发明名称
用于安装纵向瓦片结构的透水路面铺装装置及铺装方法

摘要
本发明涉及一种用于安装纵向瓦片结构的透水路面铺装装置及铺装方法。其中所述的铺装装置包括横截面为矩形结构的边框，所述边框的内侧宽度与所述纵向瓦片的外侧宽度相配合，且所述边框的两个长边内侧设有若干组相互对应并配合所述纵向瓦片厚度相配合的卡槽。所述边框的两个短边分别设有向同一方向凸出或凹进的第一连接口和第二连接口，向外凸出的第一连接口与向内凹进的第二连接口之间在尺寸上相互卡扣配合。通过使用本发明的铺装装置，能够应用瓦片、细砂等常规材料进行路面雨水的收集操作，并通过铺装在地下的层状透水与收集结构，来共同完成雨水的收集或下渗。
1. 一种用于安装纵向瓦片结构的透水路面辅装装置，其特征在于：所述辅装装置包括横截面为矩形结构的边框（10），所述边框（10）的内侧宽度与所述纵向瓦片的外侧宽度相配合，且所述边框（10）的两个长边内侧设有若干组相互对应并与所述纵向瓦片厚度相配合的卡槽（13），所述边框（10）的两个短边分别设有向同一方向凸出或凹进的第一连接口（41）和第二连接口（42），向内凸出的第一连接口（41）与向内凹进的第二连接口（42）之间在尺寸上相互卡扣配合。

2. 根据权利要求1所述的辅装装置，其特征在于：所述边框（10）的高度为100～150mm，且在边框（10）底部设有四个支腿（14），每个支腿（14）上设有高度调节机构。

3. 根据权利要求1所述的辅装装置，其特征在于：在所述边框（10）两条短边上各设置有一个提手（15）。

4. 根据权利要求1所述的辅装装置，其特征在于：所述卡槽（13）与所述边框（10）的内侧之间为活动连接，所述边框（10）的两条长边外侧设有用于调节卡槽（13）之间间距及槽内宽度的调节杆。

5. 根据权利要求1或4所述的辅装装置，其特征在于：相邻卡槽（13）之间的间隔为30～50mm，卡槽内部的宽度为20～40mm。

6. 根据权利要求1所述的辅装装置，其特征在于：所述辅装装置为由两个长边和两个短边构成的四面框架结构。

7. 一种透水路面的辅装方法，其特征在于：所述辅装方法包括如下步骤：
 A. 施工准备：按照设计要求放线，并清理作业场地；
 B. 路基处理：用夯机或压路机将路床的原土夯实或压实，形成原土路基层；
 C. 垫层铺设：将含泥量小于5%的中砂或粗砂平铺在原土路基层上；
 D. 铺设雨水收集层：在垫层上先铺设厚度为5～10mm的一层碎石，然后在碎石上铺设塑料排水盲沟，排水盲沟设置好后，继续铺设厚度为100～200mm的碎石层；
 E. 铺设基层：在雨水收集层上摊铺不小于100mm厚的碎石，摊平后喷水压实，或铺展不小于100mm厚的透水混凝土，形成基层；
 F. 铺设找平层：将水泥与石渣或细砂混匀后加入少量的水，铺在集料基层的上方，摊铺成厚度为30～50mm的找平层；
 G. 铺设地表集水层，使用权利要求1～6中任意一项权利要求所述的辅装装置，根据瓦片的宽度调整卡槽的间距或者选择与瓦片的宽度相配合的辅装装置，将至少两台辅装装置的第一连接口与第二连接口对齐后固定好，水平放置于找平层上，将瓦片纵向排列放置在辅装装置的边框内，并在瓦片之间的间隔处填充封缝砂填充。

8. 根据权利要求7所述的辅装方法，其特征在于：在所述步骤G中，在填缝砂填充完成后，将位于辅装延伸方向相反的第一辅装装置从与之相连的第二辅装装置的一侧平稳向上移除，并将所述第一辅装装置放置于第二辅装装置的另一侧，继续辅装。

