PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 10 June 1991 (10.06.91)

(30) Priority data:

36,198 11 June 1990 (11.06.90) uUs

(71) Applicant: SUPERCOMPUTER SYSTEMS LIMITED
PARTNERSHIP [US/US}; 1414 W. Hamilton Avenue,
Eau Claire, WI 54701 (US).

(72) Inventors: BEARD, Douglas, R. ; S10505 Lowes Creek
Road, Eleva, WI 54738 (US). SPIX, George, A. ; 3309
Westover Lane, Eau Claire, WI 54701 (US). MILLER,
Edward, C. ; 3383 Evergreen Lane, Eau Claire, WI
54701 (US). STROUT, Robert, E., III ; 948 Kern Court,
Livermore, CA 94550 (US). SCHOOLER, Anthony, R. ;
S7665 Homestead Road, Eau Claire, WI 54701 (US).
SILBEY, Alexander, A. ; 2518 West Princeton Avenue,
Eau Claire, WI 54703 (US). VANDERWARN, Brandon,
D. ; East 2535 Kirk Drive, Eau Claire, WI 54701 (US).
WILSON, Jimmie, R. ; 3716 Partridge Run, Eau Claire,
WI 54701 (US). HESSEL, Richard, E. ; 3618 Altoona
Avenue, Altoona, WI 54720 (US). PHELPS, Andrew, E.
; 6551 Hillview Road, Eau Claire, WI 54701 (US).

(51) International Patent Classification 5 : (11) International Publication Number: WO 91/20043
GO6F 15/16 Al | 43) Intemational Publication Date: 26 December 1991 (26.12.91)
(21) International Application Number: : PCT/US91/04058 | (74) Agents: PEDERSEN, Brad, D.; Dorsey & Whitney, 2200

First Bank Place East, Minneapolis, MN 55402 (US) et
al.

(81) Designated States: AT (European patent), AU, BE (Euro-
pean patent), CA, CH (European patent), DE (Euro-
pean patent), DK (European patent), ES (European pa-
tent), FR (European patent), GB (European patent), GR
(European patent), IT (European patent), JP, KR, LU
(European patent), NL (European patent), SE (Euro-
pean patent).

Published
With international search report.

. (54) Title: GLOBAL REGISTERS FOR A MULTIPROCESSOR SYSTEM

FROM OTHER CLUSTERS
FROMAN.#1 FROMAN. #16 (THROUGH MRCA)
r406\ } 1 -ll
| L 4 . 4 Y |
{ . |DECODE | +++|DECODE || DECODE| | PIPELINE | ooo| PPELINE PPE.lE}
e T 1 T T el [|
|
P S z |
' ARBITRATION LOGIC 17:19 :
} INPUT
L b= e e 5]
Z
s iy 7
51 440 400 440~ 400 | TOTHE
AN w3 N
GLOBAL GLOBAL GLOBAL ~L°°'c‘
REGISTER REGISTER REGISTER
FILE#1 YY) FILE 87 FILE #8 T?NW
ALY AlUTR—4g0 LOGIC
. ‘60 FROM THE FAST
450)/ FUNCTIONAL UNIT 480 v
QUTPUT PATH
[9:17 GL0BAL REGISTERS OUTPUT GROSSBAR h
TOAN. #1 TOAN.#18 TO OTHER CLUSTERS
(57) Abstract (THROUGH MRCA)

Global registers (16) for a multiprocessor system support multiple parallel access paths for simultaneous operations on
separate sets of global registers (16), each set of global registers referred to as a global register file (400). An arbitration mechan-
ism (51) associated with the global registers (16) is used for resolving multiple, simultaneous requests to a single global register
file (400). An arithmetic and logical unit (ALU) (460) is also associated with each global register file (400) for allowing atomic
arithmetic operations to be performed on the entire register value for any of the global registers in that global register file (400).

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzerland
Céte d'lvoire
Cameroon
Czechoslovakia
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece

Hungary

laly

Japan

Democratic People’s Republic
of Korca
Republic of Korca
Liechtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Senegal
Sovict Union
Chad

Togo

United States of America

WO 91/20043

10

15

20

30

35

GLOBAL REGISTERS FOR A MULTIPROCESSOR SYSTEM

TECHNICAL FIELD

This invention relates generally to the field of registers and
interconnection techniques for multiprocessor computer and electronic
logic systems. More particularly, the present invention relates to a system
of global registers for a multiprocessor system that provides for an efficient
and distributed mechanism that is capable of providing an atomic resource
allocation mechanism for interconnecting and coordinating the
multiprocessors in such a system.

BACKGROUND ART

The use of global registers as part of the interconnection and control
mechanisms for multiprocessor systems is well known in the prior art.
Global registers are registers that are generally accessible to all requestors in
a multiprocessor system. In an article by E. W. Dijkstra entitled
"Co-operating Sequential Processes,”" in F. Genuys (ed.), Programming
Languages (Academic Press, New York 1968), Dijkstra describes the use of
global registers for a semaphore operation to control the operational flow
of a multiprocessor system. The use of global registers as part of a
semaphore operation is typically limited to minimally parallel
supercomputers and hierarchical memory supercomputers. Massively
parallel supercomputers, by their very architecture, do not have a use for a
set of global registers as control and coordination of the processors is
accomplished via a message passing scheme.

Most prior art global register systems utilize some form of hardware
dependent interlock mechanism to accomplish the semaphore function.
For example, in the architecture for the Cray X-MP supercomputer

PCT/US91/04058

WO 91/20043

10

15

20

30

35

PCT/US91/04058

2

developed by Cray Research, Inc., that is the subject of U.S. Patent No.
4,363,942, a deadlock interrupt means is used to coordinate requests to the
global registers by two high-speed processors. While this type of tightly-
coupled, direct-connection method is an efficient means for coordinating
two high speed processors, the hardware deadlock interrupt mechanism
described in that patent is most effective when both the number of
processors being coupled together and the number of global registers
involved are relatively small.

In addition, most prior art global register systems have been
implemented using a small set of global registers with relatively few access
paths. Because minimally parallel supercomputers typically operate with
a centralized operating system, many of the potential conflicts for global
register usage are controlled by the centralized operating system which can
limit the number of processors assigned to access a given global register.
As a result, there has generally been no need in the prior art to provide for
a large number of global registers capable of distributed and/or
multithreaded processing on the contents of more than one global register
at a time.

The design of global registers for supercomputers has been
problematic in prior art multiprocessor systems, even with the limited
design requirements of those architectures. In an effort to increase the
processing speed and flexibility of multiprocessor computer processing
systems, the previously filed parent application to the present invention
entitled CLUSTER ARCHITECTURE FOR A HIGHLY PARALLEL
SCALAR/VECTOR MULTIPROCESSOR SYSTEM, PCT Serial No.:
PCT/US90/07655, provides a cluster architecture that allows a number of
processors and external interface ports to make multiple and
simultaneous requests to a common set of shared hardware resources.
One of those shared hardware resources is a set of global registers. The
problem of global register design is further compounded by several
important design factors that are utilized in the design of this cluster
architecture. First, the global registers must be capable of supporting many
multiple requests to the same global register. Second, the global registers
must operate in a distributed environment where there is no central
scheduler and where portions of the distributed input/output are also
allowed direct access to the global registers without processor intervention.
Finally, the global registers must be capable of atomic arithmetic

WO 91/20043

10

15

20

30

35

PCT/US91/04058

3

operations and atomic resource allocation operations in order to support
the software routines for a multithreaded operating system that use shared-
variable synchronization and anarchy-based scheduling to allocate work
and coordinate access to common data structures used by the operating
system.

The problem of global register design has generally been managed
in prior art supercomputers by assigning a single, central scheduling
processor to keep track of what resources were currently being used by
which processor. In the distributed access architecture of the cluster
architecture for a multiprocessor system, access to all shared resources,
including global registers, is equal and democratic and there is no central
scheduler. Consequently, a new design for global registers for a distributed
access architecture multiprocessor system is needed.

