A molding apparatus (20) including a support frame (21) and a molding method utilizing a moveable mold plate (22) and a second or door plate (26) both of which may hold, have affixed to, or carry a first or second portion of a mold. The door plate (26) is opened and shut by a hinge means (29), is movable using tie bars (70) and tie bar plates (71) and is operated by the use of a fluid cylinder (38) and control valves (88, 89, 90). The door plate (26) advances a mold base (24) adjacent a mold core (25), and is brought adjacent to the moveable mold plate (22), so that the portions of the mold engage one another. A molding material is injected into the mold cavity, after which the moveable plate (22) is retracted, the door plate (26) is opened, and the part is removed. A part to be encapsulated may be placed into the mold and held by vacuum heads (94) operated by control valves (90, 93) before the molds are closed.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Cote d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
TITLE
COMPACT MOLDING APPARATUS AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus for molding, and a molding method.

2. Discussion of the Related Art

In the preferred embodiments of the present invention, the molding apparatus is used to hold mold(s) which encapsulate, or mold onto, glass or plastic sheets of the type which are commonly employed as glazing closures in present day vehicles such as automobiles and the like. In addition to such glazing sheets being bent to precisely define curvatures dictated by the configuration and size of openings in the vehicle body, in order to meet strict quality standards of manufacturers, it is necessary to mold onto or encapsulate to the sheets of material items such as a gasket around a predetermined portion of the sheet of material. Items such as mounting brackets or studs may also be applied at the location of the gasket or at other positions on the surface of the sheet.

Encapsulating sheets of glass or plastic requires the use of a relatively large mold platen. In order to obtain a large platen, one must purchase a very large, high pressure, molding machine.

U.S. Patent No. 4,561,625 discloses a mold structure for forming a polymeric gasket around a predetermined portion of a sheet of transparent material such as glass. The mold structure includes two cooperating mold sections for defining a chamber for receiving the transparent sheet. A seal is positioned about the periphery of the chamber and is utilized to resiliently support the sheet within the
chamber. Also the seal cooperates with a predetermined portion of the transparent sheet for defining a gasket cavity having a configuration corresponding to the gasket to be formed on the sheet of transparent material.

U.S. Patent No. 4,762,481 discloses a mold for forming a window assembly which includes a transparent glass sheet and gaskets formed by curing a polymeric gasket material in situ on the glass sheet to encapsulate a marginal peripheral edge portion thereof. A glass sheet to be utilized in a vehicle has a front edge, rear edge, and a lower edge to each of which is adhered such a gasket. In addition, a bracket means for attachment to a scissor linkage for raising and lowering the window can be secured to the lower edge of the window.

U.S. Patent No. 4,584,155 discloses a method for molding surface structure onto the surface of a glass sheet.

U.S. Patent No. 5,108,687 discloses a device for at least partially encapsulating a border of a substantially sheet shaped element. The device contains a cavity formed by an elastically deformable member having a profile which extends along an encapsulation border line of the element and which is adapted to be elastically deformed while maintaining a tight contact along the encapsulation border line when pressure is applied thereon in order to follow a irregularities in the element along the border line.

The co-pending application of applicant's assignee, Serial No. 08/898,207, filed July 22, 1997, and entitled "Molding Method and Apparatus and Parts Produced Thereby" shows a molding apparatus having a mold base and at least one moveable mold core rotatable into and out of a facing relationship with the mold base. When the moveable mold core is in its closed position, it cooperates with the mold
base to define a mold cavity. The mold base may be shaped so as to aid in forming a part, or to hold a sheet of material onto which molding material is to be deposited so as to encapsulate the part on one or more edges or surface regions. Structure may be also encapsulated onto the surface of the material during the molding operation.

The above mentioned patents show various window assemblies and methods to make the same. The apparatus to make the devices shown often involve large and complicated molding presses. This often times necessitate the devices being made at a separate plant and shipped for installation, for example, to an automobile assembly plant, rather than being manufactured on site, or nearby. Also, such machines are large and costly. Cost amortization requires that multiple molds are changed into, and out of, the machines to manufacture different parts. Due to this, such machines are compromised in size and performance. Thus, those skilled in the art continued to search for a compact molding apparatus which could be moved easily from one place to another, and held mold(s) in such a way that they were easily and quickly interchangeable.

