US008161491B2

a2z United States Patent (10) Patent No.: US 8,161,491 B2
Krishnakumar et al. (45) Date of Patent: Apr. 17,2012
(54) SOFT REAL-TIME LOAD BALANCER 6,658,449 B1* 12/2003 Brenneretal. ........... 718/105
6,687,257 B1* 2/2004 Balasubramanian ......... 370/429
(75) Inventors: Anjur Sundaresan Krishnakumar, 6,779,182 B1* 82004 Zolnowsky ............... 718/103
Princeton, NJ (US); Parameshwaran (Continued)
Krishnan, Basking Ridge, NJ (US); Min
Lee, Atlanta, GA (US); Navjot Singh, FOREIGN PATENT DOCUMENTS
Denville, NJ (US); Shalini Yajnik, EP 1536335 *6/2005
Berkeley Heights, NJ (US)
OTHER PUBLICATIONS
(73) Assignee: Avaya Inc., Basking Ridge, NJ (US) o
Tannenbatum et al. “Condor—A Distributed Job Scheduler”, ACM,
(*) Notice: Subject to any disclaimer, the term of this 2001, p. 1-44.%
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 85 days.
(21)  Appl. No.: 12/768,458 Primary Examiner — Jennifer To
. 74) Attorney, Agent, or Firm — Maldjian Law Group LLC;
(22) Filed: Apr. 27, 2010 .(Tohil P. Mal%}ianngsq.; Alexander D. \JValter, Esq. ’
(65) Prior Publication Data
US 2011/0035751 A1 Feb. 10, 2011 (57) ABSTRACT
Related U.S. Application Data The present disqlosure i.s based on a multi-.core or mplti-
processor virtualized environment that comprises both time-
(60) Provisional application No. 61/232,542, filed on Aug. sensitive and non-time-sensitive tasks. The present disclosure
10, 2009, provisional application No. 61/254,019, describes techniques that use a plurality of criteria to choose
filed on Oct. 22, 2009. a processing resource that is to execute tasks. The present
disclosure further describes techniques to re-schedule queued
(51) Int.CL tasks from one processing resource to another processing
GOGF 9/455 (2006.01) resource, based on a number of criteria. Through load balanc-
GOGF 9/46 (2006.01) ing techniques, the present invention both (i) favors the pro-
GOGF 15/173 (2006.01) cessing of soft real-time tasks arising from media servers and
(52) US.CL ... 718/105; 718/1, 718/103, 709/223, applications, and (11) prevents “starvation” of the non-real-
709/224;709/226 time general computing applications that co-exist with the
(58) Field of Classification Search ............... 718/103, media applications in a virtualized environment. These tech-
718/105 niques, in the aggregate, favor the processing of soft real-time
See application file for complete search history. tasks while also reserving resources for non-real-time tasks.
These techniques manage multiple processing resources to
(56) References Cited balance the competing demands of soft real-time tasks and of

U.S. PATENT DOCUMENTS

non-real-time tasks.

5392430 A * 2/1995 Chenetal. ......c.oo.... 718/102
5,701,482 A * 12/1997 Harrisonetal. ............. 718/105 13 Claims, 11 Drawing Sheets
From 501

502

Re-schedule The Task At
'The Head Of Queue 103-2
I To Run On Processor 104-1
Ahead Of The Task At The
Head Of Queue 103-1
Based On Criteria

701

Defina The Task At The Head Of Queue 103-1 To Be 7-1, And
Define The Task At The Head Of Queue 103-2To Be T-2

702

Schedule -2 To Be Executed On Processor 104-7 Ahead Of T-1
When: 7-1 And 7-2 Are Of Equal Priority; T-1 Is Non-time-sensitive;
And T-21s Time-sensitive

703

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1
When: T-1 And 7-2 Are Of Equal Priority; 7-1 And 7-2 Are Non-time-
sensitive; And 7-2 Entered Queus 103-2 Before 7-1 Entered Queue.

103-1

l 704

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1
When: 7-2 Is Of Higher Priority Than 7-1;
And 7-1 Is Non-time-sensitive

705

Otherwise, Let 7-1 Remain At The Head Of Queve 103-1, And
Let 7-2 Remain At The Head Of Queue 103-2




US 8,161,491 B2
Page 2

U.S. PATENT DOCUMENTS
6,779,183 B1* 8/2004 Chekurietal. ... 718/105

6,795,927 Bl 9/2004 Altmejd et al.

6,985,951 B2 1/2006 Kubala et al.

7,035,984 B2 4/2006 Mastronarde et al.

7,065,766 B2* 6/2006 Brenner ..................... 718/103
7,140,020 B2 11/2006 McCarthy et al.

7,437,728 B2  10/2008 Stackhouse et al.

7,673,113 B2 3/2010 Sugumar et al.

7,743,140 B2 6/2010 Arntet al.

7,793,294 B2* 9/2010 Haeri ....cccoooevvrvvrrannn. 718/102
7,797,699 B2* 9/2010 Kagietal. ....cccocovrnrenne. 718/1

7,904,673 B2 3/2011 Riska et al.
7,904,691 B2 3/2011 Branda et al.
7,979,863 B2 7/2011 Esfahany et al.

2003/0110203 Al* 6/2003 Brenneretal. .............. 709/103
2003/0110204 Al* 6/2003 Brenner et al. . 709/103
2003/0191794 Al* 10/2003 Brenner et al. . 709/103
2003/0195920 Al* 10/2003 Brenner et al. . 709/107
2003/0236815 Al* 12/2003 Brenner et al. . 709/104
2004/0054999 Al* 3/2004 Willen et al. 718/103
2004/0148390 Al 7/2004 Cleary et al.

2005/0028160 Al* 2/2005 Coferetal. .......cccon.... 718/100
2005/0091399 Al 4/2005 Candan et al.

2006/0195845 Al* 8/2006 Rhine .........ccooecvvienrnnn 718/102
2007/0283176 Al  12/2007 Tobias et al.

2008/0022284 Al 1/2008 Cherkasova et al.

2008/0022288 Al* 1/2008 Bekooij ...... . 718/107
2008/0059968 Al* 3/2008 Cascaval etal. .............. 718/103
2008/0134185 Al 6/2008 Fedorova

2008/0141048 Al 6/2008 Palmer et al.

2008/0320122 Al  12/2008 Houlihan et al.

2009/0031317 Al* 1/2009 Gopalanetal. ............. 718/103

2009/0077257 Al 3/2009 Savoor et al.

2010/0100877 Al* 4/2010 Greeneetal. ... 718/1

2010/0125851 Al* 5/2010 Singhetal. . . 718/104

2010/0131955 Al* 5/2010 Brentetal. ............. 718/103
OTHER PUBLICATIONS

“Bin packing problem”, “Wikipedia http://www.wikipedia.org/wiki/
Bin_ packing problem”, May 31, 2010, Publisher: Wikimedia
Foundation, Inc.

Xen.Org, “Credit-Based CPU Scheduler”, “Xen Wiki http://www.
wiki.xensource.com/xenwiki/CreditScheduler Jun. 23, 2010”, Nov.
15, 2007, Publisher: Citrix Systems, Inc.

“How Does Xen Work”, <“http://www.xen.org/files/Marketing/
HowDoesXenWork.pdf Jun. 23, 20107, Dec. 2009.

“How to Enable Xentrace Logging and Format With Xentrace
Format”, “Citrix Knowledge Center CTX121583 http://support.
citrix.com/article/CTX121583”, , Publisher: Citrix Systems, Inc.
Gupta et al, “XenMon: QoS Monitoring and Performance Profiling
Tool”, “Technical Report HPL.-2005-187”, Oct. 18, 2005, Publisher:
Hewlett-Packard Development Company, LP.

U.S. Appl. No. 12/686,719, filed Jan. 13, 2010.

Santos et al., “Bridging the Gap between Software and Hardware
Techniques for I/O Virtualization”, “2008 USENIX Annual Techni-
cal Conference http:www.usenix.org/events/usenix08/tech/ful__pa-
pers/santos/santos.pdf”, , Publisher: USENIX Association.
Apparao et al., “Characterization & Analysis of a Server Consolida-
tion Benchmark”, “Virtual Execution Environments Conference
2008 Seattle, Washington”, Mar. 5-7, 2008, Publisher: Association
for Computing Machinery.

