Abstract: A scar subcision device comprises a first elongated element comprising a pivotal connection to a second elongated element, the first elongated element having a blunt distal end, the second elongated element having a proximal-facing cutting edge at a distal end thereof, the device having a first state wherein the cutting edge is retracted to a location within an outer perimeter of the first elongated element, and a second state wherein the cutting edge is exposed outside of the outer perimeter of the first elongated element and the device transitioning between the first state and the second state by the first elongated element and the second elongated element rotating relative to each other about the pivotal connection are disclosed. Methods are also disclosed.
DEVICE AND METHOD FOR SCAR SUBCISION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Serial No. 62/203,010, entitled DEVICE AND METHOD FOR SCAR SUBCISION filed on August 10, 2015, the entire disclosure of which is hereby expressly incorporated by reference.

FIELD OF THE DISCLOSURE

[0002] The present disclosure is related to methods and devices that provide for tissue dissection. The disclosure is more particularly directed to methods and devices that provide for sub-dermal dissection of scar tissue.

BACKGROUND

[0003] Subcision is a surgical technique used to manage acne scars, depressed scars, wrinkles, striae, and cellulite. Subcision aims to sever the fibrous attachments beneath the scar at the subdermal level to lift up the scar and induce the formation of connective tissues through normal physiological healing. In the case of acne scars, this is often achieved by using a needle to penetrate the skin and sever fibrous attachments via punctures provided by the needle tip. A needle is introduced into the subdermal space parallel to the skin and moved back and forth as well as in a fanning motion to release the skin.

[0004] Larger scars, such as burn scars, can require a larger dissection instrument to efficiently treat the larger area. Burn scars often are formed as part of a skin graft (partial thickness skin graft or split thickness skin graft). Burn scars (including those that involved a skin graft) benefit from additional treatment in the form of lipotransfer and transfer of adipocytes.

[0005] In order to transfer adipocytes beneath a skin graft, a space must be created between the graft and the underlying fascia/muscle. The conventional method for achieving this space begins by making a stab incision or an approximately 3 mm entry point adjacent to the graft circumference with a scalpel or needle. Next, a conventional instrument available such as a hemostat or mosquito clamp is introduced through the stab incision to bluntly create the space.
for adipocyte deposition. Design of the conventional instruments limit efficiency and safety of the scar subcision process because of the limited length necessitating multiple entry points and the lack of a sharp blade for sharp scar incision. By creating the space exclusively with blunt dissection, unnecessary tissue injury occurs which may lead to an open wound.

SUMMARY

[0006] In a first aspect of the present disclosure, there is provided a scar subcision device including: first and second elongated elements coupled via a hinge; the first elongated element having a blunt distal end; the second elongated element having a blade at a distal end thereof; the device having a first state where the blade is retracted to a location within an outer perimeter of the first elongated element; the device having a second state where the blade is exposed outside of the outer perimeter of the first elongated element; the device transitioning between the first and second states by the first and second elongated elements rotating relative to each other about the hinge. In some aspects, the blade is disposed on a proximal facing surface of the second elongated element. In some aspects, the first elongated element includes a passageway defined therein having an inlet in a proximal end of the first elongated element and an outlet at the distal end of the first elongated element. The device may include a luer lock coupled to the inlet of the passageway. The device may include finger loops at proximal ends of each of the first and second elongated elements.

[0007] In a second aspect of the present disclosure, there is provided a scar subcision device comprising: a first elongated element pivotally connected by a pivot to a second elongated element; the first elongated element having a blunt distal end; the second elongated element having a proximal-facing cutting edge at a distal end thereof; the device having a first state where the cutting edge is retracted to a location within an outer perimeter of the first elongated element; the device having a second state where the proximal-facing cutting edge is exposed outside of the outer perimeter of the first elongated element; the device transitioning between the first state and the second state by the first elongated element and second elongated element rotating relative to each other about the pivot. In some aspects, the device further comprises a biasing member configured to bias the scar subcision device in the first state. In some aspects, at least one of the first elongated element, the second elongated element, or both comprise an orifice extending from a proximal portion of the scar subcision device to the distal end. The
proximal portion may be the proximal end of the scar subcision device. The first elongated element may comprise the orifice. The orifice may be a bore or a groove. In some aspects, the device comprises a transitioning governor configured to limit rotation of the first element, the second element, or both. The transitioning governor may comprise a slot and a pin. The biasing member may be a spring. The spring may be a spring wire. The first elongated element, the second element, or both may comprise a handle. The handle may be a handle ring. The device may comprise a finger hook.