SUMMARY OF THE INVENTION

The aforementioned problems are addressed in accordance with the present invention by the utilization of a novel apparatus and method not hereto found in the prior art. In its broadest form, the apparatus of the present invention may be used to hold almost any type of mold or molds to produce almost any part which is currently molded, and is easily moved to optimize the manufacturing cell.

In one embodiment of the invention, a moveable mold platen may hold, have affixed to, or carry a first portion of a mold or molds. A second or door platen may hold, have
affixed to, or carry a second portion of a mold or molds. The door platen is placed in its closed position, and the moveable mold platen is brought up adjacent to it, so that the two portions of the mold are brought into engagement with one another.

In another embodiment of the present invention, a self-contained molding apparatus of the foregoing nature is provided.

Thus, one of the objects of the present invention is to provide a novel molding method and apparatus for molding a part.

Another object of the present invention is to provide a molding apparatus which is compact and easily moveable from place to place, as needed.

Another object of the present invention is to provide a lightweight, self-contained, molding apparatus which may produce a part at the site where it is needed, or sufficiently nearby, to essentially save the cost of shipping the manufactured parts to the site.

Further objects and advantages of the present invention will be apparent from the following description and appended claims, reference being made to the accompanying drawings forming a part of the specification, wherein like reference characters designate corresponding parts in the several views.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of a construction embodying the present invention;

Fig. 2 is a side elevational view of the construction shown in Fig. 1;

Fig. 3 is a front elevational view of the construction shown in Fig. 1;
Fig. 4 is a top plan view of the construction shown in Fig. 1, showing the door platen in its open position;

Fig. 5 is a view similar to that shown in Fig. 4 showing the door platen closed with mold core in a fixed facing relationship with the mold base before the moveable mold platen moves the mold base into a position adjacent said mold core;

Fig. 6 is a view similar to Fig. 5, but showing the mold base and the mold core in their closed, or adjacent position.

Fig. 7 is a top plan view, similar in part to Fig. 5, but showing a modification of the present invention.

Fig. 8 is a sectional view, taken in the direction of the arrows, along the section line 8-8 of Fig. 7.

Fig. 9 is a sectional view, taken in the direction of the arrows, along the section line 9-9 of Fig. 8.

It is to be understood that the present invention is not limited in its application to the details of construction and arrangement of parts illustrated in the accompanying drawings, since the invention is capable of other embodiments, and being practiced or carried out in various ways within the scope of the claims. Also it is to be understood that the phraseology and terminology employed herein is for the purpose of description, and not of limitation.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

There is shown a compact molding apparatus, generally designated by the numeral 20, which may be self contained.

The molding apparatus includes a support or frame 21, generally of a parallelepiped nature, to which a moveable mold platen 22 is attached. A door platen 26 closes into position above the moveable mold platen 22. The moveable
mold platen moves toward and away from the door platen 26. A mold or molds 23 are contained in the space defined by the retracted position of the moveable platen 22 and the closed position of the door platen 26. The mold(s) may extend laterally past the edges of the door platen 26 and the moveable mold platen 22 if desired. A portion of the mold(s) may be moveable with the door platen and/or moveable platen, depending on the particular application to which the improved method and apparatus of the present invention is applied.

The preferred embodiments of the present invention are described herein in connection with their use to encapsulate, or mold onto, a sheet of glazing material, such as a sheet of glass. The molds 23 illustrated form no part of the present invention.

In one such use of the invention, the compact molding apparatus of the present invention is used to encapsulate at least a portion of a sheet of material, and includes a mold base attached to a moveable mold platen. Cooperating with the mold base is a mold core or cavity attached to a fixed or fixable mold platen, such as a door platen. Vacuum heads are provided in the mold base to hold a sheet of material in proper relationship thereto such that all or a portion of the sheet of material will be encapsulated when at least one mold core is positioned by said fixable or fixed mold platen in a mating or facing relationship with the mold base attached to said moveable mold platen, and molding material is introduced into the mold cavity formed by the mold base and the mold core or cavity.