Apparao et al., “Characterization of network processing overheads in
Xen”, “Second Annual Workshop on Virtualization Technology in
Distributed Computing (VIDC 2006)”, 2006, Publisher: IEEE.
Willmann et al., “Concurrent Direct Network Access for Virtual
Machine Monitors”, “HPCA 2007”.

Menon et al., “Diagnosing Performance Overheads in the Xen Virtual
Machine Environment”, “http://www.hpl.hp.com/techreports/2005/
HPL-2005-80.pdf”, 2005, Publisher: Association for Computing
Machinery.

Nishiguchi, Naoki, “Evaluation and consideration of credit scheduler
for client virtualization”, “http://www.xen.org/files/xensummit

tokyo/15/NaokiNishiguchi-en.pdf Other info at http:www.xen.org/
xensummit/xensummit__fall_ 2008. html”, 2008, Publisher: Fujitsu
Laboratories Limited.

Liu et al, “High Performance VMM-Bypass /O in Virtual
Machines”, “Annual Tech ’06: 2006 USENIX Annual Technical
Conference  http://www.usenix.org/events/usenix06/tech/full__pa-
pers/liw/liu.pdf”, , Publisher: USENIX Association.

Raj et al., “High Performance and Scalable /O Virtualization via
Self-Virtualized Devices”, “IEEE International Symposium on High
Performance Distributed Computing (HPDC) 2007 Monterrey, Cali-
fornia”, Jun. 25-29, 2007, Publisher: Association for Computing
Machinery.

“P.862 Perceptual evaluation of speech quality (PESQ): An objective
method for end-to-end speech quality assessment of”, 2008, Pub-
lisher: International Telecommunication Union (ITU).

“Series P: Telephone Transmission Quality, Telephone Installations,
Local Line Networks 7, “ITU-T Recommendation P.862”, Feb. 2001.
Menon et al., “Optimizing Network Virtualization in Xen”, “http://
www.usenix.org/events/usenix06/tech/menon/menon__html/paper.
html”, http://infoscience.epfl.ch/getfile.py?docid=8044
&name=usenix06& format=pdf&version=1, 2006.

Menon et al., “Optimizing Network Virtualization in Xen”, (Alter-
native Source).

Zhang et al., “Optimizing Xen VMM Based on Intel Virtualizatio
Technology”, “2008 International Conference on Internet Comput-
ing in Science and Engineering”, 2008, Publisher: IEEE Xplore.

Oi et al., “Performance Analysis of Large Receive Offload in a Xen
Virtualized System”, “2009 International Conference on Computer
Engineering and Technology”, 2009, Publisher: IEEE Xplore.
Patnaik et al., “Performance Implications of Hosting Enterprise Tele-
phony Application on Virtualized Multi-Core Platforms”,
“IPTCOMM 2009 Conference Georgia Tech Atlanta, Georgia”, Jul.
7-8, 2009, Publisher: Association for Computing Machinery, Pub-
lished in: US.

Ongaro et al., “Scheduling I/O in Virtual Machine Monitors”, “Vir-
tual Execution Environments 2008 Seattle, Washington”, Mar. 5-7,
2008, Publisher: Associaton for Computing Machinery.

Calandrino et al., “Soft Real-Time Scheduling on Performance
Asymmetric Multicore Platforms”.

Liao et al, “Software Techniques to Improve Virtualized I/O Perfor-
mance on Multi-Core Systems”, “ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS)
2008 San Jose, California”, Nov. 6-7, 2008, Publisher: Association
for Computing Machinery.

Yoo et al., “A Step to Support Real-time in Virtual Machine”, “http://
os.korea.ac kr/publication_ papers/inter_ confer/shyoo_ CCNC__
2009.pdf”, 2009, Publisher: IEEE Xplore.

Thibault, Samuel, “Stub Domains—A Step Towards Dom0 Disag-
gregation”, “http://www.xen.org/files/ xensummitboston08/
SamThibault_ XenSummit.pdf”, , Publisher: Xen Summit.

Kim et al., “Task-aware Virtual Machine Scheduling for I/O Perfor-
mance”, “Virtual Execution Environments 2009 Washington, DC”,
Mar. 11-13, 2009, Publisher: Association for Computing Machinery.
Barham et al., “Xen and the Art of Virtualization”, “Symposium on
Operating System Principles 2003 Bolton Landing, New York http://
www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf”,
Oct. 19-22, 2003, Publisher: Association for Computing Machinery,
Published in: US.

Govindan et al., “Xen and Co.: Communication-aware CPU Sched-
uling for Consolidated Xen-based Hosting Platforms”, “Virtual
Execution Environments 2007 San Diego, California”, Jun. 13-15,
2007, Publisher: Association for Computing Machinery.

Ackaouy, Emmanuel, “[Xen-devel] New CPU scheduler w/ SMP
load balancer”, “http://lists.xensource.com/archives/html/xen-devel/
2006-05/msg01315 html”, May 36, 2006, Publisher: xensource.com.
Mathai,Jacob, “Xen Wiki—Xen Scheduling”, “http://wiki.
xensource.com/xenwiki/Scheduling[Nov. 23, 2009 11:44:24 AM]”,
Jun. 9, 2007.

“Xen Summit Asia 20087, “http://www.xen.org/xensummit/xensum-
mit_fall 2008 html[Nov. 23, 2009 11:23:18 AM]”, Nov. 20-21,
2008, Publisher: xen.org.



US 8,161,491 B2
Page 3

Malkevitch, Joseph, “Bin Packing, Feature Column Archive, Ameri-
can Mathematical Society” “http://www.ams.org/featurecolumn/
archive/bins . html[Apr. 27, 2010]”.

Xen Credit-Based CPU Scheduler, http://wiki.xensource.com/
xenwiki/CreditScheduler[Apr. 27, 2010].

Xen Hypervisor—leading Open Source Hypervisor for Servers,
http://www.xen.org/products/xenhyp.html[Apr. 27, 2010].

Lee et al, Supporting Soft real-Time tasks in the Xen Hypervisor,
VEE’10.

Malkevitch, Joseph, “Bin Packing and Machine Scheduling, Feature
Column Archive, American Mathematical Society, “https://www.
ams/org/samplings/feature-column/fcarc-packings1[Apr. 27, 2010].
Wikipedia online, Multiprocessor Scheduling, http://en. wikipedia.
org/wiki/Multiprocessor__scheduling[Apr. 27, 2010].

Kim et al. “Guest-Aware Priority-Based Virtual Machine Scheduling
for Highly Consolidated Server,” 2008, pp. 285-294.

* cited by examiner



US 8,161,491 B2

Sheet 1 of 11

Apr. 17,2012

U.S. Patent

¢-G0| Jopiwsuel|

Z-v0] 10Ss8001(

4-G0| Jepiwsuel]

¢-€01 8nanp

¢01 19Npayos

<« 0| Jonigoay

A|

90| 10SS820.d

A|

4-€01 @nenp

00| Wa)SAS DUISS30.44-BIB(]

| 8inbi



US 8,161,491 B2

Sheet 2 of 11

Apr. 17,2012

U.S. Patent

pu3

Syse| 8)noexg puy o|npeyos-oy

¢0¢ I\

SYse] 8npayds puy sAledsy

102 I\

Z anbi+



U.S. Patent Apr. 17,2012 Sheet 3 of 11 US 8,161,491 B2

Figure 3A

Receive And Schedule Tasks |

Analyze At Least One Task T1... T

Schedule Each Task To The Same Processor That Executed
The Task In The Prior Execution Cycle,
And Schedule New Tasks To An Appropriate Processor,
And Place The Task In The Corresponding Queue

|
|
|
|
|
|
|
|
|
|
|
|
' — 302
|
|
|
|
|
|
|
|
|
|
|
|
|
|




U.S. Patent Apr. 17,2012 Sheet 4 of 11 US 8,161,491 B2

Figure 3B

Receive And Schedule Tasks

Has Pre-defined Delay Of Interval X Expired?