9. 根据权利要求7所述的辅装方法，其特征在于：在所述步骤D中，还包括构建地下雨水盲沟网络的步骤，所述构建地下雨水盲沟网络的步骤包括如下步骤：
 将雨水搜集层中多条盲沟相互连接，盲沟的末端与回收蓄水池或雨水井相连通，组成地下雨水盲沟网络。

10. 根据权利要求7所述的辅装方法，其特征在于：在所述步骤G中，所述填缝砂包括
体积比为 3:1 ～ 1.5:1 的干细砂与粒径小于 5mm 的碎石形成的混合物。
用于安装纵向瓦片结构的透水路面铺装装置及铺装方法

技术领域
[0001] 本发明涉及一种道路工程结构及施工方法，特别是涉及一种用于安装纵向瓦片结构的透水路面铺装装置及铺装方法。

背景技术
[0002] 雨水是城市宝贵且经济的水资源。将雨水从封闭路面或屋顶引向非封闭路面经过土壤的渗透过滤，既可以减缓雨水地表径流的强度，使地下水得到补充，也可以去除雨水中的部分污染物，就地排除雨水减少由于积水而引发的事故。还可将过滤后的雨水用作城市的非饮用水，减少饮用水的需求量，节约水资源，缓解城市供水的压力。
[0003] 此外，雨水收集还能节省饮用水配水管网的建设费用，获得可观的经济效益。因此，透水性路面雨季能收集雨水是一项极为具有可行性的雨水利用技术，透水性路面透水性设计也已广泛应用于各种路径的建设中。
[0004] 20 世纪 90 年代以来，国际上流行采用透水性材料来覆盖城市的路面，或将以前铺设的一些硬化路面改为透水性路面，以增强城市的生态效果。
[0005] 城市行车道一般采用透水性沥青混凝土或透水性混凝土。而非行车道一般采用草地、地砖草皮拼接型路面、鹅卵石、碎石路面及透水性地砖等形式。
[0006] 草皮、鹅卵石等路面观赏性较强，但仅可应用于园林、住宅小区等人流量少的路面，应用于其他路面上则推广性较差。透水性地砖利用微孔技术排水，具有透水透气、抗寒耐风化、防滑降噪等特点，广泛用于人行道、广场等。然而，长期使用后，容易造成微孔堵塞而影响其透水效果，并且在北方冬季的低温气候条件下，透水性地砖的砖体易因结冰等导致强度降低，且该透水性地砖的成本较高，也影响其推广前景。

发明内容
[0007] 本发明的目的是提出一种结构简单、成本较低、易于使用的用于安装纵向瓦片结构的透水路面铺装装置及铺装方法，该铺装装置适用于辅助铺装能够实现雨水下渗与收集的非机动车道新型路面。
[0008] 为实现上述目的，本发明提供了一种用于安装纵向瓦片结构的透水路面铺装装置，所述铺装装置包括横截面为矩形结构的边框，所述边框的内侧宽度与所述纵向瓦片的外侧宽度相配合，且所述边框的两个长边内侧设有若干组相互对应并与所述纵向瓦片厚度相配合的卡槽，所述边框的两个短边分别设有向同一方向凸出或凹进的第一连接口和第二连接口，向外凸出的第一连接口与向内凹进的第二连接口之间在尺寸上相互卡合配合。
[0009] 优选地，所述边框的高度为 100～150mm，且在边框底部四个支腿，每个支腿上设有高度调节机构。
[0010] 优选地，在所述边框两条短边上各设置一个提手。
[0011] 优选地，所述卡槽与所述边框的内侧之间为活动连接，所述边框的两条长边外侧设有用于调节卡槽之间间距及槽内宽度的调节杆。
优选地，相邻槽格之间的间距为 30 ~ 50mm，槽格的内部宽度为 20 ~ 40mm。