In another such use of the present invention, the compact mold apparatus of the present invention has a moveable mold platen, and a door platen rotatable into an
opposed or facing relationship with said moveable mold
platen. A suitable mold base will be attached to said
moveable mold platen and a suitable mold core or cavity
will be attached to said door platen. A sheet of glass to
be encapsulated will be interposed between the mold base
and the mold core or cavity. The sheet of glass may be
define and/or become part of the mold cavity. The portions
of the glass surface and periphery on which a molding
material will be deposited may be further defined by seal
means. Provisions may be made in one or more of the mold
base or the mold core or cavity to hold brackets, hinges or
the like to be encapsulated either on the periphery or the
surface of the sheet of material.

In another such use of the present invention, a glass
sheet having had a ceramic enamel band previously applied
thereto is placed into a mold base attached to said
moveable mold platen and held in place by vacuum heads. A
mold core or cavity is attached to the door platen. The
door platen is closed or rotated into position so that
facing surfaces of the mold base and the mold core or
cavity are adjacent. The door platen is fixed in position
by suitable means before the molding operation begins. The
mold base is moved into position adjoining the mold core or
cavity by the moveable mold platen. Polymeric or other
molding material is introduced into the mold cavity defined
thereby to encapsulate one or more edges of the sheet of
glass. It should be understood that the mold base will
include at least one of a mold core or mold cavity, and the
other(s) of the mold core or cavity will be provided on the
door platen.

Referring now to Figs. 1-6, a first desired portion of
a mold (or molds) 23, such as a mold base 24, may be
attached to movable mold platen 22. A second desired
portion of a mold (or molds) 23, which may be such as mold core or cavity 25, is fixedly attached to second or door platen 26, which is moveable into and out of a fixed position with relation to moveable mold platen 22 by first hinge means 29. First hinge means 29 will allow door platen 26 to swing open and shut when a powered actuator, such as first fluid cylinder 30, advances or retracts shaft 31. Shaft 31 is attached by yoke 32 to hinge arm 33. Hinge arm 33 is fixedly attached to hinge pin 34, while platen hinges 36, affixed to door platen 26, are free to rotate about hinge pin 34.

It should be understood that the term "stationary", when used to described the second or door platen 26, describes the position of the platen after the platen has been closed and the platen has been fixed in position. This occurs immediately before the moveable mold platen 22 advances the mold base 24 into an adjacent or engaging relationship with the mold core 25. In one of the preferred embodiments, the door platen 26 is shown in an opposed parallel relationship with the moveable mold platen 22. However, it can be understood that, depending on the application, the fixed position of the door platen 26, when closed, may be any desired stationary fixed position depending on the mold 23 being used, the shape of the part being molded, or other factors, and be well within the scope of the present invention.

The movable mold platen 22 is moved toward and away from the door platen 26 in an opposed, facing relationship. It can be understood that, while in the preferred embodiments, the door platen 26, and the movable platen 22, remain in a 180° opposed relationship, other relationships during movement are well within the scope of the present invention.
Referring to Figs. 5-6, the movement of the moveable platen 22 is accomplished by a reciprocating mechanism or means 49. As can be seen in Figs. 2 and 4, two pairs of opposed toggle mechanisms 50 comprise the reciprocating mechanism or means 49. Each of said pair of opposed toggle mechanisms 50, in turn, comprise an opposed pair of toggle joints (51A,51B). Since each of said pair of opposed toggle joints (51A,51B) is substantially identical, only one need be described herein, and identical reference numerals (with appropriate suffixes) will be placed on the other of said pair of opposed toggle joints. It can also been understood that, depending on the application, other reciprocating means 50, well known in the art may be used.

