PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/42916

26 August 1999 (26.08.99)

(21) International Application Number: PCT/US99/03266

(22) International Filing Date: 17 February 1999 (17.02.99)

(30) Priority Data:

09/025,143 Us

18 February 1998 (18.02.98)
(71) Applicant: IONA TECHNOLOGIES, PLC [US/US]; Shel-
bourne Road, Dublin 4 (IE).

(72) Inventor: BURKE, Mark, W.; 9 Temple Manor Court,
Limekiln Avenue, Dublin 12 (IE).

(74) Agents: REIN, Barry, D. et al.; Pennie & Edmonds LLP, 1155
Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
S], SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, F], FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

(54) Title: FOREIGN OBJECT DEFINITION INFORMATION REPOSITORY

REPOSTORY

Q

SCOPE(pOC)

Q

m

112

I N N

|

MANIGED
OBIEC || PACKGE | PARMETER o, || Armeeute || ‘oo | | eeravior || acTion || NomFicaron|| MoouLE
? 15— 02

01 102 107 108 103 04 109 106 | 110

DEFINED DEFINED

TYPE VALUE

(57) Abstract

Object—oriented and object-based programming techniques encapsulate computer programs and data in objects which separate
implementation details from the contractual interface through which the objects are used. An object’s interface defines the object’s type, and
is the view of the object exposed and accessible from outside the object. The interface is usually a listing of the operations and attributes

that an operation provides.

AL
AM
AT
AU

BA
BB
BE
BF
BG
BJ

BY
CA
CF
CcG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

FOREIGN OBJECT DEFINITION INFORMATION REPOSITORY

1. FIELD OF THE INVENTION
The present invention relates generally to object-
oriented or object-based distributed object management

technology, and more specifically to a repository for foreign
object definition information, a gateway for manipulating
foreign objects using such foreign object definition

information, and a network management system using such a
gateway.

4 2. BACKGROUND

Object-oriented and object-based programming
techniques encapsulate computer programs and data in objects
which separate implementation details from the contractual
interface through which the objects are used. An object’s
interface defines the object’s type, and is the view of the
object exposed and accessible from outside the object. The
interface is a usually a listing of the operations and
attributes that an operation provides. For example, a
typical object interface includes the object’s methods and
their signatures together with any externally accessible
fields. The details of the object’s implementation other
than those reflected in the interface are hidden. See Booch,
Object-Oriented Analysis and Design, Addison-Wesley (1994).
Objects are invoked through their interface.

Because an object invocation must conform to the
object’s interface, any entity seeking to invoke an object
must have access to interface definition information for the
object at the time it makes the invocation.

Interface information may be acquired either
statically or dynamically. Statically acquired interface
information is typically compiled or built into an invoking
entity (usually another object), and cannot be changed
without recompiling or modifying that entity. Dynamically
acquired interface information, on the other hand, is

typically acquired at run-time, and permits the construction

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

of an invocation of an object having an interface that was
unknown to the invoking entity prior to run-time.

Interface definition information may be acquired
dynamically by interrogating objects for interface
information about themselves, as for example through the Java
introspection mechanism, or by acquiring the interface
information from some other object or program as in the case
of the CORBA Interface Repository.

Object interfaces are specified in a variety of
ways. In an object-oriented language, an interface may be
defined concretely by simply implementing it in an object.
Alternatively, the interface may be specified apart from any
object or class implementing the interface. Some object-
oriented languages, such as Java, include an interface
declaration keyword for abstractly defining interfaces.
Abstract or virtual classes can also be used for this purpose
in some languages.

A higher degree of abstraction and implementation
independence may be achieved by defining interfaces in a
language-independent interface definition notation. An
interface defined this way may typically be implemented in
more than one language, and objects so implemented in one
language may typically invoke services of objects implemented
in another language. In a distributed object-oriented
environment, the ability to connect objects implemented in a
variety of languages is a significant benefit.

One distributed object-oriented environment with
multiple-language support is the Common Object Request Broker
Architecture ("CORBA") specification published by the Object
Management Group. CORBA interfaces are defined abstractly
using the CORBA Interface Definition Language ("CORBA ipL"),
a declarative notation for defining interfaces. CORBA IDL is
the means by which clients learn what operations are
available from an object, and how they should be invoked.

The CORBA specification includes language mappings
by which an interface defined in CORBA IDL is translated into
"stub" code implementing the interface for an invoking

-2 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

object, and "skeleton" code implementing the interface on the
invoked object. CORBA IDL language mappings exist for a
variety of languages including Smalltalk, C++ and Java. See
The Common Object Request Broker: Architecture and
Specification, Revision 2.0, July 1995, updated July 1996.

