key (and
corresponding namespace) 510 and a plurality of server interfaces 520 for the application.
As described above, the key describes the namespace for the application. This allows the
partitioning system to know the range of variables, states, and/or computations for
potential partitioning. In addition to defining the key, the user also provides at least three
interfaces related to the key. The interfaces related to the key 510 provide functions to
serialize the keys in a namespace, to deserialize keys, and for comparing two keys. Since
the user selects the namespace and key values, the operation of these interfaces is not
offered as a fixed interface by the partitioning system. The interfaces related to keys and
namespaces are instead provided by the user as application-defined interfaces.

[0044] The user also provides application-defined interfaces 520 that are used by
server role instances. The application-defined interfaces for server role instances 520
include functions for what operations a server will perform when a server receives a
request to operate on a key. For example, an interface for StartServeKeyRange can define
one or more operations a server can perform when the server that starts serving a given
key range. A corresponding interface for Stop ServeKeyRange can allow a server to end
serving of a key range in an orderly manner. Additionally, it may be desirable to collect
information from the server. An interface such as an OnReceivedHeartbeatRequest
interface can define how a server will extract additional information from a heartbeat
message received from a current partition master. Another interface such as

BeforeSendingHeartbeatResponse can define what a server will include as additional

11

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

information in a response to a heartbeat message. This can allow, for example, a server to
communicate load information to a partition master for use in load balancing.

[0045] If a user includes additional functions or information as part of heartbeat
(or other message) exchanges, the user can also provide a user defined interfaces for the
master role 530. The user defined interfaces for the master role 530 are a complement to
the fixed interfaces for the master role, schematically shown as GPMaster 535. The user
defined interfaces for the master role 530 are not required.

[0046] In the embodiment shown in FIG. 5, the general partitioning environment is
enabled by five modules and/or groups of fixed partitioning system interfaces. These
include the fixed interfaces shown as being part of GPClient module 515, the GPServer
module 525, the GPMaster module 535, the GPDictator module 536, and the GPLease
module 545. Of course, other ways of arranging the modules, interfaces, and/or functions
shown in FIG. 5 can also be used.

[0047] The GPClient module 515 shown in FIG. 5 has interfaces that allow for
translation from a key specified by a client application or user 599 to the address for the
server that will handle a user request. The interfaces for GPClient module 515 perform
this lookup by consulting a partition map or partition table 559. The GPClient module
interfaces can then, for example, return the server address corresponding to the key to the
client application 599 so that the client application can direct the request to the correct
server.

[0048] The GPServer module 525 has interfaces that work in conjunction with the
application-defined interfaces 520 to perform desired user tasks. The GPServer module
525 includes interfaces for communication between master role instances and server role
instances. The GPServer module interfaces also communicate with the interfaces for
GPLease module 545 to manage the lease objects and lease contents associated with each
server role instance.

[0049] The GPMaster module 535 provides interfaces for the core functions for
managing master role instances. The interfaces for GPMaster module 535 handle election
of a dictator from the master role instances, communication between a dictator and server
role instances (such as via heartbeat messages), and partition management. The partition
management can include providing updates to partition table 559. For load balancing, the
interfaces for GPMaster module 535 can perform load balancing using an internal
algorithm, or the GPMaster module can receive alternative load balancing expressions 560

that are provided by the user as an application-defined interface. Optionally, the

12

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

messaging functions handled by the GPMaster module 535 can be performed by one or
more separate messaging interfaces.

[0050] The GPDictator module 536 provides interfaces that handle functions
related to a master role instance that will serve as dictator. The GPDictator interfaces can
handle a master role instance claiming dictatorship (such as after winning the dictatorship
in an election conducted by GPMaster module 535), releasing dictatorship (such as after a
failover), and handling changes to sequence or epoch numbers in order to avoid stale
updates.

[0051] The GPLease module 545 provides interfaces that manage leases within the
generic partitioning environment. This can include allowing a master or server to acquire
a lease on an associated storage object, on a partition, or on any other type of data
structure where leases can be obtained.

Basic Master/Server Management Protocols

[0052] One way a partition master can communicate with partition servers is via a
regularly sent keepalive (‘ping’) heartbeat. This heartbeat can be sent to all servers,
including servers not serving any partitions. A server can respond to this keepalive
heartbeat (or other types of heartbeat messages) with a list of the partitions that the server
is currently serving. The heartbeat responses can be used in conjunction with server
partition leases to allow a master to verify that a server is serving the correct partitions.
When a server is serving one or more partitions, the server also maintains a lease on its
own private storage object, such as a binary object or blob. When a server starts up it does
not hold any lease — it will only do so upon the initial partition assignment. The storage
object lease should also contain a listing of the partitions being served by a server. If
cither the heartbeat response or the information in a storage object lease differs from the
partition information expected by the master, a conflict in partition information exists.
[0053] If a conflict occurs between a master and a server regarding the partitions
being served, and if the server is attempting to serve one or more partitions, the conflict is
considered a fatal error. As an example, the master may think the server is serving P1 and
P2 whereas the server reports P2, P4 and P5. In this situation, the master will break the
server’s lease on the corresponding partition server blob. The master will then issue an
alarm and rebuild the proper state for the partition table. This may involve terminating the
master so that the proper state is rebuilt upon restart of the master.

[0054] It is also a conflict when the master and server differ and the server reports

that no partitions are being served. However, this is not considered a fatal error. This can

13

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

occur, for example, if the server fails over between two heartbeats, or is down during one
or more heartbeats while still ‘holding’ the lease and then it restarts and responds to the
next heartbeat. When a conflict occurs with the server reporting no partitions being served,
the partition master can try to delete the server’s storage object. If successful, any
partitions can be reassigned to other available servers. However, deletion of the lease on
the server’s storage object may fail if the lease of the previous instance of the server has
not yet expired. Thus, it may be necessary to retry the deletion for up to a lease period.
Failure to delete the storage object after one lease period is a fatal error that can be
handled as described above. When the master restarts it will ensure all unknown storage
objects are deleted before proceeding with partition assignments.

[0055] Another potential failure situation is when a server is holding a lease but
the server does not respond to a heartbeat (such as a ‘keepalive’) within some timeout
period. Once again, the master can attempt to delete the server’s storage object to resolve
the conflict. If the storage object is successfully deleted, then the server is no longer
functioning. Any partitions the server was serving can be reassigned to other servers. If
the storage object cannot be deleted, the master can read the storage object content to
check for conflicts between the master and server regarding partition assignments. If there
is no conflict the server may continue serving, and the master can try to ‘ping’ the server
again shortly via the normal heartbeat processing. Preferably, there is a limit to how long
the master cannot communicate with a server via heartbeats before it breaks the server’s
lease on the storage object. If a conflict is detected, the conflict can be handled as
described above.

[0056] For partition assignment the master piggy-backs a partition assignment
request on the heartbeat to the relevant partition server (the heartbeat is accelerated in this
case). A partition assignment request consists of the server storage object name plus the
complete new list of partitions to be served. For example, to assign partition P2 to a server
currently serving P1, the partition assignment consist of both P1 and P2. This makes
unassignment orthogonal to assignment: to remove P1 from a server serving P1 and P2,
simply send an assignment consisting of P2 only. The master has already updated the
partition table when the partition assignment takes place. The partition table is only
updated when (before) a partition is assigned to a server; when a partition is removed from
a server no update is needed.