Each toggle joint (51A,51B) has a first link (52A,52B) and a second link (53A,53B), which are connected at the center (Cₐ,Cₐ) by second shaft (54A,54B). First link (52A,52B) is free to pivot about pivot point (Pₐₐ,Pₐₐ) which is on the center line of third shaft (56A,56B) carried in bearing block (57A,57B). Bearing block (57A,57B) is attached proximate one corner of movable platen 22.

Second link (53A,53B) is similarly free to pivot about pivot point (Pₜₜ,Pₜₜ) Pivot point (Pₜₜ,Pₜₜ) is on the center line of fourth shaft (59A,59B) carried by second bearing block (60A,60B). Second bearing block (60A,60B) is attached to frame 21 in a 180° opposed relationship to first bearing block (57A,57B).

A powered actuator, such as toggle fluid cylinder 62, is connected for operation between the center Cₐ of the first of said pair of opposed toggle joints 51A, and the center Cₐ of the second of said pair of opposed toggle joints 51B. Expansion and contraction of the toggle fluid cylinder 62 will cause the movable platen 22 to move
between its open or retracted position, shown in Fig. 5, and its expanded or closed position, shown in Fig. 6. A ball screw may be used in place of the toggle fluid cylinder 62, if desired.

To insure that the movement of the moveable platen 22 toward and away from the door platen 26 is smooth, and in the desired direction, the moveable platen 22 moves on a linear guide or plurality of elongate parallel rods, which may be such as tie bars 70. In the illustrated embodiment, four tie bars 70 are used. Each tie bar 70 is attached at both of its ends to the frame 21 in a manner such that each tie bar 70 is parallel to each, other, tie bar 70. Each tie bar 70 passes through a tie bar bearing 71 attached to said moveable platen 22 proximate a corner thereof. Suitable openings 71A are placed in the moveable platen to permit the tie bars 70 to pass through.

To prevent twisting or jamming of the moveable platen 22 when the toggle fluid cylinder 62 operates, an anti-jamming mechanism 75 is provided. Best seen in Fig. 6, anti-jamming mechanism 75 is shown in the form of a cross-link mechanism 78. Other anti-jamming mechanisms may also be used. A rack and pinion anti-jamming mechanism is described hereinafter with respect to Figs. 7-9.

To effectuate the cross link mechanism 78, a pair of double ended arms (79A, 79B) are fixedly attached to third shafts (56A, 56B). A first cross-link 80, and a second cross-link 81 connect double ended arms (79A, 79B) as shown.

Each of said first and said second cross links are provided with a first threaded aperture (80A, 81A) fixed yoke 82, and an adjustable yoke 83. Each adjustable yoke 83 includes a yoke portion 84 having a second threaded aperture 84A therein. Extending between each first threaded aperture (80A, 81A) and each second threaded
aperture 84A is a split threaded rod 86. A turnbuckle 89 connects the portions of the split rod 86. A pair of lock nuts 87 are provided on one portion of each split threaded rod 86 for purposes of holding it stationary, so that upon turnbuckle 89 being rotated, the effective length of first cross-link 80, and second cross-link 81 are equally lengthened or shortened depending upon the direction of rotation of the turnbuckle 89.

First cross link 80 is rotatably attached to one end of double ended arm 79A, and to the opposite end of double ended arm 79B. In a similar manner, second cross link 81 is rotatably attached to the other end of double ended arm 79A, and to the remaining end of double ended arm 79B. Any tendency for the toggle fluid cylinder 62 to expand unevenly and jam the movable platen 22 on the tie bars 70 will be opposed by forces acting through the first cross links 80 and the second cross link 82.

A suitable source of fluid power (not shown) will be provided to the compact molding apparatus 20 sufficient to operate the first fluid cylinder 30 the fluid cylinders 38 and the toggle fluid cylinders 62. Suitable conduits (not shown) also well known in the art will be used to connect this source of fluid power to the various controllers or control valves. First control valve 88 will be connected by suitable conduit (not shown) to first fluid cylinder 30. Operation of the first control valve 88 will cause the shaft 31 to advance or retract thus, opening or closing the door platen 26. Second control valve 89 may be used to operate the fluid cylinders 38 which fix the door platen into position after it has been closed. Third control valve 90 may control the advancement of the moveable platen 22 by operation of the toggle fluid cylinders 62. Suitable conduits will connect the third control valve to the toggle
fluid cylinders 62. Vacuum control valve 92 will be connected to a source of vacuum, such as a vacuum pump, which is well known in the art. The control valve 93 will control the vacuum to the vacuum heads 94 shown as part of the mold base 24 in Fig. 1.

