The disclosure provides methods, systems, and apparatuses for modular platforms. In one embodiment at least two congruous modules are provided wherein each of the modules have at least one plank. Further, there is a plurality of routed grooves having routed holes for receiving one or more fasteners to adjoin the modular platforms. Notably, the individual modules may be prefabricated templates available for in-stock selection or custom-ordered. The length and shape of the interconnected modules amount to innumerable permutations. To facilitate horizontal stability, fasteners adjoining adjacent modules are used, but added vertical stability may be achieved through routed pockets and complimentary grooves. For further stability, something desirable possibly for unlevelled ground or assured smooth pathways, supporting substrate(s) beneath the modular platforms and additional attachment means may be utilized at every possible junction. As a finishing touch, a platform edging about the perimeter of the desired modular platform is suggested.
MODULAR PLATFORM AND INTERCONNECTABILITY

CROSS REFERENCE TO RELATED APPLICATION

BACKGROUND

[0002] This disclosure pertains to modular pathways constructed from pre-fabricated modules and/or custom-ordered modules, either of which have any shape and dimensions desired in order to accomplish the desired modular pathway having sufficient integral strength for walking or running on them by people or animals, travelling over them by wheelchairs, Segways®, go-carts, mopeds, and so forth. Furthermore, this disclosure enables the construction or establishment of a pathway having a length and shape left only to the imagination from the modular components, and can be especially beneficial for providing a stable, smooth and easy path whether placed atop a smooth or very uneven terrain.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0003] So that the manner in which the above recited features, advantages and objects of the present disclosure are attained and can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.

[0004] It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.

[0005] FIG. 1 depicts an example embodiment showing part of quadrilateral modular system and an optional adhesive located between a top layer and one or more supporting substrates in order to create a pathway with other securing means and in accordance with the disclosure.

[0006] FIG. 2 depicts an example embodiment showing part of quadrilateral modular system for creating a pathway in accordance with the disclosure.

[0007] FIG. 3 depicts an example embodiment showing a hexagonal module for use in creating a pathway in accordance with the disclosure.

[0008] FIG. 4 depicts an example embodiment of two separate quadrilateral modules for interlocking via one or more routed pockets accepting one or more complimentary pocket inserts located within the depth of each module before fastening the modules with one or more fasteners in routed holes located within routed grooves, wherein the routed holes terminate before piercing the supporting substrate backing the modules and in accordance with the disclosure.

[0009] FIG. 5 depicts an example embodiment of two quadrilateral modules having another module shaped as a quarter of a circle module and located between the two quadrilateral modules so as to create a continuous pathway in accordance with the disclosure.

[0010] FIG. 6 depicts an example embodiment of two quadrilateral adjoined modules, wherein one of these two modules is also adjoined to another quadrilateral module, and the entire modular system is surrounded by a platform edging so as to create a continuous pathway in accordance with the disclosure.

[0011] FIG. 7 depicts an example embodiment of a flow-chart for creating a pathway in accordance with the disclosure.

DETAILED DESCRIPTION

[0012] The following is a description of example embodiments, which aid this disclosure by the drawings included herewith. The embodiments are examples and are in such detail as to clearly communicate the disclosed subject matter. However, the amount of detail offered is not intended to limit the anticipated variations of embodiments; on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims. The descriptions and drawings below are designed to make such embodiments obvious to a person of ordinary skill in the art.

[0013] This disclosure provides, for example, a description of apparatuses, methods and systems for a modular pathway, such as a walkway, for use on flat or uneven terrain. The modules, themselves, may be made from any natural or synthetic material, such as wood, metal, rubber, plastic, porcelain, concrete, tile, Silestone®, composite or recycled materials optionally having specialized coatings (e.g., galvanized, Teflon®, etc.) that may or may not be molded to create any desired shape(s) of any component parts herein. The chosen material may be based on considerations involving durability, aesthetics, environmental-friendliness, material availability from suppliers, or any other purpose. Furthermore, the modules and/or parts thereof may come assembled, partially assembled, or completely unassembled. Thus, for example, the modules may be available as a kit, with or without suggested assembly and maintenance instructions, for either immediate use by the end-user or require a small or a substantial amount of assembly before use by the end-user.

