発明の名称：太陽電池モジュール及び太陽電池モジュールの製造方法

[図4]

26 30
20 20a 22 22c
30

200

Abstract: This solar cell module is provided with a plurality of solar cells; and a tab, which electrically connects the solar cells, and which has recesses and projections on the surface thereof. The tab has height of the recesses and the projections smaller in the peripheral region of each of the solar cells, compared with that in other regions of each of the solar cells.

要約：複数の太陽電池セルと、複数の太陽電池セル間を電気的に接続し、表面に凹凸を有するタブと、を備え、タブは、太陽電池セルの周縁領域において他の領域より凹凸の高さが低い太陽電池モジュールとする。
添付 公開書類 :
- 国際調査報告 (条約第21条(3))
明細書

発明の名称:
太陽電池モジュール及び太陽電池モジュールの製造方法

技術分野

[0001] 本発明は、太陽電池モジュール及び太陽電池モジュールの製造方法に関する。

背景技術

[0002] 近年、太陽光を電気エネルギーに変換することができる太陽電池が石油代替エネルギー源として使用されている。太陽電池には、単結晶型太陽電池、多結晶型太陽電池、アモルファス型太陽電池等、又はこれらを組み合わせたものが挙げられる。通常、複数の太陽電池を直列又は並列に接続して太陽電池モジュールとして使用される。

[0003] 図13の断面図は、従来の太陽電池モジュール100の構成を示す。太陽電池モジュール100は、複数の太陽電池セル10がタブ12により接続された構造を有する。タブ12は、太陽電池セル10の受光面側の第1電極14と隣り合う太陽電池セル10の裏面側の第2電極16とを接続する。そこで、タブ12は、太陽電池セル10の厚さ分だけ段差を設けるために延曲部12aを有する。

[0004] また、太陽電池セル10の受光面側においてタブ12の表面に入射した光を有効に利用するために、表面に凹凸を設けたタブ12が用いられている。このようなタブ12とすることにより、タブ12の表面に入射した光は凹凸により散乱され、さらに太陽電池セル10を封止する封止材18（ガラス等）によって反射されて、タブ12が設けられていない領域から太陽電池セル10へと導かれる。これによって、タブ12の表面で反射された光も有効に発電に寄与させることができ、太陽電池モジュール100の発電効率が向上する。

発明の概要
発明が解決しようとする課題

ところで、太陽電池モジュール100を使用する際に、図14に示すように、太陽電池セル10の縁部分とタブ12が接触し、応力（図中、矢印方向）が加わって太陽電池セル10が割れてしまうおそれがある。例えば、太陽電池モジュール100に熱サイクルが加わった際に、太陽電池セル10間が狭まり、太陽電池セル10の縁部分とタブ12との接触が生じるおそれがある。

特に、タブ12の表面に凹凸が設けられている場合、その凸部と太陽電池セル10が接触し、応力が凸部に集中して印加される。その結果、太陽電池セル10の破損や特性の劣化を招くおそれが高くなる。

課題を解決するための手段

本発明の1つの態様は、太陽電池モジュールであって、複数の太陽電池セルと、複数の太陽電池セル間を電気的に接続し、表面に凹凸を有するタブと、を備え、タブは、太陽電池セルの周縁領域において他の領域より凹凸の高さが低い。

本発明の別の態様は、太陽電池モジュールの製造方法であって、表面に凹凸を有するタブの一部の領域の凹凸の高さを低くする第1工程と、タブによって、複数の太陽電池セル間を電気的に接続する第2工程と、を備え、第2工程では、凹凸の高さが低くされた領域を太陽電池セルの周縁領域に配置する。

発明の効果

本発明によれば、表面に凹凸を有するタブで接続された太陽電池セルを含む太陽電池モジュールにおいて太陽電池セルの割れ等の発生を抑制し、太陽電池モジュールの信頼性を向上させることができる。