[0057] A partition server maintains a storage object lease that starts when the first

partition is assigned to the server. The storage object lease is maintained until the server

14

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

dies or the master forces the lease to be broken, such as due to a conflict between the
assignment information for the server in the partition table and the assignment information
reported by the server to the master. The storage object name is passed along with the
partition assignment. All subsequent partition assignments will contain the same storage
object name. When a server receives a partition assignment, a server without an existing
storage object name will acquire the storage object name provided in the partition
assignment. If the server already has a storage object with a name, the server can compare
the name provided in the request with the existing name. If the names are different, the
server can issue an alarm and terminate, as the different names indicate a conflict in
partition assignment information. After receiving the partition assignment, the server can
write any associated information into the storage object for the server. The associated
information can include, for example, key ranges to serve, the epoch number for the
dictator, and/or the epoch number for the partitions. The server can then respond to the
master that provided the partition assignment, start serving any new partitions, and stop
serving any removed partitions.

[0058] After a partition assignment, a master role instance will expect a response
from the server that confirms the assignment. If the response does not match the
assignment, or if the response is delayed, the master role instance can terminate the lease
for the server. Alternatively, the master role instance can investigate the blob for the
server to determine the server status. For example, if the server’s storage object indicates
that the assignment has succeeded, and if the response is merely delayed or lost instead of
inaccurate, the master role instance can wait and see if the server responds correctly to a
subsequent heartbeat or other message. If errors are found and the master is not able to
break the storage object lease for the server, the master can terminate to force a
reconstruction of the partition map by a new master role instance.

[0059] Additionally, a server role instance can provide statistics for each range
(.. partition) it is serving. The statistics are opaque to the general partitioning system, and
can be represented as a property bag of name/value pairs. These optional statistics can be
incorporated into load balancing formulas, including load balancing formulas provided by
a user.

[0060] When the master becomes the active master or dictator, it first obtains a
new epoch number from the storage object on which it is keeping a lease. It then collects
three pieces of information in order to build its view of the system, and to correct any

information that is inconsistent. First, the master reads the partition table. The partition

15

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

table contains the truth about which partitions exist. Preferably, the master obtains a lease
on at least the relevant part of the partition table prior to reading the partition table in order
to prevent stale writes by a previous master. Next, the master obtains a list of all existing
server storage objects, This can be done by maintaining a list of server storage objects, by
requiring that all server storage objects are located in a specified location, or by another
convenient method. A heartbeat or another type of message is also used to query each
server regarding the server’s current partition assignments. This query can include a query
for the name of the storage object for a server. Note that the above tasks can proceed in
parallel.

[0061] Based on the collected information, the master can identify any
inconsistencies between the assignments in the partition table and the assignments
reported by each server. If a mismatch is present, one or more corrective actions can be
taken, such as breaking the lease of a server on the server object and restarting the master.
Additionally, if any server storage objects are identified that are not mentioned in the
partition table, these storage objects can be deleted. Finally, any assignments in the
partition table that are not confirmed by a server can be queued for assignment to a new
partition server. After resolving the conflicts, the master can start normal heartbeat
processing, assigning of partitions, and any other master functions.

Load Balancing

[0062] Load balancing can roughly be divided into three activities. Load
balancing can include moving a partition from one server to another, splitting a partition
into multiple partitions, or merging multiple partitions into a single partition. Typically,
changing a partition assignment from a first server to a second server will be in response
to the first server having a sufficiently high load based on one or more metrics. If a single
partition accounts for a large amount of load, splitting of the partition can be used to allow
a large load to be divided among multiple servers. Merging of partitions allows partitions
that have lower amounts of activity to be combined. This reduces the overhead required to
track and maintain the various partitions for a data set. Optionally, a user can define an
upper limit on the number of partitions for a namespace. The thresholds for initiating a
merge of partitions can be reduced as the number of partitions approaches the upper limit.
The upper limit for number of partitions can be dynamically configured.

[0063] As an example of determining when to split or move a partition, all
partitions for a namespace can be sorted based on load. The load can refer to one or more

metrics related to performing calculations for a partition. Thus, the load can refer to

16

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

overall CPU usage for a server or an individual partition; storage used for a server or
partition; a number of requests received by a server overall or for a single partition; or any
other convenient value that indicates the amount of work being performed by a server
and/or for a given partition. Based on the load, the top N partitions which have a higher
load than a configurable multiple of the average partition load can be split. N is
dynamically configurable. For example, it can be a function of the current number of
partitions in the system, such as based on a logarithm of the current number of partitions,
or it can be a function of the maximum allowable number of partitions in the system.
Additionally or alternately, the load of each server is calculated by adding together the
servers’ partition loads. The servers can then be sorted by load, and the top N servers with
a load greater than some configurable multiple of the average are chosen for movement of
partitions between servers. Similarly, a plurality of servers with loads below the average
load are selected to receive partitions from higher load servers. Preferably, moving a
partition from a first server to a second server is performed to reduce the load of the first
server to a value closer to the average load without causing the load of the first server to
be below the average load. This is easier to do if all partitions have reasonably similar
load. Splitting partitions as described above can be used to reduce the disparity in loads
between partitions.

[0064] As noted above, the load for a partition can be derived from statistics
collected by the server role instances. This information is passed to the master role
instance, such as via heartbeat messages at regular intervals. Preferably, the load statistics
are defined so that a load metric is additive. This allows the load for a server to be
determined based on summing the loads for the individual partitions on the server. One or
more formulas for determining the load for a partition and/or a server can be stored in a
separate blob or other storage area. The rules or expressions for partitioning can be
default rules provided by the generic partitioning environment, or a user can provide rules
and/or expressions.

[0065] For load balancing rules and/or expressions provided by a user, a user can
first identify one or more metrics that are desired as load balancing metrics. Examples of
suitable metrics include CPU usage, network bandwidth usage, number of requests
processed per time period, or any other convenient metric. Some metrics may be specific
to a partition while other metrics may correspond to a value for all partitions on a partition
server. Based on the desired metrics, a user then provides one or more interfaces for

collecting the desired metric on each server. Optionally, common metrics such as CPU

17

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

usage or number of requests per time period can be provided as standard interfaces that are
simply accessed by a user. The collected metrics are then passed from partition servers to
the corresponding master using messages, such as a heartbeat message used by a server to
verify the current status of a server with the master.

[0066] For each metric identified by a user, a series of values recognized by the
general partitioning system can be calculated. As an example, the general partitioning
system can recognize “dimensions” as variables that are defined by a user. A dimension
in the general partitioning system can have an expected format. The dimension can
include an expression for a Partition Metric corresponding to the value of the metric over a
partition. Another expression can be for a Server Metric, which corresponds to the value
of the metric over all partitions on the server. Still another expression can be for a
Condition value for the metric, which defines a situation where an action is taken.

[0067] In a simple situation, CPU usage can be defined as a dimension by a user.
In this example, the CPU usage dimension is used to determine when a server is
sufficiently busy that a partition should be moved to another server. In the dimension
defined by the user, the percentage of CPU usage on a virtual machine dedicated for
processing requests for a given partition is defined as the Partition Metric. The sum of
CPU usage percentages over all partitions on the virtual machine can be defined as the
Server Metric. In this example, the Condition can be defined as Server Metric usage being
greater than 80% of total CPU usage. When this Condition occurs, a partition can be
moved to another server. The partition for movement is selected based on the Partition
Metric. It is noted that the Partition Metric and Server Metric are both defined by the user.
Thus, a user is not required to have a Partition Metric that is analogous to the Server
Metric. For example, the Server Metric could be a combination CPU usage and network
bandwidth usage, while the Partition Metric is only related to request rate.