Yes

Analyze At Least One Task T1... T
In Data-processing System 100

A Time-sensitive Task Or A Non-time-sensitive Task

Non-time-sensitive

For Each Task T+. .. T; Determine Whether It Is >

Schedule To The Same Processor That Executed This Task In
The Prior Execution Cycle,
And Schedule New Tasks To An Appropriate Processor,
And Place In Corresponding Queue

315

B

Schedule To A Processor And Place
In The Corresponding Queue Based On Criteria




U.S. Patent Apr. 17,2012 Sheet 5 of 11 US 8,161,491 B2

Figure 4

( From 313 )

Fr————_————_—_— e, ———— —

:Schedule To A Processor

1And Place In The Corresponding

IQueue Based On Criteria 401
| /

Determine The Runtime Parameter p; For Each
Time-sensitive Task

l S 402

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
Based On The Runtime Parameters, :

Bin-pack The Time-sensitive Tasks For Each Processor |
To Equalize The Percentage Of Time In The Next Execution Cycle :
That Each Processor Is To Spend Executing Time-sensitive Tasks :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403
| /
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Schedule A First Bin-pack To Processor 104-1
And Place In Queue 103-1

l = 404

Schedule A Second Bin-pack To Processor 104-2
And Place In Queue 103-2




U.S. Patent Apr. 17,2012 Sheet 6 of 11 US 8,161,491 B2

Figure 5

Fr——————_ e ——— —

IRe-ScheduIe And Execute Tasks

Compare The Task At The Head Of Queue 103-7 And The Task
At The Head Of Queue 103-2

l 502

Re-schedule The Task At The Head Of Queue 103-2
To Run On Processor 104-1
Ahead Of The Task At The Head Of Queue 103-1
Based On Criteria

Re-schedule The Task At The Head Of Queue 103-1
To Run On Processor 104-2
Ahead Of The Task At The Head Of Queue 103-2
Based On Criteria

l 504

For Each Processor, Execute The Task At The Head Of Its
Corresponding Queue

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| l 503
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—— e e e e e e e o . o —— —— —— —— — —— — — — —— — — — — — — — —— — ———————




U.S. Patent Apr. 17,2012 Sheet 7 of 11 US 8,161,491 B2

Figure 6

e e e et -
|

Compare The Task At The Head
10f Queue 103-1 And The Task At
:The Head Of Queue 103-2

|

/— 601

For Each Task, Determine Whether It Is
A Time-sensitive Task, Or A Non-time-sensitive Task

For Each Task, Determine lts Priority

/— 603

For Each Task, Determine When It Entered The Present Queue

|
|
|
|
|
|
|
|
|
|
|
|
|
|
/—602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|




U.S. Patent Apr. 17,2012 Sheet 8 of 11 US 8,161,491 B2

Figure 7A
( From 501 )
/— 502
\Re-schedule The Task At | T
:The Head Of Queue 103-2
1To Run On Processor 104-1
|Ahead Of The Task At The
:Head Of Queue 103-1
:Based On Criteria /— 701
Define The Task At The Head Of Queue 103-7 To Be T7-1, And
Define The Task At The Head Of Queue 103-2 To Be T-2
702
A 4 /

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1
When: T-1 And T-2 Are Of Equal Priority; T-7 Is Non-time-sensitive;
And T-2 Is Time-sensitive

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Schedule T-2 To Be Executed On Processor 104-1 Ahead Of 7-1
: When: T-1 And T-2 Are Of Equal Priority; T-1 And T-2 Are Non-time-
! sensitive; And T-2 Entered Queue 103-2 Before T-1 Entered Queue
|
|
|
|
|
|
|
|
|
[
[
[
[
[
[
[
[
[
[
[
[

103-1
/— 704

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1
When: T-2 Is Of Higher Priority Than T-7;
And T-1 Is Non-time-sensitive

l S 705

Otherwise, Let T-1 Remain At The Head Of Queue 103-7, And
Let 7-2 Remain At The Head Of Queue 103-2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
— 703 :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_—_————— e e, e, e, —E e, e e e e —————




U.S. Patent Apr. 17,2012 Sheet 9 of 11 US 8,161,491 B2

Figure 7B

e
|

Re-schedule The Task At

| The Head Of Queue 103-2
:To Run On Processor 104-1
1Ahead Of The Task At The
IHead Of Queue 103-1
:Based On Criteria

71
. [

Define The Task At The Head Of Queue 103-1 To Be 7-7, And
Define The Task At The Head Of Queue 103-2 To Be T-2

l /—712

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1

When: T-1 And T-2 Are Non-time-sensitive; T-1 And T-2 Are Of

Equal Priority; And T-2 Entered Queue 103-2 Before T-1 Entered
Queue 103-1

i l /—713

Schedule T-2 To Be Executed On Processor 104-1 Ahead Of T-1
When: T-1 And T-2 Are Non-time-sensitive; And
T-2 Is Of Higher Priority Than T-1

l I 714

Otherwise, Let T-1 Remain At The Head Of Queue 103-7, And
Let T-2 Remain At The Head Of Queue 103-2




U.S. Patent Apr. 17,2012 Sheet 10 of 11 US 8,161,491 B2

Figure 8A

( From 502 )
/—503

:Re-schedule The Task At The Head
10f Queue 103-7 To Run On
Processor 104-2 Ahead Of The Task
IAt The Head Of Queue 103-2

:Based On Criteria /— 801

Define The Task At The Head Of Queue 103-1 To Be 7-1, And
Define The Task At The Head Of Queue 103-2 To Be T-2

l S 802

Schedule T-1 To Be Executed On Processor 104-2 Ahead Of T-2
When: T-1 And T-2 Are Of Equal Priority; T-2 Is Non-time-sensitive;
And T-1Is Time-sensitive

/— 803

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[ Schedule T-1To Be Executed On Processor 104-2 Ahead Of T-2
: When: T-1 And T-2 Are Of Equal Priority; T-1 And T-2 Are Non-time-
: sensitive; And T-1 Entered Queue 103-1 Before 7-2 Entered Queue
[
[
[
[
[
[
[
[
[
[
|
[
[
[
[
[
|
[
|
[
[

103-2
/— 804

Schedule T-1To Be Executed On Processor 104-2 Ahead Of T-2
When: T-11s Of Higher Priority Than T-2,
And T-21s Non-time-sensitive

l = 805

Otherwise, Let T-1Remain At The Head Of Queue 103-1, And
Let 7-2Remain At The Head Of Queue 103-2

_——————_———_——_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_——_— e —_ e e e e e e . ——— ——




U.S. Patent Apr. 17,2012 Sheet 11 of 11 US 8,161,491 B2

Figure 8B

\Re-schedule The Task At The Head
:Of Queue 103-7 To Run On
(Processor 104-2 Ahead Of The Task
|At The Head Of Queue 103-2
IBased On Criteria

/—811

Define The Task At The Head Of Queue 103-1 To Be T7-1, And
Define The Task At The Head Of Queue 103-2 To Be T-2

/—812

Schedule T-1 To Be Executed On Processor 104-2 Ahead Of T-2
When: T-1 And T-2 Are Non-time-sensitive; T-1 And T-2 Are Of
Equal Priority; And T-1 Entered Queue 103-1 Before T-2 Entered

Queue 103-2
/— 813

Schedule T-1 To Be Executed On Processor 104-2 Ahead Of T-2
When: T-1 And T-2 Are Non-time-sensitive; And
T-11s Of Higher Priority Than T-2

/— 814

Otherwise, Let T-1 Remain At The Head Of Queue 103-1, And
Let T-2Remain At The Head Of Queue 103-2




US 8,161,491 B2

1
SOFT REAL-TIME LOAD BALANCER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
application number 61/232,542, filed Aug. 10, 2009, entitled
“Supporting Soft Real-Time Virtual Machines.”. The con-
cepts, but not necessarily the nomenclature, of this provi-
sional application are hereby incorporated by reference.

Furthermore, this application claims the benefit of U.S.
provisional application number 61/254,019, filed Oct. 22,
2009, entitled “Supporting Soft Real-Time Virtual
Machines”. The concepts, but not necessarily the nomencla-
ture, of this provisional application are hereby incorporated
by reference.