In operation a sheet of material S will be placed into position in the mold base 24 while the vacuum is being applied to the vacuum heads 94. First control valve 88 will be placed in an appropriate position by the operator of the compact molding apparatus 20 to cause the door platen to swing into its closed position. This will cause mold core or cavity 25 to come in to an opposed or facing relationship with mold base 24 mounted on moveable mold platen 22 as shown in Fig. 4. At this point the operator will release first control valve 88 and operate second control valve 89 which will cause the fluid cylinders 38 to advance moveable or powered shot pins or lock pins or shafts 39 which enter shaft or pin bearings 42 in door platen 26 to fix the door in position.

The operator will then release second control valve 89 and operate third control valve 90, which is connected to the toggle fluid cylinders 62. As previously described the operation of toggle fluid cylinders 62 will advance the moveable mold platen 22, and thus the mold base 24, toward the mold core or cavity 25 and bring them into an adjacent relationship. A desired molding material is conditioned and introduced into port 100 (Fig. 3) by means well known in the art. Port 100 is in fluid communication with mold core or cavity 25 and will encapsulate or mold onto the sheet of material S. Any practicable mold 23 may be used with the compact molding apparatus of the present invention to provide a wide variety of molded parts. It may be desired to heat or cool molds 23 by means well known in the
art, and this is well within the scope of the present invention.

Referring now to Figs 7-9, there is shown a modification of the present invention wherein a rack and pinion arrangement is used as the anti-jamming mechanism or means 75 in place of the cross-link mechanism. Rack and pinion assembly 105 replaces cross-link mechanism 78.

Rack and pinion assembly 105 includes a pair of racks (106A, 106B) mounted in a parallel, spaced, relationship to frame 21 with the aid of a pair of L-shaped supports (107A, 107B). L-shaped supports (107A, 107B) are mounted to spacers (108A, 109B), which are, in turn fastened to frame 21.

A pair of bearing blocks (109A, 109B) are mounted to the underside of moveable platen 22 in an axially aligned relationship to support shaft 110 for rotation. To each end of shaft 110 is mounted a pinion gear 111. Each pinion gear 111 preferably has an identical number of teeth, and engages its' respective rack (106A, 106B).

It can be seen that as movable platen 22 travels along tie bars 70, racks (106A, 106B) engaging pinions 111 cause shaft 110 to rotate. As long as movable platen 22 is advancing or retracting evenly toward and away from the door platen 26, shaft 110 and pinions 111 just perform a follower motion. However, if moveable platen 22 tends to twist or move unevenly on the tie bars 70, the anti-jamming means 75, which includes racks (106A, 106B), L-shaped supports (107A, 107B), spacers (108A, 108B), bearing blocks 109, shaft 110 and pinions 111 will resist such motion.

Any attempt by moveable platen 22 to advance unevenly will tend to rotate one of said pinions 111 faster than the other of said pinions 111. Since both of said pinions are fixedly attached to shaft 110, this will tend to twist
shaft 110. Since the force required to twist shaft 110 is more than the force required to resist the force of the toggle mechanisms 51A-D, the side of the moveable platen 22 which is attempting to overrun will be slowed down, allowing the other side to catch up, and a smooth and even motion to continue.
WHAT IS CLAIMED IS:

1. A method of molding comprising the steps of:
 a) providing a moveable mold platen;
 b) providing a door platen fixable in a fixed relationship with said moveable mold platen;
 c) providing a mold base on said moveable mold platen, said mold base including one of a mold base or cavity;
 d) providing the other of said mold core or mold cavity on said door platen;
 e) placing a part to be encapsulated into said mold base;
 f) placing said door platen in said fixed relationship to said mold base;
 g) moving said mold base into an adjacent position to said mold core or cavity; and
 h) introducing molding material into the mold cavity formed by said mold core and said mold base.