SUMMARY OF THE INVENTION

The present invention provides for global registers for a
multiprocessor system that will support multiple parallel access paths for
simultaneous operations on separate sets of global registers, each set of
global registers being referred to as a global register file. An arbitration
mechanism associated with the global registers is used for resolving
multiple, simultaneous requests to a single global register file. An
arithmetic and logical unit (ALU) is also associated with each global
register file for allowing atomic arithmetic operations to be performed on
the entire register value for any of the global registers in that global
register file. '

The global registers of the present invention are a globally accessible
resource that may be accessed from any processor or peripheral controller
through an external interface port in the multiprocessor system. The
global registers support a variety of synchronization primitives to allow
the most efficient choice for synchronization primitive, depending upon
the particular synchronization task at hand. One of the more notable
synchronization primitives of the present invention is the Fetch and
Conditional Add (FCA) instruction. The FCA instruction may be used by
the software routines for a multithreaded operating system that uses
shared-variable synchronization and anarchy-based scheduling to allocate
work and coordinate access to common data structures used by the

operating system.

WO 91/20043

10

15

20

30

35

PCT/US91/04058

4

In the preferred embodiment, the global registers are implemented
as one part of an entire set of common shared hardware resources that are
all available to each requestor in a distributed, democratic multiprocessor
environment. The global registers are organized as eight global register
files within each cluster of the preferred embodiment of the
multiprocessor system. The organization of the global registers of the
present invention into global register files allows simultaneous access to
multiple global register files. In the preferred embodiment, there are 8192
global registers per cluster and 1024 global registers per global register file.

It is an objective of the present invention to provide a set of global
registers that will support multiple parallel access paths for simultaneous
operations on separate global register files.

Another objective of the present invention is to provide a set of
global registers that allow atomic arithmetic operation to be performed on
the entire register value for any of the global registers.

A further objective of the present invention is to provide a set of
global registers that are capable of supporting a Fetch and Conditional Add
(FCA) instruction.

These and other objectives of the present invention will become
apparent with reference to the drawings, the detailed description of the
preferred embodiment and the appended claims.

DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of the various interconnections among
processors, external interface ports and the global registers in a single
cluster of a multiprocessor system in the preferred embodiment of the
present invention.

Figs. 2a and 2b are a block diagram of a four cluster implementation
of the preferred embodiment of a multiprocessor system.

Fig. 3 is a block diagram showing the implementation of the global
registers as part of the NRCA means of the preferred embodiment of the
multiprocessor system.

Fig. 4 is a block diagram showing the arbitration logic and cross bar
switch mechanisms for the various global register files of the present
invention.

Fig. 5 is a is a more detailed block diagram of Fig. 4 showing the data
and address pipelines for the global registers.

WO 91/20043

10

15

20

30

35

PCT/US91/04058

5

Fig. 6 is a schematic representation of the logical and physical
address maps for the global registers.

Fig. 7 is a more detailed block diagram of Fig. 4 showing the address
and data lines for a single global register file and the arithmetic logical unit
associated with that global register file.

Fig. 8 is a schematic representation showing the global register

addressing.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to Fig. 1, the architecture of a single multiprocessor cluster
of the preferred embodiment of the multiprocessor system for use with
the present invention will be described. The preferred cluster architecture
for a highly parallel scalar/vector multiprocessor system is capable of
supporting a plurality of high-speed processors 10 sharing a large set of
shared resources 12 (e.g., main memory 14, global registers 16, and
interrupt mechanisms 18). The processors 10 are capable of both vector
and scalar parallel processing and are connected to the shared resources 12
through an arbitration node means 20. Also connected through the
arbitration node means 20 are a plurality of external interface ports 22 and
input/output concentrators (IOC) 24 which are further connected to a
variety of external data sources 26. The external data sources 26 may
include a secondary memory system (SMS) 28 linked to the input/output
concentrator 24 via a high speed channel 30. The external data sources 26
may also include a variety of other peripheral devices and interfaces 32
linked to the input/output concentrator 24 via one or more standard
channels 34. The peripheral devices and interfaces 32 may include disk
storage systems, tapé storage system, printers, external processors, and
communication networks. Together, the processors 10, shared resources
12, arbitration node means 20 and external interface ports 22 comprise a
single multiprocessor cluster 40 for a highly parallel multiprocessor
system in accordance with the preferred embodiment of the present
invention.

The preferred embodiment of the multiprocessor clusters 40
overcomes the direct-connection interface problems of present
shared-memory supercomputers by physically organizing the processors
10, shared resources 12, arbitration node means 20 and external interface
ports 22 into one or more clusters 40. In the preferred embodiment shown

WO 91/20043

10

15

20

30

35

PCT/US91/04058

6

in Fig. 2a and 2b, there are four clusters: 40a, 40b, 40c and 40d. Each of the
clusters 40a, 40b, 40c and 40d physically has its own set of processors 10a,
10b, 10¢ and 10d, shared resources 12a, 12b, 12¢ and 12d, and external
interface ports 22a, 22b, 22¢c and 22d that are associated with that cluster.
The clusters 40a, 40b, 40c and 40d are interconnected through a remote
cluster adapter 42 that is a logical part of each arbitration nodes means 20a,
20b, 20c and 20d. Although the clusters 40a, 40b, 40c and 40d are physically
separated, the logical organization of the clusters and the physical
interconnection through the remote cluster adapter 42 enables the desired
symmetrical access to all of the shared resources 12a, 12b, 12c and 12d
across all of the clusters 40a, 40b, 40c and 40d.

In the present invention, any and all processors 10 and external
interface ports 22 may simultaneously access the same or different global
registers 16 in any given clock cycle. The global registers 16 are physically
and logically organized into global register files. References to global
registers within a given global register file are serialized over a number of
clock cycles and take place at the rate of one operation every clock cycle.
Simultaneous references to registers in separate global register files take
place in the same clock cycle. Global register logic resolves any access
contention within a global register file by serially granting access to each
requestor so that only one operation is performed at a time. References to
a single global register within a global register file are processed in the
order in which they arrive. The preferred embodiment provides
addressing for a contiguous block of 32,768 global registers located among
the four clusters 40. There are 8192 global registers per cluster 40. The
global registers are organized within each cluster 40 as eight global register
files so that accesses to different global register files can occur
simultaneously.

Referring now to Fig. 3, the preferred embodiment of the global
registers 16 is described. In the preferred embodiment, the global registers
are associated with the logic for the NRCA means 46 in the remote cluster
adapter 42. While the physical location of the global register 16 is
preferably in the remote cluster adapter 42 for the preferred multiprocessor
system, it will be understood that the location and global registers 16 can be
accomplished by a variety of designs, depending upon the architecture and
layout of the multiprocessor system that is using them.

WO 91/20043

10

15

20

30

35

PCT/US91/04058

7

There are sixteen NRCA ports 47 in the arbitration node means 20
(one per arbitration node 44) that provide an access path to the global
registers 16 from the thirty-two processors 10 and thirty-two external
interface ports 22 in a cluster 40. Each NRCA port 47 is shared by two
processors 10 and two external interface ports 22 and is accessed over the
path 52. A similar port 49 services inter-cluster requests for the global
registers 16 in the cluster 40 as received by the MRCA means 48 and
accessed over the path 56. It will be recognized that access time to global
registers 16 will, in general, be slightly faster than to main memory 14
when requests remain within the same cluster 40. Also, there is no
interference between in-cluster memory traffic and global register traffic
because requests are communicated over different paths.

In the NRCA means 46, a cross bar/arbitration means 51 and an
remote cluster crossbar 53 receive requests from the sixteen arbitration
nodes 44 and the MRCA means 48. Access to the NRCA means 46 via
paths 52 and 56 are routed through the cross bar/arbitration means 51 to
direct the access to and from the appropriate logic in the NRCA means 46
for the global register 16 and the interrupt mechanism 18 comprised of
signal logic 31 and fast interrupt logic 33. For the global registers 16, an
arbitration decision requires address information to select the target
register and control information to determine the operation to be
performed as described in greater detail hereinafter. This information is
transmitted to the NRCA means 46 along with the data. The address and
control can be for data to be sent to global registers 16 or to signal logic 31
or fast interrupt logic 33. '

An important feature of the global registers 16 of the present
invention is their ability to perform a read-modify-write operation in a
single uninterruptable operation. This feature is used to provide atomic
resource allocation mechanisms that are used by the operating system and
input/output system for creating a multiprocessor system that has
integrated support for distributed and multithreaded operations
throughout the multiprocessor system. Several versions of such an
atomic resource allocation mechanism are supported. The atomic global
register operations are as follows: |

Test And Set (TAS) - Data supplied by the originator of the request

is logically ORed with data in the register, and the result is placed in

WO 91/20043 PCT/US91/04058

10

15

20

30

35

8

the selected register. Contents of the register prior to modification
are returned to the originator of the request.