[0008] In a third aspect of the present invention, there is provided a method for creating a space beneath a skin graft comprising: making a stab incision, inserting a scar subcision device comprising a first elongated element pivotally connected by a pivot to a second elongated element, the first elongated element having a blunt distal end, the second elongated element having a proximal-facing cutting edge at a distal end thereof, the device having a first state where the cutting edge is retracted to a location within an outer perimeter of the first elongated element, the device having a cutting state where the proximal-facing cutting edge is exposed outside of the outer perimeter of the first elongated element, and the device transitioning between the first and cutting states by the first elongated element and second elongated element rotating relative to each other about the pivot; deploying the scar subcision device in the cutting state; and dissecting a graft from an underlying fascia.

[0009] It will be appreciated that numerous modifications to the abovementioned aspects of the present disclosure may be made without departing from the scope of the disclosure as defined in the appended claims. Moreover, any one or more of the above described aspects could be combined with one or more of the other aspects to suit a particular application.

[0010] Optional and/or preferred features may be used in other combinations beyond those described herein, and optional and/or preferred features described in relation to one aspect of the present disclosure may also be present in another aspect or aspect of the present disclosure, where appropriate.

[0011] The described and illustrated aspects are to be considered as illustrative and not restrictive in character, it being understood that only the preferred aspects have been shown and described and that all changes and modifications that come within the scope of the disclosure(s) as defined in the claims are desired to be protected. It should be understood that while the use of words such as "preferable", "preferably", "preferred" or "more preferred" in the description may
suggest that a feature so described may be desirable, it may nevertheless not be necessary and aspects lacking such a feature may be contemplated as within the scope of the present disclosure as defined in the appended claims. In relation to the claims, it is intended that when words such as "a," "an," or "at least one," are used to preface a feature there is no intention to limit the claim to only one such feature unless specifically stated to the contrary in the claim.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The above-mentioned aspects of the present teachings and the manner of obtaining them will become more apparent and the teachings will be better understood by reference to the following description of the aspects taken in conjunction with the accompanying drawings, wherein:

[0013] FIG. 1 is a plan view of a dissection device of a first aspect of the present disclosure in an open orientation;

[0014] FIG. 2 is a plan view of the device of the first aspect of the present disclosure in a closed orientation;

[0015] FIGs. 3A and 3B are exemplary end views of one tine of the device of FIGs. 1 and 2;

[0016] FIGs. 4A-D show a dissection device according to a second aspect of the present disclosure;

[0017] FIGs. 5A-C are perspective views of a scar subcision device having a groove according to various aspects of the present disclosure;

[0018] FIGs. 6A-C are various perspective views of a scar subcision device according to various aspects of the present disclosure; and

[0019] FIG. 7 is a block diagram of a method according to various aspects of the present disclosure.
DETAILED DESCRIPTION

[0020] The various aspects of this disclosure are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following detailed description. Rather, the aspects were chosen and described so that others skilled in the art may utilize their teachings.

[0021] An exemplary aspect of the present disclosure is shown in FIGs. 1 and 2. Subcision device 10 includes blunt tine 12, cutting tine 14, and fulcrum screw or hinge 26. Blunt tine 12 includes a proximal end 20, and a distal end 22. Proximal end 20 includes a finger receiver 24 that is similar to that found on scissors or hemostats. Fulcrum hole 16 is provided between proximal end 20 and distal end 22 and. Distal end 22 is a rounded blunt end. Distal end 22 is rounded in the direction that is "up-and-down" in FIG. 1 and is also rounded in the direction into the page of FIG. 1 such that the distal end presents a rounded blunt leading end without sharp edges. FIGs. 3A and 3B show exemplary contours of distal end 22. Lower side 28 is rounded. Upper side 30 is flat and provides a surface for engaging a distal end 32 of cutting tine 14 (shown in FIGs. 1 and 2). In certain aspects, blunt tine 12 (FIGs. 1 and 2) includes an internal passageway 100 that extends therein from near proximal end 20 to near distal end 22. Other aspects (FIGs. 4A-4D) provide passageway 100 in cutting tine 14. Passageway 100 is open to ambient at the proximal and distal ends thereof. In one aspect, FIGs. 4A-D a luer lock 102 (and potentially an amount of tubing 104) is coupled to passageway 100 at the proximal end thereof.

