A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 January 2003 (23.01.2003)

PCT

(10) International Publication Number

WO 03/007105 A2

(51) International Patent Classification’: GO6F

(21) International Application Number: PCT/US01/51441

(22) International Filing Date: 26 October 2001 (26.10.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/721,695 24 November 2000 (24.11.2000) US

(71) Applicant: CATHARON PRODUCTIONS, INC.
[US/US]; 2119 Route 66, Ghent, NY 12075-2408 (US).

(72) Inventor: FEINBERG, Matthew, A.; 2119 Route 66,
Ghent, NY 12075-2408 (US).

(74) Agent: SUDOL, R., Neil; Coleman Sudol Sapone, P.C.,
714 Colorado Avenue, Bridgeport, CT 06605-1601 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

W) (54) Titlee COMPUTER MULTI-TASKING VIA VIRTUAL THREADING

0

\sm

007

0O 03

=

(57) Abstract: In the operation of a computer, a plurality of bytecode or pseudocode instructions, at least some of the pseudocode
instructions comprising a plurality of machine code instructions, are stored in a computer memory. For each of a plurality of tasks
or jobs to be performed by the computer, a respective virtual thread of execution context data is automatically created. The virtual
~~ threads each include (a) a memory location of a next one of the pseudocode instructions to be executed in carrying out the respective
task or job and (b) the values of any local variables required for carrying out the respective task or job. At least some of the tasks or
jobs each entails execution of a respective one of the pseudocode instructions comprising a plurality of machine language instructions.
Each of the tasks or jobs are processed in a respective series of time slices or processing slots under the control of the respective
virtual thread, and, in every context switch between different virtual threads, such context switch is undertaken only after completed
execution of a currently executing one of the pseudocode instructions.

10

15

20

25

WO 03/007105 PCT/US01/51441

1

CONIPUTER MULTI-TASKING VIA VIRTUAL THREADING
BACKGROUND OF THE INVENTION

The present invention relates to a method and an associated apparatus for
performing multible tasks simultaneously on a computer.

Most modern operating systems have native multi-tasking or multi-threading
capabilities, that is, multi-threading capabilities built into thé operating system. Notable
exceptions are varsions of the Macintosh Operating System (MacQOS) prior to OS X,
which possess liitle or no multi-threading capabilities. Unfortunately, the multi-threading
capabilities provided differ depending on the operating system and hardware platform.

. Many platforms impose limits on the total number of threads that can exist
simultaneously, and some platforms cannot multi-thread at all.

in order to properly understand the problems intreduced by threading in the
software and their solutions, it is necesséry to understand the general approach to
multi-threading and the specific approach used by most platform-native .threading
systems.

To perform multiple processing tasks at once, an obvious solution is to provide
multiple sets of processing circuitry in the computer system. However, the typical
desktop computer only has one processor, and even high-end workstations only have
between one and four processors.

The software based solution is time sficing, that is, dividing the processor’s time
into a series of tiny slices, and devoting each slice in turn to a different task or thread.
Typically, each thread is allowed to run for between 3ms and 30ms depending on the
operating system, at which time that thread is suspended and another thread is allowed
to run. The operating system usually uses the processor's timer interrupt to periodically
interrupt the currently executing thread and invoke the operating system’s thread
scheduler, a piece of software that saves the current thread's state or execution

context, selects a new thread to run, restores the new thread's saved execution

10

15

20

25

WO 03/007105 PCT/US01/51441
2

context, and then allows theAprocessor to resume normal execution. This process is
known as a context switch.

In addition to occurring when a time slice expires, a context switch can also
occur if the thread enters a wait state, a state in which the thread has nothing to dd
until a specific event occurs. When a thread enters such a state, the thread scheduler
is invoked and a context switch occurs so that some other thread may use the
remainder of the tirne slice.

A typical event that can cause a thread to enter a wait state occurs when the
thread attempts to access memory that has been paged to disk. The operating system
suspends the thread until the memory system has had a .chance to page in the
memory. Other events causing a thread to enter a wait state are the thread's checking
for user input and the thread’s attempting to read from the disk. In the latter case, the
operating system suspends the thread until the disk read completes, allowing other
threads to perform processing tasks while the first thread waits for the data to be read
from disk. Yet another event that can induce a thread to enter a wait state occurs
when the thread specifically yiel&s the remainder of its.time slice. This may happen if,
for example, the thread has nothing more to do for a while.

Because context switches can occur with great frequency, it is critical for the
context switch operating to be extremely fast. Many operating systems place limits on
the number of threads that can exist in the system; Windows 95 has a maximum of
about 150-200 threads before system becomes unstable, whereas BeOS has a
maximum of 4096 threads per processor. Such a limitation in the number of threads is
a result of an operating system pre-allocating, for performance reasons, a fixed-size
chunk of mehory for the thread table when the system boots.

Standard non-interpreted programming languages compile human-readable
source code into machine-readable code, or machine language code directly readable

by the processor.

10

15

20

25

WO 03/007105 PCT/US01/51441
3

An interpreted language, on the other hand, compiles human-readable source
code into an interpreter-readable code, or bytecode. A software program called an
interpreter, written in machine language, later reads the bytecode and instructs the
processor to perform the appropriate operations.

A key advantage of an interpreted language is that the bytecode can be
designed so that it is machine independent, allowing a program written in the language
and compiled into bytecode to run on any operating system and hardware platform that
an interpreter has teen written for.

When developing an interpreted language that must run identically on all
platforms, relying on a platform'’s native multi-threading can be problematic at best.
The goal of a cross-platform interpreted progrémming language is to make it possible
to develop a program in the language on 6ne platform, and then run that program
unchanged on any other platform supported by the language. Java is one example of
an attempt to create such a language.

Unfortunately, if such an application must muiti-thread, use of native multi-
threading capabilities immediately limits the platforms on which the application can run.
The application program is immediately precluded from running on most versions of
the MacOS (which has no threading ability), and depending on how many simultaneous
threads of execution the application program requires, it may be precluded from
running on Windows 95 (maximum of about 150-200 threads), BeOS (maximum of
4096 threads per processor), or other platforms.

SUMMARY OF THE INVENTION

The present invention is intended to solve above-identified problems and
provide a multi—task.ing capability to computers having different platforms and different
operating systems. In accordance with the invention, platform-independent means
multi-threading is accomplished by means of an interpreter, the software program that

interprets the instructions that make up an interpreted programming language. The

10

15

20

25

WO 03/007105 PCT/US01/51441
4

interpreter implements muiti-tasking by creating, maintaining and processing in
accordance with viriual threads. This solutic;n eliminates the dependence on the
platform-native threading capabilities and provides a reliable means of multi-threading
cross-platform using an interpreted programming language.

In an typical interpreted programming language, every instruction in the program
must be read by the interpreter and passed to the processor. This means that an
interpreted program will typically run more slowly than a machine language program.
Adding code to the interpreter to check a timer or counter at each machine code
instruction, as done in conventional multi threading or time slicing, and perform a
context switch whern necessary would severely impact the performance of an
interpreted program.

Accordingly, the present invention contemplates the performance of context
switches only between successive pseudocode instructions and not during execution of
a pseuddcode instruction. Thus, a computer using multi-tasking or multi-threading as
disclosed herein repeatedly executes the equivalent of many machine language
instructions without making a check of a timer or counter.

A method for operating a computer comprises, in accordance with the present
inventidn. storing in a computer memory a plurality of pseudocode instructions, at least
some of the pseudocode instructions comprising a plurality of machine code
instructions, and, for each of a plurality of tasks or jobs to be performed by the
computer, automatically creating a respective virtual thread of execution context data
including (a) a memory location of a next one of the pseudocode instructions to be
executed in carrying out the respective task or job and (b) the values of any local
variables required for carrying out the respective task or job. A plurality of the tasks or
jobs each entails execution of a respective one of the pseudocode instructions
comprising a plurality of machine language instructions. The method further comprises

processing each of the tasks or jobs in a respective series of time slices or processing

10

15

20

25

WO 03/007105 PCT/US01/51441
5

slots under the control of the respective virtual thread, and, in every context switch
between different virtual threads, undertaking such context switch only after completed
execution of a currently executing one of the pseudocode-instructions. |

Instead of taking the conventional “Virtual Machine” approach of mimicking the
fine-grained machine language instructions (the approach used by Java), the virtual
threading of the present invention uses an interpreted language with coarser
instructions — that is, where each instruction accomplishes a much larger task.

