ABSTRACT

During various medical procedures and clinical examinations, it is necessary to access a patient’s chest and abdominal areas. A medical garment top provides limited but easy access to a patient’s upper body along with protection from bodily fluids and vomitus. The medical garment top includes a garment top with at least one selectively closable, elongated passageway in the garment top that spans a lateral distance across an anterior portion of the garment top, and a closure mechanism for removably joining two sides of the elongated passageway.
PRIVACY MEDICAL GARMENT FOR ACCESS TO PATIENT’S TORSO

BACKGROUND

[0001] Ofttimes in medical procedures and clinical examinations, it is necessary for a medical practitioner to access a patient’s upper body region. One common practice is to access a patient’s torso to monitor electrical activities of the patient’s heart via an electrocardiogram (EKG). Such access may occur during a routine examination, such as during a checkup of heart electrical activity. Access may also occur during critical procedures, such as during monitoring of the heart needed while administering intravenous sedation given during a gastrointestinal endoscopy. Application of standard four lead EKG sensor pads requires access to the chest and upper abdomen of the patient’s front side.

[0002] In addition to access for EKG, abdominal access is required for gastrostomy, enterostomy, colostomy stomas’ wound care, paracentesis, aspiration, and removing ascitic fluid from the abdominal cavity, to name a few procedures. Under these circumstances, there is no dedicated medical garment top to protect a patient’s dignity by providing limited but easy access and to provide some protection against the patient’s own body fluid and possible vomitus.

[0003] Standard hospital gowns include single piece garments that are open along the patient’s back. As such, there is no conventional access to the necessary EKG sensor pad placement location when a patient wears the standard hospital gown. Placement requires partial or complete disrobing of the patient to obtain adequate visualization of the pad placement. This can make a patient feel uncomfortable. Additionally, body exposure to cool air of a hospital environment as a result of being disrobed can further add to the discomfort. It is often important, however, that a patient be as relaxed and as comfortable as possible for success and accuracy of the procedure. It is also important for the patient’s emotional and physical well-being.

BRIEF SUMMARY

[0004] During many various medical procedures and clinical examinations, it is necessary to access a patient’s chest and abdominal areas. A medical garment top described herein provides limited but easy access to a patient’s upper body along with protection from bodily fluids and vomitus. The medical garment top includes a garment top with at least one selectively closable, elongated passageway in the garment top that spans a lateral (e.g., generally horizontal) distance across an anterior portion of the garment top, and a closure mechanism (e.g., a zipper) for removably joining two sides of the elongated passageway. For example, the elongated passageway may be generally horizontal, located below the shoulders, and above the navel.

[0005] Another aspect of the present disclosure describes a method for performing a surgical procedure on a patient while preserving patient privacy. Such a method may include steps of providing a medical garment top; opening the elongated passageway by moving the closure mechanism in a first direction along the elongated passageway such that the sides of the elongated passageway are separated and a body region of the patient’s upper body is accessible; introducing medical examination or surgical equipment through the open passageway (e.g., introducing and applying EKG wires on the patient’s torso); performing a surgery or examination on the patient; withdrawing the medical examination or surgical equipment (e.g., EKG wires); and closing the elongated passageway by moving the closure mechanism in an opposite direction from the first direction along the elongated passageway such that the sides of the elongated passageway are joined together and a body region of the patient’s upper body is concealed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 depicts a frontal view of an exemplary medical garment top.

[0007] FIG. 2 depicts anatomical lines of a front upper body.

[0008] FIG. 3 depicts anatomical lines on a side of an upper body.

[0009] FIG. 4 depicts EKG points of attachment on a front upper body.

[0010] FIG. 5 depicts points of access on a front upper body for a gastrostomy and colostomy stomas.

[0011] FIG. 6 depicts EKG wires exiting from an elongated passageway in an exemplary medical garment top on a front upper body.

[0012] FIG. 7 depicts access to a stomach region through an elongated passageway on a front upper body.

[0013] FIG. 8 depicts a frontal view of a medical garment top that includes an interior flap.

[0014] FIG. 9 depicts a view of a standard medical garment, with ties shown in phantom.

[0015] FIG. 10 depicts a frontal view of a medical garment top that includes a patch for covering the elongated passageway.

[0016] FIG. 11 depicts a frontal view of a medical garment top that includes an elongated passageway which is diagonal.