図面の簡単な説明

図1]本発明の実施の形態における太陽電池モジュールの構成を示す平面図である。
【図2】本発明の実施の形態における太陽電池モジュールの構成を示す断面図である。

【図3】本発明の実施の形態における太陽電池モジュールの構成を示す断面図である。

【図4】本発明の実施の形態における太陽電池モジュールの構成を示す断面図である。

【図5】本発明の実施の形態におけるタブの凹凸の高さを説明する図である。

【図6】本発明の実施の形態におけるタブの凹凸の形状の例を示す断面図である。

【図7】本発明の実施の形態におけるタブの凹凸の形状の例を示す断面図である。

【図8】本発明の実施の形態におけるタブの凹凸上に緩衝材が設けられた例を示す断面図である。

【図9】本発明の実施の形態におけるタブの形成方法を示す図である。

【図10】本発明の実施の形態におけるタブの形成方法を示す図である。

【図11】本発明の実施の形態におけるタブの形成方法を示す図である。

【図12】本発明の実施の形態における太陽電池モジュールの製造方法を示す図である。

【図13】従来の太陽電池モジュールの構成を示す断面図である。

【図14】従来の太陽電池モジュールの課題を説明する図である。

発明を実施するための形態

【0011】<太陽電池モジュールの構成>

本発明の実施の形態における太陽電池モジュール 200 は、図 1 の平面図及び図 2 〜図 4 の断面図に示すように、太陽電池セル 20、タブ 22、接着剤 24、第 1 保護部材 26、第 2 保護部材 28 及び充填材 30 を含んで構成される。図 1 は、受光面側からみた太陽電池モジュール 200 の平面図であり、図 2 は、図 1 のライン A — A に沿った断面模式図である。図 3 は、図 1 のライン B — B に沿った断面模式図である。図 4 は、図 1 のライン C — C に
沿った断面模式図である。

なお、以下の説明において、「受光面」は、太陽電池セル20の主面の一つであり、外部からの光が主に入射する面を意味する。例えば、太陽電池セル20に入射する光のうち50%〜100%が受光面側から入射する。「裏面」は、太陽電池セル20の主面の一つであり、受光面と反対側の面を意味する。

太陽電池セル20は、太陽光等の光を受光することでキャリア（電子及び正孔）を生成する光電変換部20aと、光電変換部20aの受光面に設けられた第1電極20bと、光電変換部20aの裏面に設けられた第2電極20cをと備える。第1電極20b及び第2電極20cは、図1に示すように、タブ22の延設方向と交差するように樹状に設けられたフィンガー及びそれ接続するバスバーを備える。バスバーは、タブ22に被われるように設けられる。フィンガー及びバスバーは、例えば、バインダー樹脂中に銀（Ag）等の導電性フィラーが分散した導電性ペーストを透明導電層上に所望のパターンでスクリーン印刷して形成される。なお、太陽電池セル20の裏面側からの光の入射がない場合、光電変換部20aの裏面の光を反射して第2電極20cとしてもよい。太陽電池セル20では、光電変換部20aで生成されたキャリアが第1電極20b及び第2電極20cにより収集される。

光電変換部20aは、例えば、結晶系シリコン、ガリウム砷素（GaAs）又はインジウム磷（InP）等の半導体材料からなる基板を有する。光電変換部20aの構造は、特に限定されないが、本実施形態では、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を有する構造であるとして説明する。光電変換部20aは、例えば、n型単結晶シリコン基板の受光面に、i型非晶質シリコン層、ポロン（B）等がドープされたp型非晶質シリコン層、酸化インジウム等の透過性導電酸化物からなる透明導電層の順番で積層されている。また、基板の裏面に、i型非晶質シリコン層、リン（P）等がドープされたη型非晶質シリコン層、透明導電層の順番で積層されてい
太陽電池モジュール 200において隣り合う太陽電池セル 20 間はタブ 22 によって接続される。タブ 22 としては、例えば、リボン状の銅等の金属箔を用いることができる。タブ 22 は、太陽電池セル 20 の第 1 電極 20 b と、隣り合う太陽電池セル 20 の第 2 電極 20 c とを接続する。タブ 22 は、例えば、一方の太陽電池セル 20 の第 1 電極 20 b のバ スバーと他方の太陽電池セル 20 の第 2 電極 20 c のバスバーとに接着剤 24 により接着される。接着剤 24 としては、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂等の接着性の樹脂材料を含む熱硬化型の接着剤に導電性粒子を分散させた導電性接着ペースト (SCP) 又は導電性接着フィルム (SCF) とすることができる。また、例えば、太陽電池セル 20 の面内方向に導電性が低く、膜厚方向に導電性が高い異方導電性接着剤 (ACF) を用いてもよい。また、接着剤 24 を用いず、ハンダ材によって第 1 電極 20 b 及び第 2 電極 20 c とタブ 22 とを接続してもよい。