For example, in machine language (or an interpreted language that mimics
machine language), drawing a box may consist of several hundred or thousand
instructions, each instruction setting the color of one of the pixels within the box.

With virtual threading, a single instruction is used to draw a box, and the
interpreter handles the rest in machine language. This means that a checks for a
potential context switch, made after every in'struction. need only be performed once for
the entire box-drawing operating, rather than after every pixel.

The result is that the interpreter can handle the multi-threading without a severe
negative performance impact.

Pursuant to another feature of the present invention, each of the virtual threads
is part of a respective linked list of virtual threads. Each of the virtual threads includes
a pointer to-a next virtual tﬁread in the respective linked list. The computer method
further comprises, for every context switch between different virtual threads, consulting
the pointer of a currantly executing virtual thread to determine an identity of a next
virtual thread to be executed.

A common problem encountered by a platform-native threading implementation
is the limitation on the number of threads (both active and idle) that can exist in the
system at once.

In Windows 95/98, for example, if the total number threads in all applications

passes about 150-200, the system becomes severely unstable. Behavior exhibited by

10

15

20

25

WO 03/007105 PCT/US01/51441

6

test systems encountering this condiﬁon includes spontaneous reboots, random
keyboard input, rardom mouse movement, memory corruption, and random application
crashes.

One consequence of the coarser instruction set used by virtual threading is that
context switch time is not as critical. This means that taking the extra time required to
store threads in a linked list is acceptable, the result being that virtual threading allows
a very large number of threads, limited only by the total memory available on the
system.

The present invention contemplates that the virtual threads, which govern or
intermediate the execution of tasks or jobs by the computer, are stored in a plurality of
linked lists, including a list of idle virtual threads, a list of active virtual thr.eads. and a list
of queued virtual threads. The computer method further comprises periodically moving
at least one virtual thread from the list of queued virtual threads to the list of active
virtual threads. The moving of a virtual thread from the list of queued virtual threads to
the list of active virtual threads generally includes (a) setting a mutex to lock the list of
queued virtual threads, (b) subsequently modifying pointers in (i) the moved yirtual
thread, (i) at least one virtual thread originally in the list of active virtual threads, and
(iii) at least one virtual thread remaining in the list of queyed virtual threads, and (c)
thereafter resetting or releasing the mutex to énable access to the list of queued virtual
threads.

Pursuant to another feature of the present invention, each of the virtual threads
includes a mutex, while the computer method further comprises setting the mutex of a
selected one of the virtual threads, subsequently modifying data in the selected virtual
thread, and thereafter resetting or releasing the mutex to enable access to the selected
virtual thread. The setting of the mutex of the selected thread, the modifying of the
data, and the resetﬁihg or releasing of the mutex may be pérformed in response to a

message from another one of the virtual threads. The modification of the data typically
C24-016

10

15

20

25

WO 03/007105 PCT/US01/51441
7

includes modifying a pointer of the selected virtual thread.

In accordance with a further feature of the present invention, each of the virtual
threads is assignecl a message queue, the compuier method further comprising
entering a message in a message queue of a selected one of the virtual threads during
execution of a task or job pursuant to another one of the virtual threads. These threads
may correspond to respective tasks or jobs derived from different applications
programs, whereby the entering of the message in the message queue of the selected
one of the virtual threads implements data transfer between the different applications
programs. In another application of inter-thread messaging, the selected thread and
the other thread are proxy or interface threads on different computers. In that case, the
entering of the message in the message queue includes transmitting the message over
a communications link between the computers. The communications link may be a
private computer network or, for instance, the global computer network known as the
Internet.

As implied above, the creating of the virtual threads, the processing of the tasks
or jobs in respective series of time slices or processing slots, and the undertaking of
context switches all include the operating of the computer under an interpreter
program. The invention also contemplates the running of a plurality of instances of the
interpreter program on the computer, each instance corresponding to a native thread.
Each native thread creates a respective set of virtual threads of execution context data,
processes each of a plurality of tasks or jobs in a respective series of time slices or
processing slots under the control of the respective virtual thread, and in every context
switch between different virtual threads, undertakes such context switch only after
completed execution of a currently executing one of the pseudocode instructions.

The running of multiple native threads is preferably limited to a small number of
threads on a single processor, for instance, one or two threads. Where a processor

has inherent multi-threading capability, this limitation frees other platform-based native

C4_M&

10

15

20

25

WO 03/007105 PCT/US01/51441
8

threads for handling of other applications programs.

Because Virtual Threading allows an unlimited number of threads to be created,
and because the threads have very low overhead, a program written in a language that
uses Virtual Threading can take advantage of a unique programming approach.

This programming approach involves the use of a large number of threads — one
for each user interface device on the screen. A button, for exaniple; has its own
thread. A scroll bar has four — one for each of the buttons, one for the central bar, and i
one master thread. And threads are not limited to user interface devices — a server
program, for example, could create one thread to service each client request.

A typical application may have anywhere from a hundred threads to a few
thousand threads, depending on the nature of the application. With multiple
applications running on a system, this would quickly exceed the native-threading
abilities of Windows: 95 (150-200 threads), and would negatively i.mpact performance
even on platforms with larger or unlimited threading capabilities. Virtuavl Threading, on
the other hand, is specifically designed to deal with these problems, making it possible
to run multiple applications with tens of thousands of threads without any performance
problems.

This extensive use of threads greatly simplifies the creation of a complex
application because the user interface code does not need to keep track of hundreds of
user interface devices — each thread runs a simple program that keeps track of the
single user interface device for which that thread is responsible.

This results in smaller programs that are simpler to create and easier to debug
and maintain.

In accordance with another feature of the present invention; where a selected
one of the virtual threads is in an idle state (e.g.. in a linked list of idle threads), the
computer method further comprises generating a message in response to an input from

a source outside the computer, inserting the message in a message queue for the

10

15

20

25

WO 03/007105 PCT/US01/51441
9

selected virtual thread, changing the selected thread from the idle state to an active
state, thereafter accessing the message queue to obtain the message during a time |
slice or processing slot assigned to the selected thread. This process is that used to
shift a virtual threacl from inactive or idle status to active status pursuant to the
occurrence of an event pertinent to the respective thread. That event may be
generated by a source outside of the computer, for instance, by an operator actuating a
keyboard key or by a communication from a remote computer.

Interpreter-mediated virtual threading in accordance with the present invention
can prioritize among different tasks or jobs by any suitable technique. Where each of
the virtual threads includes a thread priority, the computer method further comprises
automatically consulting the thread priorities in a plurality of the virtual threads to
determine rélative priorities and varying a sequence of threads in accordance with the
determined relative priorities. In one prioritizing technique, a given thread having a
priority which is a integral number greater than the priority of a second thread is
accorded a number time slices or processing slots which is that integral number greater
than the number of time slices or processing slots accorded to the second thread.

The prioritizing of virtual threads (and concomitantly their respective tasks)
provides an opportunity also for distributing processing load among different native
threads, where morz2 than one native thread is used. A thread may be allotted the task
of redistributing virtual threads from native threads having more than an average
priority of tasks to native threads having less than the average priority of threads.
Generally, the shifting of threads is restricted to active threads.

As discussed elsewhere herein, the tasks or jobs processed in respective series
of time slices or processing slots under the control of the respective virtual threads
include controlling cbjects imaged on a computer display, each of the objects
constituting a separate task or job assigned a respective one of the virtual threads.

The processed tasks or jbbs assigned to respective virtual threads by an interpreter

10

15

20

25

WO 03/007105 PCT/US01/51441
10

pursuant to the present invention further include monitoring the actuation of keys on a
computer keyboard. Each of the keys constitutes a separate task or job assigned a
respective one of the virtual threads. -

Preferably, the time slots or processing slots are measured by counting
consecutively executed pseudocode instructions. The computer method further
comprises, for each of a plurality of the time slices or processing slots, terminating the
respective time slot or processing slot upon counting a predetermined number of
consecutively executed pseudocode instructions.