Another distributed object-oriented environment
supporting language-independent object definitions is
included in the Open System Interconnection (OSI) network
management standards published by the International
Organization for standardization (ISO). The Common
Management Information Protocol (CMIP) and the Common
Management Information Service Element (CMISE) defined in
these standards incorporate a distributed object model for
network management. This model is described in part in CCITT
Recommendation X.722 (1992), "Information Technology -- Open
Systems Interconnection - Management Information Services -
Structure of Management Information: Guidelines for the
Definition of Managed Objects." Objects defined in
accordance with Recommendation X.722 are referred to in this
specification as "GDMO objects."

In the 0SI world, objects are specified in
GDMO/ASN.1. "ASN.1" refers to Abstract Syntax Notation One, a
complex type definition notation. GDMO/ASN.1 object
definitions are based on a set of templates used to describe
managed objects used for network management and control.
Among other object information, ASN.1l is used to define
transfer syntaxes which can be used to invoke GDMO objects.
ASN.1 is specified in ITU-T Recommendation X.208,
"Specification of Abstract Syntax Notation One (ASN.1l)".

When objects defined in one scheme (such as CORBA,
for example) are used to manipulate (for example to invoke or
instantiate) objects defined in another scheme (such as
GDMO/ASN.1, for example), object definition information,
including interface information must be somehow acquired
across definition schemes.

Object definition information may be acquired

across definition schemes by translating definitions from one

R

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

scheme into the other. However, a syntactic or semantic
mismatch between the schemes may make the translation or its
results cumbersome or unworkable. |

GDMO/ASN.1, for example, supports a richer variety
of types than does CORBA IDL. Translation into CORBA IDL
from ASN.1 often leads to unmanageable CORBA IDL definitions,
and very large executables. Also, CORBA IDL translated from
GDMO/ASN.1 is typically incomplete because information is
lost during the translation process. The resulting
collection of managed object definition information may not
contain all the required information to perform CMISE
operations.

There is therefore a need to provide a system for
permitting objects having definitions in one definition
notation to access object definitions specified in a
different object definition notation in a manner that does
not cause information to be lost in the process.

Accordingly, it is one objective of the present
invention is to provide a first set of object definition
information specified in a first notation to objects
specified at least in part in a second notation without
translating the first object definition information into the
second object definition notation.

Another objective of the invention is to provide a
means by which objects specified at least in part in a first
object definition notation can invoke objects specified at
least in part in a second object definition notation.

A further objective of the invention is to provide
a means by which objects can instantiate objects defined at
least in part in a foreign object definition notation.

Another objective of this invention is to provide a
metadata repository by which a objects can use interfaces
defined in a first object definition notation to discover
object definitions specified in a second object definition
notation.

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

3. SUMMARY

The invention accomplishes these and other
objectives by encapsulating foreign object definition
information in encapsulator objects having native interfaces.
The encapsulated foreign object definition information need
not be translated into native definition notation, but may be
discovered by interrogating the encapsulator objects using
their native interfaces.

Encapsulator objects can include all information
contained in GDMO/ASN.1 specifications, in any suitable
format. Encapsulated information may be discovered by
invoking the encapsulator objects on their CORBA interfaces
without translating the encapsulated specifications into
CORBA IDL.

The invention also encompasses the use of
encapsulator objects in a foreign object definition
information repository. Such a repository includes
supporting objects that provide additional services for run-
time discovery of foreign object definition information, such
as searching for specific types of foreign object
definitions.

The encapsulator objects and metadata repository of
the invention may be used to construét a dynamic gateway that
does not require compile-time information of object
definitions of objects using its services. All information
necessary for adaptation of the dynamic gateway can be
provided through the metadata repository. Such a gateway may
be provided as an off-the-shelf application for deployment in
a variety of environments.

4, BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of an object definition

metadata repository showing encapsulator and support object
types.

Fig. 2 is a block diagram of a dynamic CORBA/CMIS
gateway comprising a object definition metadata repository.

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

Fig. 3 is a block diagram comprising a greatly
simplified representation of a collection of encapsulator
objects and references corresponding to a completely
specified GDMO/ASN.1l object definition.