DETAILED DESCRIPTION

[0017] During various medical procedures and clinical examinations, it is necessary to access a patient’s chest and abdominal areas. A medical garment top provides limited but easy access to a patient’s upper body along with protection from bodily fluids (e.g., saliva, blood, etc.) and vomitus. The medical garment top includes a garment top with at least one selectively closable, elongated passageway in the garment top that spans a generally horizontal distance across an anterior portion of the garment top, and a closure mechanism (e.g., a zipper) for removably joining two sides of the elongated passageway. For example, the elongated passageway may be generally horizontal, located below the shoulders, and above the navel.

[0018] Another aspect of the present disclosure describes a method for performing a surgical procedure on a patient while preserving patient privacy. The method may include steps of providing a medical garment top; opening the elongated passageway by moving the closure mechanism in a first direction along the elongated passageway such that the sides of the elongated passageway are separated and a body region of the patient’s upper body is accessible; introducing medical examination or surgical equipment through the open passageway (e.g., introducing and applying EKG wires on the patient’s torso); performing a surgery or examination on the patient; withdrawing the medical examination or surgical equipment (e.g., EKG wires); and closing the elongated passageway by moving the closure mechanism in an opposite direction from the first
direction along the elongated passageway such that the sides of the elongated passageway are joined together and a body region of the patient’s upper body is concealed.

[0019] A medical garment top 100 as shown in FIG. 1 includes a garment top 101 with a selectively closeable, elongated passageway 102 that spans a generally horizontal distance across an anterior portion of the garment top 100. The elongated passageway 102 may include two sides, 104a and 104b, that may be removably joined together. A closure mechanism, such as a zipper tab 106 and zipper chains 108, is used to removably join the two sides 104a and 104b of the elongated passageway 102. The zipper tab 106 is moved (e.g., pulled) in one direction along the elongated passageway 102 to join the two sides 104a and 104b and then the zipper tab 106 is pulled or pushed in an opposing direction along the elongated passageway 102 to unjoin the chains 108 along the two sides 104a and 104b. As shown, there may be a single zipper, however, other examples may include multiple zippers. The passageway 102 may be configured such that it does not go around, or encircle, the entire garment top. For example, the opposed ends of the passageway 102 may terminate along the front, anterior portion of the garment top 101, rather than extending around either side, towards the rear of the garment top 101.

[0020] The elongated passageway 102 may span a distance between about 3-15 inches, or about 5-15 inches. For example, the distance, or length, may be 5 inches, 10 inches, 12 inches, 13 inches, 14 inches, 15 inches, any lengths in between such values, or fall within a range defined between any such values. The closure mechanism may be slightly shorter than, longer than, or a same length as the elongated passageway.

[0021] The elongated passageway 102 may be a generally horizontal slit or cut that divides a defined region of material in the anterior portion of the garment top 101 into two sides or portions (e.g., a top and bottom). Instead of a slit, the elongated passageway 102 may be an elongated opening that is curved, or could be oval, rectangular, triangular, heart-shaped, or of another shape. The medical garment top 100 may be such that multiple elongated pathways are arranged in parallel “stacked” formation. In another embodiment, multiple elongated pathways could be arranged side by side, for example, one on a left side and one on a right side.

[0022] As shown, the elongated passageway 102 may be configured such that it extends or lays in a generally horizontal direction relative to the garment top 101. The illustrated elongated passageway 102 also includes endpoints at or near the armpits in the garment top. Higher or lower placement may be possible (e.g., between the shoulders and the navel). Other types of configurations are contemplated, such as where the elongated passageway has a shape that is curved, diagonal, right-angled, V-shaped, etc. For example, the pathway of the elongated passageway may be at an angle, or is curved so as to create an opening that is diagonal or curved relative to the patient’s front side.

[0023] The term “horizontal” may be used to describe a lateral or transverse distance traversed by the passageway 102 across the garment top 101. For example, the passageway 102 may extend between armpits. The passageway could be positioned higher or lower, e.g., anywhere between the shoulders and the navel, e.g., at the armpits, or between the armpits and the navel. While illustrated as generally horizontal, extending generally from armpit to armpit, it will be appreciated that one end of the passageway 102 may be higher than the other, where the slit or other passageway is curved (e.g., swooping downward, from a location adjacent one armpit to a lower location on the other side of the torso), or diagonal.

[0024] In an embodiment, any angle or curvature between opposed ends of the passageway may be no more than about 45°, no more than about 30°, no more than about 20°, or no more than about 15°. For example, any diagonal or curved opening may be characterized by an angle between opposed endpoints that is 0° (horizontal), from 0° to 30°, or between any of the various angles noted above. FIG. 11 illustrates a medical garment top 1101 that may otherwise be similar to top 101 or any other medical garment top described herein, which includes a passageway 1102 that is diagonal, being angled downward from left to right (i.e., the patient’s left to right). An opposite diagonally angled configuration (angled downward right to left), or a curved configuration could also be provided.