优选地，所述管芯装置为由两个长边和两个短边构成的四面体状结构。

本发明的另一目的是提供一种透水路面的管芯装置，所述管芯装置包括如下步骤：

A. 施工准备：按照设计要求放线，并清理作业场地；

B. 路基处理：用夯机或压路机将路床的原土夯实或压实，形成原土路基层；

C. 垫层铺设：将含泥量小于 5% 的中砂或粗砂平铺在原土路基层上；

D. 铺设透水收集层：在垫层上先铺设厚度为 5 ~ 10mm 的一层碎石，然后在碎石上铺设塑料排水盲沟，排水盲沟设置好后，继续铺设厚度为 100 ~ 200mm 的碎石。

E. 铺设基层：雨水收集层上继续铺设厚度为 100 ~ 200mm 的级配碎石层，推平后喷水压实，或摊铺不小于 100mm 厚的透水混凝土，形成基层；

F. 铺设找平层：将水泥与石渣或细砂混匀后加入少量的水，铺在集料基层的上方，摊铺成厚度为 30 ~ 50mm 的找平层；

G. 铺设地面集水层：使用上述的管芯装置，根据瓦片的宽度调整卡槽的间距或者选择与瓦片的宽度相配合的管芯装置，将至少两台管芯装置的第一连接口与第二连接口对齐后固定好，水平放置于找平层上，将瓦片纵向排列放置在管芯装置的边框内，并在瓦片之间的间隔处用填缝砂填充。

优选地，在所述步骤 G 中，在填缝砂填充完成后，将位于管芯延伸方向相反的第一管芯装置从与之相连的第二管芯装置的一侧平稳向上移除，并将所述第一管芯装置放置于第二管芯装置的另一侧，继续铺设。

优选地，在所述步骤 D 中，还包括构建地下雨水收集网络的步骤，所述构建地下雨水收集网络的步骤包括如下步骤：将雨水收集层中多条盲沟相互连接，盲沟的末端与回收蓄水池或雨水井相连通，组成地下雨水收集网络。

优选地，在所述步骤 G 中，所述填缝砂包括体积比为 3:1 ~ 1.5:1 的细砂与粒径小于 5mm 的碎石形成的混合物。

基于上述技术方案，本发明的优点是：

本发明针对目前使用的透水管芯装置透水性易受时间影响、成本较高、草坪绿化路面应保持裂缝等缺点，通过使用本发明的管芯装置，能够应用瓦片、细砂等常规材料进行路面雨水的收集操作，并通过管芯装置在地下的层状透水与收集结构，来共同完成雨水的收集或下渗。本发明管芯装置的路面结构还具有透水性强、形态美观、应用广泛等特点。

附图说明

此处所说明的附图用来提供对本发明的进一步理解，构成本申请的一部分，本发明的示意性实施例及其说明用于解释本发明，并不构成对本发明的不当限定。在附图中：

图 1 为本发明的结构示意图；

图 2 为本发明一个管芯装置的使用状态示意图；

图 3 为本发明两个管芯装置的使用状态示意图；

图 4 为通过本发明管芯装置的层状结构意图；

1~ 地面集水层；2~ 管芯层；3~ 雨水收集层；4~ 垫层；

11~ 瓦片；12~ 缝隙处；13~ 找平层；14~ 基层；15~ 排水盲沟；

10~ 边框；13~ 卡槽；14~ 支腿；15~ 提手；

11~ 第一连接口；12~ 第二连接口。
具体实施方式

[0030] 下面通过附图和实施例，对本发明的技术方案做进一步的详细描述。

[0031] 参见图 1 ～图 4，其中示出本发明一种用于安装纵向瓦片结构的透水路面辅装装置的各种优选实施例。

[0032] 本发明的辅装装置包括横截面为矩形结构的边框 10，优选地，本发明所述的辅装装置是由两个长边和两个短边构成的矩形管状结构，如图 1 所示，并且，该矩形管状结构设有上下表面，瓦片 11 可以从上至下放入并穿过边框 10 的矩形管状结构，如图 2 所示。

[0033] 所述边框 10 的内侧宽度与所述纵向瓦片的外侧宽度相配合，且所述边框 10 的两个长边内侧设有若干组相互配合并带有所述纵向瓦片厚度相配合的卡槽 13，每个瓦片 11 可以纵向垂直或倾斜地放入到每组卡槽 13 中，如图 2 所示。

