(54) 实用新型名称
基于相变储热的太阳能和低谷电混合采暖装置

(57) 摘要
一种大幅减少储热设备的容积以及扩展应用领域的基于相变储热的太阳能和低谷电混合采暖装置。技术方案是：其特征是由太阳能集热器、相变储热器、DDC 控制器组成，太阳能集热器的一端与连接阀门连接，连接阀门通过相变储热器端阀门与相变储热器连接，太阳能集热器的另一端与集热器循环水泵相连，连接器循环水泵还通过泵间阀门与相变储热器循环水泵连接，相变储热器循环水泵与相变储热器连接；在相变储热器的一侧设置有低谷电辅助加温器；在泵间阀门和相变储热器之间的设置有控制阀门；在太阳能集热器、集热器循环水泵和相变储热器循环水泵上设置有温度传感器，集热器循环水泵和相变储热器循环水泵分别与 DDC 控制器水泵控制端口连接。
1. 基于相变储热的太阳能和低谷电混合采暖装置，其特征是由太阳能集热器 (1)、相变储热器 (2)、DDC 控制器组成，所述太阳能集热器 (1) 的一端与连接阀门 (12) 连接，连接阀门 (12) 通过相变储热器端阀门 (10) 与相变储热器 (2) 连接，太阳能集热器 (1) 的另一端与集热器循环水泵 (5) 相连，集热器循环水泵 (5) 还通过泵间阀门 (7) 与相变储热器循环水泵 (6) 连接，相变储热器循环水泵 (6) 与相变储热器 (2) 连接；在相变储热器 (2) 的一侧设置有低谷电辅助加热器 (4)，所述低谷电辅助加热器 (4) 一端通过低谷电辅助加热器阀门 (9) 与相变储热器连接，低谷电辅助加热器 (4) 的另一端与相变储热器的另一端连接；在泵间阀门 (7) 和相变储热器阀门 (10) 之间设置有控制阀门 (8)；在太阳能集热器 (1)、集热器循环水泵 (5) 和相变储热器循环水泵 (6) 上设置有温度传感器 (13)，各温度传感器分别与 DDC 控制器的数据读取端口连接，所述各阀门分别与 DDC 控制器阀门控制端口连接，集热器循环水泵 (5) 和相变储热器循环水泵 (6) 分别与 DDC 控制器水泵控制端口连接。

2. 根据权利要求 1 所述的基于相变储热的太阳能和低谷电混合采暖装置，其特征是所述太阳能集热装置采用二级加热装置，第一级太阳能集热器采用金属吸热体真空管集热器，第二级太阳能集热器采用抛物柱面聚焦型集热器。

3. 根据权利要求 1 或 2 所述的基于相变储热的太阳能和低谷电混合采暖装置，其特征是所述相变储热器 (2) 的储热单元由螺旋盘管 (14)、保温材料层 (15) 和相变材料 (16) 组成，螺旋盘管位于保温材料层内部，在保温材料层上设置有螺旋盘管的进水口 (17) 和出水口 (18)，相变材料位于螺旋盘管与保温材料层之间。

4. 根据权利要求 3 所述的基于相变储热的太阳能和低谷电混合采暖装置，其特征是所述螺旋盘管 (14) 的外侧壁上设置有凹槽 (19)。
基于相变储热的太阳能和低谷电混合采暖装置