[0025] Contouring within the garment top, e.g., along the passageway 102 may be provided to accommodate the anatomy of the patient, if desired. For example, contouring for the bust of a female patient may be provided within the garment top. Where such is provided, the passageway may not be planar, even though its extension across the torso may be generally horizontal, while accommodating the curvature of the chest or bustline of the patient.

[0026] Positioning and/or contouring of the elongated passageway 102 may vary depending on whether the garment is for a female or male. For example, the elongated passageway 102 may generally span a longer distance for males, and thus a wider length of material, to compensate for general male body types having wider chests than females. For female medical garment tops, extra slack or curvature may be provided to accommodate the bust. A unisex garment top is also contemplated, such that the elongated passageway is configured for most body types or according to anatomical measurements of a standard person. Such unisex or gender specific garment tops may also be provided in different sizes (e.g., small, medium, large, x-large, etc.).

[0027] A standard person may be a mathematical model of a person based on any suitable data that simulates a person’s size, body proportions, and the like. The model can be based upon data, for example, used in the clothing industry to define sizes for apparel and the like. The standard person used and the data set used to derive the standard person may be chosen with the user of the medical garment top 100 in mind and can be based upon average values of body proportions from any sample of the population, for example, total population, gender, age, body size or weight, nationality, ethnicity, or the like. The standard person may also be based upon any particular individual, or group of individuals. Thus, the standard person for a particular medical garment top 100 may be designed for marketing to the public in general, or be customized to fit a particular group of people, or to fit an individual.

[0028] The elongated pathway may extend substantially the entire distance between armpits when the garment is worn, however, other distances are possible. For example, the extension of passageway 102 shown in FIG. 1 may be such that when the garment is worn by a patient, the ends of the passageway 102 reach to the armpits, where the torso begins to curve around from the front, towards the side, under the armpits. Generally known anatomical landmarks and lines may be used to define placement and/or distance of
an elongated pathway. As shown in FIGS. 2 and 3, a frontal view and a side view, respectively, of body 200 are shown. Lines on the frontal view include anterior axillary line (AAL) 202, midclavicular line (MCL) 204, and midsternal line (MSL) 206. In an embodiment the passageway may be centered relative to midsternal line 206. In another embodiment, the passageway may be positioned to one side or the other of midsternal line 206, or with a center of the passageway offset relative to line 206. Lines on the side view include AAL 202, midaxillary line (MAL) 208, and posterior axillary line (PAL) 210.

[0029] The AAL 202 is an imaginary line that runs vertically, down from the point midpoint between the middle of the clavicle and the lateral end of the clavicle. The MCL 204 is an imaginary line that extends vertically, downward over the trunk from the midpoint of the clavicle, dividing each side of the anterior chest into two parts. The MSL 206 is an imaginary line that passes through the middle of the sternum. The MAL 208 is an imaginary line through an axilla parallel to the long axis of the body and midway between its ventral and dorsal surfaces. The PAL 210 is an imaginary line extending inferiorly from a posterior axillary fold.

[0030] The elongated passageway may be configured with respect to these lines and/or landmarks. Landmarks may include one or more of a sternum, axilla, location of xiphoid process, costal margin of ribs, sternum, areola and nipple, trapezius muscle, deltoid muscle, caudal fossa, linea alba, hips, pelvic region, and navel. Other landmarks can be readily appreciated.

[0031] In an embodiment, the elongated passageway 102 may be configured so as to extend beyond armpits and anterior axillary lines, or AALs 202, that extend downward from armpits along sides of a torso.

[0032] In addition to length of the elongated passageway 102, placement of height may also be selected. For example, the elongated passageway 102 may be configured so as to be in an upper body region that is below, or inferior to, tops of shoulders and clavicle and superior to the navel. In another example, the elongated passageway 102 is located at a region generally below the patient’s shoulders and above the patient’s rib cage, the elongated passageway adapted for procedures and examinations directed near or at a chest and upper abdomen of the patient.

[0033] In another example, the elongated passageway 102 is configured so as to be in an upper body region that is inferior to (e.g., below) a sternum but superior to (e.g., above) hips or a pelvic region.