2. A compact molding apparatus comprising:
 a) a first, movable, platen for holding a first portion of a mold during a molding operation, and;
 b) a second, fixable, platen for holding a second portion of a mold in a fixed relationship to said first portion of the mold prior to and during a molding operation.
3. A compact molding apparatus comprising:
 a) a first, movable, platen for holding a base portion of a mold during a molding operation, and;
 b) a door platen for holding a second portion of a mold in a fixed relationship to said first portion of a mold prior to and during a molding operation, said first movable platen movable toward and away from said door platen.

4. A compact molding apparatus comprising:
 a) a frame member;
 b) a movable platen mounted to said frame member for substantially reciprocal movement,
 c) means to move said movable platen;
 d) a fixable platen mounted to said frame member and fixable in a fixed relationship to said movable platen during a molding operation,
 e) means to move said fixable platen, and
 f) means to control said means to move said movable platen and said means to move said fixable platen.

5. A compact molding apparatus comprising:
 a) a frame member,
 b) a moveable mold platen attached to said frame member for substantially reciprocal movement with regard to a fixable door platen in its closed position,
 c) a powered actuator connected to said movable platen,
 d) a first portion of a mold attached to said moveable mold platen,
e) a door platen mounted to said frame member and fixable in a fixed relationship with regard to said moveable platen when said moveable platen is in its advanced position,

f) a powered actuator connected to said door platen,

g) a second portion of a mold attached to said door platen, and

h) means to control said means to move said movable platen and said means to move said door platen.

6. The molding apparatus defined in claim 5, wherein:

a) said first portion of said mold and said second portion of said mold are contained in the space defined by the retracted position of said moveable platen and the closed position of said door platen.

7. The molding apparatus defined in claim 6, wherein:

a) said door platen is hingedly attached to said frame member and is rotatable between an open position and a closed position in a facing relationship with said moveable mold platen.

8. The molding apparatus defined in claim 7, wherein:

a) said first portion of a mold is a mold base attached to said moveable mold platen.
9. The molding apparatus defined in claim 8, wherein:
 a) said second portion of a mold is a mold cavity attached to said door platen.

10. The molding apparatus defined in claim 9, and further including:
 a) at least one vacuum head provided in said mold base to hold a sheet of material in place during a molding operation, and
 b) a vacuum pump connected to said at least one vacuum head.

11. The molding apparatus defined in claim 9, and further including:
 a) shot pins to fix said door platen in its fixed position.

12. The molding apparatus defined in claim 11, wherein said means to move said movable platen include:
 a) a reciprocating mechanism.

13. The molding apparatus defined in claim 12, wherein said reciprocating mechanism include:
 a) two pairs of opposed toggle mechanisms.

14. The molding apparatus defined in claim 15, wherein each of said two pairs of opposed toggle mechanisms include:
 a) an opposed pair of toggle joints.
15. The molding apparatus defined in claim 14, wherein each of said opposed pair of toggle joints comprise:
 a) a pair of bearing blocks mounted to said frame member in an opposed relationship,
 b) a first link connected at one of its ends for rotation to one of said pair of bearing blocks,
 c) a second link connected at one of its ends for rotation to the other one of said pair of bearing blocks, the other end of said first link and said second link being connected together for rotation by a second shaft.

16. The molding apparatus defined in claim 15, and further including:
 a) a toggle fluid cylinder connected between said second shafts connecting said first link and said second link of each of said pair of opposed toggle joints,
 b) control valves connected to each of said toggle fluid cylinders, and
 c) means to control said means to operate each of said toggle fluid cylinders.

17. The molding apparatus defined in claim 16, wherein each of said toggle fluid cylinders is replaced by a ball screw.
18. The molding apparatus defined in claim 16, wherein said means to operate said moveable platen further include:

 a) a plurality of tie bars attached to said frame member in a parallel spaced relationship,
 b) an equal plurality of tie bar bearings mounted to said moveable platen and slidably engaging said tie bars to provide for movement of said moveable platen back and forth along said tie bars.