[0068] In addition to defining dimensions for reassignment of partitions, a user can
also define dimensions for triggering a partition split. The definition of the dimension for
triggering a partition split can be similar to the dimension for a reassigning a partition, or a
different format of dimension can be used. For example, a Server Metric expression may
not be necessary for a dimension for triggering a partition split, since a Partition Metric
expression will more likely be useful for determining when to split a partition.
Additionally, a dimension for triggering a partition split could include a dimension for
how to split a partition when a Condition for splitting the partition is satisfied. It is noted

that the dimensions for triggering a partition split may also be useful for identifying when

18

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

to merge two partitions. Alternatively, a user can define separate dimensions for partition
merging.

[0069] More generally, any convenient number of conditions can be specified for
determining when a load balancing action should occur. The conditions can incorporate
metrics corresponding to one or more dimensions, such as metrics corresponding to a
plurality of dimensions. The conditions can be ordered, so that the conditions are
evaluated in a specific order for performing load balancing. For example, a condition
related to splitting a partition can be placed earlier in the order than a condition for moving
partitions to different partition servers. In such an example, if one partition on a partition
server is responsible for a large percentage of the load, moving other partitions might not
be effective for balancing load among a plurality of servers. By checking for whether to
split the partition first, the partition causing the problem can be split into portions with
(presumably) lower loads. Similarly, it may be desirable to merge partitions early in an
ordering of conditions. For example, a partition server with a large number of low load
partitions might appear to be unavailable due to an excessive number of partitions, even
though the overall load on the server is below average. Merging partitions before moving
assignments allows such a server to become available for receiving an additional partition
assignment.

[0070] When specifying a condition for initiating a load balancing activity, any
convenient type of metric may be included in a condition. Thus, metrics for load on a
single partition, load on a plurality of partitions, load on a server, or load on a plurality of
servers may be used together or separately as desired. For metrics related to a plurality of
partitions or plurality of servers, a simple example is to determine the load across all
servers in order to define an average load. A condition for performing load balancing
could then be related to a difference between load on a server versus average server load,
such as a difference in the absolute value of the server load versus average load, or a
comparison of the server load with a standard deviation from the average server load.
When using a plurality of partition loads, it may be desirable to consider the load for a
number of the highest loaded partitions on a server in relation to each other. The desired
load balancing action may be different for a partition server with multiple partitions that
have a similar load as opposed to a partition server with only one high load partition.
[0071] In addition to defining dimensions for partition reassignment, splitting, and
merging, a user can also define one or more filters for constraining actions on partitions

based on the dimensions. For example, it may be desirable to prevent a server from a

19

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

receiving a new partition assignment when the server has either a CPU usage Server
Metric of more than 70% or the number of partitions is greater than 10. An Assignment
Filter value can be defined that prevents such assignments. Other examples of potential
filters include filters for preventing the movement of a partition from an existing partition
server, preventing a split of a partition, or preventing a merge of a partition. Depending
on the type of filter, a filter may prevent a load balancing action from occurring.
Alternatively, a filter can modify the order of consideration of conditions, or the filter can
cause a condition to be skipped entirely during a load balancing calculation cycle.

[0072] As an example, consider a hypothetical system where all server requests
consume the same amount of resources. In such a system, a reasonable load metric could
be based on the request rate. In this example, each server role instance collects an average
of the request rate over a longer time period (RR_SlowMA) and an average of the request
rate over a shorter time period (RR_FastMA). These request rate averages are transmitted
back to the master role instance as name/value pairs in a property bag. A simple load
metric could then be defined as a formula in the load balancing rules as Partition Metric =
max(RR_FastMA, RR _SlowMA). The left hand side of the Partition Metric for the
dimension “load” corresponds to an identifier recognized by master component within the
partitioning system. In this case, the dimension “load” would be identified in advance by
the user. The right hand side can be any arbitrary expression that generates a load value
that is assigned to the Partition Metric. In this case, the load corresponds to the number of
requests based on one of a plurality of moving averages. Based on the Partition Load
value and/or other values, one or more Conditions can be defined regarding whether
partitions should be split, merged, or moved between servers.

[0073] More generally, a user can define any combination of metrics and
expressions (such as conditions) for making load balancing decisions. The expressions
defined by a user for making a load balancing decisions can also include conditional logic
and/or support for multi-dimensional constraints/optimization goals. Thus, a user can
define a decisions tree or use other conditional logic to provide an ordering for how and
when expressions are evaluated. For example, a user could have a first expression
cvaluated, and then select from a plurality of potential additional expressions to evaluate
based on the value of the first expression. This could be based on an “if-then-else” type of
conditional logic, a lookup table for the next expression based on a determined value, or
any other convenient type of conditional logic. As a result, a user has flexibility to specify

the types of metrics and expressions for use in load balancing, including whether a given

20

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

expression is evaluated as well as providing an order for evaluating such expressions.
Note that the order of evaluation for expressions can also be determined dynamically
based on the value of previously evaluated expressions.

[0074] Another example of expressions defined by a user for making load
balancing decisions may include multi-dimensional constraints/optimization goals. For
example, a user may defined multiple dimensions (e.g., two), and for each dimensions the
user may define a separate optimization goal or constraint. CPU utilization and request
latency are two exemplary dimensions. The user may specify rules such that a partition
servers’ CPU usage is below a first threshold (e.g., 90%) and at the same time minimize an
average request latency across a defined set of partition servers (e.g., all partition servers).
This approach may differ from an if-then-else type logic where users specify exactly what
to do. In this model, users define limits and optimization goals, which allow the system to
find a solution automatically.

[0075] In another hypothetical system, a user can provide a plurality of conditions
or expressions for evaluation. The expressions are based on various CPU usage metrics
for the partition servers that a serving a given namespace. A first expression evaluates
whether any partition server has a CPU usage related to the namespace of greater than
60%. For this user, if no CPU has a usage greater than 60%, the user does not desire load
balancing. Thus, if the result of the first expression is false (i.e., no partition server has a
CPU usage greater than 60%), then no further expressions are evaluated, as load balancing
is not desired. If at least one partition server has a CPU usage greater than 60%, a series
of expressions can then be evaluated to determine a load balancing action to perform.
[0076] In a situation where load balancing results in moving a partition, a partition
can be moved from a first server to a second server by having the master role instance
issue two assignment requests. An assignment request to the first server does not include
the partition, which results in the first server stopping service for the partition. A second
assignment request to the second server includes the partition.

[0077] In a situation where a partition is split into two or more partitions, a master
role instance can initiate a split by determining a split key, which corresponds to a key
value that will form the end of the inclusive range for one of the new partitions. The split
key can be selected in any convenient manner. A master or server role instance can select
a split key based on the partition, such as by selecting a key value at or near the middle of
the range of the partition. Alternatively, a server can sclect a split key based on additional

statistics regarding the partition. For example, a sampling-based bucket mechanism could

21

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

be used to track the load for various portions of the partition in a manner similar to
determining the load for the full partition. The split key can then be selected so that the
load is similar for the buckets assigned to the new partitions.

[0078] Within a given role, the (active) master is responsible for spreading the load
across the partition servers. Preferably the master will prevent one or more servers from
becoming overloaded and thus unable to process requests. In an alternative embodiment,
adjustments of load could be done by keeping one partition/range per server and adjusting
these ranges. By instead moving partitions, an adjustment to the load can be performed
while impacting a smaller number of servers.