[0014] A more detailed description of the modules now ensues. Although the exact dimensions and shapes are illustrative in this disclosure, this disclosure provides the following examples to facilitate a clearer understanding of the modules. The modules, for instance, may be 34 7/8" squares, a size that fits within most elevators, and, thus, convenient when vertical transportation is an issue. The actual size and shape of the modules, however, could be any size, including, for instance, custom-ordered sizes and shapes. The modules, themselves, may comprise any number of planks of varying widths, lengths, and thickness. In one example, there are six planks forming the top layer's top surface of the module. These planks may be fastened in any fashion to lower members also called “runners,” but are also called supporting substrates herein. In one example embodiment, a module may have two runners. The runners may be made of any natural or synthetic material such as a type of those above-disclosed, and in one example embodiment the runners are made from cedar and/or composite materials. In another example embodiment, the runners may be compatible with rubber roofing materials. The runners, themselves, may provide support for the top surface, e.g., the planks, away from the ground. Additionally or attentively, there may be one or more threaded holes drilled into the bottom of the runners to allow
placement of screws, bolts or the like to aid in leveling the platform especially for use in situations of uneven terrain.

At each encountered corner during the interconnection of modules, or other point of possible connection with other modules, the module may have routed grooves and vertical routed holes through at least the top surface, and optionally the underlying runner as well, to accept a fastener, sometimes called a “dog” fastener, in order to facilitate the horizontal interconnection. The routed grooves may permit the “dog” fastener to be completely flush with the top surface of the planks. In alternative example embodiments, the routed grooves may only permit the “dog” fasteners to be partially flush or not flush at all with the top surface of the planks.

Furthermore, the one or more lower member(s) (also known as “runners” or “supporting substrates”) are removably or irremovably secured to and below the planks, wherein together the foregoing may be viewed as comprising the module. To horizontally connect modules, the modules have one or more slots (also called “routed holes”) to receive one or more “dog” fasteners. These routed holes may be of any suitable shape (e.g., circle, square, polyhedron, etc.) to receive the one or more “dog” fasteners in each routed hole, wherein the “dog” fastener’s legs may or may not have a complementary shape (e.g., circle, square, polyhedron, etc.) as compared to each routed hole in which the leg(s) are received. In one example, although not depicted in the drawings which are disclosed later herein, the so-termed legs of two “dog” fasteners may fit into each routed hole. In another example, only one leg may fit into each routed hole. As a result of placing the legs of the “dog” fasteners into the routed holes drilled through the top surface of each of one or more plank(s), two modules may be interconnected. The foregoing interconnectivity may result in any number of modules being connected in a similar fashion. Only one’s imagination can limit the length or route for creating a pathway from the modular system enabled herein.

As just discussed, the routed holes provide the vertical support in stabilizing the constructed platform from the modules. As shown in example embodiments depicted by FIGS. 5 and 6, two “dog” fasteners connect two modules—each at opposing sides and near the periphery of each module. However, in other non-depicted example embodiments, there may be only one or even two or more “dog” fasteners connecting individual modules. Additionally, the exact placement of the one or more “dog” fasteners may be other than as shown in FIGS. 5 and 6. That is, the one or more “dog” fasteners may be placed more towards the center of the interconnecting modules, two at one end of the interconnecting modules and three at the other end of the interconnecting modules, or any other variation as desired. Of course, the placement of the one or more “dog” fasteners depends on placement of the routed grooves and accompanying routed holes to receive the one or more “dog” fasteners.

