This invention relates to devices designed for use in connection with the so-called "holes" formed in golf course, into which the balls are to be driven.

In order that these holes may be circular and of a standard diameter, it has been customary to line each hole with a cylindrical metal cup which has a standard external diameter of 4½" and is set down into the ground to a point at which its top edge is from one half an inch to approximately an inch below the level of the adjacent surface of the ground. These metal cups should be, and usually are set below the surface to this extent for several reasons, principally to prevent possibility of engagement of the ball with the cup rim in a manner to cause it to be deflected and prevented from rolling into the cup, and, also, because the ball, when it enters the cup, is liable to strike the inner surface thereof and bound out of the hole.

On the other hand, when the metal cup is set at a substantial distance below the ground level, the rim of hole is likely to crumble away to such an extent that the entrance thereto is considerably enlarged beyond the standard diameter, so that the ball is frequently deflected into the hole when it would not enter it if the entrance was of standard diameter at the surface of the ground. Consequently, the extent to which the metal cup may be set below the surface is limited.

Also, it is usually difficult for the golfer to determine the line in which the ball should be putted, as the exact location of the hole is likely to be indistinct and is particularly indistinct from positions near the edges of the putting green, so that it is customary for the golfer, when putting, to have the location of the hole indicated in some manner by a person, who stands close to the hole, but a person is not always available for this purpose, and many golfers do not wish to have any one standing in the line of the shot, or moving across this line, as they believe that it prevents perfect concentration on the putt.

The objects of my invention are to provide a simple and effective means adapted to be employed in connection with the usual, or standard golf hole cup, which will prevent enlargement of the hole by the caving in of the soil around its top, without interfering with the free passage of the ball into the hole, and which, at the same time, will prevent the ball from striking a metallic surface, so that the impact thereof against the side of the cup will cause the ball to be deflected from, or to rebound out of the hole. Also to provide a means which will enable the hole to be readily seen from points where it is visible at all, so that it will be unnecessary for another person to indicate its position to theputer.

I accomplish these objects by providing a cylindrically formed sheet of fibrous material, preferably paper of light color, which is adapted to be tightly fitted into the metal cup and to extend close to the ground level, so that it will maintain the diameter of the hole at the standard specified in the rules of golf, without in any way obstructing the entrance of the ball thereto.

For a more complete disclosure of the invention reference is made to the following specification in connection with the accompanying drawings, in which:

Fig. 1 is a vertical central sectional view of a golf course hole provided with an embodiment of the invention.

Fig. 2 is a view, partly in elevation and partly in section, of a golf cup lining embodying the invention.

Fig. 3 is a top plan view thereof.

In the drawings, a cylindrical metal golf cup of common form, is indicated, the external diameter thereof corresponding to the standard diameter of the golf course hole, viz. 4½ inches, said cup being set into a hole formed in the ground, by means of a cylindrical tool of the same external diameter, so that the top edge, or rim of the cup is at a distance, approximating, in practice, to three fourths of an inch, below the level of the ground surface. The cup is provided with the usual perforated bottom q and a socket s for receiving the staff of an indicating flag.

According to my invention I provide a lining d for the top portion of the cup and
the hole in which it is set, which consists of a cylindrically formed sheet of fibrous material, which is practically nonresilient, preferably waterproofed paper of sufficient thickness to give it the necessary stability for the purpose. Said lining comprises a lower portion \(\delta_1 \), the external diameter of which corresponds to the internal diameter of the cup, so that said portion may be closely fitted within the cup, as shown, and a top portion \(\delta_2 \), which is adapted to protrude beyond, or above the top edge of the cup and is outwardly offset from the lower portion \(\delta'_1 \) by means of a shoulder \(\delta_3 \), so that its external diameter corresponds to, or is practically the same as the standard diameter of the golf hole and consequently the same as the external diameter of the cup \(\alpha \).

The length of the top portion \(\delta_2 \) may be varied according to the distance which the cup is to be set below the surface of the ground, and will be slightly less than this distance, so that, when the lining is inserted in the cup until its external annular abutment formed by shoulder \(\delta_3 \) is seated on the top edge, or rim of the cup, the top edge of the portion \(\delta_2 \) will be a short distance below (preferably at least one eighth of an inch below) the ground surface. As the material of which the lining is preferably formed is of substantial thickness, as, for example, approximately the same thickness as that of the sheet metal of which the cup is formed, the top edge portion of the top portion \(\delta_2 \) is internally tapered to a sharp edge, so that the internal diameter of the lining at its top edge is practically the same as its external diameter of not less, therefore, than the standard diameter of the hole and will not act to contract the hole at the surface of the ground edge, even if it were extended flush with the surface, and consequently will not obstruct the entrance of the ball into the hole. By the moulding operation by which the internally tapered edge at the lip of the lining is formed, this portion may be slightly flared, so that when the lining is forced into the hole the outer sides of the top portion of the lining will hug closely to the sides of the hole at its top.

As thus arranged, the portion of the hole above the metal cup will be lined with comparatively soft, or yielding, practically nonresilient material, which, if struck by a golf ball, will not materially tend to cause the ball to rebound, as would be the case if it struck any portion of the metal cup, and, in many instances, even the soil directly above it. At the same time, the top portion \(\delta_2 \) acts to prevent the soil around the side of the hole at the surface from crumbling and falling into the hole, thus preventing the hole from becoming enlarged at its entrance beyond the standard diameter of 4 1/4 inches, which is determined by the internal diameter of the paper lining, at its top edge and the diameter of the hole in the ground above it, which is practically the same.