[0034] 所述边框 10 的两个长边分别设有向同一方向凸出或凹进的第一连接口 41 和第二连接口 42，向外凸出的第一连接口 41 与向内凹进的第二连接口 42 之间在尺寸上相互卡扣配合。当多个辅装装置的边框 10 共同使用时，可以通过第一连接口 41 和第二连接口 42 头尾相连，并保证整体的一致性及位置上的线性对齐。具体地，前一个边框 10 的第一连接口 41（凸出端）正好可卡入相邻后一个边框的第二连接口 42（凹陷端），为防止滑动，两者之间还可设置螺栓加以固定。

[0035] 优选地，所述边框 10 的高度为 100 ～150mm，且在边框 10 底部四个支腿 14，每个支腿 14 上设有高度调节机构避免地面表层不同而妨碍辅装装置的定位。边框 10 长边的长度可选择 600mm 左右，以便一个成人可双手水平提起或放置。边框 10 宽度可根据不同瓦片的宽度设置为适配于辅装用瓦片的宽度。边框 10 板材的厚度尽可能在保证品质的前提下选择一般不超过 5mm 为佳。

[0036] 进一步，在所述边框 10 两条短边各设置有一个提手 15，该提手 15 的形状及材质应满足强度高、易握、防滑且舒适等要求。

[0037] 参见图 2，所述卡槽 13 与所述边框 10 的内侧之间为活动连接，即卡槽 13 在边框 10 内侧的位置可以调节，优选地，在所述边框 10 的两条长边外侧设有用于调节卡槽 13 之间间距及槽内宽度的调节杆（图中未示出），该调节杆用于调节卡槽 13 的间距及槽内的宽度，以适应不同的瓦片 11 厚度与辅装方式。优选地，相邻卡槽 13 之间的间隔为 30 ～50mm，卡槽内部的宽度为 20 ～40mm。

[0038] 本发明的上述辅装装置能够大幅度提高纵向瓦片的辅装效率，保证辅装质量与效果。优选地，该辅装装置使用轻型、防水、耐磨损且不易变形的材质制成，如铝合金、硬质塑料等。

[0039] 本发明的另一目的还在于提供一种透水路面的辅装方法，所述辅装方法包括如下步骤：A. 施工准备：按照设计要求放线，并清理作业场地；B. 基坑处理：用夯机或压路机将路床的原土夯实或压实，形成原土路基层；C. 垫层铺设：将含泥量小于 5% 的中砂或粗砂平铺在原土路基层上；D. 铺设雨水收集层：在垫层上先铺设厚度为 5 ～10mm 的一层碎石，然后在碎石上铺设塑料排水盲沟，排水盲沟设置好后，继续铺设厚度为 100 ～200mm 的碎石；E. 铺设基层：在雨水收集层上铺设不小于 100mm 厚的碎石，摊平后喷洒压实，或摊铺不小于 100mm 厚的透水混凝土，形成基层；
F. 铺设找平层：将水泥与石渣或细砂拌匀后加入少量的水，铺在集料基层的上方，摊铺厚度为 30～50mm 的找平层；

G. 铺设地面集水层：使用上述的辅装装置，根据瓦片 11 的宽度调整卡槽的间距或者选择与瓦片的宽度相配合的辅装装置，将至少两台辅装装置的第一连接口 41 与第二连接口 42 对齐后固定好，水平放置于找平层上，将瓦片 11 纵向排列放置在辅装装置的边框 10 内，并在瓦片 11 之间的间隔处 12 用填缝砂填充。

进一步优选地，在所述步骤 G 中，在填缝砂填充完成后，将位于辅装延伸方向（图 3 中的左侧为辅装延伸的方向）相反的第一辅装装置 A 从与之相连的第二辅装装置 B 的一侧（图 3 中的右侧）平稳向上移除，并将所述第一辅装装置 A 放置于第二辅装装置 B 的另一侧（图 3 中的左侧），其位置移动方向如图 3 中的箭头 M 所述，然后向图 3 中左侧的辅装延伸方向继续辅装。

优选地，上述铺设雨水收集层的步骤还包括构建地表雨水集水网络的步骤，所述构建地表雨水集水网络的步骤包括如下步骤：将雨水收集层中多条集水相互连接，集水的末端与回收蓄水池或雨水井相连通，组成地表雨水集水网络。集水网络优选选用耐水性能较好的排水管。