[0079] It is often desirable to have a minimum number of partitions per server so
that load can be moved around smoothly via partition reassignments. When the number of
partitions falls to the minimum level, further mergers are not performed. Similarly, it is
often also desirable to avoid having too many partitions. As the maximum number of
partitions is approached for a server, the likelihood of merging partitions can increase. As
an example, it may be desirable to maintain between 5 and 8 partitions per server. Of
course, the various embodiments of the invention can work with any number of partitions
per server, such as from as few as 1 partition per server to hundreds or more per server.
[0080] Preferably, both the split and merge protocols are stateless. Either the
master or the involved server(s) may fail over at any time without causing an error for the
partitioning system. In other words, if either the master or a server fails during the split or
merge process, the next master or server will be able to construct a valid list of partition
assignments regardless of when the failure occurred. In a stateless split protocol, the
participating server is not required to perform any of the split actions. As an example, a
partition table can include a partition on a server S1 that ranges from a low key value of D
to a high key value of H. In this example, the epoch number for the partition is 2. Based
on user-defined load balancing equations, it is determined that the partition should be split,
so that part of the partition can be assigned to another server. The master role instance
asks server S1 for a split key. The server S1 returns a key of G as the split key. The
master then modifies the partition table. In place of the single entry noted above, the table
now contains two partitions. One has a low key value of D and a high key value of G,
while the second partition has a low key value of G and a high key value of H. As noted
above, the partition range definitions based on a low key value and high key value are
inclusive of the low key value and exclusive of the high key value. The change in the

partition table can occur by modifying the existing entry and adding a new entry, by

22

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

removing the existing entry and adding two new entries, or by any other convenient
method.

[0081] At the next heartbeat cycle, the master detects a conflict between the
partitions served by server S1 and the information in the partition table. Because a split
has just occurred the master does not terminate the blob lease of the server S1. Instead,
the master sends an assignment to server S1 with a partition range of D to G and an epoch
of 3. This modifies the assignment of the partition at S1 to match one of the split
partitions in the partition table. After receiving an acknowledgment of the new
assignment from server S1, the master can assign the second split partition to another
server. The second split partition would also have an epoch number of 3. Alternatively,
both of the split partitions can be assigned to server S1 initially, with one or both partitions
being moved at a later time to perform load balancing.

[0082] Merging of two partitions can also be handled in a stateless manner. When
partitions are merged, as an initial step the partitions for merger are unassigned from the
current server. For example, a first partition on server S2 can have a low key value of K
and a high key value of M. In this example, the epoch number for the first partition is 7.
A second partition on server S4 can have a low key value of M and a high key value of N.
The epoch value for the second partition is 9 in this example. As an initial step, the
partitions can be unassigned from their respective servers, so that the partition table shows
a non-assigned value for the server. The two partition entries are then replaced with a
single entry having a low key of K and a high key of N. The epoch number assigned to
this partition is one greater than the highest value of the merged partitions, which
corresponds to 10 in this example. The new partition can then be assigned to a server.
Additional Examples

[0083] In order to provide context for describing the invention, an example of
organizing computing resources in a distributed network or cloud computing environment
is provided. The following description of a cloud computing environment is provided as
an illustrative example. Those of skill in the art will recognize that the claimed invention
can be used in conjunction with distributed network environments with alternative types of
organization. The definitions below are used within the illustrative example.

[0084] A “client” is defined as a role that issues one or more requests for action by
a application-defined interface against a namespace or domain. A client can correspond to
a user or to a process initiated on behalf of a user. For example, a request to a lookup a

particular account corresponds to a request directed to an application for account lookup

23

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

that is made against the domain of all accounts with a key corresponding to the desired
account.

[0085] A “work item” is a static representation of a job to be run in the cloud
computing environment. A work item can specify various aspects of a job, including job
binaries, pointers to the data to be processed, and optionally the command line to launch
tasks for performing the job. In addition, a work item may specify the reoccurrence
schedule, priority and constraints. For example, a work item can specify to be launched
every day at SPM.

[0086] A “job” is a running instance of a work item. A job contains a collection of
tasks that work together to perform a distributed computation. The tasks can run on one or
more virtual machines in the cloud computing environment.

[0087] A “task” is the fundamental execution unit of a job. Each task runs on a
virtual machine. Users can specify additional input to the command line and pointers to
input data for each task. A task may create a hierarchy of files under its working directory
on the virtual machine performing the task during the course of execution of the task.
[0088] A user of a cloud computing environment will typically desire to perform
jobs using the cloud computing resources. The jobs will typically involve performing jobs
on data that is stored in locations that are accessible via the cloud computing environment.
One way for an operator to provide a cloud computing environment is to provide the
environment as a number of layers. FIG. 1 schematically shows an example of a system
suitable for performing tasks within a cloud computing environment. The system in FIG.
1 includes a task runtime layer 110, a third party task runtime layer 120, a resource
management layer 130, and a scheduling and execution layer 140.

[0089] In the embodiment shown in FIG. 1, the task runtime layer 110 is
responsible for setting up the execution environment and security context for tasks from a
user 105. The task runtime layer 110 can also launch tasks and monitor the status of the
tasks. The task runtime layer 110 can take the form of a system agent running on each
virtual machine. The task runtime layer may also include a runtime library that can be
linked into a users’ task executables. Having runtime libraries as part of the task runtime
layer 110 can potentially provide richer capability to tasks executed by the system agent.
Examples of runtime libraries include one or more efficient communication libraries to
allow fast communication among tasks; an efficient remote file access library support to
read files from other virtual machines and/or other tasks; a checkpoint library to allow

tasks to checkpoint (e.g. into binary large objects) and resume; a logging library; and a

24

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

library for providing a distributed file system to be used across virtual machines
performing a given task within a pool of virtual machines.

[0090] The third party task runtime layer 120 allows additional runtimes to be built
and run on top of task runtime layer 110. The third party task runtime layer 120 also can
provide additional capabilities for coordinating the running of tasks for a job. Examples
may include a MapReduce runtime to a library for providing a distributed file system to be
used across virtual machines performing a given task within a pool of virtual machines.
This allows a user to organize the cloud computing environment in a manner tailored for
the user’s jobs or tasks. In some embodiments, a job manager task can facilitate allowing
a user to use a third party runtime layer to run and/or control cloud computing resources.
[0091] Resource management layer 130 deals with managing the computing
resources available in the cloud computing environment. One option is to have the
resource management layer 130 manage the resources at three different levels. At a first
level, the resource management layer 130 manages the allocation and deallocation of
virtual machines associated with a job (i.e., execution of a work item) as well as the files
stored on each virtual machine associated with a task. At a second level, the virtual
machines associated with a job can be grouped into pools of machines. A pool can contain
virtual machines associated with one or more jobs and/or work items. Depending on the
embodiment, a single pool can span across multiple virtual machine clusters, such as all
virtual machine clusters in a data center, a plurality of virtual machine clusters across a
plurality of data centers within a geographic region, or a plurality of clusters across data
centers in a plurality of geographic regions. A single pool can contain a large number of
virtual machines, such as millions. The virtual machines can be contained in a large
number of pools, such as up to billions. At a third level, the resource management layer
manages the amount of virtual machines available for association with jobs or work items
in a given group of pools. This allows for dynamic adjustment of the amount of compute
resources used based on the current load of the system. Additionally, virtual machines
that are not being used by a current group of pools may be released back to the cloud
computing environment for incorporation into other groups of pools.

[0092] In the embodiment shown in FIG. 1, scheduling and execution layer 140
manages work items, jobs, and tasks that are being performed by a user. The scheduling
and execution layer 140 makes scheduling decisions and is responsible for launching jobs
and tasks as well as retries on failures. Such a scheduling and execution layer 140 can

include components for managing jobs and/or tasks at various levels.

25

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

[0093] The layers described above can be implemented in a cloud computing
environment that includes processors at multiple geographic locations. FIG. 2
schematically shows an example of how processors at different locations can be integrated
within a single cloud computing architecture.