技术领域
[0001] 本实用新型属于太阳能采暖装置领域，尤其是一种能够大幅减少储热设备的容积以及扩展应用领域的基于相变储热的太阳能和低谷电混合采暖装置。

背景技术
[0002] 太阳能是可再生能源中最重要的一种，储量丰富，无需开采运输，对环境无任何污染。目前在各个领域已经得到广泛应用。但是由于太阳能的采集受时间和天气的影响，单靠太阳能往往无法保证太阳能采暖系统的正常运行，系统中还需要设置适当的辅助热源，以保证系统的可靠性。辅助热源可以根据实际情况进行设置，既可以是单独的燃气热水器或电加热器，也可以是其他常规热源。
[0003] 近年来，随着社会和经济的发展，用电构成发生了很大的变化，高峰用电负荷增加，低谷用电大量减少，峰谷差不断拉大。我国多年来由于输配电建设落后于发电厂的建设，造成电网结构薄弱，电网承受力差，在用电高峰时出现电力供应紧张和电力负荷沉重的状况时，可能引发一些事故，降低供电可靠性。在低谷时段，电用不出去，部分机组只能停用，致使发电机组和供电设施效率和利用率均低，机组寿命缩短。
[0004] 相变潜热储热作为一种能够很有效地解决热能在供给与需求上存在失衡矛盾的技术，在太阳能利用、电力的“移峰填谷”、废热和余热的回收利用等领域被广泛的应用。在传统的储能系统中，常利用水作为储热介质。尽管其价格便宜，传热特性好，但由热容较小，所需容器的体积较大，且温度变化范围较大，不易于控制。

实用新型内容
[0005] 本实用新型的目的是提供一种能够大幅减少储热设备的容积以及扩展应用领域的基于相变储热的太阳能和低谷电混合采暖装置。
[0006] 本实用新型的技术方案是：基于相变储热的太阳能和低谷电混合采暖装置，其特征是由太阳能集热器、相变储热器、DDC控制器组成，所述太阳能集热器的一端与连接阀门连接，连接阀门通过相变储热器端阀门与相变储热器连接，太阳能集热器的另一端与集热器循环水泵相连，集热器循环水泵还通过泉间阀门与相变储热器循环水泵连接，相变储热器循环水泵与相变储热器连接；在相变储热器的一侧设置有低谷电辅助加热器，所述低谷电辅助加热器一端通过低谷电辅助加热器阀门与相变储热器连接，低谷辅助加热器的另一端与相变储热器的另一端连接，在泉间阀门和相变储热器阀门之间设置有控制阀门；在太阳能集热器、集热器循环水泵和相变储热器循环水泵上设置有温度传感器，各温度传感器分别与DDC控制器数据读取端口连接，所述各阀门分别与DDC控制器阀门控制端口连接，集热器循环水泵和相变储热器循环水泵分别与DDC控制器水泵控制端口连接。
[0007] 所述太阳能集热装置采用二级加热装置，第一级太阳能集热器采用金属吸热体真空管集热器，第二级太阳能集热器采用抛物柱面聚焦型集热器。
[0008] 所述相变储热器的储热单元由螺旋盘管、保温材料层和相变材料组成，螺旋盘管
位于保温材料层内部，在保温材料层上设置有螺旋盘管的进水口和出水口，相变材料位于螺旋盘管与保温材料层之间。

[0009] 所述螺旋盘管的外侧壁上设置有凹槽。

[0010] 本实用新型的效果是：基于相变储热的太阳能和低谷电混合采暖装置，其相变储热器利用相变材料的潜热进行能量储存，因为相变材料热容大、相变温度基本恒定，可以大大减少储热设备的容积，而且由于不同的相变材料具有各自相对恒定的相变温度，使其能够用于不同的领域。考虑到螺旋盘管内部流动扰动及换热面积对换热的强化作用，采用螺旋粗细表面，改善了储、放热特性，增大了单位容积储热能力。

[0011] 太阳能集热装置。采用一级加热，第一级采用金属吸热体真空管集热器，它可将输送过来的水加热 70-120℃，有的可高达 300-400℃，能承受 0.6MPa 以上的压力。第二级太阳能集热器采用抛物柱面聚焦型集热器，它应用的是直通式真空管。一级加热的设计提高了集热器出水温度，改善了集热效率。

[0012] 实现电加热自动控制。DDC 控制器系统有电加热器、温度传感器、电动阀等。其主要功能有：1 分时段控制电路通断功能（进行任意时段的通电、断电时间设置），低谷电加热器只在低谷电时段且储热器出水温度低于一定数值时开启。2 根据用户端负荷的变化，控制各阀及循环泵的开启与关闭。

[0013] 系统集成化。本系统主要包括：太阳能多级加热系统、相变储热器、电加热器以及 DDC 控制器系统。优先利用太阳能进行供暖，夜间利用低谷电加热，将热量存储到相变储热器中，在夜间或白天太阳不足时辅助采暖。