A multi-tasking computer comprises, in accordance with a particular embodiment
of the present invention, a memory, a display, an input peripheral, and at least one
processor operativezly connected to the memory, the display, and the input peripheral,
the processor having a compiler for converting operator-entered source code
instructions into.bytecode or pseudocode instructions, the compiler being operatively
linked to the memory for enabling the storage of the bytecode or pseudocode
instructions therein. The processor also has an interpreter for executing the bytecode
or pseudocode instructions. The memory stores a first linked list of idle virtual threads,
a second linked list of active virtual threads, and a third linked list of queued or waiting
virtual threads. Each of the threads including context or state data, a mutex and a
pointer to a next thread in the respective list. The interpreter is operatively connected
to the input peripheral for recognizing an event generated by the input peripheral and is
operatively connected to the memory (a) for shifting at least one of the idle virtual
threads from the first linked list to the third linked list, (b) for shifting queued or waiting
virtual threads from the third linked list to the second linked list, (c) for executing
instructions according to context and state data of different virtual threads in the
second linked list in successive time slices or processing slots pursuant to a
predetermined priority schedule. The interpreter is operatively connected to the display

in part for modifying an object on the display in response to instructions specified by a

10

15

20

25

WO 03/007105 PCT/US01/51441
11

respective active viitual thread in the second linked list.

The memory may additionally store a fourth linked list of native threads. In that
case, the interpreter is one of a plurality of instances of a common ihterpreter. each of
the instances of the common interpreter corresponding to a respective one of the
native threads. Also, the second linked list is one ofé plurality of linked active-thread
lists, each of the native threads being linked by a respective pointer to a respective one
of the linked active-thread lists, while the third linked list is one of a plurality of linked
queued-thread lists, each of the native threads being linked by a respective pointer to a
respective one of the linked queued-thread lists.

Pursuant to another particular feature of the present invention, the interpreter

'includes programmed circuitry for shifting a virtual thread from a first native thread

having a heavier-than-average load to a second native thread having a lighter-than-
average load.

The list or table of idle virtual threads preferably in'clu;des a plurality of threads
assigned to respective keys of a keyboard for processing actuations of the respective
keys. The list or table of idle threads may additionally include a plurality of threads
assigned to respective objects in a display image for processing changes in
appearance of the respective objects.

Where the interpreter includes a context switch module and a instruction
counter, the context switch module is operatively connected to the memory and the
instruction counter for effectuating é context switch from a currently executing active
thread of the second linked list to a next active thread in the second linked list upon
execution of a predetermined number of bytecode or pseudocode instructions pursuant
to the currently executing active thread.

Each of the virtual threads includes a memory location of a next instruction to
execute in the respective thread, values of any local variables for the respective thread,

and an execution priority for the respective thread.

WO 03/007105 PCT/US01/51441
12

In accordance with further features of the present invention, the memory stores
a plurality of message queuss assigned to respective ones of the threads and also
stores at least one proxy or interface thread having an execution context for carrying
out a communicaticn with a remote computer via a communications link. Where the

5 communications link is a computer network such as the Internet, the proxy or interface
thread contains a memory address leading to a network protocol routine.

A multi-tasking computer comprises, in accordance with another embodiment of
the present invention, a memory storing state and context data of multiple threads or
tasks and an interpreter for executing a series of bytecode instructions each consisting

10 of a multiplicity of machine code steps, the interpreter being programmed to define a
respective virtual thread for each task to be performed by the computer, to execute
bytecode instructioris o_f a respective current thread selected from among the virtual
threads during each time slice of a series of consecutive time slices, and to execute a
context switch from one of said virtual threads to anoiher of the virtual threads only

15 after execution of one of the bytecode instructions.

Various advantages provided by the present invention will be apparent from the
descriptions hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a computer system incorporating a virtual threading

20 capability in accordance with the present invention.

Fig. 2 is a block diagram of selected components of a processor shown in Fig. 1,
showing connections of those components to other elements of the system of Fig. 1.

Fig. 3 is a block diagram of selected components of an interpreter shown in Fig.

25 Fig. 4 is a diagram of thfead state data stored in memory, showing the linked list
structure of the datai.

Figs. 5A and 5B are a flow chart showing selected operations performed by the

10

15

20

25

WO 03/007105 PCT/US01/51441
13

interpreter of Fig. 2.

Fig. 6 is a block diagram showing communication between two computers using

the virtual threading of the present invention.
DEFINITIONS

The term “multi-tasking” is used herein to refer to the performance of muitiple
tasks simultaneously by a computer.

The term “pseudocode” as used herein refers to computer instructions compiled
for execution by an interpreter. An interpreter is a program which serves to translate
into machine language pseudocode programs and to perform the indicated operations -
as they are translated. “Pseudocode” is unrelated to the hardware of a particular
computer and requires cbnversion to the code used by the computer before the
program can be used. Many pseudocode instructions entail the execution of multiple
machine language instructions. Pseudocode is sometimes referred to as ‘bytecode.”

" The term “task” or “job” is used herein to denote any function performed by a
computer. The tasks or jobs may vary in scale from a simple operation such as
changing the contents of a processor register to large complex operations requiring the
execution of many pseudocode instructions. Examples of tasks or jobs include (a) the
monitoring of user input peripherals such as keyboards and individual keys thereof, (b)
the generation and modification of objects on a monitor or display, such as menu
buttons, windows, scroll bars, icons, and background patterns, (¢) communication with
remote computers over a network orlother communications link, (d) applications
programs such as a word processor, a spread sheet, a multimedia player, a calculator,
etc., and (e) various components or functions of applications programs, such as
editing, printing, spzli check, and other functions of a word processor.

The term "tirne slice” of “processing slot” is used herein to denote a segment of
processor time. In conventional multi-tasking computers, all time slices are equal in

duration, being measured by a time base or timer interrupt. Pursuant to the instant

10

15

20

25

WO 03/007105 PCT/US01/51441
14

disclosure, time slices or processing slots are measured either by a timer as in
conventional multi-tasking computers or by instruction counting. In the latter
alternative, the time: slices or processing slots are not necessary all of equal duration.
As used herain, the word “thread" refers to an execution context for
implementing or carrying out a job or task by a computer, the execution context being
used or followed in a series of time slices or processing slots. The term “virtual thread"
as used herein refers to a thread which is created by, stored, modified, processed, and
followed by an interpreter. The term “native thread” is used herein to designate a
thread built into the operating system of a particular computer. Where a computer
operating system has multiple native threading capabilities, a plurality of native threads
can be used, each such native thread running a respective instance of thé interpreter.
The term “mutex” as used herein refers to a lockable object which can be set or
locked by one thread at a time to prevent access by another thread to a program, a
v‘irtuél thread, a memory area, or other component of a computer system. A mutex is

used by native threading implementations to synchronize access to data that is shared

"between threads. Use of mutexes is important because such use prevents conflicts

between multiple threads attempting to modify the same data at the same time. A
mutex is used to represent shared data; a thread must lock the mutex before
attempting to access the data.

A “linked list” is a commonly used structure in the software industry where each
entry in the list contains the memory address of the next entry in the list. This linking
permits entries to be inserted in or deleted from the list without moving other entries in
the list. A deletion of an item simply involves changing the item's predecessor so that
the predecessor points to the address of the item’s successor, thus freeing the memory
used by the item.

The term “context switch” is used herein to designate a process wherein a

currently executing thread is interrupted, that thread's state or execution context is

10

15

20

25

WO 03/007105 PCT/US01/51441
15

stored, a new thread is selected to run, tl';e new thread's saved execution context is
restored and followad in immediately subsequent computer operations.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustratec in Fig. 1, a computer system includes a processor 12, a keyboard
14, a display 16, and a memory 18. Processor 12 is connected to a remote computer
20 via a computer rietwork such as the Internet 22. As shown in Fig. 2, processor 12
includes an interpreter 24 typically implemented as generic digital computer circuits
modiﬁed‘ by prograrnming to undertake multiple computer functions, including the
interpretation of keyboard actuation and the control of display 16 and particularly the
appearance of objects thereon in response to commands input by a user via keyboard
14 or in response to communications received from computer 20 over the Internet 22.
Processor 12 also includes a compiler 26 (which may be part of the interpreter 24) for
converting human-criginated source code into bytecode or pseudocode which is stored
in memory 18.