19. The molding apparatus defined in claim 18, wherein said means to operate said moveable platen further include an anti-jamming mechanism.

20. The molding apparatus defined in claim 19, wherein said means to move said door platen comprise:

 a) a first hinge means connected to said frame member to allow said door platen to rotate between its open and its fixed position, said first hinge means including a hinge arm, and
 b) a fluid cylinder having a reciprocating shaft, said reciprocating shaft connected to said hinge arm, and said fluid cylinder pivotally connected to said frame member.

21. The molding apparatus defined in claim 20, wherein said means to fix said door platen in its fixed position comprise:

 a) a plurality of fluid cylinders having reciprocally moveable shafts mounted to said frame member proximate the corners of said door platen when said door platen is in its stationery position,
b) an equal plurality of shaft bearings mounted to said door platen to accept said reciprocally moveable shafts when said shafts are in their extended positions, and

c) means to operate said fluid cylinders as desired to cause the shafts thereof to engage said shaft bearings and fix said door platen in its fixed position.

22. The molding apparatus defined in claim 19, wherein said anti-jamming mechanism is a cross-link anti-jamming mechanism.

23. The molding apparatus defined in claim 19, wherein said anti-jamming means is a rack and pinion anti-jamming mechanism.

24. A compact molding apparatus comprising:
 a) a frame member;
 b) a movable platen mounted to said frame member for substantially reciprocal movement,
 c) a first powered actuator operably connected with said movable platen;
 d) a fixable platen moveably mounted to said frame member and fixable in a fixed relationship to said movable platen during a molding operation,
 e) a second powered actuator operably connected with said fixable platen for moving it into and out of said fixed relationship with said moveable platen, and
 f) a controller selectively actuating said first and second powered actuators.
25. A molding apparatus, comprising:
 a) a support;
 b) a first mold portion moveably mounted on said support for movement between open and closed positions;
 c) a second mold portion moveably mounted on said support; and
 d) said first and second mold portions together defining a mold cavity when said first mold portion is in said closed position.

26. The molding apparatus set forth in claim 25, including:
 a) a first powered actuator connected to said first mold portion and selectively shifting the same between said open and closed positions; and
 b) a second powered actuator connected to said second mold portion and selectively shifting the same between extended and retracted positions.

27. The molding apparatus set forth in claim 26, wherein:
 a) said support includes at least two elongate parallel rods, said second mold portion slidably mounted thereon.

28. A molding apparatus, comprising:
 a) a support;
 b) a first mold portion moveably mounted to said support for movement between an access position and an operating position;
c) a second mold portion moveably mounted on said support and defining a mold cavity with said first mold portion when said first mold portion is in said operating position; and

d) a powered lock pin shiftable between an engaged position and a disengaged position, said lock pin fixing said first mold portion in said operating position when said lock pin is in said engaged position.

29. The molding apparatus set forth in claim 28 including:

a) a first powered actuator connected to said first mold portion and selectively shifting the same between said access and operating positions; and

b) a second powered actuator connected to said second mold portion and selectively shifting the same between extended and retracted positions.

30. A molding apparatus, comprising:

a) support having a guide;

b) a first mold portion connected to said support;

c) a second mold portion moveably mounted on said guide for movement between engaged and disengaged positions relative to said first mold portion and defining a mold cavity when in said engaged position;

 d) a powered actuator having a first end that extends upon actuation;

 e) at least a first toggle linkage joining said second mold portion to said support, said toggle linkage comprising first and second links pivotally connected at a first toggle joint, said first link
being pivotally connected to said second mold portion and said second link being pivotally connected to said support, and

f) said powered actuator connected to said toggle joint, such that said powered actuator can be extended to press against said toggle joint and thereby straighten said toggle linkage and force said second mold portion into engagement with said first mold portion, and contracted to collapse said toggle linkage and move said second mold portion away from said first mold portion.