[0022] Referring again to FIGs. 1 and 2, cutting tine 14 includes proximal end 40 and distal end 32. Proximal end 40 is similar to proximal end 20 and provides finger receiver 24. Another fulcrum hole 16 is provided between proximal end 40 and distal end 32. Distal end 32 includes a rounded tip 44 and rear-facing cutting edge 46. Rounded tip 44 provides a blunt distal edge. Cutting edge 46 provides a hook with a sharpened proximal-facing surface. Cutting tine 14 also includes first and second lateral sides 48, 50. In certain aspects, first and second lateral sides 48, 50 include sharpened cutting surfaces as well. However, the pictured aspect does not have sharp first and second lateral sides 48, 50.

[0023] Blunt tine 12 and cutting tine 14 are linked via fulcrum screw or hinge 26. Subcision device 10 thus operates such that tines 12, 14 hinge relative to each other about fulcrum screw or hinge 26 to have motion often associated with scissors and hemostats.
Aspects of subcision device 10 are envisioned where one of blunt tine 12 and cutting tine 14 includes a stabilizer (not shown) that extends from proximal end 20 or 40 in the direction of the proximal end 40 or 20 of the other tine. One such example is the lock extensions of hemostats. Another such example is a flexible member that holds apart the proximal ends 20, 40 with a force that can be overcome by a human hand when desired. Aspects are further envisioned with a number of diameters and lengths of proximal ends 20, 40 and distal ends 22, 32 as well as a number of contours (curves or otherwise) of the ends 20, 22, 40, 32. Furthermore, aspects are envisioned where the size (diameter, cross-sectional area) of tines 12, 14 tapers from their proximal ends to their distal ends.

In use, a medical professional makes an access incision proximate a scar area to be treated. Once access is obtained, subcision device 10 is obtained in a state (e.g., a closed orientation) where distal ends 22, 32 of tines 12, 14 overlap such that any cutting edge (such as cutting edge 46) does not extend laterally of the lateral edges of blunt tine 12. Blunt edge is then used to forcibly create a space between the skin (which is potentially the product of a skin graft) and the underlying tissue. The blunt end of blunt tine 12 provides a reduced likelihood of inadvertently causing the subcision device to pierce through the skin or to make any undesired perforation of anatomy. The desired effect is providing separation between the skin and the underlying tissue to create a void there-between. In certain places, scar tissue will be tougher than others such that a blunt surface is urged elsewhere as it is urged forward by a user. This redirection of subcision device 14 by the anatomy provides an element of unpredictability in the placement of distal end 22, 32. This is another reason that presenting a blunt distal end is desired in that travel of the distal ends 22, 32 is sometimes at least partially controlled by the tissue rather than a user's desire. With subcision device 10 so located, subcision device 10 is often moved laterally (hinging at the entry point) or is retracted to prepare to make another path.

If at any point, anatomy is encountered (such as especially thick scar tissue), a user can push device 10 to the side of and past that scar tissue. The user then urges proximal ends 20, 40 together to cause relative rotation at distal ends 22, 32 and to expose cutting edge 46 (e.g., placing the scar subcision device in the open orientation). The user then retracts device 10 to cause the exposed cutting edge 46 to encounter the scar tissue. Further retraction causes the scar tissue to be cut by cutting edge 46. It should be appreciated that the retraction of device 10 is a more controlled operation than the forward movement plunging into anatomy. Retraction
pulls device 10 back towards the incision entry point. Furthermore, upon retraction, the path of device 10 is more known. Thus, during retraction there is a reduced risk of encountering undesired tissue relative to the forward movement of device 10. In this manner, cutting edge 46 is able to be located at scar tissue to allow additional release of skin from underlying tissue. Once the scar tissue is cut, cutting edge 46 is retracted by urging proximal ends 20, 40 apart to cause relative rotation at distal ends 22, 32 and to "hide" cutting edge 46.