As shown in Fig. 3, interpreter 24 includes a code execution unit 28 operatively
connected to memary 18 for reading the bytecode and performing operations_ in
accordance with the bytecode. Interpreter 24 further includes an instruction counter 30
connected to execution unit 28 for tracking the number of bytecode iﬁstructions
processed in a current time slice or processing slot. Counter 30 is operatively
connected to a context switch module 32 in tum connected to execution unit 28 for
inducing a change in execution context of the interpreter 24 upon the counting of a
predetermined number of byte-code instructions by unit 28. An execution switch can
occur earlier, that is, prior to the completion of counting, under certain circumstances,
for instance, if a wait state is entered.

In much of the following discussion, it is assumed that interpreter 24 is dealing
only with compiled bytecode. In reality, compiler 26 (which may be a component of the

intérpreter. or a separate program) is necessary to translate humanly readable source

10

15

20

25

30

WO 03/007105 PCT/US01/51441
16

code into bytecode. Compilers are standard in the software industry (C, C++, Basic,
Pascal, Java, and many other languages must be compiled before they can be run)
and techniques for writing compilers are common knowledge for many programmers.
Accordingly, further discussion of compiler 26 is omitted from the instant disclosure.
Interpreter 24 implements multi-tasking through the creation and linking of virtual
threads and the carrying out of tasks in respective series of time slices or processing
slots in accordance with or under the control of the respective virtual threads. |t will be
assumed hereinafter that interpreter 24 is a stack-based interpreter. In practice, virtual
threading will work with any type of interpreter, whether its stack-based or otherwise.

Consider the following bytecode, which draws a box between the coordinates

'x=10, y=10 and x=20, y=20 on the screen of computer display 16:

INSTRLJCTION PARAMETER

PUSH INTEGER 10
PUSH INTEGER 10
PUSH INTEGER 20
PUSH INTEGER 20
DRAW BOX

" In a stack-based language, the first four instructions push the values 10, 10, 20
and 20 onto tﬁe stack. The DRAW BOX instruction removes the top four values from the
stack and uses them as coordiﬁates to draw a box.

This bytecode instruction will be used as an example program in following
discussions of interpreter 24 and virtual threading.

Virtual Threads

A virtual thread is basically an execution context, nothing more. An execution
context consists of (a) the memory location of the next instruction to execute in the
thread, (b) the values of any local variables for the thread, (c) the call stack for the
thread, (d) the thread priority and other attributes, and (e) any other data that the
"programming language must store on a per-thread basis, such as error state data. The
bytecode is not part of the thread; several threads can be running the same bytecode

simultaneously. The thread simply maintains a pointer to the next bytecode instruction

10

15

20

25

WO 03/007105 PCT/US01/51441
17

in memory that it will execute.

A thread can be in one of four states:

(1) Idle: Idle virtual threads are threads that temporarily have nothing to do. For
example, a thread that is waiting for user input, such as a key press, is idle, as is a
thread that's waiting for a timer to expire. Idie threads are stored in a separate list from
active threads and do not take up any processor time.

(2) Queued: The virtual thread is ready to become active and has been
assigned to one of the native threads that is running an interpreter, but the nativé
thread is busy executing an instruction and cannot move the virtual thread into ifs
active list until it finishes the instruction.

(3) Active:- The virtual thread is in the active list of a native thread, and is one of
the virtual threads that receives time slices from the native thread.

(4) Current: A current virtual thread is always also an active virtual thread. A
current virtual threai is a virtual thread that is currently executing - that is, a native
thread has given it a time slice and it is within that time slice.

Linked Thread Lists

As illustrated in Fig. 4, interpreter 24 stores thread state and context data in
memory 18 as a sef of linked lists. There are two primary linked lists: an idle thread
table 34 and a native thread table 36. Pointers 38 and 40 to the first entry of each of
these lists 34 and 35 are stored in global variables in interpreter 24.

Idle thread table 34 stores a list of all the idle virtual threads 42 in the system.
These threads 42 remain in the idle table 34 until respective events occur that cause
the threads to be reactivated. Each entry or virtual thread 42 in the idle table 34
contains the thread’s state and context data 44, a mutex 46 used to control access to
the thread's state and context data, and a pointer 48 containing the memory address of
the next entry in the list.

Native thread table 36 contains an entry for each native thread 50 that is running

10

15

20

25

WO 03/007105 PCT/US01/51441
18

an instance of interpreter 24 and that can accept virtual threads for execution. On
platforms such as somé versions of MacOS where there is no native threading
capability, there is only one entry in the native thread table 36. Each entry 50 in the
native thread table 36 contains one mutex 52, a pointer 54.to a linked list 56 of active
virtual threads 58, znother pointer 60 to a linked list 62 of queued or waiting virtual
threads 64, and a further pointer 66 to the next entry in the native thread list 36.

Linked lists £6 and 62 of virtual threads 58 and 64 use the same format as
linked list 34 of idle virtual threads 42, while the individual active threads 58 and
individual queued threads 64 have the same structure as idle threads 42. Each native
thread 50 periodic_ally moves threads from the respective linked list 62 of queued virtual
threads 64 to the respective linked list 56 of active virtual threads 58. A native thread
50 does not use its queued threads 64 while the native thread is executing instructions
(via execution unit 28), so the respective linked list 62 may be locked and threads may
be placed in the queue without having to lock the native thread's active list 56, thus
improving performance on multi-processor systems.

Mutex 52 is used to synchronize access to the respective linked list 62 of
queued virtual threads 64. A native thread 50 (either the owner or another native
thread) must have a lock on the respective mutex 52 before access can be obtained to
the respective quetie 62. The rest of the thread struc;ture shown in Fig. 4 does not
require a mutex béc:ause the only thread with access capability is the respective native
thread.

interpreter 24 spends most of its time (as does any interbreter) in a loop such as
that shown in Figs. 5A and 5B8. Within this loop, interpreter 24 performs a number of
operations to support virtual threading.

OS Maintenance Tasks
One of the tasks the interpreter 24 must perform periodically is operating system

maintenance 70. The details of this task vary depending on the platform. Typically,

10

15

20

25

WO 03/007105 PCT/US01/51441
19

only one native thread 50 needs to perform maintenance tasks 70, while other native

threads simply execute bytecode instruction. On some platforms, a completely

-separate native thread can be used for maintenance, and all native threads 50 in the

native thread table 36 can be dedicated to bytecode execution. On the other hand,
platforms without native threading capability (that is, cooperatively multi-tasking
systems such as MacOS versions prior to OS X) must perform maintenance tasks
periodically in order to allow other tasks on the system time to.run.

Typical tasks performed as part of operating system maintenance tasks 70
include_ performing one iteration of the operating system's event loop (such as calling
GetNextEvent() on MacOS platforms, or PeekMessage()/GetMessage()/Translate
Message()/DispatchMessage() on Windows platforms).

| Event Processing
After the performance of maintenance tasks 70, interpreter 24 and particularly

instruction execution unit 28 thereof makes an inquiry 72 as to whether there are any

“virtual threads in the active thread list 56 of the native thread 50. Where there is at

least one active thread 58 in active thread list 56, interpreter 24 undertakes an active
check 74 for events. Where there are no active threads 58 in list 56, interpreter 24
waits for an event at 76, thus relinquishing processor time to other applications on the
system.

When an event occurs, the event is encoded as a message and placed into a
message queue for the appropriate virtual thread. Each virtual thread may be provided
with its own message queue. [f the relevant virtual thread is an idle thread 42, it must
be reactivated, which invoives finding a native thread 50 to which the idle thread is to
be assigned as a queued or waiting thread 64.