As previously discussed, the modules, themselves, may have any shape, such as squares, polyhedrons, quadrilaterals, polygons, rhombuses, and so forth so as to allow for interconnectability and/or a module designed solely to serve as a terminus. One possible shape is a specialized corner module. The corner module, such the example embodiments shown in FIG. 5, may have tapered planks. In the depicted example, two corner pieces are connected in the aforementioned manner, and each corner piece is actually one-eighth of a circle. Thus, the interconnected corner pieces form a portion of a circle. Naturally, these interconnected corner pieces could be very narrow and allow for many of them or be wide and allow for fewer of them to form the fractional portion of a circle such as that shown at FIG. 5. Regardless of this actual fractional shape discussion, the tapered and/or non-tapered planks optionally may have additional support by their mounting onto lower cross members (also known as “runners” or “supporting substrate”), wherein the runners may supplied to the end-user for attaching to the top layer having the planks with or without another attachment means, e.g., epoxy adhesive, screws, nails, bolts, nuts, and so forth. Else, in an alternative embodiment, the runners may come pre-assembled. That is, the runners may already be affixed in any fashion to the bottom supporting substrate of the top layer having the planks so that the module is immediately ready for interconnectability.

Turning now to vertical interconnection, and in yet another example embodiment, the modules may include one or more routed pockets, such as those shown in FIGS. 1 and 4, optionally located within a side of the supporting substrate and/or within the side of the planks. These routed pockets impart improved vertical support for the interconnected modules. The routed pockets, which may number one or more per module, receive a vertical supporting member, i.e., a pocket insert, that is shared with and is located between the immediately adjacent module within the portion of the routed pocket located in each adjacent module. For example, and with reference to FIG. 4, a first module may receive approximately half of a disk that fits within the semi-circular routed pocket located within the side of a plank and/or that plank’s runner(s)/supporting substrate of the first module. A second module shares the other half of the pocket insert within the semi-circular routed pocket located within the side of an adjacent plank and/or that plank’s runner(s)/supporting substrate of the second module. It is noteworthy that although semicircular routed pockets and pocket inserts are depicted in FIG. 4, no particular shape is required so long as their shapes are complimentary and provide at least improved vertical support to the overall modular system being formed. In this manner, improved vertical support for the constructed platform between two adjacent modules is achieved by placement of the pocket insert within the routed pocket (e.g., a routed semi-circular shape in each module so that when two modules are pushed together form a circular or ellipsoidal shape) formed by pushing the two adjacent modules together. This improved vertical support helps, for example, to mitigate the effects of torsional strain experienced when a person walks on the constructed platform. Although FIG. 1 depicts a semicircular routed pocket located within the side of the plank and/or the plank’s runner(s)/supporting substrate to receive the pocket insert, both the shape of the routed pocket and the pocket insert, as previously mentioned, may be any complementary shape that provides the disclosed, improved vertical integrity. For example, if the routed pocket in each module forms half of a hexagon in each module, then the pocket insert for placement therebetween would preferably be hexagonal as well, but such a pocket insert is not absolutely required. Any shape that provides improved vertical integrity would suffice and is within the scope and spirit of the present disclosure. Furthermore, it is worthwhile to note that while FIG. 4 show a solid pocket insert, there is no requirement for such. Instead and for example, a pocket insert having a hole in the center, e.g., a washer, would also provide improved vertical support for adjoined modules, and, to that end, it is clear that any improvement of vertical stability through the many per-
mutations of possible shapes and sizes of pocket inserts and routed pockets is innumerable. That is, the pocket insert, regardless of the shape or continuity, to be received by a routed pocket may have one or more holes located at or near the center, elsewhere, or not at all.

[0020] In yet another embodiment, the modules, whether ideal for straight, corner or other angled interconnectivity may have beveled edges that are ideal for providing improved loading onto the one or more connected modules(s). In this example embodiment, improved loading is realized for wheelchair access, wheeling furniture on a dolly, and so forth.