[0034] It may be desirable for the elongated passageway 102 to have equal lengths on each side of a sternum such that the elongated passageway 102 is located off center from a center axis of the body. In another embodiment, the elongated passageway 102 may be centered, with equal lengths apportioned on either side of the sternum.

[0035] The location of the closure mechanism, e.g., zipper chains 108 may also be defined with respect to lines and landmarks of the body. For example, the elongated passageway 102 may be configured so as to be in a central upper body region that is inferior to (e.g., below) a sternum but superior to (e.g., above) navel, hips or a pelvic region. The closure mechanism 108 may originate so as to be generally aligned with and medial to a left armpit on the garment top 101 such that movement of the tab 106 of the closure mechanism across the elongated passageway 102 to a location between a midsternal line and a midclavicular line causes at least a portion of the two sides 104a and 104b to close with remaining portions of the two sides 104a and 104b forming an opening that is provided above an upper body region and that corresponds with standard clinical placement of EKG sensor pads. In an embodiment, the closure mechanism 108 may originate at a location that is slightly superior or slightly inferior to the armpit. In another example, the closure mechanism (e.g., zipper chains 108) terminates at a location that is generally aligned with and medial to a right armpit on the garment top 101 such that the elongated passageway 102 may be closed with only a minimal gap left open and EKG wires exiting from beneath the garment top 101 (e.g., see FIG. 6). The closure mechanism may terminate at a location that is slightly superior or slightly inferior to the armpit. The term “slightly” with respect to the location of the origin or terminus may be within 2 inches, 1 inch, or ½ inch of the reference point.

[0036] In some embodiments, the closure mechanism may not extend the full length of the elongate passageway 102, e.g., one or both ends thereof may remain open, even when the zipper tab or other closure mechanism is pulled to its terminal end. Such a small opening adjacent one or both ends of the passageway 102 may comprise only a small fraction of the overall length of the passageway 102, e.g., less than 20%, less than 15%, less than 10%, or less than 5% of the overall length. Such a small opening at the endpoint of the passageway may provide a small opening through which EKG wires or other medical equipment may pass, even with the zipper or other closure in a “closed” position.

[0037] One common practice is to access a patient’s torso to monitor electrical activities of the patient’s heart via an electrocardiogram (EKG). Such access may also occur during routine examinations, such as a checkup of heart electrical activity. Access may also occur during critical procedures, such as monitoring of the heart needed while administering intravenous sedation given during a gastrointestinal endoscopy. Application of standard four lead EKG sensor pads 410 requires access to at least a portion of the chest and upper abdomen of the patient’s front side of body 401 as shown in FIG. 4. In essence, access regions may be defined by any anatomical landmark or bony structure. Access regions may further be defined based on landmarks of the garment top (e.g., neckline, collar, sleeve, bottom hem, etc.).

[0038] In addition to access for EKG, abdominal access is required for procedures, such as gastrostomy, enterostomy, colostomy stomas’ wound care, paracentesis, aspiration, and removing ascetic fluid from the abdominal cavity. In FIG. 5, location 510 indicates a point of access on body 501 for a gastrostomy and location 512 indicates a point of access on body 501 for a colostomy stoma. It will be readily apparent that a slit or other passageway provided in the medical garment top may be positioned so as to accommodate easy practitioner access to such locations. Various other locations along the front of the torso of a patient are also possible, for other procedures.

[0039] FIGS. 6 and 7 illustrate a configuration for the elongated pathway configured for EKG (e.g., FIG. 4) and abdominal procedures (FIG. 5), respectively. For EKG placement of FIG. 6, the elongated pathway 602 may be located in a chest region having endpoints generally near the armpits of patient 600. The closure mechanism 606, 608 may join the two sides 604a and 604b and terminate, or end, at a location that is slightly superior and medial to a right
amput on the garment top 601 such that the elongated passageway 602 may be closed partially or completely. Termination may vary, such that a minimal gap remains at or near the right amput, leaving a space between the two sides for EKG wires exiting from beneath the garment top. Such a minimal gap may be defined by similar parameters described above relative to the small opening. Also, the closure mechanism 606, 608 may originate slightly superior and medial to a left amput on the garment top 601 such that movement of the tab 606 of the closure mechanism across the elongated passageway 602 to a location between a MSL and a MCL causes at least a portion of the two sides 604a and 604b to close. In an embodiment, the zipper or other closure mechanism may terminate short of the right endpoint of the passageway, so that a small opening remains, even after closure, through which the EKG wires 610 may exit. In another embodiment, the zipper or other closure mechanism may run the full length of the passageway. If the practitioner or patient desires an opening to remain adjacent the endpoint, the closure mechanism may simply not be advanced to its full length.