As shown in Fig. 5A, if event check 74 results in a detected event, as
ascertained by interpreter 24 at a decision junction 78, interpreter 24 identifies the

recipient thread in a step 80 and then locks the recipient thread's message queue in a

10

15

20

25

WO 03/007105 PCT/US01/51441
20

step 82. This lock is also undertaken by interpreter 24 upon receiving notification of an
event in step 76. Subsequently, interpreter 24 investigates at 84 whether the recipient
thread is an idle thread. If the recipient thread is an idle thread 42, as determined by
interpreter 24 in investigation 84, the global idle thread list 34 is locked (mutex not
shown) in a step 86. The recipient thread is then removed from the linked list 34 of idle
threads 42 in a step 88. This removal generally entails altering the pointer 48 of the

virtual thread immediately preceding the recipient thread in the idle thread list 34 so

_ that that pointer identifies the virtual thread immediately following the recipient thread in

the idle thread list 34.

After the removal of the recipient thread from linked idle thread list 34 in step 88,
interpreter 24 locks that list 34 in a step 90. In a subsequent step 92, interpreter 24
scans or traverses: linked list 36 of native threads 50 to find the native thread with the
lightest load. Native thread load can be calculated as the number of virtual threads
assigned to the native thread, alfhough it's generally better to calculate the load more
accurately by sumrning the priorities of all the native threads assigned to a physical
thread (that is, all the native threads in the physical thread's active list and queue). The
queue mutex 52 of the native thréad 50 selected as having the lightest load is locked
by interpreter 24 in a step 94. The recipient virtual thread just removed from idle thread
list 34 is then added to the queued thread list 62 of the selected native thread 50 in a
step 96 and the respective mutex 52 then unlocked in a step 98. The adding of the
recipient virtual thread to queued thread list 56 entails the modification of two pointers,
in the recipient thread and a thread immediately preceding the recipient thread in the
queued thread list 56 upon insertion of the recipient thread therein.

If the recipient thread is not an inactive or idle thread 42, as determined by
interpreter 24 in investigation 84, the interpreter commences a routine 100 for
transferring a queued thread 64 from linked list 62 to the associated active thread list

56. Routine 100 is also undertaken by interpreter 24 upon transfer of a recipient thread

10

15

20

25

WO 03/007105 PCT/US01/51441
21

from the idle thread list 34 to the queued thread list 56 of the least busy native thread

50. In a first step 102 of routine 100, interpreter 24 locks the native thread’s queue

mutex 52. The interpreter 24 then checks at 104 whether the queued thread list 62

~ contains at least one virtual thread 64. If so, the first thread in the queue is removed

from the queue in a step 106 and added to the respective active thread list 56 in a step
108. Again, this shifting of a virtual thread from one list to another merely entails an
alteration in three pointefs. that of the moved thread and those of the immediately
preceding threads in the two lists. After shifting of the thread, interpreter 24 decides at
a junction 110 whether the newly transferred virtual thread is in a higher priority group
than the currently executing thread. If so, a context sWitch is performed by interpreter
24 and particularly by module 32 (Fig. 3) in a step 112 so that the newly shifted thread
becomes the currently executing thread. Queue mutex 52 is then unlocked in a step
114.

Timer Processing

Timer processing is not included in the flow chart of Figs. 5A and 5B as timer

_processing is not a critical part of virtual threading. An interpreted language will,

however, typically need to provide developers with a means of setting timers.

The most efficient way to implement timers with virtual threading is to keep in
mefnory 18 a global list of all timers. The list should be sorted so that the timers that
will expire soonest appear at the beginning of the list.

Each time the main interpreter loop (Figs. 5A and 5B) iterates, usually during
event processing, interpreter 24 should check the first entry in the timer list to see if
that entry has expired (if it hasn't, no other timer has expired because the timers later in
the I;st expire after the first one in the list). If the timer has expired, it should be
removed from the list and an event should be generated. The event will cause the
appropriate virtual thread to be activated (if it's not already active), and that thread will

find the timer expiration event when the thread checks its queue.

10

15

20

25

WO 03/007105 PCT/US01/51441
22

If there are no virtual threads assigned to a native thread and thev native thread
consequently waits for events (step 76) instead of checking for events (step 74), the
interpreter 24 must check timers before waiting for events. If there are any timers in
the list, the interpreter must set an operating system timer so that the operating system
generates an event to release the wait when the timer expires.

Itis also important to note that different operating systems have different
degrees of accuracy in their timers. If the remainivng time on the first timer in the listis
less than the accuracy of the operating system's timer, the interpreter 24 may not wait
for messages but must instead check for messages so that time expiration event are
generated with the requisite accuracy.

Inter-Thread Messages

Typically, virtual threads will need some means of communication so they can
exchange data with each other.

Native threacdis in conventional multi-tasking computer systems usually share
data by placing the data in memory so that the data is accessible to all threads and
then locking access to the memory to prevent multiple threads from accessing the data
simultaneously. The virtual threading described herein uses a different approach,
which is the exchange of messages between threads. A message consists of a
message identifier which uniquely identifies the type of message (for example, the
string “mouse-move” could be a message identifier) and a block of data. The block of
data may be of any format and may be any size (although enormous blocks several
megabytes in size are not recommended for performance reasons; a series of smaller
messages are preferred in such cases).

A message can be generated in response to an external event received from the
operatiﬁg system (including user input events such as mouse movement, key presses,
etc.) or in response to an instruction in a virtual thread's bytecode.

The event processing section of the flow chart of Fig. 5A shows how a message

10

15

20

25

WO 03/007105 PCT/US01/51441
23

is added to a thread's message queue in response to an event. The same technique is
used for adding a message to a thread's message queue in response to a bytecode
instruction, with one exception: In the case where a thread is placing a message in its
own meésage queue, care must be taken to avoid locking portions of the thread's
context that are already locked as part of the bytecode instruction execution;
attempting to lock in both places may cause a deadlock depending on the platform's
implementation of mutexes.
Moving Threads from Activity Queue to Active List

When a virtual thread is activéted in response to a message or an event, the
virtual thread is placed into the queued thread list 62 of the appropriate native thread
50 rather than directly into that native thread's active thread list 56. This is done
because the native thread’s active list 56 should only be accessed by the native thread
itself so that list 56 doesn’t have to be locked. Avoiding the need to lock the native
thread's active list 56 and only locking the queued thread list 62 improves performance
because the native thread 50 may be busy executing an instruction, and the native
thread that's performing the activation (which may be a different thread running
asynchronously on a different processor) doesn't have to wait for the instruction
execution to complete.

A native thread is therefore responsible for periodically moving threads from its
activity queue to its active list.

Context Switching

Each native thread 50 stores a pointer (e.g., pointer 54) to the currently
executing virtual thread, in the native thread's entry in the native thread list 36. A
context switch merely involves changing this pointer to point to a different virtual thread
58 in the active thre:ad list 56. The instruction execution code as carried out by
instruction execution unit 28 (Fig. 3) uses the thread context in the virtual thread list

entry at that pointer address, so no other action is necessary for a context switch. This

10

15

20

25

WO 03/007105 PCT/US01/51441
24

means that a context switch operating is very fast, but execution of instructions tends to

be slightly slower than usual because of the pointer indirection.

Thread Priorities

Each virtual thread 42, 58, 64 has an assigned priority. If multiple threads are
active at the same time, i.e., if active thread list 56 contains more than one thread 58,
the thread with the higher priority will receive more processor time.

O|:|e of the keyy uses of thread priorities is to give precedence to threads that
respond to user input. This precedence enables interpreter 24, for exémple, to modify
an object on display 16 immediately upon the actuation of a key on keyboard 14 by an
operator. Thus, the operator receives immediate feedback from the computer
indicating that his or her instruction has been received and is being processed. The
user thus knows that keyboard 14 and processor 12 are working and have not been
frozen or otherwise disabled.

For example, consider an application with a “Print” button shown as an object on
display 16. The button, being a user input device, is assigned its own virtual thread 42,
58, 64. The button's thread spends most of its time in the idle thread list 34. When the
user clicks on the button (a mouse click is a user input event), the thread is activated.
The thread must then re-draw the button so it looks “pressed in”, after which the thread
sends a message to some other thread to notify that other thread that the button was
pressed; the other taread will then do whatever is necessary, such as printing a
document. 4

By having the button thread assigned a higher priority than the priorities of other
tasks of the application, the user can be assured that when he or she clicks the button
there will be an immediate visual response (the button is re-drawn to look “pressed in”)
even if the system is busy handling other tasks.