タブ 22 は、太陽電池セル 20 の厚さ分だけ段差を設けるために屈曲部 22 a を有する。すなわち、屈曲部 22 a は、隣り合う太陽電池セル 20 が同一平面内に配置されるように第 1 電極 20 b と第 2 電極 20 c とを接続するために太陽電池セル 20 の厚さ分だけ構造的な逃げが形成されるように設けられる。

また、図 3 に示すように、タブ 22 の表面には凹凸 22 b が設けられる。凹凸 22 b は、凹部と凸部との間の高さが 1 μm 以上 80 μm 以下とすることが好適である。本実施の形態では、凹凸 22 b は、タブ 22 の長さ方向（延設方向）に沿った三角溝形状としたが、これに限定されるものではなく、円錐形状、四角錐形状、多角錐形状及びそれらの組み合わせ等としてもよい。

凹凸 22 b は、太陽電池モジュール 200 の受光面側から入射した光がタブ 22 の表面に入射した際に、その光を散乱し、さらに第 1 保護部材 26 によって反射させて、タブ 22 が設けられていない領域から太陽電池セル 20
へと導くことを可能とする。これにより、タブ22の表面で反射された光も有効に発電に寄与させることができ、太陽電池モジュール200の発電効率が向上する。

第1保護部材26は、太陽電池セル20の受光面側を保護するために設けられる部材である。第1保護部材26は、太陽電池セル20の受光面側に設けられるので、太陽電池セル20において光電変換に利用される波長帯域の光を透過する透明な部材から構成される。第1保護部材26としては、例えばガラス板、樹脂板、樹脂フィルム等の透光性を有する部材を用いることができる。第2保護部材28は、太陽電池セル20の裏面側を保護するために設けられる部材である。第2保護部材28としては、第1保護部材26と同様に、ガラス板、樹脂板、樹脂フィルム等を用いることができる。なお、太陽電池セル20の裏面側からの光の入射がない場合、第2保護部材28は不透明な板体やフィルムとしてもよい。この場合、第2保護部材28としては、例えばアルミ箔等を内部に有する樹脂フィルム等の積層フィルムを用いてもよい。第1保護部材26及び第2保護部材28は、充填材30を用いて太陽電池セル20の第1電極20b及び第2電極20cとそれぞれ接着される。

本実施の形態における太陽電池モジュール200では、図3及び図4に示すように、太陽電池セル20の周縁領域におけるタブ22の凹凸22cの高さは、他の領域におけるタブ22の凹凸22bの高さよりも低くされる。

ここで、太陽電池セル20の周縁領域とは、太陽電池セル20の縁近傍においてタブ22と直接接触する可能性がある領域である。また、他の領域とは、太陽電池セル20の周縁領域以外の少なくとも一部の領域である。他の領域は、例えば、太陽電池セル20の中央付近の領域としてもよい。

ここで、タブ22の屈曲部22aに、他の領域に設けられた凹凸22bより高さが低い凹凸22cを設けることが好適である。このとき、屈曲部22aの一方のみに凹凸22cを設けてもよい。このとき、タブ22の一面のみに凹凸が設けられている場合には、凹凸が設けられた面が太陽電池セル20
に向かい合う屈曲部２２ａ（図２では太陽電池セル２０の裏面側近傍の屈曲部２２ａ）に凹凸２２ｃを設けることが好適である。また、複数の太陽電池セル２０を接続する領域、すなわち屈曲部２２ａ間の領域に亘って凹凸２２ｃを設けてもよい。また、太陽電池セル２０の周縁部より内側にかかるように凹凸２２ｃを形成してもよい。