U.S. patent application Ser. No. 12/686,719, filed Jan. 13,
2010, entitled “Credit Scheduler for Ordering the Execution
of Tasks,” is related and is hereby incorporated by reference.

If there are any contradictions or inconsistencies between
this application and one or more of the cases that have been
incorporated by reference, the claims in the present case
should be interpreted to be consistent with the language in this
case.

FIELD OF THE INVENTION

The present invention relates to data processing systems in
general, and, more particularly, to credit schedulers for order-
ing the execution of tasks on a processor.

BACKGROUND OF THE INVENTION

When two or more operating systems operate on one piece
ot hardware, the tasks associated with each operating system
contend for the hardware that is available. Without something
to mediate their access, one operating system’s tasks could
monopolize or over-use the hardware to the detriment of the
other operating system’s tasks. When the hardware comprises
more than one processor that is available to execute the vari-
ous tasks, one processor can become over-utilized while
another remains under-used. Therefore, a program sits
between the operating systems and the hardware to act as a
mediator. This program is commonly known as a “hypervi-
sor.”

One of the jobs performed by the hypervisor is to choose a
processor that is to execute one or more tasks. Another job of
the hypervisor is scheduling the order of execution of tasks.
These are not easy jobs. Some tasks are time-sensitive (e.g.,
tasks associated with input or output, speech processing,
video processing, transmission or reception of signals, etc.)
and some tasks are non-time-sensitive or are less-time-sensi-
tive. Whatever the mix of time-sensitive and non-time-sensi-
tive tasks, the respective operating systems are always pre-
senting to the hypervisor tasks to be performed, and if the
hypervisor does not wisely choose the processor to execute
the tasks or the order for executing those tasks, the perfor-
mance of the entire system can be degraded.

The portion of a hypervisor that chooses the hardware and
determines the order for executing the tasks is called a
“scheduler.” Schedulers in the prior art, however, do not
always choose wisely, and, therefore, the need exists for an
improved scheduler.

SUMMARY OF THE INVENTION

The present invention enables the scheduling and execu-
tion of tasks on a plurality of processors without some of the

20

25

30

35

40

45

50

55

60

65

2

costs and disadvantages associated with schedulers in the
prior art. Tasks generally known in the art as “soft real-time”
tasks are time-sensitive tasks that have somewhat flexible (or
“soft”) deadlines. Tasks that perform general computing typi-
cally are non-time-sensitive tasks. The present invention
serves the special needs of soft real-time tasks, and therefore,
whether a task is time-sensitive or non-time-sensitive, is
material to the operation of the illustrative embodiments dis-
closed herein.

Prior art schedulers that manage multi-processor or multi-
core computing have been challenged by soft real-time tasks,
such as those in media servers and IP PBX applications. This
results in poor quality of voice, image, or video. To avoid
impairing voice, image, or video quality, prior art schedulers
traditionally dedicate physical processing resources to soft
real-time applications or else “starve” the non-real-time tasks
of processing resources by favoring the soft real-time tasks.
These solutions often cost more and generally produce
degraded overall performance.

The present invention addresses these challenges. Through
load balancing techniques, the present invention both (i)
favors the processing of soft real-time tasks arising from
media servers and applications, and (ii) reduces “starvation”
of'non-real-time general computing applications that co-exist
with the media applications in a multi-processor environ-
ment.

The present disclosure in accordance with the illustrative
embodiments describes load balancing techniques that apply
to a multi-processor virtualization environment. These tech-
niques, in the aggregate, favor the processing of soft real-time
tasks while also reserving resources for non-real-time tasks.
These techniques manage multiple processing resources to
balance the competing demands of soft real-time tasks and of
non-real-time tasks. The techniques use a plurality of criteria
to choose a processor that is to execute tasks or particular
groups of tasks. The present disclosure further describes tech-
niques to re-schedule queued tasks from one processor to
another processor, based on a number of criteria.

Some illustrative embodiments comprise: scheduling by a
data-processing system a first task to be executed on a first
processor, wherein the first task is at the head of a first queue
that comprises a plurality of tasks to be executed on the first
processor; scheduling by the data-processing system a second
task to be executed on a second processor, wherein the second
task is at the head of a second queue that comprises a plurality
of'tasks to be executed on the second processor; and executing
the second task on the first processor before the first task
when: (i) the first task and the second task are of equal prior-
ity, and (ii) the first task is a non-time-sensitive task, and (iii)
the second task is a time-sensitive task.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a schematic diagram of the salient portions
of data-processing system 100 according to the illustrative
embodiments of the present invention.

FIG. 2 depicts a flowchart of the salient steps of data-
processing system 100 according to the illustrative embodi-
ments of the present invention.

FIG. 3 A depicts a flowchart of the salient steps associated
with the performance of step 201 according to a first illustra-
tive embodiment of the present invention.

FIG. 3B depicts a flowchart of the salient steps associated
with the performance of step 201 according to a second illus-
trative embodiment.

FIG. 4 depicts a flowchart of the salient steps associated
with the performance of step 315.



US 8,161,491 B2

3

FIG. 5 depicts a flowchart of the salient steps associated
with the performance of step 202.

FIG. 6 depicts a flowchart of the salient steps associated
with the performance of step 501.

FIG. 7A depicts a flowchart of the salient steps associated
with the performance of step 502 according to the first illus-
trative embodiment.

FIG. 7B depicts a flowchart of the salient steps associated
with the performance of step 502 according to the second
illustrative embodiment.

FIG. 8A depicts a flowchart of the salient steps associated
with the performance of step 503 according to the first illus-
trative embodiment.

FIG. 8B depicts a flowchart of the salient steps associated
with the performance of step 503 according to the second
illustrative embodiment.

DETAILED DESCRIPTION

For the purposes of this specification, the term “processor”
is defined as a tangible computing resource that is capable of
executing a task.

For the purposes of this specification, the term “task” is
defined as at least one operation performed by a processor.

A first and a second illustrative embodiment are distin-
guished in regards to FIGS. 3A and 3B, 7A and 7B, 8A and
8B, respectively. In broad terms, the first illustrative embodi-
ment is directed at re-scheduling the tasks that are next to be
executed by each processor in the system, i.e., the tasks at the
head of each queue; subject to the disclosed criteria, either
time-sensitive or non-time-sensitive tasks can be re-sched-
uled. In broad terms, the second illustrative embodiment is
directed at periodically (i) scheduling or re-scheduling tasks
to a choice of queues for the respective processors in the
system and (ii) re-scheduling of non-time-sensitive tasks that
are next to be executed by a processor, i.e., the non-time-
sensitive tasks at the head of each queue.

In general, the methods according to the illustrative
embodiments are triggered when a scheduler-related event
happens in data-processing system 100, i.e., an event requir-
ing the scheduler to act. Examples of scheduler-related events
are the arrival of a new task, the occurrence of an input/output
(“1/0”) event for an existing task, a task relinquishing a pro-
cessor, a processor becoming idle and available to execute
another task, or a time-based trigger. It will be clear to those
having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which the disclosed techniques are triggered by other criteria
and considerations.

FIG. 1 depicts a schematic diagram of the salient portions
of data-processing system 100 according to the illustrative
embodiments of the present invention. Data-processing sys-
tem 100 is an apparatus that comprises: receiver 101; sched-
uler 102; queues 103-1 and 103-2; processors 104-1 and
104-2; and transmitters 105-1 and 105-2.

Although the illustrative embodiments comprise one
receiver 101, it will be clear to those having ordinary skill in
the art, after reading the present disclosure, how to make and
use alternative embodiments of the present invention that
comprise any number of receivers, e.g., two receivers, three
receivers, etc. For example, a receiver might be dedicated to
each queue.

Although the illustrative embodiments comprise one
scheduler 102, it will be clear to those having ordinary skill in
the art, after reading the present disclosure, how to make and

20

25

30

35

40

45

50

55

60

65

4

use alternative embodiments of the present invention that
comprise any number of schedulers, e.g., two schedulers,
three schedulers, etc.