A simple pricrity system, embodied in the flow chart of Figs. 5A and 5B, works.

10

15

20

25

WO 03/007105 PCT/US01/51441
25

by assigning each thread a numerical value for its priority. Typically, this value is
between 0 and 100, with larger values indicating higher prioritieé, but any range of
values can be used. In this simple priority system, a given active thread 58 will not be
allotted any processior time if there are any higher priority threads in the respective
active thread list 56. Each native thread 50 in this system keeps track of the priority
level of the highest priority virtual thread 58 in its active list 56 (this priority level can be
called the highest active priority). When a native thread 50 performs a context switch
and must select a new virtual thread 58 to become the current virtual thread, the native
thread 50 always selects the next virtual thread in the list 56 that is at the highest active
priority, starting over from the beginning of the list when the native thread reaches the
end of the list. Each native thread 50 also keeps track of the number of active virtual
threads 58 at the highest active priority.

In this simple priority system, whenever a native thread 50 moves a virtual
thread from the respective queued thread list 62 to the respective active thread list 56,
if that virtual thread is of a higher priority than the highest active priority, the highest
active priority is adjusted to the priority of the new thread, the count of threads at the
highest active priority is set to 1, and a context switch is performed to make the new
thread the current virtual thread. If the new virtual thread has a priority equal to the
highest active priority, the count of threads at the highest active priority is simply
incremented.

Whenever an active virtual thread 58 terminates or becomes idle, the respective
native thread 50 decrements the count of threads at the highest active priority level. If
the count reaches zero, the native thread 50 scans its active list 56 to determine the
néw highest active priority and the new count of threads at that priority, and performs a
context switch to make the appropriate thread the new current virtual thread.

Finally, if the pﬁority level of an active virtual thread 58 increases and the new

priority is higher than the current highest active priority, the highest priority must be

WO 03/007105 PCT/US01/51441
26

by assigning each thread a numerical value for its priority. Typically, this value is
between.o and 100, with larger values indicating higher prioritieé, but any range of
values can be used. In this simple priority system, a given active thread 58 will not be
allotted any processior time if there are any higher priority threads in the respective

active thread list 56. Each native thread 50 in this system keeps track of the priority

10

15

WO 03/007105 PCT/US01/51441
27

adjusted and that thread must become the new current thread, and similarly, if the
priority level of an active virtual thread 58 decreases, if that virtual thread was
previously at the highest priority level, the respective native thread 50 must scan its
active list 56 to determine the new highest active priority and the new count of threads
at that priority, and then performs a context switch to make the appropriate thread the
new current virtual thread. Priority levels can change as a result of instructions that are
executed by the interpreter 24. |
Advanced Thread Priorities

A more advanced system can be used for thread priorities, but is not absolutely
necessary for virtual threading to work. This more advanced system makes it possible
for a thread 58 to get processor time even if a higher priority thread is active.

This is done by using priority groups.

in a typical implementation, a thread's priority would be a value between -9999
and +9999, inclusive. A thread's priority group is equal to the thread's priorit); divided

by 100, discarding fractions, so for example:

Priority Lowest Priority in Highest Priority in
Group Group Group

-3 -399 -300

2 209 -200

-1 -199 -100

0 -99 +99

1 100 199

2 200 299

3 300 399

The rules from the simple thread priority system described in the previous
section are still used, but those rules apply instead to priority groups. Thus, a given

active thread 58 will not receive any processor time if there is an active thread ina

10

15

20

WO 03/007105 PCT/US01/51441
28

higher priority group. Threads 58 within the same priority group, however, will receive
processbr time based on their priorities within the group. Thread priorities are relative.
Given two priorities P and Q, a thread of priority P will receive one time slice for every
(Q-P)+1 time slices that a thread of priority Q receives. Therefore, a thread of priority N
will get one time slice for every 4 time slices that a thread of priority N+3 gets.

For example, consider the following set of threads:

Thread ID Thread Priority
A. 50

B 120

C 121

D 122

E 124

If all of these threads are active at once, thread A will not run because it is in a
lower priority group than the other threads. The remaining threads will be allocated
time slices as follows:

B CDEEE D EEE C D EEE D EEE B C D EEE D EEE C D EEE D EEE
In other words, out of every 38 time slices, thread B will receive 2 time slices, thread C
will receive 4, thread D will receive 8, and thread E will receive 24.

This time slice allotment is implemented by maintaining a skip counter 116 for
each active virtual thread 58 (see Fig. 3). Each counter 116 has an initial value of zero.
‘Whenever a conteixt switch occurs and a new thread 58 must be selected for
execution, the selected thread will naturally be in the highest priority group. The
selected thread may not, however, be the highest priority thread thaf's active; there
may be another higher priority thread in the same priority group. Therefore, if H is the

priority of the active thread 58 with the highest priority, and the P is the priority of the

10

15

20

25

WO 03/007105 PCT/US01/51441
29

active thread that has been selected as the new current virtual thread for the context
switch operation, and S is the value of the skip counter (initially zero) for the new
current virtual thread, theﬁ if S > (H ~ P), then the context switch will happen normally.
Otherwise, the respective skip counter 116 is Incremented, the thread is skipped, and a
different active thread 58 is selected to be the current thread.

This procedure is illustrated in Fig. 5A. The interpreter 24 first makes a check

- 118 as to whether, in the respective list 56 of active virtual threads 58, there are any

threads of the same: priority group as the current thread. An affirmative outcome leads
the interpreter 24 to select the next ihread in the current priority group in a step 120.
As discussed above, the interpreter 24 then determines, in a step 122, the priority H of
the highest priority active virtual thread in the current priority group, the priority P of the
selected thread, and the skip count S of the selected thread. Ata éubsequent decision
junction 124, the interpreter 24 inquires whether the skip count S is greater than or
equal to the differerice between the priority H of the highest priority active virtual thread
in the current priority group and the priority P of the selected thread. If the skip count S
is greater than or equal to the difference H-P, the interpreter 24 resets the skip counter
116 of the selected thread back to zero in a step 126 and makes a context switch in a
step 128. The selected thread has now become the currently executing thread. If the
skip count S is less than the difference H-P, the interpreter 24 increments the contents
of the skip cdunter 116 of the selected thread in a step 130 and returns to step 120 to
select another thread in the current priority group of the active thread list 56.

By basing everything on the relative priorities of the threads 58 rather than the
absoluté priorities, the same number of skip operations will occur for a pair of threads
with priorities 10 and 20 as for a pair of thread with priorities 510 and 520 — in either
case, the priority ditference is 10, so the thread with the lower priority will receive one
time slice for every ten time slices the higher priority thread receives.

Instruction Execution

10

15

20

25

WO 03/007105 PCT/US01/51441
30

During a time slice of an active virtual thread 58, the interpreter 24, and more
particularly instruction execution unit 28, of the native thread 50 to which that virtual
thread has been assigned repeatedly reads (step 132) and executes (step 134)
instructions from the virtual thread, as quickly as possible. After executing each
instruction in étep 134, the native thread 50 (i.e., respective instance of the interpreter
24) makes a series of checks 136, 138, 140 to determine whether the current virtual
thread is becoming idle as a result of the instruction, whether the current thread is
terminating as a result of the instruction that was just executed, or whether the virtual
thread's time slice has expired. If any of these conditions is true, the native thread 50
or respective interpreter 24 stops executing instructions from that virtual thread until
that thread becomes active or is assigned a new time slice.

A time slice or processing slot can be measured either using a timer or an
instruction count, the latter being tracked by instruction counter 30 (Fig. 3). ln general,
it is better to use an instruction count bécause the overhead at each instruction is much
lower: Checking if a time slice has expired consists merely of incrementing a counter
variable, then testing if the counter variable has passed the maximum number of

instructions for the time slice. Comparison of the instruction count with a

- predetermined count maximum may be undertaken by context switch module 32 (Fig.

3).