なお、凹凸の高さは、凹凸の凹部（谷部）から凸部（山部）まで間隔ｈを意味する。凹凸の高さが均一でない場合には、凹凸の高さは、タブ２２の幅方向（延長方向に直交する方向）に沿った凹凸の平均値とする。

タブ２２の凹凸２２ｃの断面形状は、他の領域におけるタブ２２の凹凸２２ｂよりも高さが低くなる形状であればよい。例えば、図６に示すように、凹凸２２ｃの断面形状は、凸部の先端が平坦に潰された形状であってもよい。また、図７に示すように、凹凸２２ｃの断面形状は、凸部の先端の曲率が他の領域における凹凸２２ｂの先端の曲率よりも大きい曲面を有する形状としてもよい。もちろん、凹凸２２ｃを設けず、平坦な形状としてもよい。なお、図６及び図７では、凹凸２２ｃとの対比が容易となるように凹凸２２ｂの形状の例を破線で示している。

また、図８に示すように、タブ２２の凹凸２２ｃが設けられた領域を緩衝材３２で被う構成としてもよい。緩衝材３２は、エポキシ樹脂やアクリル樹脂 ウレタン樹脂等の樹脂材とするのが好適である。例えば、第１電極２０ｂや第２電極２０ｃとタブ２２とを接着するために用いられる接着剤２４（導電性接着ペースト（ＳＣＰ）又は導電性接着フィルム（ＳＣＦ））を緩衝材３２として流用してもよい。このとき、太陽電池セル２０の内側方向に導電性が低く、膜厚方向に導電性が高い異方向導電性接着剤（ＡＣＦ）とすることが好適である。

このように、太陽電池セル２０の周縁領域においてタブ２２に他の領域の凹凸２２ｂよりも小さい凹凸２２ｃを設けることによって、太陽電池セル２０の周縁領域（縁部）にタブ２２が接触することを抑制することができる。
また、たとえタブ22が太陽電池セル20の周縁領域（縁部）に接触したとしても、凸部から太陽電池セル20に加えられる圧力の集中が緩和され、太陽電池セル20の破損を抑制することができる。

ここで、タブ22の屈曲部22aは太陽電池セル20の周辺領域において太陽電池セル20とより接触し易い領域であるので、屈曲部22aに他の領域の凹凸22bよりも小さい凹凸22cを設けることによって太陽電池セル20の破損を抑制する効果は顕著となる。また、屈曲部22a間に亘って凹凸22cを設けることにより、より確実に太陽電池セル20の破損を抑制す

[0027] ることができる。

[0028] また、タブ22の凹凸22cを緩衝材32で被うことにより、緩衝材32によって凸部から太陽電池セル20に加えられる圧力の集中がより緩和され、太陽電池セル20の破損を抑制する効果がより顕著となる。

[0029] < タブの形成方法>

タブ22の凹凸22cの形成方法について以下に説明する。タブ22は、その一方の表面全体に凹凸が予め設けられているものとする。凹凸は、例えば、機械的なプレス加工によって形成することができる。そして、タブ22の一部の領域の凹凸を加工して、他の領域の凹凸22bよりも小さい凹凸22cを形成する。

[0030] 例えば、図9 (a) ～図9 (c) に示すように、プレス加工により凹凸22cを形成することができる。まず、全体に亘って凹凸22bを有するタブ22を準備する（図9 (a)）。そして、タブ22の一部の領域における凹凸22bの凸部の先端をプレス加工機40にて機械的にプレスする（図9 (b)）。これにより、タブ22の一部の領域に凹凸22cを形成することができる（図9 (c)）。この場合、凸部の先端の形状はプレス加工に用いられる型（金型）によって適宜選択することができる。