Although the illustrative embodiments comprise two
queues 103-1 and 103-2, it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention that comprise any number of queues, e.g., three
queues, four queues, etc.

Although the illustrative embodiments comprise two pro-
cessors 104-1 and 104-2, it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention that comprise any number of processors, e.g., three
processors, four processors, etc. It will be further clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments of
the present invention in which a multi-core processor plat-
form comprises some or all of the processors. It will be further
clear to those having ordinary skill in the art, after reading the
present disclosure, how to make and use alternative embodi-
ments of the present invention in which a processor comprises
multiple cores.

Although the illustrative embodiments comprise two trans-
mitters 105-1 and 105-2, it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention that comprise any number of transmitters, e.g., one
transmitter, three transmitters, etc.

Although the illustrative embodiments depict the compo-
nents of data-processing system 100 as being connected to
each other as in FIG. 1, it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention in which the components are differently connected.
For example, each queue might receive tasks from a receiver
before task scheduling occurs at scheduler 102.

Although the illustrative embodiments depict the compo-
nents of data-processing system 100 as being separate from
one another as depicted in FIG. 1, it will be clear to those
having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments of
the present invention in which a single physical device com-
prises one or more of these components. For example, a
multi-core processor platform could comprise: some or all of
the processors; some or all of the queues; some or all of the
receivers; some or all of the transmitters in data-processing
system 100. Furthermore, it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention in which multiple physical devices are logically
associated to comprise one or more of these components. For
example, multiple processors that are distinct physical com-
ponents could be logically associated in a virtualized com-
puting environment. [ikewise, a virtualized computing envi-
ronment could comprise a combination of distinct and
combined components in accordance with the present inven-
tion, such as a single-core processor and a multi-core proces-
sor.

Although the illustrative embodiments present certain
ratios of one type of component to another type of component
as depicted in FIG. 1, it will be clear to those having ordinary
skill in the art, after reading the present disclosure, how to
make and use alternative embodiments of the present inven-
tion in which the ratios differ. For example, a single queue
could be logically subdivided to serve more than one proces-



US 8,161,491 B2

5

sor. For example, a single transmitter might transmit output
from more than one processor.

Receiver 101 is hardware that receives a temporal succes-
sion of tasks to be executed by processor 104-1 or processor
104-2 and provides those tasks to scheduler 102. It will be
clear to those having ordinary skill in the art, after reading the
present disclosure, how to make and use alternative embodi-
ments of the present invention in which receiver 101 is soft-
ware or a combination of software and hardware.

For purposes of the present disclosure, each task is identi-
fied by T,, wherein i is an integer that represents the relative
order of arrival of the task at receiver 101 with respect to other
tasks. For example, task T, arrived at receiver 101 immedi-
ately before task T,, |, wherein i is an integer. It will be clear
to those skilled in the art, after reading this disclosure, how to
make and use receiver 101.

Scheduler 102 is hardware and software that is capable of
performing the functionality described in this disclosure and
in the accompanying figures. It will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention in which scheduler 102 is exclusively hardware or
exclusively software. It will be further clear to those having
ordinary skill in the art, after reading the present disclosure,
that a software-based scheduler 102 is itself executed by a
processor.

In accordance with the illustrative embodiments, scheduler
102 is a “credit” scheduler, but it will be clear to those skilled
in the art, after reading this disclosure, how to make and use
alternative embodiments of the present invention in which
scheduler 102 is not a “credit” scheduler. The XEN® hyper-
visor is an example of a hypervisor that comprises a credit
scheduler. Furthermore, it will be clear to those skilled in the
art that alternative well-known names for a hypervisor
include, but are not limited to, a “virtual machine monitor” or
“VMM.” It will be clear to those skilled in the art, after
reading this disclosure, how to make and use scheduler 102.

Queue 103-1 is hardware that holds each task and its
accompanying parameters, while the task awaits execution by
processor 104-1. It will be clear to those having ordinary skill
in the art, after reading the present disclosure, how to make
and use alternative embodiments of the present invention in
which queue 103-1 is software or a combination of software
and hardware.

Queue 103-2 is hardware that holds each task and its
accompanying parameters, while the task awaits execution by
processor 104-2. It will be clear to those having ordinary skill
in the art, after reading the present disclosure, how to make
and use alternative embodiments of the present invention in
which queue 103-2 is software or a combination of software
and hardware. It will be clear to those skilled in the art, after
reading this disclosure, how to make and use queue 103-1 and
queue 103-2.

Processor 104-1 is hardware that is a processor that
executes tasks in the order determined by scheduler 102. It
will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments of the present invention in which processor
104-1 is a combination of software and hardware. In accor-
dance with the illustrative embodiments of the present inven-
tion, processor 104-1 comprises one core, but it will be clear
to those skilled in the art, after reading this disclosure, how to
make and use alternative embodiments of the present inven-
tion in which processor 104-1 comprises multiple cores. Fur-
thermore, it will be clear to those skilled in the art that alter-
native names for a processor include, but are not limited to,

20

25

30

35

40

45

50

55

60

65

6

“core,” “computing core,” “processing core,” “central pro-
cessing unit,” “CPU,” “computing resource,” or “processing
resource.”

Processor 104-2 is hardware that executes tasks in the order
determined by scheduler 102. In the illustrative embodi-
ments, processor 104-2 is a processor identical to processor
104-1, but it will be clear to those having ordinary skill in the
art, after reading the present disclosure, how to make and use
alternative embodiments in which processor 104-1 and 104-2
are not identical.

In the illustrative embodiments, processor 104-1 selects
the task at the head of queue 103-1 to execute next. In the
illustrative embodiments, processor 104-2 selects the task at
the head of queue 103-2 to execute next. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which a processor executes its next task from a source other
than its corresponding queue. It will be clear to those skilled
in the art how to make and use processor 104-1 and processor
104-2.

Transmitter 105-1 is hardware that transmits the results of
each task execution from processor 104-1. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which transmitter 105-1 is software or a combination of soft-
ware and hardware.

Transmitter 105-2 is hardware that transmits the results of
each task execution from processor 104-2. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which transmitter 105-2 is software or a combination of soft-
ware and hardware. It will be clear to those having ordinary
skill in the art, after reading this disclosure, how to make and
use transmitter 105-1 and transmitter 105-2.

FIG. 2 depicts a flowchart of the salient steps of data-
processing system 100 according to the illustrative embodi-
ments of the present invention.

At step 201, a temporal succession of tasks, T, . . . T}, is
received and analyzed by scheduler 102. As a result of the
analysis, scheduler 102 schedules each task for execution at
processor 104-1 or 104-2 and places the task into correspond-
ing queue 103-1 or 103-2, respectively.

In accordance with the illustrative embodiments, each task
T, arrives at receiver 101 with accompanying parameters.
Additional parameters are established upon arrival. Accord-
ingly, each task is accompanied by an attribute of “time-
sensitive” or “non-time-sensitive” and by a priority; addition-
ally, the time that the task enters its respective queue is
recorded and becomes a parameter of the task. It will be clear
to those having ordinary skill in the art, after reading the
present disclosure, how to make and use alternative embodi-
ments that use only some of the parameters described herein,
or that use other parameters than those described herein.

As noted, some tasks are time-sensitive in accordance with
the function they perform in data-processing system 100. For
example, speech-processing tasks are time-sensitive tasks.
Tasks generally known in the art as “soft real-time” tasks are
time-sensitive tasks. Tasks that perform general computing
typically are non-time-sensitive tasks. Whether a task is time-
sensitive or non-time-sensitive is material to the present
invention, as described in more detail below.

In some embodiments of the present invention, whether a
task is treated as a time-sensitive task depends on whether it
arrives from a time-sensitive or a non-time-sensitive
“domain.” For purposes of this specification, a “domain” is
defined as software that is (i) an operating system or (ii) an
application using the operating system, and that comprises

2 < 2 2 <



US 8,161,491 B2

7

tasks to be executed by a processor. Because multiple
domains can co-exist in data-processing system 100 and each
domain requires execution of its tasks on processor 104-1 or
104-2, whether a domain is time-sensitive affects the treat-
ment of its constituent tasks. Thus, any task from a time-
sensitive domain would be characterized as a time-sensitive
task and treated accordingly by scheduler 102. A voice-pro-
cessing application is an example of a time-sensitive domain,
and therefore any task from the voice-processing application
would be treated as a time-sensitive task by scheduler 102. It
will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments of the present invention that use domains.