[0094] In FIG. 2, one or more task tenants 215 can be used to manage pools of
virtual machines. A task tenant 215 can maintain a set of virtual machines. The jobs of
one or more users can run on the virtual machines within a task tenant 215 as part of one
or more pools of virtual machines. One or more task tenants 215 can be used in a given
geographic region. The responsibilities of a task tenant 215 can include maintaining the
set of virtual machines and dynamically growing or shrink the task tenant based on the
resource utilization within the task tenant. This allows a task tenant 215 to increase the
number of virtual machines within the task tenant to accommodate increased customer
demand. This also allows a task tenant 215 to release unused virtual machines so that the
virtual machines can be allocated to other hosted services in the data center handling
service for other customers. Another responsibility of a task tenant 215 can be
implementing part of the pool allocation/deallocation/management logic. This allows the
task tenant 215 to participate in determining how virtual machines are assigned to pools
associated with a task for a customer. The task tenant 215 can also be responsible for
scheduling and execution of tasks on the virtual machines within the task tenant.

[0095] In the embodiment shown in FIG. 2, one or more task location services 225
are provided that control a plurality of task tenants 215. The plurality of task tenants can
correspond to all task tenants in a given geographic region, various task tenants from
around the world, or any other convenient grouping of task tenants. In FIG. 2, task
location services 225 are shown that serve regions labeled “US North” and US South”.
The responsibilities of a task location service 225 can include management of task
accounts for the given geographic region. The task location services 225 can also provide
application programming interfaces (APIs) for allowing users to interact with the cloud
computing environment. Such APIs can include handling APIs associated with pools of
virtual machines, pool management logic, and coordination of pool management logic
across task tenants within a given geographic region. The APIs can also include APIs for
handling tasks submitted by a user, as well as maintaining, scheduling, and terminating
work items or jobs associated with the user tasks. The APIs can further include APIs for
statistics collection, aggregation, and reporting for all work items, jobs, tasks, and pools in

a geographic region. Additionally, the APIs can include APIs for allowing auction of

26

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

available virtual machines as preemptible virtual machines to users on a short term basis
based on a spot market for virtual machines. The APIs can also include APIs for metering
usage and providing billing support.

[0096] The task location services 225 can be linked together by a global location
service 235. The global location service 235 can be responsible for account creation and
management of accounts, including managing task accounts in conjunction with the task
location service tenants 225. This includes being responsible for disaster recovery and
being responsible for availability of work items and jobs if there is a major data center
disaster. This may include running a work item or job in a different location due to a data
center not being available for any reason. This can also include allowing customers to
migrate their work items, jobs, and pools from one data center to another data center.
Typically there will be only one active global location service 235. This active global
location service 235 is in communication with the various task location services 225 as
well as service components for managing data storage (not shown). The global location
service can maintain a global account namespace 237.

[0097] FIG. 3 shows a potential configuration for a task location service. In the
configuration shown in FIG. 3, a task location service can include one or more account
servers 321. The account servers handle account management for accounts in a given
geographic region, including creation, deletion, or property updates. Account front ends
322 serve as the front end nodes for account service. The account front ends 322 are
behind an account virtual IP address 324 as shown in the figure. The account front ends
322 process the account API requests coming from global location service, such as API
requests to create accounts or delete accounts.

[0098] The configuration in FIG. 3 also includes one or more pool servers 331. A
pool server 331 handles pool management and pool transactions for pools of virtual
machines in a given geographic region. A pool server 331 handles pool creation, deletion
and property updates. A pool server 331 also manages the high level virtual machine
allocation algorithm across multiple task tenants. Virtual machine allocation can take into
consideration the connectivity of a virtual machine with storage for a given user. The pool
server may also perform other tasks related to allocation of virtual machines.

[0099] The configuration in FIG. 3 also includes one or more work item or job
servers (W1J) 336. WIJ servers 336 handle creation, deletion, and updates of work items
and jobs. In addition, if a user has requested automatic creation and/or destruction of

pools when work items or jobs start or finish, the W1J servers 336 may initiate the creation

27

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

and deletion of pools associated with the work items or jobs. The WIJ servers 336 also
use generic partitioning mechanisms for scaling. In an embodiment, there are multiple
WI1J servers 336 in each task location service, and each of the WIJ servers handles a range
of work items.

[00100] The pool servers 331 and WIJ servers 336 receive requests from users via
task location service front ends 338. The task location service front ends 338 are also
responsible for calling corresponding components to process requests from users. The
task location service front ends 338 are behind an account virtual IP address 334 as shown
in the figure.

[00101] The configuration in FIG. 3 further includes a task location service master
342, In an embodiment, the task location service master 342 has two main
responsibilities. First, the task location service master 325 serves as a master system for
implementing partitioning logic for the corresponding servers in a task location service
225, Additionally, the task location service master 342 can be responsible for computing
the new market price for preemptible virtual machines at the beginning of each spot period
for the entire geographic region of the task location service. It can collect current bids and
resource availability information from the pool servers and task tenants, and computes the
new market price accordingly. Alternatively, the task location service master can send the
bid and resource availability information to a spot price market service. It also makes high
level allocation guidance to pool servers about preemptible virtual machines across all task
tenants in a geographic region.

[00102] In order to track the activity and behavior of the computing environment, a
task location service master 342 can communicate with one or more statistics aggregation
servers 355. The statistics aggregation servers are responsible for collecting and
aggregating detailed statistics for tasks, jobs, work items and pools. The other
components in the system emit fine-grained statistics for tasks and virtual machines. The
statistics aggregation servers aggregate these fine-grained statistics from task level or
virtual machine level statistics into work item, account level, and/or pool level statistics.
The statistics can be exposed for use via an API. In addition, the statistics aggregation
servers can be responsible for generating hourly metering records for each account for use
in billing.

[00103] As a more specific example, generic partitioning can be applied to the roles
and sub-roles in the task location service shown in FIG. 3. The top level role

demonstrated in FIG. 3 is a task location service or tenant. If multiple instances of the task

28

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

location service are present, one of the instances will correspond to task location service
master (or dictator) 342. Within the tenant are an account server role 321, a pool server
role 331, and a work items-jobs server role 336. Each of these roles also represent
instances of the task location service, but these role instances handle a set of functions
within the overall tenant. For example, a request for account information is handled by
the account server role within the tenant. If multiple instances of the task location service
or tenant are present, the master for each of the roles within the tenant can correspond to a
different instance.

[00104] FIG. 6 shows a conventional example of how redundancy can be provided
for multiple master roles. In this conventional example, each master role needs to have
two additional instances in order to improve availability. A fault domain includes nodes
that have common failure patterns and they may fail together. For example, nodes on the
same rack sharing the same power supply may be in a common fault domain as they may
fail as the result of a common problem. An upgrade domain corresponds to a set of nodes
that may be taken offline at the same time during a system upgrade. These roles are
spread across different “fault domains” and “upgrade domains” as illustrated in FIG. 6 so
as to not be down at a common time as a result of an upgrade or a failure.

[00105] Under the conventional method, providing the additional instances needed
for the three roles within a task location service would require having separate additional
instances for each role. In FIG. 6, this shown by having an explicit machine that provides
the additional instances for cach type of master. Thus, the master 621 for the account
servers would require additional instances 622 and 623. Similarly, master 632 for the pool
servers has backup instances 631 and 633. Master 643 for the WIJ servers has backup
instances 642 and 641.