Selecting the: correct size for a time slice recognizes that longer time slices make
more efficient use ¢f the processor 12 (thereby getting the work done faster), but
decrease the number of context switches that can happen within a given period of time,
which can result in erratic performance for user interfaces. Depending on the |
underlying operatin;y system and hardware platform, and the nature of the application,
different sizes for time slices may make sense. Typically a value of between 20 and
200 instructions per time slice works well. Making the time slice too small (1 to 3

instructions) severely impacts performance, and making the time slice too big (millions

10

15

20

25

WO 03/007105 PCT/US01/51441
31

of instructions) esszntially defeats the purpose of multi-threading, particularly for any
kind of application with a graphical user interface. '

If the native thread 50, i.e., the respective instance of interpreter 24, discovers at
check 136 that the currently executing thread has become idle as a result of the last
executed instruction thereof, that thread is removed from the respective active thread

list 56 in a step 14Z. This removal requires adjustment in the pointer of the active

. thread immediately preceding the removed thread in the active thread list 56. The

queue mutex 52 of the respective native thread 50 is then locked in a step 144, the |
ﬁewly idled thread is inserted in idle thread list 34 in a step 146, and the mutex 52 is
unlocked in a step 148. The'insertion of a thread into the idle thread list 34 entails the
adjustment of pointers of the-inserted thread and of the thread imtﬁediately preceding
the inserted thread in the idle thread list 34.

If the native thread 50, i.e., the respective instance of interpreter 24, discovers at
check 138 that the currently executing thread has terminated its task or job as a result
of the last executed! instruction, the thread is removed from active list 56 in a step 150.
Also, resources are: freed which were being used by the terminated thread.

After the transfer of a thread from active list 56 to idle list 34 in steps 142, 144,
146, 148 or after the removal of a terminated thread from active list 56 in step 150, the
interpreter 24 of the relevant native thread 50 investigates at 152 whether there are any
threads left in the active list 56 in the same priority group as the current thread. If so,
the interpreter 24 returns to perform maintenance tasks in step 70 (Fig. 5A). If not, the
interpreter 24 or native thread 50 runs through the active list 56 in a step 154 to
determine the priority of the highest priority thread in the list. In subsequent steps 156
and 158, the highest pribrity thread is made the current thread and the number of
threads in the active list 56 at the highest priority level is counted. The interpreter 24
returns to perform maintenance tasks in step 70.

After having determined at checks 136 and 138 that the current thread has not

10

15

20

25

WO 03/007105 PCT/US01/51441
32

become idle or terminated its task upon the execution of a last bytecode instruction,
interpreter 24 queries at a decision junction 160 whether the current thread's priority
group has changed as a result of the instruction that was just executed. If not, check
140 is undertaken to determine whether the time slice has expired. If so, interpreter
24 questions at 1622 whether the priority group of the current thread has increased or
decreased. In the case of an increase, the thread number in the highest priority group
is reset to unity in a step 164. In the case of a decrease, the count of threads in the
highest priority group is decremented in a step 166. The interpreter 24 investigates at
a decision junction 168 whether there are any active threads left in the highest priority
group. A negative outcome to this investigation leads the interpreter 24 to scan the
active threads in a step 170 to determine a new highest priority group and to count the
number of threads in that group. The inferpreter 24 then undertakes a context switch in
a step 172, with the: highest priority active thread 58 becoming the current thread.

A positive outcome to investigation or decision junction 168 leads the interpreter
24 directly to context switch step 172 and from that sep to read and execute steps 132
and 134. |

Thread Load Balancing

As stated above, there may be multiple native threads 50, each executing
instructions from a linked list 56 of active virtual threads 58. When a virtual thread
becomes active and is assigned to a native thread 50, the system attempts to assign it
to the native thread with the lightest load. Tﬁis keeps the virtual threads evenly
balanced between the native threads.

As active threads terminate or become idle, they will not necessarily do so in an
even fashion — on a system with two native threads, each assigned ten virtual threads,
it's quite possible for six virtual threads in one native thread to all terminate or become
idle, leaving two native threads, one with four virtual threads, and one with ten.

It is desirable to avoid unbalanced or uneven loads among native threads 50

10

15

20

25

WO 03/007105 PCT/US01/51441
33

because such a circumstance does not make efficient use of the processors on a muiti-
processor machine. To solve this problem, virtual threading undertaken by interpreter
24 uses a technique called thread balancing. The basic principle of thread balancing is
that the interpreter 24 should periodically check the set of running virtual threads 58
and redistribute them to maintain a balanced distribution of virtual threads among
native threads 50. The thread balancing must be done carefully so as to avoid making
native threads 50 slop to wait for locked data to become available.

Any native thread 50 may perform thread balancing. Each native thread 50

maintains a counter (not shown), which the native thread increments every time the

thread has completed execution of a complete set of time slices (that is, the native
thread 50 reached the end of its list 56 of active threads 58 and has started again from
the beginning). When this counter reaches a certain value which is selected to accord
with the platform, the expected applications set and the preferences of the operator,
the counter is reset to zero, and the native thread 50 attempts to perform thread
balancing.

When it is time for a native thread 50 to perform thread balancing, it should skip
the balancing operation if another native thread is aiready in the process of‘ performing
balancing. The coordination of thread balancing among several native threads 50 is.
accomplished through use of a global mutex (not illustrated). A native thread 50 must
have a lock on this mutex in order to perform thread balancing. When a native thread
50 accesses the global mutex and finds that it is locked, the native thread does not wait
for the mutex to become unlocked but instead skips thread balancing.

Once a native thread 50 has a lock on the balancing mutex, the native thread
must iterate over the nativé thread table 36 twice. Each native thread 50 maintains a
thread load value (described above; typically a sum of the priorities of all active
threads). During th2 first pass through the native thread table 36, the th(ead 50 that's

performing the balancing sums the load values of all the native threads. This sum of all

10

15

20

25

WO 03/007105 PCT/US01/51441
34

the native thréad loads is then divided by the number of native threads 50 to derive an
average load. During the second pass through the native thread list, if any native
thread 50 has a load that's greater than the average load, that native thread's active list
56 is locked and virtual threads are removed from the active list, starting with low
priority threads and moving towards high priority threads, until the native thread's load
is equal to or less than the average load.

These virtual threads are then assigned to native threads as if they had just
become active, using the usual algorithm (determine the native thread with the lightest
load, and assign the virtual thread to it).

Named Threads

When an application executes an instruction that creates a new thread, the

- application typically receives a unique identifier for the thread that was just created.

These identifiers are typically unique numerical codes that are assigned dynamically as
threads are created, and they can be used to specify target addresses when sending
an inter-thread message.

Sometimes, however, it is desirable for one application to exchange messages
with another application that's already running. In this case, the dynamically-assigned
numeric 1D of the target thread is not available to the sending application.

Itis therefore: recommended that the interpreted language provide an instruction
for assigning a name to a thread, or make such a function part of the instruction that
creates a new thread. A thread name is a string of text that can be used to uniquely
identify a thread. Typically, an applicétion developer will use some identifier that's
unique to them (such as the serial number of their development package) combined
witH a descriptive name for the application (such as “Whiteboard”) to make a unique
thread name that they can use for that application.

When an application needs to send a message to another thread, it may do so

- either by the thread's dynamically assigned unique numeric ID, or by the thread's

10

15

20

25

WO 03/007105 PCT/US01/51441
35 .

name, if a name hais been assigned.
Thread Messages and Networking

Inter-thread messages are a powerful means for communication between
components of an application, especially user interface components such as buttons
and scrollbars, and with thread names they form a powerful mechanism for
communication between applications running on the same computer.

Additionally, thread messages can form a powerful means of communicating
between apblications on different computers.. If this is implemented properly, it will be
transparent to applications and application developers — whether a thread message is
being sent to a named thread on the local computer, or a named thread on a remote
computer should not affect the nature of the instructions needed to send the message.

This communication between applications on different com;;uters is
accomplished by the use of proxy threads 174 and 176 (see Fig. 6). When a thread
178 on a local computer 180 needs to communicate with a thread 182 on a remote
computer 184, the thread 178 on the local computer 180 must execute an instruction to
connect to the remote thread 182. When the instruction is executed, a new local proxy
thread 174 is created. That proxy thread 174 executes a code module that connects to
the remote computer 184. The remote computer 184 receives the connection and
creates its own proxy thread 176. The pfoxy threads 174 and 176 then communicate
with each other over a network 186 using standard network protocols such as TCP/IP.