In prior art hypervisors, tasks have a priority attribute that
governs at least in part where the task is placed within a
queue. Typically, prior art credit schedulers queue an incom-
ing task or some other scheduler-related event at the end of the
list of tasks that have the same priority, because credit sched-
uler queues have a region in the queue for each priority level.
The priority levels and their relative meanings are specific to
the scheduler platform being used by the implementers. For
the XEN credit scheduler, for example, tasks have “boost
priority,” “under priority,” “over priority,” or “idle priority” in
decreasing priority value. Thus, a task with “boost priority” is
of a higher priority than a task with “under priority.” Each of
these priority levels has its own region within the queue that
the XEN credit scheduler manages. In the preferred embodi-
ments of the present invention, task priority levels are the
same as in the XEN credit scheduler. Queuing of incoming
tasks to the appropriate priority region of the queue is gener-
ally the same in the preferred embodiments as in the XEN
credit scheduler, except as disclosed otherwise herein.

In accordance with some illustrative embodiments, when a
task enters a queue, the time that it enters the queue is
recorded and becomes associated with the task. Thus, the time
that a task entered its respective queue becomes a parameter
of'the task. It will be clear to those having ordinary skill in the
art, after reading the present disclosure, how to make and use
alternative embodiments of the present invention in which the
queue entry time is not recorded and does not become a
parameter associated with a task.

In accordance with some illustrative embodiments of the
present invention, a “runtime parameter,” p,, is associated
with each task T,, and represents an expected time of execu-
tion ofthe respective task in the upcoming execution cycle. In
some illustrative embodiments of the present invention, the
runtime parameter is the execution time of the task in the
immediately preceding execution cycle. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which the runtime parameter is based on an average of execu-
tion times from a plurality of previous execution cycles. It
will be further clear to those having ordinary skill in the art,
after reading the present disclosure, how to make and use
alternative embodiments in which the runtime parameter is
based on other considerations.

Step 201 is described in greater detail below and in the
accompanying figures.

At step 202, scheduler 102 analyzes queues 103-1 and
103-2 and processors 104-1 and 104-2. Based on criteria,
scheduler 102 may re-schedule a task that is presently at the
head of either queue 103-1 or 103-2 to be executed before
another task that is at the head of the other queue. As noted,
each processor in the illustrative embodiments executes the
task at the head of the processor’s corresponding queue, so
that when scheduler 102 re-schedules a task from a first queue
to a second queue, that task will be executed sooner than

20

25

30

35

40

45

50

55

60

65

8

another task that is presently at the head of the first queue.
This process is colloquially referred to as “stealing.” It should
be noted that a waiting task at the head of a queue can still
have a long waiting time, because the corresponding proces-
sor must first finish its current task before executing the
waiting task. Therefore, stealing (or re-scheduling) the wait-
ing task to be executed on another processor can speed up the
task’s overall performance. Step 202 and the criteria that
govern re-scheduling of tasks are described in greater detail
below and in the accompanying figures.

It will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use the steps
associated with data-processing system 100. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments of
the present invention in which steps 201 and 202 and their
constituent steps are executed in a different sequence, are
sub-divided into other tasks, are selectively skipped, are
executed on different timing parameters, or are grouped dif-
ferently; or are executed by a different component of data-
processing system 100; or use different data structures than
described herein.

FIG. 3 A depicts a flowchart of the salient steps associated
with the performance of step 201 according to a first illustra-
tive embodiment of the present invention. As noted, in gen-
eral, the methods according to the illustrative embodiments
are triggered when a scheduler-related event happens in data-
processing system 100, i.e., an event occurs that requires
scheduler 102 to act.

At step 301, upon the occurrence of a scheduler-related
event, if receiver 101 receives at least one task in a temporal
sequence, it triggers scheduler 102 to analyze the received
tasks. The scheduler-related event in accordance with the first
illustrative embodiment is any of: the arrival of anew task, the
occurrence of an input/output (“I/O”) event for an existing
task, a task relinquishing a processor, a processor becoming
idle and available to execute another task, or a timer trigger. In
the first illustrative embodiment, a default 30-millisecond
timer acts as a trigger, but it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make alternative embodiments with different timers. It
will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use step 301.

At step 302, scheduler 102 schedules each received task to
the same processor that previously executed it in the preced-
ing execution cycle. The task is queued to the queue that
corresponds to the chosen processor. This policy reduces
cache thrashing by permitting a processor to re-use a cache
foratask that it previously executed. This policy is sometimes
referred to herein as “cache affinity.” In the case of a new
task’s arrival, i.e., a task not previously executed or not
executed in the previous execution cycle, scheduler 102
schedules the task to an appropriate processor, which is pro-
cessor 104-1 in the illustrative embodiment. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which tasks are scheduled based on other considerations or
other cache policies.

FIG. 3B depicts a flowchart of the salient steps associated
with the performance of step 201 according to a second illus-
trative embodiment. As noted, in general, the methods
according to the illustrative embodiments are triggered when
a scheduler-related event happens in data-processing system
100, i.e., an event requiring scheduler 102 to act.

Step 311 represents a timer that triggers scheduler 102 to
act in accordance with the second illustrative embodiment,
and the timer is referred to herein as “interval X.” Interval X



US 8,161,491 B2

9

represents the frequency of execution of some of the constitu-
ent steps in step 201—as disclosed in more detail below and
in the accompanying figures. Interval X in the illustrative
embodiment is one second, but it will be clear to those having
ordinary skill in the art, after reading the present disclosure,
how to make and use alternative embodiments of the present
invention in which interval X is of a different duration, or in
which interval X varies based on other considerations of the
implementers. It should be noted that interval X is indepen-
dent of the duration of the execution cycle referred to else-
where in this disclosure.

Atstep 311, if interval X has not expired, default schedul-
ing control flows to step 314. When interval X expires, control
flows to step 312.

At step 312, upon the trigger of interval X, scheduler 102
acts with respect to the tasks in data-processing system 100,
by analyzing the waiting tasks in all queues. It will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use step 312.

At step 313, scheduler 102 determines whether each task is
a time-sensitive task or a non-time-sensitive task. For time-
sensitive tasks, control flows to step 315. For non-time-sen-
sitive tasks, control flows to step 314.

Step 314 is analogous to step 302 described above. At step
314, a task is scheduled to the same processor that executed
this task in the previous execution cycle. In the case of a new
task’s arrival, i.e., a task not previously executed or not
executed in the previous execution cycle, scheduler 102
schedules the task to an appropriate processor, which is pro-
cessor 104-1 in the illustrative embodiment. The task is
queued to the queue that corresponds to the chosen processor.
It will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments of the present invention in which tasks are
scheduled differently.

At step 315, scheduler 102 schedules each time-sensitive
task to one of the processors in data-processing system 100
and places the task in the queue that corresponds to that
processor, based on criteria. Step 315 is described in more
detail below and in the accompanying figures.

FIG. 4 depicts a flowchart of the salient steps associated
with the performance of step 315.

At step 401, for each of the time-sensitive tasks under
analysis by scheduler 102, T, ... T,, scheduler 102 determines
the runtime parameter p, that is associated with task T;. In the
illustrative embodiment, p, accompanies each task when it
arrives, but it will be clear to those skilled in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments in another manner of the implementers’
choosing. For example, p, can be calculated upon the arrival
of each task, or p, can be re-calculated based on other con-
siderations. [t will be clear to those having ordinary skill in the
art, after reading the present disclosure, how to implement
step 401.