Set (SET) - Data supplied by the originator of the request is logically
ORed with data in the register, and the result is placed in the
register.

Clear (CLR) - Selected bits in the selected global register are cleared
set in resposne to data supplied by the originator of the request.
Fetch And Add (FAA) - Data supplied by the originator of the
request is arithmetically added to the value in the register, and the
result is placed in the register. Register contents prior to the
addition are returned to the originator of the request.

Fetch and Conditional Add (FCA) - Data supplied by the originator
of the request is arithmetically added to the value in the register,
and the result is placed in the register if the result of the add is
greater than or equal to zero. If the result of the add is less than
zero, the register contents are not changed. Register contents prior
to the addition are returned to the originator of the request.

Add (ADD) - Data supplied by the originator of the request is
arithmetically added to the value in the register, and the result is
placed in the register.

Swap (SWAP) - Data supplied by the originator of the request is
written into the selected register. Contents of the register prior to
modification are returned to the originator of the request.

Read (READ) - Contents of the register are returned to the
originator of the request. '

Write (WRITE) - Data supplied by the originator of the request is
written into the selected register.

A more detailed description of each of these instructions is set forth
in Appendix A which is attached hereto and incorporated by reference.

Synchronization via a semaphore-like operation using the global
registers 16 is accomplished by the Test and Set (TAS) instruction and a
software convention to make a specific global register 16 contain
semaphore information. The TAS instruction causes a number of bits to
be set in a global register 16. However, before the data is modified, the
contents of the global register 16 are sent back to the issuing processor 10.
The processor 10 then checks to see if these bits are different than the bits

WO 91/20043

10

15

20

30

35

PCT/US91/04058

9

originally sent. If they are different, the processor 10 has acquired the
semaphore because only one register at a time can change any data in a
global register 16. If the bits are the same, the software may loop back to
retry the TAS operation.

Besides the obvious rapid synchronization capability required to
support parallel processing, additional functionality has been designed
into the global registers 16 and the overall architecture. At compilation,
each process determines how many processors 10 it can use for various
portions of the code. This value can be placed in its active global register
set. Any free processor is, by definition, in the operating system and can
search for potential work simply by changing the GMASK and GOFFSET
control registers as described in further detail in connection with Fig. 8 and
scanning an active process's processor request number.

Processors, when added to a process, decrement the processor
request number. The operating system can easily add processors to a
process, or pull processors from a process, based on need and usage. The
fetch and conditionally add (FCA) instruction ensures that no more
processors than necessary are added to a process. This instruction also
facilitates the parallel loop handling capabilities of multiple processors.

Referring now to Fig. 4, the cross bar/arbitration means 51 is
described in greater detail. The flow begins with data from one of the
arbitration nodes 44 which has been buffered by the NRCA means 46. As
each request is received at the NRCA input registers 510 (Fig. 5), decode
logic 406 decodes the request to be presented to a global register arbitration
network 410. If simultaneous requests come in for multiple global
registers 16 in the same global register file 400, these requests are handled
in a pipelined manner by the FIFO's 412, pipelines 414 and the global
register arbitration network 410. Priority is assigned by a FIFO (first in, first
out) scheme supplemented with a multiple request toggling priority
scheme. The global register arbitration network 410 uses this type of
arbitration logic, or its equivalent, to prioritize simultaneous requests to
the same global register file 400. When priority is determined by the
arbitration network 410, a 17x10 crossbar switch means 430 matches the
request in the FIFO 412 with the appropriate global register file 400. A
plurality of NRCA input registers 510 (Fig. 5) provide seventeen paths into
the global registers input crossbar 430. There are eight paths 440 out of the
global registers input crossbar 430 to the global register files 400, one path

WO 91/20043

10

15

20

30

35

PCT/US91/04058

10

442 to the signal logic 31, and one path 444 to the fast interrupt logic 33.
After the global register file operation is completed, global register output
cross bar 422 routes any output from the operation back to the requesting
port.

In the preferred embodiment shown in Fig. 4, each global register
file 400 has 1024 general purpose, 64-bit registers. Each global register file
400 also contains a separate Arithmetic and Logical Unit (ALU) operation
unit 460, permitting eight separate global register operations in a single
clock cycle per cluster. The global register files 400 are interleaved eight
ways such that referencing consecutive locations accesses a different file
with each reference. In this embodiment, the global registers are
implemented using a very fast 1024x64-bit RAM.

As shown in Fig. 5, address and command information travel
through a pipeline 520 that is separate from the data pipeline 530. The
address and command information is decoded and used to direct data and
certain of the address bits to their destination. Because the results of the
arbitration decisions are used to direct data to this destination, the data and
arbitration results must arrive at the input crossbar 430 in the same clock
cycle. Staging registers 560 are added to the data pipeline 530 to adjust the
data delay to match the control delay through the address pipeline 520.

As shown in Fig. 6, the arbitration is based on a decode of address bit
13 (the SETN select bit), the three address least significant bit (the global
register file select bits), and a four-bit operation code (not shown). If the
operation code specifies a signal operation, the address and data
information are always sent to the signal logic output port 442. If address
bit 13 is set to one, the address, data, and command information are sent to
the fast interrupt logic output port 444. Otherwise, the address, control,
and data are sent to the global register file output port selected by the three
address LSB using one of the paths 440.

The other ten address bits of the logical address (bits 12-3) shown at
path 540 in Fig. 5 are not used in the arbitration process. They accompany
the data and are used in the functional units to select which register in the
file 400 will be modified. The command bits on path 540 are duplicated
and carried through the data pipeline as well for use at the destination.

Simultaneous requests from different sources for the same global
register file 400 (or for the signal logic 31 or the fast interrupt logic 33) are
resolved by the arbitration logic 410 by granting one of the requestors

WO 91/20043

10

15

20

30

35

PCT/US91/04058

11

access and delaying any other requests to later cycles. The arbitration
address pipeline registers 520 hold any requests that cannot be
immediately serviced in the Address Pipeline FIFO 570. In any single Data
Pipeline FIFO 580, the data are submitted serially. Similarly, requests in the
Address Pipeline FIFO 570 are handled serially. For example, data B
entered later cannot pass data A entered before it. Although data A may be
waiting for a busy global register, and data B may be waiting for an
available global register, data B can not be processed until data A is
finished. Data stays in order within a single queue; no data under Address
Control can slip ahead of the data order in Data Address Control.

Ten arbitrations can be handled simultaneously by the arbitration
logic 410. If data cannot go, signals 512 and 514 are sent to FIFOs 570 and
580, respectively, instructing them to hold the request at their respective
outputs. The FIFOs 570 and 580 then wait for their arbitration decision.
Signals (not shown) are sent back to each requestor from the arbitration
logic 410 indicating that a request has been removed from the FIFOs 570
and 580. The source uses this signal to determine when the FIFOs 570 and
580 are full. The source stops sending requests when the FIFOs 570 and 580
are full so that no requests are lost. Once an arbitration decision is made, a
multiplex select signal 590 is generated that steers the input cross bar 460.
This automatically unloads the FIFOs 570 and 580 and sends data to the
global register files 400 or the signal logic 31 or the fast interrupt logic 33.

The input crossbar 460 is implemented as ten, 17:1 multiplexors.
There is one multiplexor for each of the eight output paths 440, and
output paths 442 and 444. The multiplexors aré controlled by multiplex
select signals 590 from the arbitration logic. The arbitration logic 410 also
sends a signal to alert the NRCA means 46 (Fig. 3) that data will be
returning to the source via the functional unit output path 450 (Fig. 4).
Once the request is granted access, data will return to the NRCA means 46
in a fixed number of cycles. The NRCA logic relies on this fixed interval
to determine when to receive the data from the global registers 16 and
return it to the processor 10. Data is returned through a 9:17 Global
Registers OQutput Crossbar 422 (signal logic does not return data).