[0021] The “dog” fasteners, themselves, may comprise large staple-shaped metal “dogs” in one example embodiment. Of course, as with the module material, any material of suitable strength and any suitable shape permitting interconnectability may be used for the “dogs.” As a specific example embodiment, staple-shaped metal “dogs” may be three inches long by three eighths of an inch in diameter that fit into the routed holes in the routed grooves with one of dog’s two legs traversing a routed hole, which may be into a runner/supporting substrate also, of one module and the other one of the dog’s two legs traversing a routed hole located in an adjacent module as to interconnect two modules by placement of the dog fastener therein.

[0022] The modules and components necessary for connecting the same, may be sized for easy transportation as well as for the end-user desiring a customized, do-it-yourself project. As can be easily envisaged, the modules provide for a permanent or temporary platform having an interconnected size left only to the imagination of the end-user. Just as the interconnected design may be assembled easily to the desired purpose and size, disassembling and optionally reconfiguring a new interconnected design is equally easy.

[0023] Accordingly, the present disclosure permits a platform customized to the end-user’s desired application. For instance, the present disclosure permits the construction of a walkway, optionally having skid-proof planks, to safely traverse an uneven terrain by means of a modular pathway designed by the end-user. Suggested illustrative uses for the apparatuses, methods and systems made possible by the disclosure herein comprise temporary or permanent construction areas platforms, landscaping platforms, handicapped access paths, basement platforms, garage platforms, rooftop gardens paths, balcony platforms, outdoor patios, and beach access paths.

[0024] Now a discussion of the figures ensues although much, if not all, of the following has been enablingly disclosed by the foregoing. FIG. 1 depicts part of a module 100 with primary focus on plank 107 located on the top surface of the top lawyer 107 and separated from plank 108 by an expansion crack 125 through which the supporting substrate 110 may be visible depending on the physical properties of the materials used and variables such as pressure and temperature. Plank 107 depicts the routed groove 115 beginning on a side edge of plank 107 and extending towards its 107 middle to a predetermined distance, i.e., long enough to receive approximately half of a fastener 230 as shown on FIG. 2. At the terminus of the routed groove 115, a routed hole 120 is depicted that is there to receive one of the legs of the fastener 230 as shown on FIG. 2. The routed hole 120 may optionally traverse solely the top layer 105 or penetrate further through all or part of the supporting substrate 140. Preferably, a combination of a routed groove 115 and routed hole 120 provides for a flush mounting of the half of a fastener 230 shown on FIG. 2 when placed therein for interconnection with an adjoining module. Additionally, FIG. 1 depicts the optional inclusion of one or more routed pockets 140, which provide further support for the ultimate structure upon receipt of a male member, such as pocket insert 445 shown in FIG. 4. As with the placement of the fastener 230 as shown on FIG. 2 and pocket insert 445 shown in FIG. 4 into their routed hole 120 and routed pocket, respectively, these placements can have optional additional security through use of an attachment means, e.g., epoxy adhesive, screws, nails, bolts, nuts, and so forth such as that shown in FIG. 1 between the top layer 105 and supporting substrate 110.

[0025] Turning now to FIG. 2, part of a modular system 200 is depicted showing two planks 205, 206 ready for joining two other planks 207, 208 turned ninety degrees with respect to each of these sets of two planks. Here, the expansion cracks 225 are again depicted and the optional supporting substrate may or may not be visible therethrough 225. Of course, the supporting substrate would not be visible if this modular construction did not have one. The system 200 labels one of the several routed holes 220 and routed grooves 215. Most notably, however, is the fastener 230 accompanied by a downward arrow 235 showing the direction of the fastener 230. That is, system 200 is a depiction frozen in time but a predictor of the motion to come. By inserting the fastener 230 in the direction 235 illustrated, the fastener 235 will penetrate each of the two routed grooves’ holes to a depth limited by the shorter of the holes’ depth or the fastener’s leg’s length. In this manner, the two sets of planks, 205, 206 and 207, 208, or even viewable as two small modules comprising two planks each, are adjoined. Use of an additional un-depicted fastener is advised to secure the upper portion of these now at least partially adjoined two sets of planks, 205, 206 and 207, 208.