[0027] Once the desired gaps are created between skin and the underlying tissue, lipotransfer and transfer of adipocytes can take place. A syringe containing fat and adipocytes is attached (via luer lock 102 and tubing 104 or otherwise) to provide those fats and adipocytes to passageway 100. The syringe is thus able to urge fat and adipocytes through passageway 100 and out into the patient at the distal end of passageway 100 proximate the distal end of blunt tine 12. A syringe plunger is depressed as device 10 is retracted to deposit a line of fat and adipocytes out of the distal end of the passageway 100.

[0028] Additional aspects are envisioned where the distal cutting edge 46 is exposed by other than the scissor-like action of blunt tine 12 and cutting tine 14. Such aspects include but are not limited to cable actuated movement and pneumatic actuated movement. It should be appreciated that the provided example provides a neutral resting position in which no cutting surface is exposed. Stated differently, when device 10 does not have a user-provided force acting thereupon, no cutting surface is exposed. In some aspects, device 10 is biased to a position that retracts any and all cutting surfaces such that in the absence of force acting thereupon, device 10 self-conceals any cutting surfaces.

[0029] FIGs. 5A-5C provide various perspective views of a scar subcision device 500 according to various aspects of the disclosure. Scar subcision device 500 may including a first elongated element 520 pivotally connected by a pivot 526 to a second elongated element 530, the first elongated element 520 may have a blunt distal end 522 (FIG. 5B). The second elongated element 530 includes a proximal-facing cutting edge 546 (FIG. 5B) at distal end 22. In various aspects, scar subcision device 500 may include a first, closed state (shown in FIGs. 5A and 5C) where the proximal-facing cutting edge 546 may be retracted to a location within an outer perimeter of the first elongated element 520. In various aspects, scar subcision device 500 may have a second state (illustrated in FIG. 5B) where the proximal-facing cutting edge 546 is exposed outside of the outer perimeter of the first elongated element 520. Thus, in various
aspects, scar subcision device may be configured to transition between the first state (shown in FIGs. 5A and 5C) and the second, open state (shown in FIG. 5B) by the first elongated element 520 and second elongated element 530 rotating relative to each other about the pivot 526.

[0030] In various aspects, scar subcision device 500 may comprise a biasing member configured to bias the scar subcision device 500 in the first state. For example, FIGs. 5A-C shows an aspect where the biasing member is a spring, such as a spring wire 505, which may be secured in wire aperture 506. In some aspects, the first elongated element 520, the second element 530, or both comprise a handle, such as handle ring 524. Also, in some aspects, one or more handles may comprise a finger ring.

[0031] In some aspects, the transitioning governor of the scar subcision device 500 may comprise a transitioning governor configured to limit the rotation of the first elongated element 520, the second elongated element 530, or both. In some aspects, the scar subcision device 500 may comprise a slot 503 and a pin 501, such as that shown in FIG. 5A. In various aspects, the pin 501 may limit the rotation of the first elongated element 520 and the second elongated element 530 to a predetermined distance, which may limit or govern the travel of the distal end 22 of the scar subcision device 500.

[0032] In various aspects, the scar subcision device 500 and scar subcision device 600 (shown in FIGs. 6A-C) may comprise an orifice extending from a proximal portion of the scar subcision device to a distal end. For example, at least one of the first elongated element 520, the second elongated element 530, or both may comprise an orifice extending from a proximal portion of the scar subcision device to a distal end 22. In various embodiments, the proximal portion may be the proximal end 40 of the scar subcision device.