Referring now to Fig. 7, the operation of a single global register file
400 will be described. Data associated with a requested operation enters the
global register file 400 through the data to global register pipe 610. Data
travels through to global register pipe 610 in four steps. Each of the steps

WO 91/20043

10

15

20

35

PCT/US91/04058

12

requires a single clock cycle. The four steps in the data to global register
pipe 610 are as follows: .

1. Load data from the arbitration input crossbar 460 in Fig. 5 into

the data pipe input register 627.

2 Perform error detection and load the data into the detection
output register 628.

3. Perform error correction and load data into the correction
output register 629.

4, Move the data to the data pipeline output register 626.

The register address information associated with a requested
operation enters through the address pipe 609. Addresses pass through the
pipe in two steps. Each step requires a single clock cycle. The two steps in
the address pipe 609 are as follows:

1. Load data from the arbitration input crossbar 460 into the

address pipe input register 630.
2, Move the address to the register file read address register 624.

The address information is used to fetch data from the register file
623. The fetched data is modified by combining it with data from the global
register pipe 610 in the ALU 460. The modified data is then written back
into the register file 623. I the specified operation requires that data be
returned to the requestor, the data first fetched from the file 623 is
delivered to the NRCA logic via the functional unit output register 631.

The ALU 460 consists of a primary adder 602, a wrap adder 603, and
a logical unit 604. These three elements can take two operands from three
sources. The primary adder takes one operand from either the file output
latch 619 or the ALU output latch 621 via latch 620 and the second operand
from the data pipeline output register 626. The wrap adder takes one
operand from the ALU output latch 621 via latch 620 and the other from
the data pipeline output register 626. The logical unit takes one operand
from either the file output latch 619 or the ALU output latch 621 via latch
620 and the second operand from the data pipeline output register 626.

Five clock cycles are required to read a register in the file 623,
operate on the data in the ALU 460, and return data to the register. Each of
the steps requires a single clock cycle. The five steps are listed: '

WO 91/20043

10

15

20

30

35

PCT/US91/04058

13

1. Read the register file 623, load data into the file output latch
619.

2. Move data into the ALU input latch 620.

3. Perform the requested operation, using the primary adder 602
or the logical unit 604, and load data into the ALU output
latch 621.

4, Move data into the file input latch 622

5. Store data back into the selected register in the file 623.

The address delay unit 632 delays the read address used in step 1 by
four cycles so that it will be available to use when the modified data is
written back to the file 623 in step 5. The address delay unit 632 is loaded
from the register file read address register 624 at the end of step 1.

This sequence is followed whenever requests for access to the same
register are received no faster than once in five cycles. A second operation
on the same register initiated after step 5 above will follow the same
sequence.

If requests for access to the same register in the file 623 are received
on consecutive clock cycles, a different sequence is followed to ensure that
the second operation takes place using the results of the first operation,
even though the results of the first operation have not been written back

o file 623 at the time the second operation takes place. This sequence of

operations for consecutive accesses to the same register is as follows:

1. Read the register file 623, load data into the file output latch
619. ’

2. Move data into the ALU input latch 620.

3. Perform the first requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.

4. Perform the second requested operation, using the wrap

- adder 603 or the logical unit 604, and load data into the ALU
output latch 621.
5. Move data into the file input latch 622.
6. Store data back into the selected register in the file 623.

In the preceding sequence, if the logical unit 604 is used, data is
taken from the ALU input latch 620 in step 3 but is taken from the ALU

WO 91/20043

10

15

20

30

35

PCT/US91/04058

14

output latch 621 in step 4. Selection is made by the logical unit input mux
625. If an adder is required in the second operation, the wrap adder 603 is
used in step 4 because it takes data from the ALU output latch 621. This
method ensures that data resulting from the first operation is used in the
second operation.
If two requests to the same register are received in a three cycle
period separated by a single cydle, the following sequence is used:
1. Read the register file 623, load data into the file output latch
619.
2. Move data into the ALU input latch 620.
3. Perform the first requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.
4. Move data to the ALU input latch 620 via path 606.
5. Perform the second requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.
6. Move data into the file input latch 622.
7. Store data back into the selected register in the file 623.

In the preceding sequence, if the logical unit 604 is used, data is
taken from the ALU input latch 620 in both steps 3 and 5. This method
ensures that data resulting from the first operation is used in the second
operation.

If two requests to the same register are received in a four cycle
period separated by two cydles, the following sequence is used:

1. Read the register file 623, load data into the file output latch

619.

2. Move data into the ALU input latch 620.

3. Perform the first requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.

4. Load data into the file output latch 619 via path 607.

Move data to the ALU input latch 620.

6. Perform the second requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.

i

WO 91/20043

10

15

20

30

35

PCT/US91/04058

15

7. Move data into the file input latch 622.
8. Store data back into the selected register in the file 623

In the preceding sequence, if the logical unit 604 is used, data is
taken from the ALU input latch 620 in both steps 3 and 6. This method
ensures that data resulting from the first operation is used in the second
operation.

If two requests to the same register are received in a five cycle period
separated by a three cycles, the following sequence is used:

1. Read the register file 623, load data into the file output latch

619.

2. Move data into the ALU input latch 620.

3. Perform the first requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621.

Move data to the file input latch 622.

Load data into the file output latch 619 via path 608.

Move data to the ALU input latch 620.

Perform the second requested operation, using the primary
adder 602 or the logical unit 604, and load data into the ALU
output latch 621. '

Move data into the file input latch 622.

9. Store data back into the selected register in the file 623.

N oA

®

In the preceding sequence, if the logical unit 604 is used, data is
taken from the ALU input latch 620 in both steps 3 and 7. This method
ensures that data resulting from the first operation is used in the second
operation.

Data returning to the requestor follows one of four paths to the
output, depending on the location of the requested data word in the
operation pipeline at the time the request is made. Normally, the
requested data word will be located in the register file 623. The sequence of

steps to move the contents of the selected register is shown below. Each

step requires a single clock cycle:
1. Read the register file 623, and load data into the file output
latch 619.

2. Move data into the primary exit register 633 via path 613.

WO 91/20043

10

15

20

30

35

PCT/US91/04058

16

Compute and append ECC syndrome bits, and load data and
syndrome bits into the primary ECC output register 634.

Move data and syndrome bits to the functional unit output
register 631 via path 617.

Return data and syndrome bits to the NRCA through the
global register output cross bar 422 and, through further steps,
to the requestor.

If the requested data word has been modified by an operation in the
immediately preceding cycle, the following steps are used:

1.

Move the previous contents of the referenced register into
the ALU input latch 620.

Perform the previously requested operation, and move the
data into the ALU output latch 621. This step computes the
data that has been requested by the current fetch operation.
Move data into the alternate exit register 635 via path 638.
Compute and append ECC syndrome bits, and load data and
syndrome bits into the functional unit output register 631 via
path 639.

Return data and syndrome bits to the NRCA through the
global register output cross bar 422 and, through further steps,
to the requestor.

If the requested data word has been modified by an operation two
cycles earlier, the following steps are used: '

1.

Perform the previously requested operation, move the data
into the ALU output latch 621. This step computes the data
that has been requested by the current fetch operation.

Move data into the alternate exit register 635 via path 638.
Compute and append ECC syndrome bits, and load data and
syndrome bits into the first staging register 636.

Move data and syndrome bits to the functional unit output
register 631 via path 640.

Return data and syndrome bits to the NRCA through the
global register output cross bar 422 and, through further steps,
to the requestor.

“

WO 91/20043 _ PCT/US91/04058

17

If the requested data word has been modified by an operation three
cycles earlier, the following steps are used:
1 Move data from the ALU output latch 621 into the alternate
exit register 635 via path 638.
5 2. Compute and append ECC syndrome bits, and load data and
syndrome bits into the first staging register 636.
3. Move data and syndrome bits into the second staging register

637.
4. Move data and syndrome bits to the functional unit output

10 register 631 via path 616.
5. Return data and syndrome bits to the NRCA through the
global register output cross bar 422 and, through further steps,

to the requestor.

15 If the requested data word has been modified by an operation four

cycles earlier, the following steps are used:
1. Move data from the previously requested operation from the

file input latch 622 into the file output latch 619.