31. The molding apparatus set forth in claim 30, wherein:

a) said powered actuator comprises a fluid cylinder, and wherein there is a second one of said toggle linkages, also joining said moveable platen to said frame;

b) said cylinder includes first and second ends that are extendable relative to one another, said first cylinder end being connected to said toggle joint of said first toggle linkage and said second end of said cylinder being connected to the toggle joint of said second toggle linkage, whereby extension of said cylinder straightens both said toggle linkages simultaneously, and contraction of said cylinder collapses both of said toggle linkages simultaneously.

32. The mold apparatus set forth in claim 31, wherein:

a) said first mold portion is pivotally connected to said support and moveable between open and closed positions.
33. A molding apparatus comprising:
a frame;
a door platen hingedly mounted on said frame;
a moveable platen moveably mounted on said frame
between a first position spaced from said door platen and a
second position adjacent said door platen;
at least a first toggle linkage joining said moveable
platen to said frame, said toggle linkage comprising first
and second links pivotally connected at a first toggle
joint, said first link being pivotally connected to said
moveable platen and said second link being pivotally
connected to said frame;
a cylinder connected to said toggle joint, which can
be extended to press against said toggle joint and thereby
straighten said toggle linkage, and force said moveable
platen and a mold half mounted thereon into engagement with
a mold half mounted on said door platen, when said door
platen is closed, and contracted to collapse said toggle
linkage and move said moveable platen away from said door
platen.

34. The molding apparatus set forth in claim 33,
including:
a second toggle linkage substantially identical to
said first toggle linkage and joining said moveable platen
to said frame, said second toggle linkage comprising third
and fourth links pivotally connected at a second toggle
joint, said third link being pivotally connected to said
moveable platen and said fourth link being pivotally
connected to said frame, said cylinder connected to said
second toggle joint and extending between said first and
second toggle joints.
35. The molding apparatus set forth in claim 33, including:
an elongate shaft having a pair of spaced-apart pinion gears rotatably mounted to a selected one of said frame and said movable platen; and
a pair of rack gears meshing with said pinion gears, said rack gears mounted to the other of said frame and said movable platen to form an anti-racking mechanism.

36. The molding apparatus set forth in claim 33, including:
a movable lock member mounted on a selected one of said frame and said door platen, said lock member selectively shiftable to a locked position wherein said door platen is secured in a closed position.

37. The molding apparatus set forth in claim 36, wherein:
said lock member comprises a powered shot pin mounted on said frame, said door including an aperture which receives said shot pin when in said locked position.

38. The molding apparatus set forth in claim 33, wherein:
said cylinder comprises a fluid cylinder.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- IPC(7) : B29C 45/04,14
- US CL : 264/275; 425/117, 125, 126.1, 129.1, 409

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- U.S. : 264/275; 425/117, 125, 126.1, 129.1, 409

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 3,577,591 A (RICARDS et al.) 29 March 1968, see entire document.</td>
<td>1-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 3,915,617 A (SALADIN) 28 October 1975, see entire document.</td>
<td>1-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,269,587 A (TRANTER) 26 MAY 1981 see entire document.</td>
<td>1-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,354,819 A (WIRZ) 19 October 1982, see entire document.</td>
<td>1-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,688,752 A (BARTECK et al.) 25 August 1987, see entire document.</td>
<td>1-38</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,061,429 A (YOSHIIHARA et al.) 29 October 1991, see entire document.</td>
<td>1-38</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

<table>
<thead>
<tr>
<th>*</th>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>E</td>
<td>earlier document published on or after the international filing date</td>
</tr>
<tr>
<td>L</td>
<td>document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>O</td>
<td>document referring to an oral disclosure, use, exhibition or other means</td>
</tr>
<tr>
<td>P</td>
<td>document published prior to the international filing date but later than the priority date claimed</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 24 FEBRUARY 2000

Date of mailing of the international search report: 08 MAR 2000

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks

- Box PCT
- Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer: ANGELA ORTIZ

Telephone No. (703) 308-0651

Form PCT/ISA/210 (second sheet) (July 1992)