[0026] FIG. 3 depicts a module 300 of a different shape, namely hexagonal, that this disclosure makes clear is envisioned and enabled. As with the previous discussions, this hexagonal module 300 has multiple routed grooves, such as 315, and each also has at least one routed hole, such as 320. Furthermore, the module 300 comprises a multitude of planks, which could be smaller or larger in number, and illustrates one as 305. The supporting substrate is for the top surface having a depth of its own also has an easily visible supporting substrate 310.

[0027] Moving on to FIG. 4, the system 400 depicts two modules, 401 and 402 to be adjoined. In this example embodiment, the quadrilateral modules, 401 and 402, are duplicates of each other. That is, each module, 401 or 402, have two pocket inserts, such as 445, located within one side of its module, and two routed pockets, such as 440, located within the opposite side of its module. With or without the addition of adding a non-depicted attachment means, such as epoxy adhesive, screws, nails, bolts, nuts, and so forth, to either or both the pocket insert received into the adjacent module’s routed pocket, the modules are pushed together 435 to adjoin them 401 and 420, into a single unit so as to create a small pathway. This may be repeated ad infinitum to achieve a longer pathway in the same direction and/or have multiple directions as the end-user desires to form his constructed pathway from multiple modular units. To provide further integral strength, and, again, with or without the addition of adding a non-depicted attachment means, a fastener 430 is placed with each of its two legs penetrating a routed hole, such as 420, within its routed groove, such as 420, of one module with another the complimentary routed hole within
the routed groove 420 of another module. Thereby, the fastener further secures the integrity of the combined modules, 401 and 402.

[0028] FIG. 5 is yet another example embodiment of a multi-modular system 500 that creates a pathway as one of uncountable possibilities an end-user could devise. In this example, quadrilateral modules 501 and 502 are connected on the constructed pathway 500 through the insertion of a module 503 linked to both 501 and 502 independently. That is, module 503 is the keystone. Specifically, modules 501 and 503 are linked through fasteners within each routed hole within its respective routed groove that allow them 502, 503 to connect. Similarly, modules 502 and 503 are linked through fasteners within each routed hole within its respective routed groove that allow them 502, 503 to connect. Although not every fastener, routed hole and routed groove are enumerated in FIG. 5, illustrative examples of each are enumerated, i.e., fastener 530, routed hole 520 and routed groove 515. The archetypical periphery of module 503, for example, lends itself 503 to beauty, possible requirements due to a user’s geographical constraints in that area, and/or the possibility of making a desired pathway 500 much longer than otherwise possible.

[0029] Moving onward, FIG. 6 becomes the focus of this disclosure now. Here, the constructed modular system 600 comprises two adjoining modules 601 via fasteners, wherein one of the fastener’s legs is within the routed hole of a routed groove of one module, and the other of the fastener’s legs is within the routed hole of a routed groove of the adjoining module. In this case, it is clear that item 601 presents two modules joined in this fashion, a process discussed multiple times throughout this disclosure. Adjacent to one of these two adjoining modules 601 is adjoining module 602. Although turned ninety degrees with respect to the planks’ direction in modules 601, adjoining module 602 is joined to the upper half portion of 602 in the same manner as previously discussed elsewhere and in this paragraph as well. That is, for example, routed holes, such as 620, routed grooves, such as 6150, and fasteners, such as 630 are used throughout system 600. Surrounding the entire adjoining system 600 comprising 601 and 602 is also platform edging 625 also adjoining by fasteners, routed pockets, pocket inserts and/or attachment means of the types previously disclosed. As with any of the modules disclosed herein, the platform edging 625 may be made from any natural or synthetic material, such as wood, metal, rubber, plastic, porcelain, concrete, tile, Silestone®, composite or recycled materials optionally having specialized coatings (e.g., galvanized, Teflon®, etc.) that may or may not be molded to create any desired shape(s) of any component parts herein. For example, the platform edging 625 may act as a protective surrounding to a modular system and/or add beauty such as if the platform edging 625 has decorative components akin tiered structures at its edges, e.g., similar to what crown molding does when surfaces come together.