2. Move data into the primary exit register 633 via path 613.
20 3. Compute and append ECC syndrome bits, and load data and
syndrome bits into the primary ECC output register 634.
4. Move data and syndrome bits to the functional unit output
register 631 via path 617.
5. Return data and syndrome bits to the NRCA through the
25 global register output cross bar 422'and, through further steps,

to the requestor.

If the requested data was modified more that four cycles earlier, the
normal fetch sequence is used.

30 The embodiment ensures that any global register operation is
completed before another request can be initiated on the same register,
giving the appearance that the operation has completed in a single cycle
even through multiple cycles are actually required. The pipelined
organization allows a new operation to be initiated in the functional unit

35 every cycle, regardless of prior activity. This pipelining, in combination
with multiple, parallel paths to multiple functional units, results in the

WO 91/20043

10

15

20

30

35

PCT/US91/04058

18

best possible throughput, and hence, the most efficient means for
supporting synchronization variables among multiple parallel processes.

Referring now to Fig. 6, the method for accessing the global registers
16 is illustrated. Two methods are shown. The logical address map 710 is
used by the processor 10. The physical address map 720 is used by the IOC
24. '

Fig. 8 illustrates the global register calculation in the processor 10.
The present invention uses a relative addressing scheme for the global
registers 16 to eliminate the need for explicit coding of global register
addresses in the user's program. Global register address calculations are
based on the contents of three processor control registers: GOFFSET 810,
GMASK 820 and GBASE 830. Setting GMASK 820 to all ones permits the
user to access all of the available global registers 16. GOFFSET 810 and
GMASK 820 are protected registers that can be written only by the
operating system. Together they define a segment of the collection of
global registers 16 that the processor 10 or IOC 24 can address. The three
least-significant bits of GOFFSET 810 are assumed to be zero when the
address calculation is performed, and the three least-significant bits of
GMASK 820 are assumed to be ones.

GBASE 830 is a user-accessible 15-bit register. The value contained
in the instruction j field 850 is added to GBASE 830 to form the user
address. The j field 850 is considered to be unsigned, and any carry out is
ignored. The sum of GBASE 830 and the instruction j field 850 is logically
ANDed with the contents of GMASK 820, placing a limit on the
maximum displacement into the register set that the user can address.
The result of the mask operation is added to the contents of GOFFSET 810.
Any carry out is ignored. It should be noted that the two most significant
bits of the resulting 15-bit sum are used to select which cluster 40 is
accessed. A carry that propagates into the upper two bits as a result of
either of the add operations will change the cluster select bits. Note that
GOFFSET 810 is a 16-bit register. The 16th bit is used to select the SETN
registers associated with the fast interrupt logic 33 and must be zero when
accessing the global registers 16.

The address generated by this method allows access to the set of
global registers 16 that the operating system assigns any particular
processor. All processors 10 could be assigned to one particular set or to
different sets of global registers 16, depending on the application and

WO 91/20043

10

15

20

30

35

PCT/US91/04058

19

availability of processors. It will be understood that logic in the processor
means 10 rearranges the logical address 710 into the physical address 720
used at the NRCA means 46, as shown in the mapping in Fig. 7. It should
be noted that address values which specify a binary one in bit position 13
of 720 will address the SETN registers, rather than the global registers 16.
The IOC 24 can also perform global register operations. The
operating system reserves for itself any number of global register sets that
will be used for parameter passing, interrupt handling, synchronization
and input/output control. In the preferred embodiment, the peripherals
32 attached to the various IOCs 24 contain part of the operating system
software and are able to access all of the global registers 16 in all clusters 40.

Appendix A
Group 1: Global Registers

Address of g register is calculated as:
GOFFSET + (GMASK & (GBASE + j))

10 addg sk glnl Move (sk) + ginto g

11 addg ¢ gin] Moveq+gintog

12 set sk glnl Move (sk) Igto g

13 set q gln] Moveqlgtog

14 cear sk ginl Move ~ (sk) >o g

15 clear ¢ gln] Move~q>og’

16 move sk glnl Move (sk) to g

17 move ¢ glnl Moveqtog

18 faa sk glnlsi Move g tosi; move (sk}+gtog

19 faa q glnlsi Move g to si; move q+gto g

la tas sk glnlsi Movegtosi;move(sk)igtog

b tas q glnlsi Movegtosimoveqigtog

lc fea sk glnlsi Move g tosi; add sk to g if the sum would be
: positive

1d fca q glnlsi Movegtosi;addsktog if the sum would be

positive
le swap sk glnlsi Move g tosi; move sktog
1f move gnl si Move g to si

WO 91/20043 7 , PCT/US91/04058

10

15

20

30

35

20

ADDGsgn] 10 xx nn kk
Add to global register

Assembly syntax addg sk gln]
Where 7 is an unsigned 8-bit number.

Hold issue Sk reserved.
conditions Scalar memory write port unavailable.
Function " Add (sk) to the global register and leave the result in

the global register. The global register modified is
register GOFFSET+(GMASK & (GBASE+j)). Any
carry out of the sum is ignored.

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

ADDG q gln] 11xxnn qq

Add to global register

Assembly syntax addgq glnl
Where ¢ is a signed 8-bit literal and 7 is an unsigned 8-

bit number.
Hold issue Scalar memory write port unavailable.
conditions
Function Add q to the global register and leave the result in the

global register. The global register modified is register

WO 91/20043 _ PCT/US91/04058

10

15

20

35

21

GOFFSET+(GMASK & (GBASE+})). Any carry out of
the sum is ignored.

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

SET s g[n] 12 xx nn kk
Set bits in global register

Assembly syntax set sk gn]
Where n is an unsigned 8-bit number.

Hold issue Sk reserved.
conditions Scalar memory write port unavailable.
Function "Or" the contents of sk with the global register and

leave the result in the global register. The global
register modified is register GOFFSET+(GMASK &
(GBASE+j)). :

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.

SET q gn] 13 xxnn qq

Set literal bits in global register

WO 91/20043

10

15

20

30

35

Assembly syntax

Hold issue
conditions

Function

PCT/US91/04058

set g gln]
Where g is a signed 8-bit literal and n an unsigned 8-
bit number.

Scalar memory write port unavailable.

"Or" the contents of sk with the global register and
leave the result in the global register. The global
register modified is register GOFFSET+(GMASK &
(GBASE+)).

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

CLEAR s g[n] 14 xx nn kk

Clear bits in global register

Assembly syntax clear sk gln]
Where n is an unsigned 8-bit number.

Hold issue Sk reserved.

conditions Scalar memory write port unavailable.

Function "And" the complement of the contents of sk with the

global register and leave the result in the global
register. That is, each bit set in sk causes that bit to be
cleared in the global register. The global register
modified is register GOFFSET+(GMASK &
(GBASE+))). |

87

WO 91/20043 . PCT/US91/04058

10

15

20

30

35

23
Time to completion TBD cycles.
Exceptions None.
Comments The carry out of GBASE+j and out of GOFFSET+

masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

CLEAR q gln] 15xxnn qq

Clear literal bits in global register

Assembly syntax clear g gln]
Where g is a signed 8-bit literal and where 7 is an

unsigned 8-bit number.
Hold issue Scalar memory write port unavailable.
conditions
Function "And" the complement of the contents of sk with the

global register and leave the result in the global
register. That is, each bit set in the literal causes the
corresponding bit of the global register to be cleared.
The global register 'modified is register
GOFFSET+(GMASK & (GBASE+))).

Time to completion TBD cycles.
Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

MOVE s gin] 16 xx nn kk

WO 91/20043

10

15

20

30

35

PCT/US91/04058
24

Move S to Global Register
Assembly syntax move sk gln]

Where n is an unsigned 8-bit number.
Hold issue Sk reserved.
conditions Scalar memory write port unavailable.
Function Move the contents of register sk in to the global

register GOFFSET+GMASK & (GBASE+)).

Time to completioAnother instruction may issue which reads or
modifies the same global register: One cycle.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

MOVE q gn] 17 xxnn qq
Move literal to Global Register

Assembly syntax move q gln]
Where ¢ is a signed 8-bit literal and where 7 is an

unsigned 8-bit number.
Hold issue Sk reserved.
conditions Scalar memory write port unavailable.
Function Move the literal q into the global register

GOFFSET+(GMASK & (GBASE+j)).