[0040] In an embodiment, the zipper or other closure mechanism may terminate based on a stop located along the elongated passageway. In an embodiment, the stop may be removably attached along the elongated passageway or to the closure mechanism. For example, the stop may be attached, removable or not, to the chains of the zipper. In an embodiment, the stop may serve as a lock to prevent inadvertent unzipping or other opening of the closure mechanism.

[0041] While termination near the right amput is described (e.g., better configured for right handed operation), an alternative may provide left amput termination. Other variations will also be apparent.

[0042] For abdominal access of FIG. 7, the elongated passageway 702 may be configured so as to be at or near an abdominal region that is inferior to a sternum and superior to hips or a pelvic region of patient 700. Such relatively lower placement of passageway 702 as compared to passageway 602 is particularly well positioned to provide the practitioner with easy access to location 510 and/or 512 seen in FIG. 5. Note that a medical garment top may have both the elongated passageway 602 as shown in FIG. 6 and the elongated passageway 702 as shown in FIG. 7 included in the same medical garment top.

[0043] While generally horizontal elongated passageways are shown, in an embodiment, a vertical passageway may also be provided, e.g., connecting two generally horizontal passageways to create a sort of “panel” allowing access to the area defined between such passageways. For example, for a medical garment top including both passageways 602 and 702 of FIGS. 6 and 7, a third elongated passageway, not shown, may be a side vertical passageway, located in the chest region, that extends generally vertically downward from the chest region elongated passageway 602 in FIG. 6 to join or connect with the abdominal elongated passageway 702 in FIG. 7. In this manner, the chest region elongated passageway 602 and the abdominal elongated passageway 702 are connected by a side vertical elongated opening such that a panel opening is obtained. The connection of the third elongated passageway may be at endpoints, such as points of origin of the closure mechanisms 608 and 708 for the chest region elongated passageway 602 and the abdominal elongated passageway 702, respectively. The closure mechanisms for all three passageways may be joined, such that a panel is defined and opened to reveal both the chest region and the abdominal region. In an embodiment, a U-shaped, C-shaped, or blocked C shape elongated passageway may be provided, providing a panel with similar functionality.

[0044] The closure mechanism for the elongated passageway may include one or more zippers, and/or Velcro (e.g., hook and loop fastener). Various other closure mechanisms, such as slider mechanisms, buttons, snaps, ties, and/or adhesive may also be possible. In an example, the two sides of the elongated passageway are joined by a two-way zipper (i.e., including sliding zipper tabs at both ends) that runs along a length of the elongated passageway and forms an opening that is selectively closable and openable, with the possibility to define the opening anywhere along the elongated passageway, by advancing the zipper tabs to the desired location(s). This allows for an opening with minimal amount of body exposure to be possible at anywhere along the length of the elongated passageway.

[0045] In addition to an elongated pathway and closure mechanism, a protective interior flap may be used to prevent patient skin, hair, or tissue from getting caught in the closure mechanism. As shown in FIG. 8, medical garment top 801 includes interior flap 810 along with elongated passageway 802, two sides 804a and 804b, and a closure mechanism (e.g., zipper tab 806 and zipper chains 808).

[0046] The interior flap 810 may be attached on an interior surface of the garment top 801. Attachment may be adjacent, or near, the elongated passageway 802, at a location that is superior, or above, the elongated passageway 802 (e.g., to upper side 804a), and which may hang below passageway 802. The interior flap 810 may span a lateral distance that is at least equal to a lateral distance of the elongate passageway 802. Also, the interior flap 810 may have a vertical length that extends at least beneath the elongated passageway 802 when the two sides 804a and 804b are unjoined and spread apart.

[0047] Instead of a flap on the interior surface, a flap may be located on or attached to an exterior surface of the garment top 801 at a location that is superior to the elongated passageway 802, so as to hang over passageway 802, the exterior flap having similar dimensions as mentioned for the interior flap or different dimensions. The exterior flap may be configured to fold up above the elongated passageway 802. The exterior flap may be secured to the upper portion of the garment top to prevent it from occluding the passageway. In other words, the exterior surface of the exterior flap faces an exterior surface of the garment top, the folded flap configured to expose, or uncover, a body region by unjoined sides of the elongated passageway. A fold line may be provided in some instances for folding the exterior flap upwardly. Such an exterior flap may be used with the elongated passageway, with or without a closure mechanism, and with or without an interior flap 810. In an embodiment, an attachment (e.g., snap, button, Velcro, etc.) may be provided for removably securing the exterior flap above the elongated passageway.