The exact length of the paper cylinder is unimportant, but is preferably such that, when in position in the metal cup, it will extend nearly to the spider which supports the socket \(c \), and its bottom edge portion is preferably provided with means for frictionally engaging the inner surface of the cup, so as to prevent displacement of the lining by engagement of the hand therewith when the balls are removed from the hole.

While such frictional engagement may be secured in several different ways which would be effective, a preferable construction consists in providing the lower edge portion of the cylinder with a slightly out turned lip \(\delta'_3 \), which may be provided with a plurality of slits \(\delta'_2 \), adapted to permit the lip to be slightly collapsed when the lining is inserted, but which will not seriously detract from the force of the frictional engagement.

As the paper lining is light in shade and completely covers all that is ordinarily visible of the sides of the hole and cup, the golfer will be enabled to see the position of the hole without difficulty from any position on the ordinary putting green, so that it will not be necessary, or desirable to provide other indicating means therefor.

By making the lining of suitably waterproofed material, it will effectively withstand moisture for a considerable length of time, so that it will be unnecessary to renew it with undesirable frequency.

While it is generally considered desirable to set the metal cup at least three-fourths of an inch below the ground level, when the above described paper lining is not employed, with the above described lining the metal cup may be, and preferably is set substantially lower than the point above indicated, in which case the length of the top portion of the lining will be correspondingly increased. Possibility of substantial rebound of the ball after it enters the hole is thus avoided, enlargement of the hole by the crumbling of the soil is prevented, and a white target for the golfer when putting is provided. Also, if the thin top edge of the lining should become exposed, so that it would be engaged by the ball, as this edge is soft and yielding, as compared with the rim of the metal cup, it would have little or no tendency to deflect the ball from its course to the hole.

I claim:

1. In combination with a cylindrical metal golf hole cup, a lining therefor and for the top portion of the hole in which the cup is placed, composed of a cylindrically formed sheet of fibrous material of suitable stiffness having one end portion thereof fitted within the top portion of the cup, and the opposite end portion thereof protruding beyond the
top edge of the cup, to line a portion of the hole directly thereafter.

2. In combination with cylindrical metal golf hole cup of standard external diameter, a cylindrically formed paper lining having one end portion thereof fitted within the cup and having its opposite end portion protruding beyond the top end of the cup, the external diameter of said protruding portion corresponding to the external diameter of the cup.

3. In combination with a cylindrical metal golf hole cup, a lining therefor and for the top portion of the hole in which the cup is placed, composed of a cylindrically formed sheet of fibrous material of suitable stiffness having one end portion thereof fitted within the top portion of the cup and provided with frictional engaging means for retaining it therein, the opposite end portion of said lining protruding beyond the top edge of the cup and having its external diameter corresponding to the standard diameter of the golf hole.

4. In combination with a cylindrical metal golf hole cup, a cylindrical lining of fibrous sheet material having one end portion thereof closely fitted within the top end portion of said cup and having its opposite end portion protruding for a substantial distance beyond the top edge of said cup, a shoulder connecting said portions and seated on the top edge of the cup, to hold the top end of said protruding portion at a predetermined level with relation to the cup, and said protruding portion having its external diameter corresponding to the external diameter of the cup.

5. In combination with a cylindrical metal golf hole cup having a standard external diameter, a lining for said cup, and for the top portion of the hole in which it is placed, composed of a cylinder of fibrous sheet material having one end portion thereof closely fitted within the top end portion of the cup and having its opposite end portion protruding beyond the top edge of the cup for a distance slightly less than the distance which the cup is to be set beneath the ground level, said portions of said lining having an external connecting shoulder engaged with the top edge of the cup and said protruding portion having its external diameter corresponding to the external diameter of the cup.

6. A lining for a cylindrical metal golf hole cup, and for the top portion of the hole in which the cup is placed, consisting of a cylindrically formed sheet of fibrous material having its bottom portion adapted to be fitted within the top end portion of the cup and having its top portion internally tapered to a thin edge and adapted to protrude beyond the top end of the cup, the external diameter of the top portion of the lining corresponding to the external diameter of the cup.

7. A lining for a metal golf hole cup and the top portion of the hole in which it is placed consisting of a sheet of stiff fibrous material formed to provide a main cylindrical portion adapted to be fitted within the top portion of the cup and a cylindrical end portion adapted to protrude beyond the top end of the cup and having an external diameter corresponding to the standard diameter of the golf hole, and an external shoulder intermediate said portions adapted to seat against the top end of the cup.

8. A lining for a cylindrical metal golf hole cup, and for the top portion of the hole in which the cup is placed, consisting of a cylindrically formed sheet of fibrous material of suitable stiffness having one end portion thereof adapted to be closely fitted within the cup, said portion having a yieldable projection for frictionally engaging the inner surface of the cup tending to prevent displacement thereof, the opposite end portion thereof being adapted to protrude beyond the top end of the cup, to determine the diameter of the hole in which it is placed.

9. A lining for a golf hole comprising a metal cylinder of standard external diameter adapted to be seated in the bottom of the hole and a cylinder of stiff, waterproofed paper, also of standard external diameter, adapted to be seated on the top edge of the metal cylinder and to extend therefrom into proximity with the top of the hole.

10. A golf cup device comprising a golf ball receiver including a mouth portion of flexible non- resilient material adapted to be inserted in a green with the upper end of said mouth portion substantially flush with the surface of the green.

11. A golf cup device comprising a cylindrical housing, a cylindrical cup positioned therein, and a sleeve of flexible non-resilient material engaged in said housing and projecting above the upper end thereof.

12. A golf cup device comprising a golf ball receiver including a mouth portion constructed of flexible non-resilient material, and means for supporting said mouth portion with the upper end thereof projecting above the upper end of said means.

In testimony whereof, I have signed my name to this specification.

RALPH C. CROCKER.