Time to completioAnother instruction may issue which reads or
modifies the same global register: One cycle.

(3

WO 91/20043

10

15

20

30

35

Exceptions

Comments

FAA s ginls

PCT/US91/04058

None.

The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.
18ii nnkk

Fetch And Add S with global register

Assembly syntax

Hold issue
conditions

Function

faa sk ginlsi
Where 7 is an unsigned 8-bit number.

Si or sk reserved.
Scalar memory read or write port unavailable.

Move the contents of the addressed global register
into si. Add the contents of register sk with the global
register and leave the result in the global register.
The global register used is register
GOFFSET+(GMASK & (GBASE+)).

Time to completion TBD cycles.

Exceptions

Comments

FAA qglnls

‘None.

The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.
19iinn qq

Fetch And Add literal to global register

Assembly syntax

faa q glnlsi
Where 4 is a signed 8-bit literal and where n is an

unsigned 8-bit number.

WO 91/20043

10

15

20

30

35

PCT/US91/04058
26

Hold issue Si reserved.

conditions Scalar memory read or write port unavailable.

Function Move the contents of the addressed global register

into si. Add the literal to the global register and leave
the result in the global register. The global register
used is register GOFFSET+(GMASK & (GBASE+)).

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

TAS s gin],s laiinnkk
Test And Set S with global register

Assembly syntax tas sk glnlsi
Where 7 is an unsigned 8-bit number.

Hold issue Si or sk reserved.
conditions Scalar memory read or write port unavailable.
Function Move the contents of the addressed global register

into si. "Or" the contents of sk with the global register
and leave the result in the global register. The global
register used is register GOFFSET+(GMASK &
(GBASE+j)).

Time to completion TBD cycles.

Exceptions None.

821

WO 91/20043

10

15

20

30

35

Comments

TAS q glnls

PCT/US91/04058

27

The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.
' biinnqq

Test And Set literal with global register

Assembly syntax

Hold issue
conditions

Function

tas g glnlsi
Where ¢ is a signed 8-bit literal and where 7 is an
unsigned 8-bit number.

Si reserved.
Scalar memory read or write port unavailable.

Move the contents of the addressed global register
into si. "Or" the contents of sk with the global register
and leave the result in the global register. The global
register used is register GOFFSET+(GMASK &

(GBASE+j)).

Time to completion TBD cycles.

Exceptions

Comments

FCA s glnls

None.

The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.
Iciinnkk

Fetch and Conditionally Add S with global register.

Assembly syntax

Hold issue

fca sk g[n],si
Where 7 is an unsigned 8-bit number.

Si or sk reserved.

WO 91/20043

10

15

20

30

35

PCT/US91/04058
28
conditions Scalar memory read or write port unavailable.
Function Move the contents of the addressed global register

into si. "Or" the contents of sk with the global register
and leave the result in the global register. The global
register used is register GOFFSET+(GMASK &
(GBASE+j).

- Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

FCA qglnl],s 1diinnqq
Fetch and Conditionally Add literal to global register.
Assembly syntax fca q gln],si

Where g is a signed 8-bit literal and where n is an
unsigned 8-bit number.

Hold issue Si reserved.
conditions Scalar memory read or write port unavailable.
Function Move the contents of the addressed global register to

si. Add the literal to the global register. Place the sum
in the global register only if the sum is 2 0. The global
register used is register GOFFSET+(GMASK &
(GBASE+)).

Time to completion TBD cycles.

EScceptions None.

WO 91/20043 7 PCT/US91/04058

10

15

20

30

35

29

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g
registers in a four-cluster system.

SWAP gIn]s leiinnkk
Swap contents of global and scalar register

Assembly syntax swap sk gln],si
Where 7 is an unsigned 8-bit number.

Hold issue Si or sk reserved.
conditions Scalar memory read or write port unavailable.
Function Move the contents of the addressed global register

into si. The global register addressed is register
GOFFSET+(GMASK & (GBASE+j)). Move contents of
sk into the addressed global register.

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+) is ignored; that is, the g register
number is taken to be modulo the number of g

registers in a four-cluster system.
MOVE glnls 1f ii nn xx

Move global register to s

Assembly syntax ~ move glnlsi
Where 7 is an unsigned 8-bit number.

Hold issue Si reserved. ‘
conditions Scalar memory read port unavailable.

WO 91/20043 PCT/US91/04058

10

30

Function Move the contents of the addressed global register
into si. The global register read is register
GOFFSET+(GMASK & (GBASE+j)).

Time to completion TBD cycles.

Exceptions None.

Comments The carry out of GBASE+j and out of GOFFSET+
masked (GBASE+j) is ignored; that is, the g register

number is taken to be modulo the number of g
registers in a four-cluster system.

WO 91/20043 ' PCT/US91/04058

31

Although the description of the preferred embodiment has been
presented, it is contemplated that various changes could be made without
deviating from the spirit of the present invention. Accordingly, it is

5 intended that the scope of the present invention be dictated by the
appended claims rather than by the description of the preferred

embodiment.
We claim:

WO 91/20043

10

15

20

30

35

PCT/US91/04058
32
CLAIMS
1 A set of global registers for a multiprocessor system comprising:

a plurality of global register files, each global register file
containing one or more register means for storing and
manipulating data and addresses for a unique one of the set of
global registers;

a plurality of access path means operably connected to the
global register files for transferring requests comprised of address,
command and data to and from the global register files from one or
more requestors in the multiprocessor system;

a plurality of switch means operably connected the global
register files and the access path means for routing the requests
from the access path means to the selected global register file and
register means within the global register file in response to the
command and address contained in the request; and

arithmetic and logical unit means operably connected to each
global register file for performing arithmetic and logical operations
on the data stored in the register means associated with that global
register file.

2. The set of global registers of claim 1 wherein the access path means
further comprises arbitration means for determining the priority of the
requests to the global registers.

3. The set of global registers of claim 1 where the arithmetic and
logical unit means is capable of performing atomic resource allocation
operations in the form of a single uninterrupted read-modify-write
operation.

4. The set of global registers of claim 1 wherein the arithmetic and
logical unit means is capable of performing a fetch and conditional add
instruction.

5. The set of global registers of claim 1 wherein the requestors are
comprised of a plurality of processors and a plurality of external interface
ports.

6. The set of global registers of claim 1 wherein the multiprocessor
system is a highly parallel multiprocessor systems organized as a plurality
of clusters, each cluster including a plurality of requestors comprised of a

WO 91/20043

10

15

20

30

35

PCT/US91/04058

33

plurality of processors and a plurality of external interface ports which are
operably connected to a unique subset of the set of global registers and
wherein each subset of global registers may be accessed both by the
requestors within and without the cluster associated that subset of global
registers.

7. The set of global registers of claim 1 wherein the address is
comprised of a base address, a mask address, an offset address and an
instruction field value.

8. The set of global registers of claim 7 wherein an operating system
for the multiprocessor system assigns global registers to a process by
specifying the offset address and mask address for the process.

9. The set of global registers of claim 1 wherein the access path means
is comprised of an address pipe means for transferring the address and
command and a data pipe means for transferring the data.

10. The set of global registers of claim 1 wherein the global registers are
capable of pipelining multiple parallel requests on consecutive clock cycles
of the multiprocessor system.

11. A set of global registers for a multiprocessor system, the
multiprocessor system having one or more requestors including a
plurality of processors and a plurality of external interface ports, the set of
global registers comprising:

a plurality of global register files, each global register file
containing one or more register means for storing and
manipulating data and addresses for a unique on of the set of global
registers, the address being comprised of a base address, a mask
address, an offset address and an instruction field value such that an
operating system for the multiprocessor system assigns global
registers to a process by specifying the offset address and mask
address for the process;

a plurality of access path means operably connected to the
global register files for transferring requests comprised of address,
command and data to and from the global register files from the
requestors in the multiprocessor system, the access path means
including;:

arbitration means for determining the priority of the
requests to the global registers;

WO 91/20043

10

15

20

30

35

PCT/US91/04058

34

address pipe means for transferring the address and
command; and

data pipe means for transferring the data;

a plurality of switch means operably connected the global
register files and the access path means for routing the requests
from the access path means to the selected global register file and
register means within the global register file in response to the
command and address contained in the request; and

arithmetic and logical unit means operably connected to each
global register file for performing arithmetic and logical operations,
including atomic resource allocation operations in the form of a
single uninterrupted read-modify-write operation, on the data
stored in the register means associated with that global register file,

such that the sets of global registers are capable of pipelining
multiple parallel requests on consecutive clock cycles of the
multiprocessor system.