At step 402, scheduler 102 bin-packs the time-sensitive
tasks in data-processing system 100. Bin-packing techniques
are well-known in the art. See, e.g., Joseph Malkevitch, Bin
Packing and Machine Scheduling, Feature Column Archive,
American Mathematical Society, https://www.ams.org/sam-
plings/feature-column/fcarc-packings1 (last visited Apr. 13,
2010). In regards to the particular problem of multi-processor
scheduling, one way of phrasing the multi-processor sched-
uling problem in terms of bin-packing concepts is: ““Given a
set J of jobs where job j, has length 1, and a number of pro-
cessors m,, what is the minimum possible time required to
schedule all jobs in J on m processors such that none over-

20

25

30

35

40

45

50

55

60

65

10

lap?”” Wikipedia online, Multiprocessor Scheduling, http://
en.wikipedia.org/wiki/Multiprocessor scheduling (last vis-
ited Apr. 15, 2010).

In the illustrative embodiment, the bin-packing is directed
at minimizing the difference in expected utilization among
processors for executing the time-sensitive tasks in data-pro-
cessing system 100, i.e., load-balancing the processing of
time-sensitive tasks. Thus, the bin-packing in accordance
with the illustrative embodiment aims to equalize the percent-
age of time in the next execution cycle that each processor in
data-processing system 100 is to spend executing time-sen-
sitive tasks. For purposes of this disclosure, the percentage of
time in the next execution cycle that a processor, j, is to spend
executing time-sensitive tasks in an execution cycle is defined
as “p;” wherein j is an integer.

In accordance with the illustrative embodiment, data-pro-
cessing system 100 comprises two processors: processor
104-1 and processor 104-2; therefore the bin-packing in step
402 is directed at creating at least one bin-pack for each of the
two processors. Thus, in some embodiments, 1, for processor
104-1 is the sum of the runtime parameters of the tasks in a
first bin-pack, taken as a percentage of the total processing
capacity of processor 104-1. Likewise, in some embodi-
ments, |, for processor 104-2 is the sum of the runtime
parameters of the tasks in a second bin-pack, taken as a
percentage of the total processing capacity of processor 104-
2.

It will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments in which the bin-packing is directed at
other considerations, such as minimizing the number of pro-
cessors in data-processing system 100 that are to be used for
processing time-sensitive tasks, or minimizing the expected
execution time of the tasks in each bin-pack, or a combination
of considerations, or other considerations.

Although the illustrative embodiment uses bin-packing to
group together time-sensitive tasks, it will be clear to those
having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which tasks are grouped together other than by bin-packing,
or are not grouped together at all and are treated instead one
by one in accordance with the disclosures herein.

At step 403, a first bin-pack that was created at step 402 is
scheduled to be executed by processor 104-1. The tasks in the
first bin-pack are placed into the corresponding queue, i.e.,
queue 103-1.

At step 404, a second bin-pack that was created at step 402
is scheduled to be executed by processor 104-2. The tasks in
the second bin-pack are placed into the corresponding queue,
i.e., queue 103-2.

Although the illustrative embodiment does not bin-pack
the non-time-sensitive tasks (see step 314), it will be clear to
those having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments in
which non-time-sensitive tasks are bin-packed. It will be
further clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments in which non-time-sensitive tasks are
grouped other than by bin-packing.

It should be noted that the priority attribute of a task may
govern where to place atask or a bin-pack into a queue. In the
illustrative embodiment, the priority of the task is indepen-
dent of the execution of step 315 as described herein. How-
ever, it will be clear to those having ordinary skill in the art,
after reading the present disclosure, how to make and use
alternative embodiments in which the priority of a task is a
factor in the bin-packing described herein.



US 8,161,491 B2

11

It should be further noted that, as described below in
regards to step 202, some of the tasks that are scheduled to be
executed by a processor at step 201 may be re-scheduled to
another processor at step 202.

FIG. 5 depicts a flowchart of the salient steps associated
with the performance of step 202.

As noted, step 202 governs scheduler 102's analysis of
tasks at the head of each queue to determine whether to
re-schedule a task to another processor. By re-scheduling,
scheduler 102 in effect places a task at the head of another
queue. In the illustrative embodiments, the task at the head of
a queue is the task that is next to be executed by the corre-
sponding processor. It will be clear to those having ordinary
skill in the art, after reading the present disclosure, that a task
at the head of a queue may be part of a bin-pack that was
created in step 402; whether a task is part of a bin-pack is
independent of the execution of step 202.

Atstep 501, scheduler 102 compares the task at the head of
queue 103-1 and the task at the head of queue 103-2. The
order of arrival of a task is not relevant, in this context, to
whether it is at the head of a queue. Step 501 is described in
more detail below and in the accompanying figures.

Atstep 502, scheduler 102 determines whether to re-sched-
ule the task at the head of queue 103-1 to run on processor
104-2 ahead of the task at the head of queue 103-2. Step 502
is described in more detail below and in the accompanying
figures.

Atstep 503, scheduler 102 determines whether to re-sched-
ule the task at the head of queue 103-2 to run on processor
104-1 ahead of the task at the head of queue 103-1. Step 503
is described in more detail below and in the accompanying
figures.

Atstep 504, after analysis and re-scheduling, if any, at steps
502 and 503, each processor executes the task at the head of
its corresponding queue. Thus, processor 104-1 executes the
task at the head of queue 103-1 and processor 104-2 executes
the task at the head of queue 103-2.

It will be clear to those having ordinary skill in the art, after
reading the present disclosure, how to make and use alterna-
tive embodiments of the present invention in which re-sched-
uling does not require a re-queuing of a task from one queue
to another. For example, re-scheduling in accordance with
step 202 may result in immediate execution of the re-sched-
uled task by the chosen processor. It will be clear to those
having ordinary skill in the art, after reading the present
disclosure, how to make and use alternative embodiments of
the present invention in which data structures other than
queues are used for the scheduling and re-scheduling of tasks
to be executed on a chosen processor. For example, a single
pointer array may be used to manage all the tasks in data-
processing system 100 without using a plurality of queues.

FIG. 6 depicts a flowchart of the salient steps associated
with the performance of step 501.

Atstep 601, for each task that it is analyzing, scheduler 102
determines whether the task is a time-sensitive task or a
non-time-sensitive task. It will be clear to those having ordi-
nary skill in the art, after reading the present disclosure, how
to make and use step 601.

At step 602, for each task, scheduler 102 determines the
priority of the task in a manner well-known in the art. As
noted, the relative priorities of tasks depend on the hypervisor
platform that is used by the implementers.

At step 603, for each task, scheduler 102 determines the
time that the task entered its respective queue in a manner
well-known in the art.

20

25

30

35

40

45

50

55

60

65

12

FIG. 7A depicts a flowchart of the salient steps associated
with the performance of step 502 according to the first illus-
trative embodiment of the present invention.

Step 701 is depicted for the convenience of the reader of
this disclosure, and it will be clear to those having ordinary
skill in the art, after reading the present disclosure, how to
make and use alternative embodiments that do not comprise
step 701. In step 701, the task at the head of queue 103-1 is
defined as T-1, and the task at the head of queue 103-2 is
defined as T-2.

At step 702, scheduler 102 re-schedules T-2 by scheduling
T-2 to be executed on processor 104-1 ahead of T-1 when: (i)
T-1 and T-2 are of equal priority, (ii) T-1 is a non-time-
sensitive task, and (iii) T-2 is a time-sensitive task.

At step 703, scheduler 102 re-schedules T-2 by scheduling
T-2 to be executed on processor 104-1 ahead of T-1 when: (i)
T-1 and T-2 are of equal priority, (ii) T-1 and T-2 are non-time-
sensitive tasks, and (iii) T-2 entered queue 103-2 before T-1
entered queue 103-1, i.e., T-2 has been queued longer than
T-1.

At step 704, scheduler 102 re-schedules T-2 by scheduling
T-2 to be executed on processor 104-1 ahead of T-1 when: (i)
T-2 is of higher priority than T-1, and (ii) T-1 is a non-time-
sensitive task.

At step 705, absent the conditions set forth above, sched-
uler 102 does not re-schedule T-2 and instead leaves T-1 at the
head of queue 103-1 and leaves T-2 at the head of queue
103-2.

FIG. 7B depicts a flowchart of the salient steps associated
with the performance of step 502 according to the second
illustrative embodiment.