[0031] また、図10に示すように、凸部の先端を加熱して溶融させることによって凹凸22cを形成することができる。加熱方法は限定されるものではなく、例えば、レーザ照射装置によりレーザ光42を照射することにより加熱す
次に、タブ22に屈曲部22aを形成する。屈曲部22aは、図11に示すように、タブ22の該当箇所をプレス加工することにより形成することができる。一部の領域に他の領域よりも高さが低い凹凸22cを有するタブ22を準備する（図11(a)）。そして、プレス加工機44にてタブ22をプレスして屈曲部22aを形成する（図11(b)）。このとき、凹凸22cが形成された領域Xが太陽電池セル20の周縁領域に位置するように屈曲部22aを形成する。例えば、屈曲部22a間に凸るように凹凸22cが形成された領域Xを形成しておくことが好適である。このようにして、タブ22に屈曲部22aが形成される（図11(c)）。

もちろん、凹凸22cが形成された領域Xが太陽電池セル20の周縁領域に位置するようにすれば、これに限定されるものではない。例えば、屈曲部22aに相当する領域のみに凹凸22cを形成し、そこが屈曲部22aとなるようにプレス加工してもよい。本実施の形態の場合、屈曲部22aに相当する2箇所に凹凸22cを形成する。また、タブ22の一面のみに凹凸が設けられている場合には、凹凸が設けられた面が太陽電池セル20に向かい合う屈曲部22aに相当する領域のみに凹凸22cを形成し、そこが屈曲部22aとなるようにプレス加工してもよい。また、太陽電池セル20の周縁部より内側にかかるように凹凸22cを形成してもよい。

なお、タブ22の凹凸22cを緩衝材32で被う場合、凹凸22cを形成後に凹凸22cが形成された領域に緩衝材32を塗布等により形成すればよい。

<太陽電池モジュールの製造方法>

以下、太陽電池モジュール200の製造方法について説明する。太陽電池モジュール200では、太陽電池セル20は従来の製造方法を適用して形成することができるので、特徴部分であるタブ22による配線方法について説明する。

図12(a)に示すように、太陽電池セル20に第1電極20b及び第2
電極20cを形成後、第1電極20b及び第2電極20cのバースバー上に接着剤24を配置する。その後、図12(b)に示すように、タブ22を第1電極20b及び第2電極20cに接着し、隣り合う太陽電池セル20を接続する。このとき、凹凸22cが形成されたタブ22の領域が太陽電池セル20の周縁領域に位置するように接着する。そして、図12(c)に示すように、第1保護部材26、第2保護部材28及び充填材30により封止する。

以上のように、本実施の形態の太陽電池モジュール200によれば、太陽電池セル20の割れ等の発生を抑制し、太陽電池モジュール200の信頼性を向上させることができる。

符号の説明

[0038] 10 太陽電池セル、12 タブ、12a 屈曲部、14 第1電極、16 第2電極、18 封止材、20 太陽電池セル、20a 光電変換部、20b 第1電極、20c 第2電極、22 タブ、22a 屈曲部、22b、22c 凹凸、24 接着剤、26 第1保護部材、28 第2保護部材、30 充填材、32 緩衝材、40, 44 プレス加工機、42 レーザ光、100, 200 太陽電池モジュール。
請求の範囲

[請求項1] 太陽電池モジュールであって、
複数の太陽電池セルと、
前記複数の太陽電池セル間を電気的に接続し、表面に凹凸を有するタブと、
を備え、
前記タブは、前記太陽電池セルの周縁領域において他の領域より凹凸の高さが低い。

[請求項2] 請求項1に記載の太陽電池モジュールであって、
前記タブは、前記太陽電池セル間に設けられた屈曲部における凹凸が前記他の領域の凹凸より高さが低い。

[請求項3] 請求項2に記載の太陽電池モジュールであって、
前記タブは、前記屈曲部間の凹凸が前記他の領域の凹凸より高さが低い。

[請求項4] 請求項1～4のいずれか1項に記載の太陽電池モジュールであって、
前記タブは、前記他の領域の凹凸より高さが低い凹凸を有する領域の表面に緩衝材が設けられている。