12. The set of global registers of claim 11 wherein the multiprocessor
system is a highly parallel multiprocessor systems organized as a plurality
of clusters, each cluster including a plurality of requestors which are
operably connected to a unique subset of the set of global registers and
wherein each subset of global registers may be accessed both by the
requestors within and without the cluster associated that subset of global
registers.

13. A highly parallel computer processing system, comprising:

C multiprocessor clusters operably connected to one another,
wherein C is an integer between 2 and 256, inclusive, each
multiprocessor cluster comprising:

shared resource means for storing and retrieving data
and control information,

P processor means for performing computer processing
of data and control information, wherein P is an integer
between 2 and 256, inclusive;

Q external interface means for transferring data and
control information between the shared resource means and
one or more external data sources, wherein Q is an integer
between 2 and 256, inclusive;

WO 91/20043

10

15

20

35

PCT/US91/04058

35

Z arbitration node means operably connected to the
processor means, the external interface means, and the
shared resource means for symmetrically interconnecting the
processor means and the external interface means with the
shared resource means, wherein Z is an integer between 1
and 128, inclusive, and the ratio of P to Z is greater than or
equal to 2; and

remote cluster adapter means operably connected to
remote cluster adapter means in all other of the
multiprocessor clusters for allowing the arbitration node
means of the multiprocessor cluster to access the shared
resource means of all other of the multiprocessor clusters and
for allowing all other of the multiprocessor clusters to access
the shared resource means of the multiprocessor cluster,

the shared resource means including a unique set of
global registers which may be directly accessed by the
processor means and the external interface means of the
multiprocessor cluster and which may be accessed by the
processor means and the external interface means of all other
of the multiprocessor clusters through the remote cluster
adapter means.

The highly parallel computer processing system of claim 13 wherein

each of the set of global registers comprises:

a plurality of global register files, each global register file
containing one or more register means for storing and
manipulating data and addresses for a unique one of the global
registers of the set of global registers;

a plurality of access path means operably connected to the
global register files for transferring requests comprised of address,
command and data to and from the global register files from the
processor means and the external interface means;

a plurality of switch means operably connected the global
register files and the access path means for routing the requests
from the access path means to the selected global register file and
register means within the global register file in response to the
command and address contained in the request; and

WO 91/20043 PCT/US91/04058

10

15

20

30

35

36

arithmetic and logical unit means operably connected to each
global register file for performing arithmetic and logical operations
on the data stored in the register means associated with that global
register file.

15. A multiprocessor cluster for a highly parallel computer processing
system, the multiprocessor cluster adapted for connection to other similar
multiprocessor clusters in the highly parallel computer processing system,
the multiprocessor cluster comprising:

shared resource means for storing and retrieving data and
control information;

P processor means for performing computer processing of
data and control information, wherein P is an integer between 2 and
256, inclusive;

Q external interface means for transferring data and control
information between the shared resource means and one or more
external data sources, wherein Q is an integer between 2 and 256,
inclusive; and -

Z arbitration node means operably connected to the processor
means, the external interface means, and the shared resource means
for symmetrically interfacing the processor means and the external
interface means with the shared resource means, wherein Z is an
integer between 2 and 128, inclusive, and the ratio of P to Z is
greater than or equal to 2,

the shared resource means including a unique set of global
registers which may be directly accessed by the processor means and
the external interface means of the multiprocessor cluster and
which may be accessed by all other of the multiprocessor clusters.

16. The multiprocessor cluster for a highly parallel computer
processing system of claim 15 wherein each of the set of global registers
comprises:

a plurality of global register files, each global register file
containing one or more register means for storing and
manipulating data and addresses for a unique one of the global
registers of the set of global registers;

a plurality of access path means operably connected to the
global register files for transferring requests comprised of address,

WO 91/20043 _ PCT/US91/04058

10

37

command and data to and from the global register files from the
processor means and the external interface means;

a plurality of switch means operably connected the global
register files and the access path means for routing the requests
from the access path means to the selected global register file and
register means within the global register file in response to the
command and address contained in the request; and

arithmetic and logical unit means operably connected to each
global register file for performing arithmetic and logical operations
on the data stored in the register means associated with that global
register file.

WO 91/20043

1/11

Fig. 1

PCT/US91/04058

r 14
| /16 / /78
l GLOBAL MAIN INTERRUPT
| REGISTERS MEMORY MECHANISM
B | A ? A
y v_ Y
20
/ ARBITRATION
12 NODE MEANS v
REMOTE . 22
CLUSTERS |
EXTERNAL
|1 PROCESSORS INTERFACE
10— F PORTS
|
| STANDARD ~—| 170 /24
PERIPHERALS ¢ | CONCENTRATOR
CHANNELS <~
HIGH-SPEED
i CHANNELS
SECONDARY 28
MEMORY L
SYSTEM
L

o

>40

WO 91/20043 PCT/US91/04058
2/11
Fig. 2a
[: |
i : |
| SHARED RESOURCES “ SHARED RESOURCES | |
| L ’ }
|
} I . \12a I \- 12b l
} 202 £~20b |
I
, ARBITRATION ARBITRATION |
| NODE MEANS { NODE MEANS |
|))) |
: i
{ ' /\’\ + /’_ 22b=
22a
| EXTERNAL | | EXTERNAL | |
l INTERFACE | | INTERFACE |
| PORTS | PORTS l
| — | 100)
| Y | N v l
| | |
{ PROCESSORS |~ 10a || PROCESSORS |
| l I
| I : J|
L T 1 o
é 24 7
402 Y)y 4ob
- 110 - I/0
STANDARD ¢ | CONCENTRATORS | STANDARDe | CONCENTRATORS
CHANNELS ¢ CHANNELS *
K24 '
HIGH-SPEED HIGH-SPEED
CHANNELS CHANNELS
| _—28
SMS 28— SMS

WO 91/20043

PCT/US91/04058
3/11
Fig. 2b
————— e . T T T =
| | |
| SHARED RESOURCES | | SHARED RESOURCES I
! |
I | |
I
I — 12c | _ood 1 ~ 12d |
I /‘200 | (l
| ARBITRATION | ARBITRATION |
| NODE MEANS | NODE MEANS |
| TA W) 1 Lj T T 1 I =
— — 224
' \ | [
EXTERNAL l‘\ EXTERNAL		
INTERFACE [~-22¢ INTERFACE		
PORTS		PORTS
10c T	100	
{ \ Y I Y f l		
I		
PROCESSOR	prROCESSOR	
L . = SRS R
24 24 \ 400
/ \ Ny
40c S
- 170 4——." 170
STANDARD ¢ [CONCENTRATORS| STANDARDe | CONCENTRATORS
CHANNELS CHANNELS *
- — -]
HIGH-SPEED HIGH-SPEED
CHANNELS CHANNELS
28 SMS 28— SMS

40c \/

i

PCT/US91/04058

WO 91/20043

ze 22
~rJon orn ~on o/l

zz_on on|_~aez

o o)}

. - oL oL

———_— A ndo| || ndo ndo| || ndo ndo| || ndo
__ VOUN I a a | a 4 I
| SEhio op IS s o lﬁl I A

H3IH10 OL y

“_ S1S3ND3Y | YVESSOHO <) “

e n] e < | | OliveiLigwy | *** [nouwitmy | | NorveLRkY

oL Y TYNHILXE [_ N N NOLIvHLl
I IS | _ 2 AT TR N
[e ||| 127 o I e ” |
1 — —_— 4

m”__}lummm._wli\ NOILVY | — 25 I T
1l 21901 1dny |, ~Ligdv) ol AN

[k “t3initsvd] anv ! _

|t || dva < _

____ 01907 WNOIS {H ss oo | 1 Mmm

L= — —]