[0033] In various aspects, the orifice extends along the length of the elongated element, such as the first elongated element 520. In some aspects, the orifice may be a groove, such as groove 512 shown in FIGs. 5A-5C. With reference to FIG. 5C, scar subcision device 500 is shown with syringe 590 removed. In some instances, aspects having a groove, such as groove 512 may be desirable to facilitate the cleaning of the scar subcision device. In some aspects, the syringe may be retained within groove 512, or may be inserted in proximal end 510 and pushed down groove 512 to distal end 511.

[0034] In some aspects, the orifice may be a bore, such as bore 610 (shown in FIGs. 6A, and 6C). In various aspects, the orifice may be configured to receive a syringe, such as syringe
In various aspects, syringe 590 may be inserted into bore 610 at a proximal opening 611 and pushed in a distal direction towards distal end 22.

Fig. 7 is a flow diagram showing methods for creating a space beneath a skin graft. Method 700 may comprise making a stab incision (step 710), inserting a scar subcision device (step 720) into the stab incision, deploying the scar subcision device in the cutting state (step 730), and dissecting a graft from an underlying fascia (step 740).

In various aspects, the scar subcision device in method 700 may include any scar subcision device disclosed herein. For example, scar subcision device may comprise a first elongated element pivotally connected by a pivot to a second elongated element, the first elongated element having a blunt distal end, the second elongated element having a proximal-facing cutting edge a distal end thereof, the device having a first state where the blade is retracted to a location within an outer perimeter of the first elongated element, the device having a cutting state where the proximal-facing cutting edge is exposed outside of the outer perimeter of the first elongated element, and the device transitioning between the first and cutting states by the first and second elongated elements rotating relative to each other about the pivot.

The above detailed description and the examples described therein have been presented for the purposes of illustration and description only and not for limitation. For example, the operations described may be done in any suitable manner. The method may be done in any suitable order still providing the described operation and results. It is therefore contemplated that the present aspects cover any and all modifications, variations or equivalents that fall within the spirit and scope of the basic underlying principles disclosed above and claimed herein.
WHAT IS CLAIMED IS:

1. A scar subcision device comprising:
 first and second elongated elements coupled via a hinge;
 the first elongated element having a blunt distal end;
 the second elongated element having a blade at a distal end thereof;
 the device having a first state wherein the blade is retracted to a location within an outer
 perimeter of the first elongated element, and
 a second state wherein the blade is exposed outside of the outer perimeter of the first
 elongated element; and
 the device transitioning between the first state and second state by the first elongated
 element and second elongated element rotating relative to each other about the hinge.

2. The scar subcision device of claim 1, wherein the blade is disposed on a proximal facing
 surface of the second elongated element.

3. The scar subcision device of claim 1, wherein the first elongated element includes a
 passageway defined therein having an inlet adjacent a proximal end of the first elongated
 element and an outlet adjacent the blunt distal end of the first elongated element.

4. The scar subcision device of claim 3, further including a luer lock coupled to the inlet of
 the passageway.

5. The scar subcision device of claim 1, further including finger loops adjacent proximal
 ends of each of the first elongated element and second elongated element.

6. A scar subcision device, comprising:
 a first elongated element comprising a pivotal connection to a second elongated element;
 the first elongated element having a blunt distal end;
 the second elongated element having a proximal-facing cutting edge at a distal end
 thereof;
the device having a first state wherein the cutting edge is retracted to a location within an outer perimeter of the first elongated element, and:

a second state wherein the cutting edge is exposed outside of the outer perimeter of the first elongated element; and

the device transitioning between the first state and the second state by the first elongated element and the second elongated element rotating relative to each other about the pivotal connection.

7. The scar subcision device of claim 6, further comprising a biasing member configured to bias the scar subcision device in the first state.

8. The scar subcision device of claim 6, wherein at least one of the first elongated element or the second elongated element both comprise an orifice extending from a proximal portion of the scar subcision device to the distal end of the at least one of the first elongated element or the second elongated element.

9. The scar subcision device of claim 8, wherein a proximal portion is a proximal end of the scar subcision device.

10. The scar subcision device of claim 8, wherein the first elongated element comprises the orifice.

11. The scar subcision device of claim 8, wherein the orifice is a bore.

12. The scar subcision device of claim 8, wherein the orifice is a groove.

13. The scar subcision device of claim 6, further comprising a transitioning governor configured to limit rotation of at least one of the first elongated element or the second elongated element.