[請求項5] 太陽電池モジュールの製造方法であって、
表面に凹凸を有するタブの一部の領域の凹凸の高さを低くする第1工程と、
前記タブによって、複数の太陽電池セル間を電気的に接続する第2工程と、
を備え、
前記第2工程では、前記凹凸の高さが低くされた領域を前記太陽電池セルの周縁領域に配置する。

[請求項6] 請求項5に記載の太陽電池モジュールの製造方法であって、
前記第1工程は、前記タブの一部に圧力を加えて凹凸の高さを低く
する。

[請求項7] 請求項5に記載の太陽電池モジュールの製造方法であって、
前記第1工程は、前記タブの一部を溶融させて凹凸の高さを低くする。
[図14]

12
14
16
12a
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H01L31/042(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H 0 1 L 3 1 / 0 4 - 3 1 / 0 7 8

Documentations searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyu Shinan Koho 1922-1 996 Jitsuyu Shinan Toroku Koho 1996-2012
Kokai Jitsuyu Shinan Koho 1 971-2012 Toroku Jitsuyu Shinan Koho 1994-2012

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2005-302902 A (Sharp Corp.), 27 October 2005 (27.10.2005). paragraph s [0034] to [0041]; fig. 3</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>& WO 2005/098969 A1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 2005-186572 A (Canon Inc.), 09 July 1999 (09.07.1999). paragraph s [0033], [0091] to [0131]; fig. 9 to 17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& US 5184457 BI & US 6479744 BI & CN 1221224 A</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

"A" Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

05 April 1, 2012 (05.04.12)

Date of mailing of the international search report

17 April 1, 2012 (17.04.12)

Name and mailing address of the ISA

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2012-009681 A (Sanyo Electric Co., Ltd.), 12 January 2012 (12.01.2012), entire text; all drawings (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-013406 A (Sanyo Electric Co., Ltd.), 12 January 2006 (12.01.2006), entire text; all drawings (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-059991 A (Shin-En-su Handotai Co., Ltd.), 02 March 2006 (02.03.2006), entire text; all drawings (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. H01L31/042 (2006. 01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. H01L31/04- 31/078

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-19
日本国公開実用新案公報 1971-20
日本国実用新案登録公報 1996-20
日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
国際出願番号 PCT/JP2012/057534

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求書の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X W0 2011/004950 Al (LG ELECTRONICS INC.)</td>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>Y 2011. 01. 13. [Claim 1] - [Claira 2], [Fig. 3], [Fig. 23] & US 2011/0005688 Al & KR 10-0990114 Bl</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>X JP 2005-302902 A（ジャーブ株式会社）</td>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>Y 2005. 10. 27. D034 J - D041 J，図3</td>
<td>& wo 2005/098969 Al</td>
<td>4</td>
</tr>
</tbody>
</table>

搜索結果に含まれる文献

今後の研究に役立つ文献

国際調査を完了した日
2012年04月05日

国際調査報告の発送日
2012年04月17日

特許庁審査官（権限のある職員）
黒崎 隆一
電話番号 03-3581-1101 内線 3255

様式 PCT／ISA／210（第2ページ）（2009年7月）
国 際調査報告

国際出願番号 PCT/JP2012/057534

C（続き）
関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求権の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 11-186572 A（キヤノン株式会社）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999. 07. 09. 【D033】、【D091】—【0131】，図9—図17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& US 6184457 B1 & US 6479744 B1 & CN 1221224 A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2012-009681 A（三洋電機株式会社）</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>2012. 01. 12，全文全図</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-013406 A（三洋電機株式会社）</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>2006. 01. 12，全文全図</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-059991 A（信越半導体株式会社）</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>2006. 03. 02，全文全図</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

様式 PCT／ISA／210（第2ページの続き）(2009年7月)