[00106] FIG. 8 shows an example of how virtual machines in a distributed
computing environment using generic partitioning can be organized to provide the various
instances and masters for a role. In FIG. 8, separate GP Masters 821, 831, and 841 are
shown for account servers, pool servers, and WIJ servers respectively. Since the GP
Master module and any fixed interfaces are the same regardless of the role being managed,
the backup server needs for the GP Masters 821, 831, and 841 can be combined on a
single machine. Thus, a single backup 852 can be provided as the backup for the three GP
Masters. If one of the GP Masters 821, 831, or 841 experiences a failure, the same GP
Master module and fixed interfaces may be used. The only additional information types,

in this example, needed by the failover backup to take over the GP Master role that

29

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

experienced a failure are the key for the corresponding namespace and any application-
defined interfaces. Similarly, a single second backup 853 can be used for all three of GP
Masters 821, 831, and 841. Consequently, in this example, only two GP Master backup
servers (852 and 853) are used for the at least three GP Master roles. Although three GP
Master roles are shown as being backed up by common machines, any convenient number
of GP Master roles belonging to the same user or account could be backed up using a
common machine.

[00107] FIG. 11 shows an exemplary aspect of providing backup machines for
master roles relative to fault domains and upgrade domains, in accordance with aspects of
the present invention. Similar to those concepts discussed hereinabove with respect to
FIG. 8, multiple GP Master roles may be backed up on a fewer number of servers. For
example, FIG. 11 depicts an Account GP Master 1202 in a first fault domain and a first
upgrade domain, a Pool GP Master 1204 in a second fault domain and in a second upgrade
domain, a WIH GP Master 1210 in a third fault domain and in a third upgrade domain, a
first GP Backup 1206 and a second GP Backup 1208. The first GP Backup 1206 and the
second GP Backup 1208 are each in different fault domains and upgrade domains from the
GP Master roles. In this illustrative example, a single Generic Partitioning system, which
in this example only requires five servers (or potentially four servers with a single backup)
to host all of the masters for the three roles. In the example illustrated in FIG. 6, nine
different servers may be required for those same three master roles. The approach
illustrated in FIG. 8 may be accomplished through the utilization of two additional servers
that can be used for any type of role being hosted by the system. Consequently, a backup
server (e.g., GP Backup 1206) may be used if one or more of the master roles are
unavailable do to a failure of a fault domain or an unavailable upgrade domain, While a
fewer number servers may be needed in this example (as compared to that which is
discussed with respect to FIG. 6), it is contemplated that additional fault domains and
upgrade domains may be implemented to ensure availability of the backup servers. As
with FIG. 8 discussed above, it is contemplated that any number of master roles may be
backed up by common machines, in an exemplary aspect.

[00108] Having briefly described an overview of various embodiments of the
invention, an exemplary operating environment suitable for performing the invention is
now described. Referring to the drawings in general, and initially to FIG. 7 in particular,
an exemplary operating environment for implementing embodiments of the present

invention is shown and designated generally as computing device 700. Computing device

30

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

700 is but one example of a suitable computing environment and is not intended to suggest
any limitation as to the scope of use or functionality of the invention. Neither should the
computing device 700 be interpreted as having any dependency or requirement relating to
any one or combination of components illustrated.

[00109] Embodiments of the invention may be described in the general context of
computer code or machine-useable instructions, including computer-executable
instructions such as program modules, being executed by a computer or other machine,
such as a personal data assistant or other handheld device. Generally, program modules,
including routines, programs, objects, components, data structures, etc., refer to code that
perform particular tasks or implement particular abstract data types. The invention may be
practiced in a variety of system configurations, including hand-held devices, consumer
electronics, general-purpose computers, more specialty computing devices, and the like.
The invention may also be practiced in distributed computing environments where tasks
are performed by remote-processing devices that are linked through a communications
network.

[00110] With continued reference to FIG. 7, computing device 700 includes a bus
710 that directly or indirectly couples the following devices: memory 712, one or more
processors 714, one or more presentation components 716, input/output (I/O) ports 718,
1/0 components 720, and an illustrative power supply 722. Bus 710 represents what may
be one or more busses (such as an address bus, data bus, or combination thereof).
Although the various blocks of FIG. 7 are shown with lines for the sake of clarity, in
reality, delineating various components is not so clear, and metaphorically, the lines would
more accurately be grey and fuzzy. For example, one may consider a presentation
component such as a display device to be an I/O component. Additionally, many
processors have memory. The inventors hereof recognize that such is the nature of the art,
and reiterate that the diagram of FIG. 7 is merely illustrative of an exemplary computing
device that can be used in connection with one or more embodiments of the present

EE Y

invention. Distinction is not made between such categories as “workstation,” “server,”
“laptop,” “hand-held device,” etc., as all are contemplated within the scope of FIG. 7 and
reference to “computing device.”

[00111] The computing device 700 typically includes a variety of computer-
readable media. Computer-readable media can be any available media that can be accessed
by computing device 700 and includes both volatile and nonvolatile media, removable and

non-removable media. By way of example, and not limitation, computer-readable media

31

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

may comprise computer storage media and communication media. Computer storage
media includes volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information such as computer-
readable instructions, data structures, program modules or other data. Computer storage
media includes, but is not limited to, Random Access Memory (RAM), Read Only
Memory (ROM), Electronically Erasable Programmable Read Only Memory (EEPROM),
flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other holographic memory, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that can be used to encode desired
information and which can be accessed by the computing device 700. In an embodiment,
the computer storage media can be selected from tangible computer storage media. In
another embodiment, the computer storage media can be sclected from non-transitory
computer storage media.

[00112] Communication media typically embodies computer-readable instructions,
data structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism, and includes any information delivery media. The
term "modulated data signal" means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above should also be included within the
scope of computer-readable media.

[00113] The memory 712 can include computer-storage media in the form of
volatile and/or nonvolatile memory. The memory may be removable, non-removable, or a
combination thereof. Exemplary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. The computing device 700 includes one or more
processors that read data from various entitics such as the memory 712 or the 1/O
components 720. The presentation component(s) 716 present data indications to a user or
other device. Exemplary presentation components include a display device, speaker,
printing component, vibrating component, and the like.

[00114] The I/O ports 718 can allow the computing device 700 to be logically
coupled to other devices including the I/O components 720, some of which may be built
in. Illustrative components can include a microphone, joystick, game pad, satellite dish,

scanner, printer, wireless device, etc.

32

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

[00115] FIG. 9 shows an example of a method according to the invention. In FIG.
9, one or more application-defined partitioning system interfaces are received 910 from an
application or a user. Based, for example, on a request from an application or user, a
plurality of master role instances are created 920 that include the received application-
defined partitioning system interfaces. The plurality of master role instances
corresponding to a master storage object. A lease for the master storage object 930 is
assigned to one of the master role instances. The plurality of master role instances
compete for the assignment of the lease. The master role instance that is assigned the
lease becomes the dictator master role instance. The dictator master role instance then
assigns 940 a group of partitions to a plurality of partition servers. Jobs corresponding to
an application are then performed 950 using the plurality of partition servers.

[00116] FIG. 10 shows another example of a method according to the invention. In
FIG. 10, a request is received 1010 for a computation. The computation request includes a
plurality of namespaces and at least two master role instances that are different from each
other. The at least two master role instances are created 1020. At least one machine is
assigned 1030 that provides failover service for a plurality of the created master role
instances. The failover service can correspond to any convenient reason that a master role
instance stops operation, such as an unplanned failover, a scheduled update, a planned
maintenance event, or another reason. A failover event is detected 1040 for one of the
created master role instances. An additional instance of the master role corresponding to
the failover event is created 1050 on the assigned machine.

[00117] Embodiments of the present invention have been described in relation to
particular embodiments, which are intended in all respects to be illustrative rather than
restrictive. Alternative embodiments will become apparent to those of ordinary skill in the
art to which the present invention pertains without departing from its scope.