T

_.mmzho. VOHN [F 6¥ _

SLESNDaY gy | V

_|l||l|I||4/ llllll 1 Y Y

~2v
AHOWIN NIV
" g

WO 91/20043 PCT/US91/04058
5/11
Fig. 4
FROM OTHER CLUSTERS
FROMAN. #1 FROM AN. #16 (THROUGH MRCA)
(406~ — T T T T _;
| \ Y Y ¥ ¥ |
; : DECODE | «+ « | DECODE || DECODE| | PIPELINE \ PIPELINE | [PIPELINE] |
l
| 412 414 l
N A S S S S
| FIFO FIFO FIFO FIFO FIFO FFO ||
| \., |
1410 ¢ ‘ ‘ { 12 l l430 !
N\)
, ARBITRATION LOGIC 17:10 GLOBAL REGISTERS ™ 1)
L L et — |
(—. i XX
51/ 440 400 TOYI:\\MZ
4 440 400 E
/Vl N\ § SIGNAL o
GLOBAL GLOBAL ' n(élé?g%R . Locic Y
REGISTER REGISTER
FlLE #1 coo FILE #7 FILE #8 TO THE FAST
INTERRUPT
ALUIT? 460 LOGIC

FROM THE FAST

[<460 l INTERRUPT LOGIC
9:17 GLOBAL REGISTERS OUTPUT CROSSBAR

- | e

TO AN. #1 TOAN. #16 TO OTHER CLUSTERS
(THROUGH MRCA)

450}1 FUNCTIONAL UNIT
OUTPUT PATH

PCT/US91/04058

WO 91/20043

o r T T T T T T e e v —— e e —_—
pww%%wﬂ 1_. |_ _ _MMMMMM__ ™ anviadia | mzn_v.ﬂ_m_m__n_
3ONVAQY 43 3
y3LSIOaY H31S193y 1X3N OL
“ | | SENOL viva viva
\NNE H q 1S3NOaY H ﬁ
LaN oL :
. O4did odid JONvVAQV :
I e aNA3did ._Tﬂ HALSIO3H| (H3LSIO3Y
Ss3vaav ssadaav
ozs » a - -
0es
_ Y31 S1934 H31S193Y yatsoad| [u3isoay _

- Y A R

S % HVL ANV VIV 3NI3did

© aNM3dId 9% ANVINNOD " ANVIWNOD viva

sS3Haay [0-2'c1] SS3Haav [e-21] SS3HAAV
| 1 1
suaislomd | ovs® [SuaLsoau
| LndNI vouN 1NdNI VOHN f~_01g
~Nois
91.# 3AON L# 3AON
NOLLYHLIgHVY WOHA ZOF<ml_._mm< WOH4

BG G0y

PCT/US91/04058

WO 91/20043

7/11

e \wm
[J mll'l'lillllllllll I
qG 3Ly _ OID0T 2 3did™'0 3did HILSIDIY Wa0o1O
_ D101 LdNHYILNI _
N _ TWNOIS gy OLIOHLNOD % VIVQ ‘SS3HaAav
2g Fny - ﬁ .I+!...J>Flnll»r.it
waisoad|luaisoadl|uaisioad| |uarsioau
G Ty
- - L
| 065
13S XN | ,
. . osy
13s xnn| v Hvea SSOHD LINdNI OL:ZL -+
— N X
_ | 1XEN OL g
H3LSI93Y HALSIOH | | JONVAQY qG ‘ot
y1S 4 S
l—— A A | 1
o:.N _ “
_ $S300Hd LHN _
H31S1O3d |
o190 NOLLVH LIgHY _ 318193 _
_ | _
»| »u _ _ _
— —_—— —— _— o

WO 91/20043 , PCT/US91/04058

8/11

Fig. 6

PROCESSOR MEANS LOGICAL ADDRESS

15 14 1312 . 32 0
[Y
SETN |CLUSTER| REGISTER | FILE
SELECT| SELECT!| SELECT SELECT
33 4752 31 1413 2 321 g
CLUSTER ‘e SETN | REGISTER FILE
SELECT RESERVED (opieer| . SELECT SELECT

+ € L9]

PHYSICAL ADDRESS MAP AS USED AT THE NRCA AND AT THE 1/0
CONCENTRATOR MEANS

WO 91/20043 PCT/US91/04058

9/11 }

Eg. 7a]

FROM NRCA }

ADDRESS TO__-609 624 {

REGISTER 10 BIT \ l

PIPE ADDRESS |4 CYCLE |

—»REG——>{ REG DELAY M\ga2 :

630 . |

Y ¥ l

623\‘\ 607 |

RAM l

WORD e

REG T’ X64 BIT | = q II

DATA TO J
GLOBAL ——— > ————————— —— -
REGISTERI |
PIPE ECC ECC |
——-r —> ereer 1 RES = conmect PIREG

Fig. 7a | Fig. 7b

— —— e —— — e e e s — — —— St s v, b S s e,

WO 91/20043 PCT/US91/04058

]0/11
Fig. 7b

PRIMARY EXIT
613\ REGISTER 514 . ~834

» REG "l ECC " REG

OUTPUT
DATA

l

l

{ 617

| | 637 540

| 635 633 N\ 3 —i -
i - \ 615\ < é REG §

| I\

|

X- REG i—- ' o
» ECC REG]*-»REG 616 {

625

A/ 631
— 636 E637
=
Ll EG
' i " \\PRIMARY }
626, “e20)ADDER Fﬁ.me
II'"‘BV\ s
l
—,'REG
B
P&
4 4
I
l
"
WRAP
{ ' ADDERH- ; 460
]
Hl 603
] I R
i S unm |
A e0s
l

WO 91/20043 PCT/US91/04058
11/11
Fig. 8
ADDRESS=
(((GBASE PLUS j)GMASK)PLUS GOFFSET) - 0

/ i
850
ADD 14 0
e T~ GBASE |~

AND 830

GMASK |11
ADD =\‘\320
\\15 3 .
' GOFFSET {000}

810

GLOBAL
REGISTERS

- =

//" ~]] SKORC

16" — —

vy

OR

AND-NOT
ADD
CONDITIONAL

ADD
REPLACE

et}

INTERNATIONAL SEARCH REPORT .
International Application No. PCP/USQ]'/OAOSS

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) §

U.S. CL.: 364/200

Accordins to International Patent Classification (IPC) or to both National Classification and IPC

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System Classification Symbols

U.S. CL. 364/200,900

Documentation Searched other than Mini D tati
to the Extent that such Documents are included in the Fields Searched 8

Ili. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * Citation of Document, ! with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 13
Y [US, A, 4,924,380 (MKINNEY) 08 May 1990 13, 15
(See Figures 2 and 5 and the description of elements
10 and 20)
Y [US, A, 4,240,143 (BESEMER) 16 December 1980 1-16

(See Figure 1 and the description of Globol memory).

Y |US, A, 4,814,980 (PETERSON) 21 March 1989 1-16
(See Figures 1 and 4 and the description of F1F0).

A S, A, 4,523,273 (ADAMS) 11 June 1985 1-16
(See Figure 2).

* Special categories of cited documents: ¥ “T" later doﬁ;lmdmtn .nugliuhtooli after "t‘ré: iv“:rv;;ﬂonaluﬁli%u ct;tot
“ : . . or priority date and not in conflict w e application bul
A" g:::::i‘:;‘:ddt.:'I.‘a':“ofﬂ::'agi‘c:r::l::'tﬁm:::h. art which is not cited t'lo understand the principle or theory underlying the
invention

E afir,:lord ::acumcnt but published on or after the international ux® document of particular relevance; the claimed {nvention
9 cannot be considered novel or cannot be considered to

b A d?‘?u;nlont vtv.f:’icth maty ;ﬂr%wt :ouhglllonﬂprioélt‘y cl?im(szhor involve an inventive step
which is cited to establish-the publication date of another wy* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be con:idorod to involve an inventive step when the

document is combined with one or more other such docu-

40" document referring to an oral disclosure, use, exhibition or
ments, such combination being obvious to a person skilled

other means r
“p* document published prior to the international filing date but in the art.
later than the priority date claimed ug" document member of the same patent family

IV. CERTIFICATION
Date of the Actuai Complstion of the International Search

11 September 1991 m 1997 :

international Searching Authority , gnature of Aut%omcn Q Q
ISA/US /rﬁ'id Y. Eng.

Form PCTASA210 (second sheel) (Rev.11-87) V D.P 9/29/9i

Date of Malling of this international Search Report

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