[0030] Another aspect of the disclosure is found at FIG. 7. Although the foregoing disclosure and FIGS. 1-6 provide sufficient embodiment for the example method now disclosed, FIG. 7 is added to provide yet another example for creating a modular system, which is also capable of disassembling for re-creating at another desired location or in another configuration with more or less modules. The flowchart 700 starts 705 by receiving 710 at least two pre-configured modules of a particular shape and size for linking whether available the individual modules are off-the-shelf or custom-ordered to user-desired specifications. The flowchart 700 queries 715 whether routed pockets and complimentary pocket inserts exist between the two modules desiring to be adjoined. If no 717, then the flowchart continues to adjoining through the routed grooves and routed holes, a step discussed later on in this paragraph. If yes, then the flowchart 700 queries whether to add 720 attachment means to the routed pocket(s) and/or complimentary pocket insert(s). If yes, then the attachment means is added to either or both routed pocket(s) and complimentary pocket insert(s) and then pushing 725 the modules together. If no 723, then no attachment means is added and the modules are simply pushed 725 together. Whether continuing from this point of the flowchart 700 or effectively starting here because routed pocket(s) and pocket insert(s) do not exist 717 for the two modules to be adjoined, the flowchart 700 queries whether to add 730 attachment means to the routed grooves and/or routed hole(s). If no 733, then no attachment means are added 730, and the next step whether added 730 or not 733 is to insert 735 fastener(s) into the routed grooves and/or routed hole(s). At this point in the flowchart 700, the two modules are adjoined with different degrees of integrity depending on the chosen steps by the end-user of the flowchart 700. Thereafter, the flowchart 700 queries whether to add 740 another module to the two module system. If yes 743, the flowchart continues from step 715 as many times as the user wishes until deciding no 743. As a final matter, the flowchart 700 queries whether to provide 745 a platform edging to the entire system comprising at least two modules but also, considerably more based on the number of flowchart 700 iterations through adding module(s) 740. If a platform edging is provided 745 to at least part of the resulting modular system, then the flowchart 700 culminates at end 750. If the decision is not 747 to provide platform edging, then the flowchart 700 culminates at end 750.

[0031] While the foregoing and accompanying drawings are directed to example embodiments of the disclosure herein, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims.

What is claimed is:
1. A method for a modular platform, the method comprising:
 providing at least two congruous modules, wherein each of the at least two modules have at least one plank;
 routing a plurality of grooves from a periphery of a top surface of a top layer of each of the at least two modules, wherein the grooves have both a predetermined depth near a bottom surface of the top layer and a predetermined length extending from the periphery towards an inner portion of the top surface;
 routing a plurality of holes substantially near a terminus for each of the plurality of grooves, wherein the holes have a predetermined width and length, and further wherein the terminus is sufficiently far away from the periphery to maintain integrity of the modular platform; and
 inserting a plurality of fasteners in the two congruous modules, wherein each of the fasteners comprise two legs integrally joined by a bar, and further wherein one of the two legs resides in one of the plurality of holes in one of the two congruous modules and another of the two legs resides in another of the plurality of holes in another of the two congruous modules so as to create a substantially
flush embedding of each of the fasteners in order to provide improved horizontal stability to a resulting modular platform.