Step 711 is depicted for the convenience of the reader of
this disclosure, and it will be clear to those having ordinary
skill in the art, after reading the present disclosure, how to
make and use alternative embodiments that do not comprise
step 711. In step 711, the task at the head of queue 103-1 is
defined as T-1, and the task at the head of queue 103-2 is
defined as T-2.

At step 712, scheduler 102 re-schedules T-2 by scheduling
T-2 to be executed on processor 104-1 ahead of T-1 when: (i)
T-1 and T-2 are non-time-sensitive tasks, (ii) T-1 and T-2 are
of'equal priority, and (iii) T-2 entered queue 103-2 before T-1
entered queue 103-1, i.e., T-2 has been queued longer than
T-1.

At step 713, scheduler 102 re-schedules T-2 by scheduling
T-2 to be executed on processor 104-1 ahead of T-1 when: (i)
T-1 and T-2 are non-time-sensitive tasks, and (ii) T-2 is of
higher priority than T-1.

At step 714, absent the conditions set forth above, sched-
uler 102 does not re-schedule T-2 and instead leaves T-1 at the
head of queue 103-1 and leaves T-2 at the head of queue
103-2.

FIG. 8A depicts a flowchart of the salient steps associated
with the performance of step 503 according to the first illus-
trative embodiment.

Step 801 is depicted for the convenience of the reader of
this disclosure, and it will be clear to those having ordinary
skill in the art, after reading the present disclosure, how to
make and use alternative embodiments that do not comprise
step 801. In step 801, the task at the head of queue 103-1 is
defined as T-1, and the task at the head of queue 103-2 is
defined as T-2.

At step 802, scheduler 102 re-schedules T-1 by scheduling
T-1 to be executed on processor 104-2 ahead of T-2 when: (i)
T-1 and T-2 are of equal priority, (ii) T-2 is a non-time-
sensitive task, and (iii) T-1 is a time-sensitive task.



US 8,161,491 B2

13

At step 803, scheduler 102 re-schedules T-1 by scheduling
T-1 to be executed on processor 104-2 ahead of T-2 when: (i)
T-1 and T-2 are of equal priority, (ii) T-1 and T-2 are non-time-
sensitive tasks, and (iii) T-1 entered queue 103-1 before T-2
entered queue 103-2, i.e., T-1 has been queued longer than
T-2.

At step 804, scheduler 102 re-schedules T-1 by scheduling
T-1 to be executed on processor 104-2 ahead of T-2 when: (i)
T-1 is of higher priority than T-2, and (ii) T-2 is a non-time-
sensitive task.

At step 805, absent the conditions set forth above, sched-
uler 102 does not re-schedule T-1 and instead leaves T-1 at the
head of queue 103-1 and leaves T-2 at the head of queue
103-2.

FIG. 8B depicts a flowchart of the salient steps associated
with the performance of step 503 according to the second
illustrative embodiment.

Step 811 is depicted for the convenience of the reader of
this disclosure, and it will be clear to those having ordinary
skill in the art, after reading the present disclosure, how to
make and use alternative embodiments that do not comprise
step 811. In step 811, the task at the head of queue 103-1 is
defined as T-1, and the task at the head of queue 103-2 is
defined as T-2.

At step 812, scheduler 102 re-schedules T-1 by scheduling
T-1 to be executed on processor 104-2 ahead of T-2 when: (i)
T-1 and T-2 are non-time-sensitive tasks, (ii) T-1 and T-2 are
of'equal priority, and (iii) T-1 entered queue 103-1 before T-2
entered queue 103-2, i.e., T-1 has been queued longer than
T-2.

At step 813, scheduler 102 re-schedules T-1 by scheduling
T-1 to be executed on processor 104-2 ahead of T-2 when: (i)
T-1 and T-2 are non-time-sensitive tasks, and (ii) T-1 is of
higher priority than T-2.

At step 814, absent the conditions set forth above, sched-
uler 102 does not re-schedule T-1 and instead leaves T-1 at the
head of queue 103-1 and leaves T-2 at the head of queue
103-2.

It is to be understood that the disclosure teaches just two
examples of the illustrative embodiments and that many
variations of the invention can easily be devised by those
skilled in the art after reading this disclosure and that the
scope of the present invention is to be determined by the
following claims.

What is claimed is:

1. A method comprising:

receiving during a first time interval by a data-processing
system a plurality of tasks that are time-sensitive;

bin-packing by the data-processing system the plurality of
tasks into (a) a first bin-pack to be executed on a first

processor and (b) a second bin-pack to be executed on a

second processor, wherein:

(1) v, is a percentage of time to be used by the first
processor for executing tasks in the first bin-pack
during a second time interval,

(ii) u, is a percentage of time to be used by the second
processor for executing tasks in the second bin-pack
during the second time interval, and

(iii) the bin-packing is based on minimizing a difference
between 1, and 1,;

executing by the first processor the tasks in the first bin-
pack;

executing by the second processor the tasks in the second
bin-pack;

scheduling by the data-processing system a first task that is
a non-time-sensitive task to be executed on the first

20

25

30

35

40

50

55

60

14

processor, wherein the first task is at a head of a first
queue that is associated with the first processor; and
executing a second task that is a non-time-sensitive task on

the first processor before the first task when:

the second task is at a head of a second queue that is
associated with the second processor;

the first task and the second task are of equal priority;
and

the second task entered the second queue before the first
task entered the first queue,

wherein:

each time-sensitive task has a runtime parameter;

1, is based on a sum of the runtime parameters of the
tasks in the first bin-pack; and

L, is based on a sum of the runtime parameters of the
tasks in the second bin-pack.

2. The method of claim 1 wherein each runtime parameter
is based on an execution time of an associated task during a
third time interval that precedes the first time interval.

3. The method of claim 1 wherein each runtime parameter
is based on an average of execution times of respective asso-
ciated tasks during a plurality of time intervals that precede
the first time interval.

4. The method of claim 1 wherein the bin-packing is further
based on scheduling tasks to the same processor that executed
them during a third time interval that precedes the first time
interval.

5. The method of claim 1 further comprising:

scheduling by the data-processing system a first third task

that is a non-time-sensitive task to be executed on the
first processor; and

executing a second fourth task that is a non-time-sensitive

task on the first processor before the first third task when
the second fourth task is of higher priority than the first
third task.

6. The method of claim 1 wherein the data-processing
system comprises a virtualized computing environment that
comprises the first processor and the second processor.

7. The method of claim 1 wherein the data-processing
system comprises a credit-scheduler that determines an order
of execution of the first task and of the second task.

8. The method of claim 1, further comprising:

scheduling by the data-processing system a third task to be

executed on the first processor, wherein the third task is
at the head of the first queue that comprises a plurality of
tasks to be executed on the first processor;
scheduling by the data-processing system a fourth task to
be executed on the second processor, wherein the fourth
task is at the head of the second queue that comprises a
plurality of tasks to be executed on the second processor;
and
executing the fourth task on the first processor before the
third task when:
(1) the third task and the fourth task are of equal priority,
and

(ii) the third task is a non-time-sensitive task, and
(iii) the fourth task is a time-sensitive task.

9. The method of claim 1, further comprising:

scheduling the second task to be executed on the second
processor, wherein the second queue comprises a plu-
rality of tasks to be executed on the second processor.

10. The method of claim 1, further comprising:

scheduling by the data-processing system a third task to be

executed on the first processor, wherein the third task is
at the head of the first queue that comprises a plurality of
tasks to be executed on the first processor;



US 8,161,491 B2

15 16
scheduling by the data-processing system a fourth task to 11. The method of claim 10, wherein the fourth task is a
be executed on the second processor, wherein the fourth time-sensitive task.
task is at the head of the second queue that comprises a 12. The method of claim 10, wherein the fourth task is a
plurality of tasks to be executed on the second processor; non-time-sensitive task.
and 5 13. The method of claim 10, wherein the data-processing

executing the fourth task on the first processor before the
third task when:
(1) the fourth task is of higher priority than the third task,
and
(ii) the third task is a non-time-sensitive task. L

system comprises a credit-scheduler that determines the order
of execution of the third task and of the fourth task.