5. DETAILED DESCRIPTION OF THE INVENTION
In one embodiment, the invention comprises a method

and system for encapsulating object definition information
expressed in a first notation in encapsulator objects defined
at least in part in a second, typically different notation.
In a preferred embodiment, the encapsulator objects expose
interfaces defined in the second notation. This
specification refers to such a first notation as foreign
notation, and such a second notation as native notation.
Corresponding objects, object definitions, interfaces,
interface information and interface definitions are also
referred to as "foreign" and “native" respectively.

In a preferred embodiment, encapsulator objects are
created by a parser that parses foreign notation. For
example, in one preferred embodiment, the parser accepts
foreign object definition information expressed in foreign
notation and instantiates one or more encapsulator objects
for each rule (such as a production) in a grammar that
corresponds to the syntactic structure defined in the foreign
notation. The resulting collection of encapsulator objects
reflects the syntactic structure of the foreign oﬁﬁect
definition information. The encapsulator objects expose
native interfaces that may be interrogated to discover the
foreign object definition information they encapsulate.

Standard compiler generation tools such as lex and
yacc may used to create a parser, such as a parser for
GDMO/ASN.1 specifications, in accordance with the present
invention. The system may in addition resolve 1S0 object
identifiers into their integer components, perform semantic
checking and resolve informal references to other
specifications.

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

Fof example, an informal reference such as "CCITT
Recommendation X.721:1992" may be resolved to a file name
such as "x721.gdmo". Textual references are resolved to
CORBA object references. For example, "CCITT Recommendation
X.721:1992:top" would be resolved to a poinﬁer to the CORBA
object encapsulating the first specification in
Recommendation X.721. An ISO object identifier such as
{joint-iso-ccitt ms(9) smi(3) part2(2) asnlModule(2) 1} would
be resolved to {2 9 3 2 2 1}.

The parser may be included in an object factory (an
object which instantiates and initializes other objects)
which instantiates CORBA objects corresponding to the
nonterminals of the syntax defined by GDMO/ASN.1
specifications. The resulting CORBA objects may be
interrogated by other CORBA objects through their CORBA
interfaces to discover the encapsulated GDMO object
definitions. No translation of the encapsulated GDMO object
information into CORBA IDL is required, avoiding the problems
posed by the differences between CORBA and GDMO syntax and
semantics.

In a preferred embodiment, the encapsulator objects
have predefined native interfaces. This permits invocation
of the encapsulator objects without run-time discovery of
their native interfaces. An alternative embodiment includes
encapsulator objects that have native interfaces that are not
predefined. Such encapsulator interfaces may dependvupon the
foreign interface definitions which they encapsulate, or be
determined by other information available at the time the
encapsulator objects are instantiated. Still another
embodiment includes the use of pseudo-objects accessible
through, forvexample, the CORBA Dynamic Skeleton Interface
(DSI). Such a pseudo-object embodiment could, for example,
parse foreign object definitions at run-time in response to
invocations on a pseudo-object, or store foreign object
definition information in a database.

The type structure of the encapsulator objects may
reflect the type structure of the foreign interfaces which

-7 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

they encapsulate. For exampie, in a preferred embodiment, a
CORBA GDMO repository includes CORBA encapsulator object
types corresponding to GDMO templates, including Managed
Object Class Template(101), Package Template (102), Attribute
Template (103), Attribute Group Template (104), Notification
Template (105), Action Template (106), Parameter Template
(107), Name Binding Template (108) and Behavior Template
(109). In addition, a CORBA encapsulator object for a Module
ASN.1 container type is included (110), as shown in Fig. 1.

In a preferred embodiment, the collection of
encapsulator objects has the form of a metadata repository.
In such an embodiment, support objects provide services for
the discovery of encapsulator objects. For example, a
foreign object definition metadéta repository could provide a
class having a native interface that accepts invocations for
all encapsulator types, and which parses the invocations
using the encapsulator objects. Other services, such as for
iteration through the encapsulator objects in the repository,
or sophisticated query and/or scoping services may be
provided, permitting the discovery of encapsulator objects
having only a certain type or property.

A foreign object definition metadata repository may
be used in applications requiring dynamic discovery of
foreign object definitions. An example of such an
application is a CORBA based GDMO browser, which would use
predefined CORBA interfaces to discover and present
information from the repository, and could permit
manipulation on the fly of GDMO objects having definitions
encapsulated in encapsulator objects visible to the browser.
Other examples such as a dynamic gateway or code generator
are described in greater detail below.

In one preferred embodiment, the encapsulator
repository has the form of a GDMO repository, and a
containment structure as shown in Fig. 1. In the GDMO
repository of this embodiment, a CORBA GDMO Repository object
(111) contains one or more CORBA GDMO Document objects (112).