2. The method of claim 1, further comprising:
 routing one or more routed pockets within a middle portion of the top surface and located on at least one side of at least one of the at least two modules; providing one or more pocket inserts within the middle portion of the top surface and located on at least one side of at least another of the at least two modules; and inserting the one or more routed pockets into the one or more pocket inserts so as to complimentary connect opposing sides of the at least two modules in order to provide improved vertical stability to the resulting modular platform.

3. The method of claim 2, further comprising providing an attachment means between the one or more routed pockets and the one or more pocket inserts to provide greater vertical stability and integrity.

4. The method of claim 1, further comprising adjoining a supporting substrate to the bottom surface.

5. The method of claim 1, further comprising providing an attachment means between the grooves and the holes that are in complimentary connection.

6. The method of claim 1, further comprising repeating the method to achieve a desired length and pattern.

7. The method of claim 1, further comprising framing the modular platform with a platform edging after achieving a desired length and pattern.

8. The method of claim 1, further comprising expansion cracks between each of a plurality of planks on each of the at least two modules having more than the at least one plank thereon.

9. The method of claim 1, wherein the routing of the grooves comprises routing the grooves through the bottom surface.

10. A modular platform system comprising:
 at least two congruous modules, wherein each of the at least two modules have at least one plank;
 a plurality of grooves from a periphery of a top surface of a top layer of each of the at least two modules, wherein the grooves have both a predetermined depth near a bottom surface of the top layer and a predetermined length that extends from the periphery towards an inner portion of the top surface;
 a plurality of routed holes substantially near a terminus for each of the plurality of routed grooves, wherein the routed holes have a predetermined width and length, and further wherein the terminus is sufficiently far away from the periphery to maintain integrity of the modular platform; and
 a plurality of fasteners in the two congruous modules, wherein each of the fasteners comprise two legs integrally joined by a bar, and further wherein one of the two legs resides in one of the plurality of routed holes in one of the two congruous modules and another of the two legs resides in another of the plurality of routed holes in another of the two congruous modules so as to create a substantially flush embedding of each of the fasteners in order to provide improved horizontal stability for the modular platform system.

11. The system of claim 10, further comprising:
 one or more routed pockets within a middle portion of the top surface and located on at least one side of at least one of the at least two modules;
 one or more pocket inserts within the middle portion of the top surface and located on at least one side of at least another of the at least two modules; and
 the one or more routed pockets inserted into the one or more pocket inserts so as to complimentary connect opposing sides of the at least two modules in order to provide improved vertical stability for the modular platform system.

12. The system of claim 11, further comprising an attachment means placed between the one or more routed pockets and the one or more pocket inserts to provide greater vertical stability and integrity.

13. The system of claim 10, further comprising a supporting substrate adjoined to the bottom surface.

14. The system of claim 10, further comprising an attachment means placed between the routed grooves and the routed holes that are in complimentary connection.

15. The system of claim 10, further comprising repetition of the modular platform system to achieve a desired length and pattern.

16. The system of claim 10, further comprising a platform edging framing a perimeter of the modular platform system after achieving a desired length and pattern.

17. The system of claim 10, further comprising expansion cracks located between each of a plurality of planks on each of the at least two modules having more than the at least one plank thereon.

18. The system of claim 10, wherein the routed grooves extend through the bottom surface.

19. The system of claim 10, wherein a shape of each of the at least two modules comprises any shape capable of modularly adjoining to create the modular platform system regardless whether each of the any shape are identical or different shapes.

20. A method for creating a modular platform, the method comprising:
 receiving at least two congruous modules, wherein each of the at least two modules have at least one plank;
 receiving at least one fastener, wherein the at least one fastener comprises two legs integrally joined by a bar; inserting one of the two legs into one hole and another of the two legs into another hole, wherein the one hole and the another hole are located on a different one of the at least two congruous modules, and the bar spans a distance for the creating of the modular platform resulting from the at least two congruous modules now connected with a substantially flush embedding of the fastener used to provide improved horizontal stability.