14. The scar subcision device of claim 13, wherein the transitioning governor comprises a slot and a pin.

15. The scar subcision device of claim 7, wherein the biasing member is a spring.
16. The scar subcision device of claim 15, wherein the spring is a spring wire.

17. The scar subcision device of claim 6, wherein at least one of the first elongated element or the second element comprises a handle.

18. The scar subcision device of claim 17, wherein the handle is a handle ring.

19. The scar subcision device of claim 17, further comprising a finger hook.

20. A method for creating a space beneath a skin graft comprising:

 making a stab incision;
 inserting a scar subcision device into the stab incision, the device comprising
 a first elongated element comprising a pivotal connection by a pivot to a second
 elongated element, the first elongated element having a blunt distal end, the second elongated
 element having a proximal-facing cutting edge at a distal end thereof, the device having a first
 state wherein the cutting edge is retracted to a location within an outer perimeter of the first
 elongated element, and a cutting state where the proximal-facing cutting edge is exposed outside
 of the outer perimeter of the first elongated element, and the device transitioning between the
 first state and the cutting state by the first elongated element and the second elongated element
 rotating relative to each other about the pivotal connection;
 deploying the scar subcision device in the cutting state; and
 dissecting a graft from an underlying fascia.
FIG. 7

MAKE A STAB INCISION

INSERT A SCAR SUBCcision DEVICE

DEPLOY THE SCAR SUBCision DEVICE INTO A CUTTING STATE

DISSECT A GRAFT FROM AN UNDERLYING FASCIA
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/46345

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) ... Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300
Form PCT/ISA/210 (second sheet) (January 2015)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 7,871,423 B2 (LIVNEH, S) 18 January 2011 (18.01.2011); Figure 2; Figure 3; Figure 8; Figure 9; column 3, lines 17-20; column 3, lines 58-59; column 4, lines 4-6; column 4, lines 27-31; column 4, lines 48-59</td>
<td>1, 3</td>
</tr>
<tr>
<td>X</td>
<td>US 5,649,947 A (AUBERBACH, B et al.) 22 July 1997 (22.07.1997); Figure 1(a); Figure 1(b); Figure 4(a); Figure 4(b); Figure 4(c); column 3, lines 17-24; column 3, lines 40-53; column 4, lines 1-65</td>
<td>1, 2, 5, 6, 8-12, 17-19</td>
</tr>
<tr>
<td>X</td>
<td>US 2011/0295297 A1 (SHIRLEY, B et al.) 01 December 2011 (01.12.2011); Figure 13; paragraph [0083]; paragraph [0085]; paragraph [0086]</td>
<td>7, 13-16</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/0172255 A1 (HOCHMAN, M et al.) 03 August 2006 (03.08.2006); sole Figure; paragraph [0012]</td>
<td>6, 8, 12</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/0241663 A1 (RICE, M et al.) 26 October 2006 (26.10.2006); paragraph [0031]; paragraph [0032]</td>
<td>4</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,478,347 A (ARANYI, E) 26 December 1995 (26.12.1995); Figure 6A; Figure 6B; Figure 15B; column 11, lines 50-61; column 14, lines 62-67; column 15, lines 1-2</td>
<td>13, 14</td>
</tr>
<tr>
<td>Y</td>
<td>US 2003/0130628 A1 (DUFFY, D) 10 July 2003 (10.07.2003); paragraph [0006]; paragraph [0031]; paragraph [0036]</td>
<td>20</td>
</tr>
<tr>
<td>Y</td>
<td>US 2012/0150208 A1 (MESSMER, S) 14 June 2012 (14.06.2012); Figure 11a; Figure 11b; Figure 11c; paragraph [0026];</td>
<td>20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
05 October 2016 (05.10.2016)

Date of mailing of the international search report
09/NO 2016

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-6300

Authorized officer
Shane Thomas
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,728,122 A (Yoon, J) 17 March 1998 (17.03.1998); see whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>