Each Document object in turn contains one or more CORBA

-8 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

objects of types corresponding to GDMO template and ASN.1
Module types.

| By using the services of the Repository and
Document supporting objects, CORBA client objects can
discover CORBA encapsulator objects encapsulating particular
GDMO template types and/or originating in a particular GDMO
definition document. For example, the Repository object (111)
could be interrogated to discover all available objects
encapsulating GDMO Attribute Group template types. Or a
Document object corresponding for example to CCITT
Recommendation X.721 could be interrogated to discover all
objects encapsulating GDMO Action template types specified in
that Recommendation.

Encapsdlator objects, parsers of'object definition
information and object factories for instantiating
encapsulator objects, as well as supporting objects for
discovery of encapsulator objects and applications using
these structures may be constructed in a variety of ways that
will be readily apparent to those of ordinary skill working
in the distributed object and network management fields.

Encapsulator objects may be used to advantage in a
number of applications. In particular, gateways for
manipulating foreign objects may be readily implemented
through the use of encapsulator objects to construct
invocations on foreign objects.

In a preferred embodiment, a dynamic gateway uses a
foreign object definition metadata repository to manipulate
foreign objects at run time in response to requests on native
interfaces for services requiring use of those foreign
objects.

In one preferred embodiment, a dynamic CORBA/CMIS
gateway is implemented through the use of a foreign object

definition repository as shown in Fig. 2. The gateway

includes both a CORBA server (201) and a CMIS manager (202)
interoperating as a single application (203). The CORBA
server (201) exports a CORBA interface (204) through which
one or more CORBA clients such as (205) may utilize CMIS

- 0 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

services and CMIP (208) to invoke services of a CMIS agent
(206) . Encapsulator objects in a GDMO/ASN.l repository (207)
are referenced by the CORBA server (201) to provide the
object definition information required by the CMIS manager to
manipulate one or more CMIS agents such as (206).

The dynamic CORBA/CMIS gateway (203) is a generic
application that can accept a variety of requests from CORBA
objects such as (205) for CMIS operations without compile-
time knowledge of the GDMO/ASN.1l definitions for the CMIS
operations requested. By using CORBA DSI, the generic
gateway can accept invocations on CORBA IDL interfaces that
depend on the CMIS operations desired and parse those
invocations using the GDMO/ASN.1 repository. The generic
gateway can thus be deployed off-the-shelf in a variety of
environments by encapsulating the CMIS operation dependent
information for each environment in the foreign interface
repository.

In this embodiment, upon receipt of a request using
DSI for a CMIS operation from a CORBA object, the dynamic
gateway invokes a root repository object using managed object
class name information included in the request. The root
repository object returns a reference to an encapsulator
object corresponding to a managed object class template
specified by the name. The managed object class template
object corresponds to the root of a subtree of encapsulator
objects that fully defines the class. The subtree objects
correspond to GDMO template types.

The managed object class object is invoked using
additional information (for example, attribute information)
from the request, and returns one or more references to
encapsulator objects in the subtree and/or one or more
terminals representing symbols in the parsed request. Any
referenced objects are in turn invoked, and the subtree is
traversed in this manner until the request is resolved into a
collection of CORBA object references that corresponds to a
completely specified GDMO/ASN.i object definition. Operation
name information in the request is parsed in a similar

- 10 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

manner. The specified definitions are then used to construct
the requested CMIS operation invocation. Fig. 3 represents a
simplified representation of such a collection of
encapsulator object references. A typical collection of
references in practice would be far more complex.

The dynamic gateway of this embodiment uses the
CORBA Dynamic Skeleton Interface to accept CORBA invocations
including CORBA IDL definitions not available to the gateway
at compile time. The gateway uses the predefined CORBA
interfaces of the GDMO metadata repository to discover the
actual parameters being passed by the invocation as well as
how to use those parameters to construct the requested CMIS
operation invocation. The gateway can thus accept
invocations having CORBA interfaces that depend on the CMIS
operation requested without compile-time knowledge of either
the complete CORBA requesting interface or the CMIS
operation. The gateway can therefore be an off-the-shelf
application adaptable through the repository to wide variety
of circumstances.