[0014] 下面结合附图和实施例对本实用新型做进一步的说明。

附图说明

[0015] 图 1 是本实用新型的结构示意图；
[0016] 图 2 是图 1 中相变储热器储热单元的结构示意图；
[0017] 图 3 是图 2 中的 A-A 向视图；
[0018] 图 4 是图 3 中螺旋盘管的横断面图。

具体实施方式

[0019] 图 1 中，基于相变储热的太阳能和低谷电混合采暖装置，太阳能集热器 1、相变储热器 2、DDC 控制器组成，太阳能集热器 1 的一端与连接阀门 12 连接，连接阀门 12 通过相变储热器端阀门 10 与相变储热器 2 连接，太阳能集热器 1 的另一端与集热器循环水泵 5 相连，集热器循环水泵 5 还通过泵间阀门 7 与相变储热器循环水泵 6 连接，相变储热器循环水泵 6 与相变储热器 2 连接；在相变储热器 2 的一侧设置有低谷电辅助加热器 4。所述低谷电辅助加热器 4 一端通过低谷电辅助加热器阀门 9 与相变储热器连接，低谷辅助加热器 4 的另一端与相变储热器的另一端连接，在泵间阀门 7 和相变储热器阀门 10 之间设置有控制阀门 8；在太阳能集热器 1、集热器循环水泵 5 和相变储热器循环水泵 6 上设置有温度传感器，各温度传感器分别与 DDC 控制器数据读取端口连接，各阀门分别与 DDC 控制器阀门控制端口连接，集热器循环水泵 5 和相变储热器循环水泵 6 分别与 DDC 控制器水泵控制端口连接。3 是用户端，11 是用户端阀。
太阳能集热装置采用二级加热，第一级采用金属吸热体真空管集热器，第二级太阳能集热器采用抛物面聚热器，它应用的是直通式真空管。

图 2 中，相变储热器的储热单元由螺旋盘管 14、保冷材料层 15 和相变材料层 16 组成，螺旋盘管位于保冷材料层内部，在保冷材料层上设置有螺旋盘管的进水口 17 和出水口 18，相变材料层位于螺旋盘管与保冷材料层之间，螺旋盘管 14 的外侧壁上设置有凹槽 19（参见图 3、图 4）。

本实用新型的工作模式介绍如下：

(1) 太阳能直接供暖模式：

当日照条件好，太阳能辐射量强，从集热器流出的热水温度能够满足供暖要求时，太阳能集热器开始集热，将泵间阀门 7、用户端阀门 11、连接阀门 12 打开，并启动集热器循环水泵 5，关闭其余各阀门和相变储热器循环水泵 6，太阳能集热器收集的热量直接对用户进行供暖，系统在这种模式下运行经济性好，运行费用低。

(2) 太阳能供热储热模式：

当日照条件好，太阳能辐射量强，白天气温偏高，热用户需要的供热负荷不大，集热器收集到的太阳能除向热用户供热外还有剩余，泵间阀门 7、连接阀门 12、相变储热器端阀门 10、用户端阀门 11 打开，启动集热器循环水泵 5 以及相变储热器循环水泵 6，其余阀门关闭，太阳能集热器收集的热量一部分对系统进行供暖，由集热器收集到的多余太阳能将以热的形式通过循环介质储存到相变储热器 2 中。

(3) 太阳能与储热器联合供暖模式：

当白天气温较低，日照条件一般，集热器收集的太阳能不能完全满足热用户所需供暖负荷时，将泵间阀门 7、连接阀门 12，相变储热器端阀门 10，用户端阀门 11 打开，并启动集热器循环水泵 5 和相变储热器循环水泵 6，关闭其余各阀门，系统由太阳能和储热器共同供热。

(4) 夜间低谷电供热和储热装置储热模式

在夜间低谷电时段，打开低谷电辅助加热器阀门 9、相变储热器端阀门 10、11，启动相变储热器循环水泵 6，关闭其余阀门和集热器循环水泵 5，由低谷电直接加热进行供暖，同时对储热器进行热量补充。

(5) 储热装置供热模式：

遇到雨雪天气，日照条件极差，白天气温很低，供热负荷要求很高时，可将相变储热器端阀门 10，用户端阀门 11 打开，并启动相变储热器循环水泵 6，关闭其余各阀门和集热器循环水泵 5，使系统完全由储热器加热进行供暖。
图4