[00118] In an embodiment, a method is provided for performing computations in a
distributed computing environment. The method includes receiving one or more
application-defined partitioning system interfaces; creating a plurality of master role
instances including the one or more application-defined partitioning system interfaces, the
master role instances corresponding to a master storage object; assigning a lease for the
master storage object, each master role instance competing for the lease, the master role
instance that is assigned the lease being the dictator master role instance; assigning, by the
dictator master role instance, a group of partitions to a plurality of partition servers; and

performing jobs corresponding to an application using the plurality of partition servers.

33

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

[00119] In another embodiment, a method is provided for performing computations
in a distributed computing environment. The method includes receiving a request for a
computation comprising a plurality of namespaces and at least two master role instances;
creating the at least two master role instances; assigning at least one machine that provides
failover service for a plurality of the created master role instances; detecting a failover
event for one of the created master role instances; and creating, on the assigned machine,
an additional instance of the master role corresponding to the detected failover event.
[00120] In still another embodiment, a system for performing computing tasks in a
distributed computing environment is provided. The system includes a plurality of
processors executing computer-useable instructions that, when executed, provide a system
comprising: a plurality of partition servers, the partition servers having at least one
partitioning system interface for managing the storage objects associated with partition
servers and one or more application-defined partitioning system interfaces, a partition
server having an associated storage object for storing information regarding assigned
partitions; a partition table containing partitions based on an application-defined
namespace, the partitions corresponding to key ranges from the application-defined
namespace that span the namespace, the partition table being accessible by a partitioning
system; a first master role instance including fixed partitioning system interfaces for
managing the assignment of partitions to partition server virtual machines and maintaining
the partition table assignments of partitions to partition server virtual machines; and a
client component with at least one fixed partitioning system interface for receiving client
requests containing a key value from the namespace and returning addresses of a partition
server corresponding to the key value.

[00121] From the foregoing, it will be seen that this invention is one well adapted to
attain all the ends and objects hereinabove set forth together with other advantages which
are obvious and which are inherent to the structure.

[00122] It will be understood that certain features and sub combinations are of
utility and may be employed without reference to other features and sub combinations.

This is contemplated by and is within the scope of the claims.

34

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

CLAIMS

What 1s claimed is:

1. A method for performing computations in a distributed computing
environment, comprising:

receiving one or more application-defined partitioning system
interfaces;

creating a plurality of master role instances including the one or
more application-defined partitioning system interfaces, the master role
instances corresponding to a master storage object;

assigning a lease for the master storage object, each master role
instance competing for the lease, the master role instance that is assigned
the lease being the dictator master role instance;

assigning, by the dictator master role instance, a group of partitions
to a plurality of partition servers; and

performing one or more computations corresponding to an
application using the plurality of partition servers.

2. The method of claim 1, further comprising sending, by the dictator
master role instance, a heartbeat message to the plurality of partition servers, wherein one
or more metrics are received from the partition servers in responses to heartbeat messages,
and wherein at least one of the one or more metrics is an application-defined metric.

3. The method of claim 2, further comprising:

sending, by the dictator master role instance, a message assigning one or
more partitions to a partition server from a plurality of partition servers while the dictator
master role instance maintains the lease for the master storage object, the message from

the dictator master role instance including an epoch number; and

maintaining, by the partition server from the plurality of partition servers,
the partition assignment received from the dictator master role instance.

4. The method of claim 3, further comprising,

associating, by the dictator master role instance, an assignment identifier
with the assignment of the one or more partitions, the dictator master role instance sending
the assignment identifier along with the message to the partition server;

updating, by the partition server, the content of a corresponding storage

object to store the assignment identifier, and

35

10

15

20

25

30

WO 2013/116581 PCT/US2013/024242

sending, by the partition server, an acknowledgement message to the
dictator master role instance.

5. The method of claim 3, further comprising:

associating, by the dictator master role instance, an assignment identifier
with the assignment of the one or more partitions, the dictator master role instance sending
the assignment identifier along with the message to the partition server;

receiving, by the partition server, the message from the dictator master role
instance without sending an acknowledgement message to the dictator master;

breaking, by the dictator master role instance, a lease of the partition server
on a corresponding storage object;

deleting, by the dictator master role instance, the storage object
corresponding the partition server; and

detecting, by the partition server, the breaking of the lease, the partition
server terminating in response to the detection of breaking the lease.

6. The method of claim 3, further comprising:

associating, by the dictator master role instance, an assignment identifier
with the assignment of the one or more partitions, the dictator master role instance sending
the assignment identifier along with the message to the partition server;

receiving, by the partition server, the message from the dictator master role
instance without updating a content of a corresponding storage object;

breaking, by the dictator master role instance, a lease of the partition server
on the corresponding storage object;

deleting, by the dictator master role instance, the storage object
corresponding the partition server; and

detecting, by the partition server, the breaking of the lease, the partition
server terminating in response to the detection of breaking the lease.

7. A method for performing computations in a distributed computing
environment, comprising:

executing a computation comprising at least two namespaces and at

least two master role instances, each master role instance corresponding to

a different namespace, each master role instance being the dictator and

holding a dictator lease on a master storage object for the corresponding

namespace;

36

10

15

20

25

30

WO 2013/116581

PCT/US2013/024242

assigning at least one machine that provides failover service for a
plurality of the dictator master role instances;

detecting a failover event for one of the dictator master role
instances; and

creating, on the assigned machine, an additional instance of the
master role corresponding to the detected failover event, the additional
instance being assigned as the dictator for the namespace corresponding to
the failover event.

8. A system for performing computing tasks in a distributed computing

environment, the system comprising:

a plurality of processors executing computer-useable instructions
that, when executed, provide a system comprising:

a plurality of partition servers, the partition servers having at least
one partitioning system interface for managing the storage objects
associated with partition servers and one or more application-defined
partitioning system interfaces, a partition server having an associated
storage object for storing information regarding assigned partitions;

a partition table containing partitions based on an application-
defined namespace, the partitions corresponding to key ranges from the
application-defined namespace that span the namespace, the partition table
being accessible by a partitioning system;

a first master role instance including fixed partitioning system
interfaces for managing the assignment of partitions to partition server
virtual machines and maintaining the partition table assignments of
partitions to partition server virtual machines; and

a client component with at least one fixed partitioning system
interface for receiving client requests containing a key value from the
namespace and returning addresses of a partition server corresponding to
the key value.

9. The system of claim 8, further comprising at least onc application-

defined interface for the master role instance.

10.The system of claim 8§, further comprising a lease interface for assigning

leases to the partition table and a master storage object to the active master role instance.