For example, in a typical network management
situation, a: variety of devices such as routers, switches,
adapters, modems, printers and other computer and
communication equipment are connected to the managed network.
Instances of managed object classes are used to control these
devices, and will have object definitions that vary depending
on the particular devices connected to the manageé network.
By placing the managed object definition information into
encapsulator objects in accordance with the present
invention, a dynamic gateway may be deployed over a variety
of managed networks without modification to the gateway
software. ‘

Many other applications for foreign object
definition encapsulator objects exist. One such application
is a lightweight code generator. Such a code generator may
be used for the creation of classes that may directly invoke
foreign objects. For example, a CORBA code'generator could
interrogate a GDMO repository to construct Java or C++ code

- 11 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

for directly invoking GDMO objects. It will be apparent to
one of ordinary skill that invention is not limited to the
specific embodiments set forth here for purposes of
illustration but is applicable broadly to a wide variety of
applications involving object manipulation across definition
schemes, all as set forth in the claims.

- 12 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

What is claimed is:

1. A computer system for retrieving object definition
information comprising one or more software objects in
encoded in computer readable form, said one or more objects
having at least one interface defined in a first notation,
said one or more objects encapsulating object definition
information specified in a second notation, said second

notation being different from said first notation.

2. The system of claim 1, wherein said first notation
comprises CORBA IDL.

3. The system of claim 1, wherein said second notation
comprises ASN.1.

4. The system of claim 1, wherein said second notation
comprises GDMO.

5. The system of claim 1, said system further comprising an
metadata repository.

6. The system of claim 5, said system further comprising a
dynamic gateway for manipulating objects defined at least in
part in said second notation by means of invocations on
interfaces defined in said first notation.

7. A method for accessing object definition information
stored in one or more software objects residing in computer
memory, comprising the steps of invoking said one or more
objects by means of at least one interface specified in a
first notation, said one or more object returning in response
to said invocation object definition information specified in
a second notation.

8. The method of claim 7, wherein said first notation
comprises CORBA IDL.

- 13 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

9. The method of claim 7, wherein said second notation
comprises ASN.1l.

10. The system of claim 7, wherein said second notation
comprises GDMO.

11. A system for storing object definition information
comprising a‘ parser for object definition information, an
object factory for instantiating objects encapsulating said
object definition information, said objects having pre-
defined interfaces.

12. The system of claim 11, wherein said objects have
interfaces defined in CORBA IDL.

13. The system of claim 12, further comprising a CORBA
server utilizing the CORBA Dynamic Skeleton Interface.

14. The system of claim 11, wherein said objects encapsulate
ASN.1 object definition information.

15. The system of claim 11, wherein said objects encapsulate
GDMO object definition information.

16. The system of claim 12, further comprising a root
encapsulator object for resolving object definition name
information into an object reference for an encapsulator

object corresponding to an object definition type.

17. A software object comprising an interface defined in a
first notation for manipulating an object at least partially
defined in a second notation, said second notation being
different from said first notation.

18. The software object of claim 17, wherein said first
notation comprises CORBA IDL.

- 14 -

10

15

20

25

30

35

WO 99/42916 PCT/US99/03266

19. The software object of claim 18, wherein said second
notation comprises ASN.1l.

20. The software object of claim 17, wherein said second
notation comprises GDMO.

21. A method of constructing an object invocation comprising
the steps of:

instantiating an object collection of objects
corresponding to rules specifying the syntax of said object
invocation;

receiving information of the content of the object
invocation; and

interrogating the object collection with the information
to determine a set of objects sufficient to construct the
invocation.

- 15 -

PCT/US99/03266

WO 99/42916

1/3

1 "9l

INTVA 3dAL
@3NI43a @3NI43a
oLl 90l 60l 01 ol 801 L0} 201 101
o 00
< -
ONIONIG V10
TInaon | |Noivoudon]] Nowov || douwHas Hnmm%‘ AnghiLy || G | [H30nvavd] | 39viovd c_m_%zm%z
~_| (000)3dods
il Aw
N1 ANOLSOdY

bl

SUBSTITUTE SHEET (RULE 26)

PCT/US99/03266

WO 99/42916

2/3

¢l
£0c

902
802 Nom

10¢

)

I EN
vay09

(>

L0C

L'NSY
/ONG9

AYOLISOdS3Y

N\

vad0d

G0¢

IN3MO
vau09

SUBSTITUTE SHEET (RULE 26)

PCT/US99/03266

WO 99/42916

3/3

INTVA d3NI430

¢ol4

NOILVOI4IL0N

NOILOV

AdAL Q3NL430

dNOYd LNAILLY

JIVANOVd

SSV10 193r80
IOVNVA

dI1INvivd

|

NaLLY

dOIAVH3d

Q

INIANIg
JNWN

O

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