更优选地，所述填缝砂包括体积比为 3:1～1.5:1 的干细砂与粒径小于 5mm 的碎石形成的混合物。不得使用湿砂，以免使床软无阻隔地填满砖之间的整个缝隙。填充完毕后用木槌将瓦片和填缝砂石整理平整。

如图 4 所示，通过本发明的辅装方法，可以辅装形成层状的透水路面结构。该透水路面结构自上而下依次包括由纵向瓦片 11 排列形成的地面集水层 1，由透水性材料构成的渗滤层 2、内设排水盲洞 31 的雨水收集层 3，以及垫层 4 和原土路基层 5，其中，所述渗滤层 2 还包括上层的找平层 21 和下层的基层 22。本发明形成此种层状结构，具有透水性强、易于雨水收集，并且材料成本较低，易于推广应用等优点。

尤其是所述地面集水层 1 中的瓦片 11 可以呈竖直纵向排列，或者呈倾斜纵向排列，并在相邻瓦片之间的缝隙处 12 可以由碎石和 / 或细砂填充，在本实施例中，缝隙处 12 由填缝砂填充，而所述填缝砂为干细砂与粒径小于 5mm 的碎石以 2:1 的比例相互混合均匀的混合物，即所述填缝砂包括体积比为 3:1～1.5:1 的干细砂与粒径小于 5mm 的碎石形成的混合物。本发明使用的填缝砂不得使用湿砂，并宜使用填缝砂无阻隔地填满瓦片 11 之间的整个缝隙处 12。填充完毕后用木槌将瓦片 11 和填缝砂的上表面整理平整。

进一步，本发明所形成的找平层 21 由水泥与细砂混合铺成，所述水泥与细砂之间的体积比为 1～1.5:12～16，其中，细砂中的含泥量小于 2%，泥块含量小于 1%，含水率小于 3%。优选地，所述找平层的透水系数至少为 2.0×10^-2cm/s，厚度为 30～50mm。由此为地面集水层 1 的瓦片 11 提供一个较好的放置平面层。

另一方面，本发明所述的基层 22 由级配碎石，或透水混凝土铺成，厚度不小于 100mm。具体地，基层 22 选用具有足够强度、透水性能良好、水稳定性好的材料，例如，级配碎石或透水混凝土。实际使用时，根据路面使用功能的不同，基层 22 的材料可采用级配碎石或透水混凝土。级配碎石一般采用质地坚硬的碎石，例如采用质地坚韧、耐磨的破碎花岗岩或石灰岩，级配碎石适用于非机动车道的基层施工，厚度不小于 100mm。

进一步，所述集水层 4 为 40～50mm 中砂或粗砂层，且集水层 4 中的含泥量小于 5%，泥块含量小于 2%，含水率小于 3%。由此，可以防止渗入路基的水或地下水由于毛细现象上
升，并能够缓解含水土基胀对路面结构整体稳定的影响，本实施例中，垫层 4 的材料优选采用透水性能较好的中砂或粗砂。

【0049】本发明的上述技术方案，主要应用了瓦片、细砂等常规材料进行路面雨水收集，并通过设置在地下的层状透水与收集结构，来共同完成雨水的收集或下渗。雨水由透水路面渗入地下，可补充地下水资源，降低道路径流系数，削减城市洪峰流量，减轻城市雨水排水系统的负担。通过雨水收集还可解决一部分生活或园林用水问题，经济环保。透水路面的透气性也对调节城市地表环境的温、湿度，改善城市生态环境具有积极意义。该路面透水性好、强度高、稳固无需单独保养，且形态美观，可广泛应用于公园园道、社区便道、人行道、自行车道等非机动车道。

【0050】最后应当说明的是：以上实施例仅用以说明本发明的技术方案而非对其限制，尽管参照较佳实施例对本发明进行了详细的说明，所属领域的普通技术人员应当理解，依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换；而不脱离本发明技术方案的精神，其均应涵盖在本发明请求保护的技术方案范围当中。