37

PCT/US2013/024242

WO 2013/116581

1/11

} "Old

/ N 7
J19Ae } J19Ae
Ty uol1ndax3 i JuswaSeuey
\ :
E /8ulnpayds i 924nosay
A J |
/ s, — ha. -
N
b Ao
e f..!\} A \7 - \\\/.l el

1192

1]

0cl

PCT/US2013/024242

WO 2013/116581

2/11

¢ 'Old

GiLe Gle

a /\\ m F N 7 ‘\ ’ N /,,,
ed , T Y1JION SN _
I - s { s /
- | ,m s
P T (1) ITI)
! | 1ueua]sel ueua] dsel jueua] ysel | A jueus] ysel
,, L k8

(s11) ®a1ades
uones’oT ysel

(s11) @318d3S
uoledo ysel

Gee

SWalbjlom yiwugng
9JIAIBS
uonesoT [eqo|9

uonesl) Junoddy

GET

PCT/US2013/024242

WO 2013/116581

3/11

NS
cosmmmgmw<w W 4 S1L pee
ST \
| N 7
" =
et S IS o
QO
[75]
73
JIAIDG |00
NSTL 5100d
\
m zze
Zve bze

J3AISS

JUN0JJY

34 JUN0JIY

€ 'Old

PCT/US2013/024242

WO 2013/116581

4/11

¥ "Old

€~ -S1eaqlieaH

09v

4114
1€q,, Uuo CO_HN._OO_O -
. e e \
=>
R Z|Wn_ 47, -4,
Hlmn_ «4 =By A
2|del uollllied
N\
(1eq, = As)

ocpAeIqIT ualD

19AJ3S dnyoo

‘—F J31Se|A uonilied
e

\

4

0cv 9/04

N

(Aed, =AaY)
1sanbay walD

PCT/US2013/024242

WO 2013/116581

5/11

G 'Old

01s
(4asn)
Aoy

b4

—_ —o0

+ 9¢S

101321049 O
Sva
asea1do O A
< _
4
] > SEYSEINTS)

—O0 099
0S5 o (43sn)
(49sn) —o ss|ny
lanles —oO adueleg

\J peoq
> SES
191SENdD feg
—0
—0
- 5 A
Jo15B1 —O

665
(4asn)
uoned||ddy ual|d

STS
JU3IDdD

655

deyuolied

b4

PCT/US2013/024242
6/11

WO 2013/116581

[——d—————————————— To———t—— - —— F-————- fom - F——————- 2
[|) | | | | |
[|) | | | | |
o (dnxoeg) | ! (dnxoeg) ! _ (dnyoeg) | uewoq |
! teo | i 448 i | 179 | opesbdn |
| | Jaise jood | | | J4e1sB| WUNoddy | | _ J21SeIN PIM | |
|

L _ _ “ | _ _
b e __ -t ___ b — 1l _ . ___ e e —— J

|] | | | |
S R [1o L J

|] | | | |
“ _ _ “ ! _ _ _
! I I | I
S - | T |1 uewon,
“ | MNQ] | N.V@ |] _\mm] OU@L@QD “
| _ J9]SE|A JUN0JIY _ " Jo1SeA PIM “ _ JalselA |00d _ |
| |
L | | | | | j
—— === T————t——————————=——- r———-—-- to——— == m——————=

|] | | | |
[——d—————————————— To———t—— - —— F-————- fom - F——————- 2
. o | _ _ _
| _ BAI}0
b (aAOY) ! “ (8A0Yy) “ _ A |PM@<V | UIBWO |
Lo €¥9 ! ! z¢9 ! ! _ reuioq,
L] sesenrim || | seiseniood | | _ SIS | opedbdn
“ | _ | “ | JUNoooY _ _
[|) | | | | |
b e __ -t ___ b — 1l _ . ___ e e —— J

|] | | | |

_ o “ | _

_
! urewoq yne4 .“ ! ulewoq jne4 .“ ! urewoq yne4 .“

WO 2013/116581 PCT/US2013/024242

711
MEMORY
71 2_/
/O PORT(S)
718
PROCESSOR(S)
71 4_/
/O COMPONENTS
K/720
PRESENTATION
COMPONENT(S)
71 6\/
POWER SUPPLY
\/722
700/
710
N\

FIG. 7

PCT/US2013/024242

WO 2013/116581

8/11

€38
dnyoeg
alepdn weus |

8 'Old

2G8
dnyoeg
JaAO|lBH JUBUD |

(Jo1se\ dO)
18
JanIBS PIM

(Jo1se\ dO)

1€8
JaAlag |00d

(Jo1se\ dO)

128
JBAIBS JUNOJDY

WO 2013/116581 PCT/US2013/024242

9/11

RECEIVE ONE OR MORE APPLICATION- 910
DEFINED PARTITIONING SYSTEM INTERFACES

Y

CREATE PLURALITY OF MASTER ROLE
INSTANCES INCLUDING THE INTERFACES, THE] , 920
MASTER ROLE INSTANCES CORRESPONDING

TO A MASTER STORAGE OBJECT

'

ASSIGN LEASE FOR MASTER STORAGE
OBJECT, THE INSTANCE THAT IS ASSIGNED |, 930
THE LEASE BEING THE DICTATOR MASTER

ROLE INSTANCE

Y

ASSIGN, BY DICTATOR MASTER ROLE
INSTANCE, A GROUP OF PARTITIONS TOA |~ 940
PLURALITY OF PARTITION SERVERS

'

PERFORM JOBS CORRESPONDING TO AN
APPLICATION USING THE PLURALITY OF ~
PARTITION SERVERS

950

FIG. 9

WO 2013/116581 PCT/US2013/024242

10/11

RECEIVE REQUEST FOR COMPUTATION

COMPRISING PLURALITY OF NAMESPACES | 1010

AND AT LEAST TWO MASTER ROLE
INSTANCES

l

CREATE THE AT LEAST TWO MASTER ROLE
INSTANCES

'

ASSIGN AT LEAST ONE MACHINE THAT

PROVIDES FAILOVER SERVICE FOR A |, 1030

PLURALITY OF THE CREATED MASTER ROLE
INSTANCES

v

DETECT A FAILOVER EVENT FOR A CREATED | 1040
MASTER ROLE INSTANCE

!

CREATE, ON THE ASSIGNED MACHINE, AN

ADDITIONAL INSTANCE OF THE MASTER ROLE |~ 1050

CORRESPONDING TO THE DETECTED
FAILOVER EVENT

|, 1020

FIG. 10

PCT/US2013/024242

11/11

WO 2013/116581

T Ly T
2 44 ||||||||||
_ _ —

L “_ 30¢1

¥ 1| dnNMove

| S

L ____ WF |||||||||||
N—_—————= jtTT T
o emmow) |

(I olcl I

| [1o1sen o rIm | | !

I p——— S
_ I

1 i A
P! I

P! I

P! I

P! I

P! I

P! I
lr|||||||||¢L |||||||||||
_ _

.|_| lllllllll |_|_ IIIIIIIIII
b I

__ Iy

L I

L I

L I

L I
|F|||||||||¢L |||||||||||
IIIIIIIT S
Ly [

Ly [

Ly [

Ly [

Ly [

__ [

L _____ LL ||||||||||

90¢t

do

(aAnoy)
24}
13)SeN
d9 1004

(aAnoy)
A4
Joisen
d9 UN020Y

_mvmhqu“

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2013/024242

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 9/50(2006.01)i, GO6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

GOG6F 9/50

Minimum documentation searched (classification system followed by classification symbols)

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: distributed, cloud, partition, master, load balance, instance, task, application

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See paragraphs [0025]-[0037] and figures 1-2.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011-0179105 A1 (LINDSAY, BRUCE GILBERT et al.) 21 July 2011 1-10
See paragraphs [0005]-[0011], [0039]-[0046] and figures 1-6.
A US 2009-0307339 A1 (SETNES, MARIE LOUISE et al.) 10 December 2009 1-10
See paragraphs [0005]-[0006], [0018]-[0064] and figures 1-4.
A US 2011-0010339 A1 (WIPFEL, ROBERT A. et al.) 13 January 2011 1-10

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"I" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"0Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'l

e

&M

Date of the actual completion of the international search

28 May 2013 (28.05.2013)

Date of mailing of the international search report

29 May 2013 (29.05.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
% 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City,
~ 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

JANG, Ho Keun

Telephone No. 82-42-481-8187

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/024242
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0179105 Al 21.07.2011 None
US 2009-0307339 Al 10.12.2009 None
US 2011-0010339 Al 13.01.2011 None

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/024242
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0179105 Al 21.07.2011 None
US 2009-0307339 Al 10.12.2009 None
US 2011-0010339 Al 13.01.2011 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report
	Page 53 - wo-search-report