[0048] Instead of an exterior flap, or in addition to an exterior flap, a removable patch may be attached to an exterior surface of the garment top so as to cover at least the elongated passageway. Dimensions may be as described with regard to the interior flap and/or the exterior flap. Such a removable patch may be attached by Velcro, adhesive, ties, snaps, buttons, or other types of attachment mechanisms.
FIG. 10 illustrates a medical garment top 1001 including such a patch 1014, which may be attachable (e.g., removably attachable) over elongated passageway 1002. Patch 1014 may be secured to the exterior of medical garment top 1001 by any suitable mechanism (e.g., Velcro 1016).

[0049] Note that the garment top may be of a standard medical garment type material, such as plastic or fabric. The garment top may be disposable, comprising disposable plastic. Alternatively, the garment top may be made of washable fabric. As shown in FIG. 9, the garment top 901 may be a common open back garment having sides on the back that are tied with ties 904, or otherwise secured together. Whether or not ties 904 are provided, the sides may overlap each other for at least some concealment in the back. A garment could also include a backwards cape style garment, T-shirt style, or even a blanket that is draped over the patient and placed or attached to the patient's body so that the elongated passageway corresponds to desired landmarks and/or structures.

[0050] Applicant's companion application, entitled PRIVACY MEDICAL GARMENT FOR ACCESS TO A BUTTOCKS REGION, filed the same day as the present application is herein incorporated by reference in its entirety. Any of the configurations disclosed therein with respect to closure mechanisms, and other features in the context of the medical garment bottom may be applied herein to the described medical garment top.

[0051] The present disclosure may be embodied in other specific forms without departing from its spirit or characteristics. The described embodiments are to be considered as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. Changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

6. The medical garment top in claim 1, wherein the elongated passageway is configured so as to be in a central upper body region that is inferior to a sternum and superior to hips or pelvic region.

7. The medical garment top in claim 1, wherein the closure mechanism terminates at a location that is generally aligned with and medial to a right armpit on the garment top and the elongated passageway may be closed with a minimal gap left open to accommodate EKG wires exiting from beneath the garment.

8. The medical garment top in claim 1, wherein the closure mechanism originates at a location that is generally aligned with and medial to a left armpit on the garment top.

9. The medical garment top in claim 1, wherein the closure mechanism includes one or more of zippers or Velcro.

10. The medical garment top in claim 1, wherein the elongated passageway spans a distance between 5 and 15 inches.

11. The medical garment top in claim 1, further comprising an interior protective flap that is attached to a location above the elongated passageway on an interior surface of the garment top and that extends below the elongated passageway, the flap spanning a lateral distance that is at least a lateral distance of the elongated passageway such that the flap prevents patient skin, hair, and tissue from being caught in the closure mechanism.

12. The medical garment top in claim 1, further comprising an exterior flap that is attached to an exterior surface of the garment top above the elongated passageway.

13. The medical garment top in claim 12, wherein the exterior flap is removable.

14. The medical garment top in claim 1, further comprising a removable patch that is attached to an exterior surface of the garment top, the removable patch covering the elongated passageway.

15. The medical garment top in claim 1, wherein the garment top is made of one or more of plastic or fabric.

16. The medical garment top in claim 1, wherein the elongated passageway has a shape that is curved or diagonal.

17. The medical garment top in claim 1, wherein the garment top has an open back.

18. A method of providing limited access and protection during medical procedures, comprising: providing a medical garment top comprising; a garment top; at least one selectively closable, elongated passageway in the garment top that spans a generally horizontal lateral distance across an anterior portion of the garment top; and a closure mechanism that removably joins two sides of the elongated passageway; opening the elongated passageway by moving the closure mechanism in a first direction along the elongated passageway such that the sides of the elongated passageway are separated and a body region of a patient's upper body is accessible; introducing medical examination or surgical equipment through the open passageway; performing a surgery or examination on the patient; withdrawing the medical examination or surgical equipment; closing the elongated passageway by moving the closure mechanism in an opposite direction from the first
direction along the elongated passageway such that the sides of the elongated passageway are joined together and a body region of the patient’s upper body is concealed.

19. The method in claim 18, wherein introducing medical examination or surgical equipment through the open passageway comprises applying EKG wires on to the patient’s torso.

20. The method in claim 19, wherein withdrawing the medical examination or surgical equipment comprises withdrawing the EKG wires through the passageway.

* * * * *