The local thread 178 that executed the original connection instruction now
receives the ID of the local proxy thread 174. Local thread 178 can use that ID as if it
were the ID of the ramote target thread 182 - that is, local thread 178 can use the ID of
the local proxy thread 174 as the address for inter-thread messages that are targeted
at the remote thread 182.

Whenever the local proxy thread 174 receives a message, it creates a

representation of that message in a binary buffer (not shown), and sends that buffer

10

15

20

WO 03/007105 PCT/US01/51441
36

over the network 186 to the remote proxy thread 176 using the standard protocol. The
remote proxy thread 1;16 then translates the binary buffer representation of the
message back into a standard message and forwards the message to the remote
thread 182.

The same system is used to transmit messages in the other direction — if the
remote proxy thread 176 receives a message, that message is translated and sent over
the network to the local proxy thread 174, which forwards it to the local thread 178.

Itis to be understood that processor modules disclosed herein may be hard
wired components or generic computer circuits modified by programming to perform
the indicated functions. Thus, an interpreter may be realized by digital circuitry
modified by software to compile user's source code into pseudocode, to create virtual
threads for carrying out tasks or jobs, processing pseudocode instructions selected in
accordance with a currently executing virtual thread, etc.

Itis to be further understood that aescﬁptions herein of the interpreter 24 and its
operations apply to any instance of the interpreter that is running, i.e., to different native
threads 50.

Although the invention has been desdribed in terms of particular embodiments
and applications, one of ordinary skill in the art, in ﬁght of this teaching, can generate
additional embodiments and modifications without departing from the spirit of or
exceeding the scope of the claimed invention. Accordingly, it is to be understoad that
the drawings and dascriptions herein are proffered by way of example to facilitate

comprehension of the invention and should not be construed to limit the scope thereof.

10

15

20

25

WO 03/007105 PCT/US01/51441
37

WHAT IS CLAIMED IS:

1. A method for operating a computer, comprising:

storing in a computer memory a plurality of pseudocode instructions, at least
some of said pseuclocode instructions comprising a plurality of machine code
instructions;

for each of a plurality of tasks or jobs to be performed by the computer,
automatically creating a respective virtual thread of execution context data including (a)
a memory location of a next one of said pseudocode instructions to be executed in
carrying out the respective task or job and (b) the values of any local variables required
for carrying out the respective task or job, a plurality of said tasks or jobs each entailing
execution of a respictive one of said pseudocode instructions comprising a plurality of
machine language instructions;

processing each of said tasks or jobs in a respective series of time slices or
processing slots under the control of the respective virtual thread; and

in every context switch between different virtual threads, undertaking such
context switch only after completed execution of a currently executing one of said

pseudocode instructions.

2. The method defined in claim 1 wherein each of the virtual threads is part of a
respective linked list of virtual threads, each of the virtual threads further including a
pbinter to a next virtual thread in the respective linked list, further comprising, for every
context switch between different virtual threads, consulting the pointer of a currently

executing virtual thread to determine an identity of a next virtual thread to be executed.

3. The method defined in claim 2 wherein said respective linked list is one of a
plurality of linked lists of said virtual threads, one of said linked:lists being a list of idle

virtual threads, another of said linked lists being a list of active virtual threads, an

10

15

20

25

WO 03/007105 PCT/US01/51441

38
additional one of said linked lists being a list of queued virtual threads, further

comprising periodically moving at least one virtual thread from said list of queued virtual

threads to said list of active virtual threads.

4. The method defined in claim 3 wherein the moving of a virtual thread from
said list of queued virtual threads to said list of active virtual threads includes:
setting a mutex to lock said list of queued virtual threads;
| subsequen.tl.y modifying pointers in (i) the moved virtual thread, (ii) at least one
virtual thread originally in said list of active virtual threads, and (iii) at least one virtual
thread remaining in said list of queued virtual threads; and
thereafter resetting or releasing the mutex to enable access to said list of

queued virtual threads.

5. The method defined in claim 1 wherein each of said virtual threads
additionally includes a mutex, further comprising:

setting the mutex of a selected one of éaid virtual threads;

subsequently modifying data in said selected one of said virtual threads; and

thereafter resetting or releasing the mutex to enable access to said selected one

of said virtual threads.

6. The method defined in claim 5 wherein the setting of said mutex of said
selected one of said virtual threads, the modifying of said data, and the resetting or
releasing of said mutex of said selected one of said virtual threads are performed in

response to a message from one other of said virtual threads.

7. The method defined in claim 5 wherein each of the virtual threads is part of a

respective linked list of virtual threads, each of the virtual threads further including a

10

15

20

25

WO 03/007105 PCT/US01/51441
39

pointer to a next virtual thread in the respective linked list, the modifying of said data

including modifying a pointer of said selected one of said virtual threads.

8. The method defined in claim 1 wherein each of said virtual threads is
assigned a message queue, further comprising entering a message in a message
queue of a selected one of said virtual threads during execution of a task or job

pursuant to another one of said virtual threads.

9. The method defined in claim 8 wherein said selected one of said virtual

‘threads and said another one of said virtual threads correspond to respective tasks or

jobs derived from different applications programs, whereby the entering of said
message in the message queue of said selected one of said virtual threads implements

data transfer between said different applications programs.

'10. The method defined in claim 8 wherein said selected one of said virtual
threads and said another one of said virtual threads are proxy or interface threads on
different computers, the entering of said message in said message queue including

transmitting said message over a communications link between said computers.

11. The method defined in claim 1 wherein the creating of the virtual threads, the
processing of said tasks or jobs in respective series of time slices or processing slots,
and the undertaking of context switches all include the operating of the computer under

an interpreter program.

12. The method defined in claim 11, further comprising running a plurality of
instances of said inferpreter program on the computer, each instance corresponding to

a native thread, each native thread:

10

15

20

25

WO 03/007105 PCT/US01/51441
40

creating' a respective set of virtual threads of execution context data;-
processing each of a plurality of tasks or jobs in a respective series of time slices
or processing slots under the control of the respective virtual thread; and
| in every context switch between different virtual threads, undertaking such
context switch only after completed execution of a currently executing one of said

pseudocode instructions.

13. The method defined in claim 12, further comprising shifting a virtual thread
from a first native thread having a heavier-than-average load to a second native thread

having a lighter-than-average load.

14. The method defined in claim 13 wherein the shifting of a virtual thread

includes:

determining an average load over all the native threads by summing thread load
values for the native threads and dividing by the number of threads: and

for each of the native threads, comparing the respective thread load value with

the average load to determine relative load.

15. The method defined in claim 1 wherein said virtual threads include a first
proxy thread for cornmunicating with a second proxy thread on another computer via a
computer network link, the processing of a communication with said another computer

including using standard network protocols under the control of said first proxy thread.

16. The method defined in claim 15 wherein each of said virtual threads,
including said first proxy thread, is assigned a respective message queue, further
comprising entering a message in a message queue of said first proxy thread to

execute a data transfer to said another computer over said computer network link.

10

15

20

25

WO 03/007105 PCT/US01/51441
41

17. The method defined in claim 1 wherein a selected one of said virtual threads
is in an idle state, further comprising:

generating a messagé in response to an input from a source outside the
computer,

inserting said message in a message queue for said selected one of said virtual
threads;

changing said selected one of said virtual threads from said idle state to an
active state; and

after the inserting of said message in said message queue and the changing of
the state of said selacted one of said virtual threads, accessing said message queue to
obtain said message during a time slice or processing slot assigned to said selected

one of said virtual threads.

18. The method defined in claim 1 wherein each of said virtual threads
additionally includes a thread priority, further comprising automatically consuiting the
thread priorities in a plurality of said virtual threads to determine relative priorities and

varying a sequence of threads in accordance with the determined relative priorities.

19. The method defined in claim 1 wherein the tasks or jobs processed in
respective series of time slices or processing slots under the control of the respective
virtual threads includle:

controlling objects imaged on a computer display, each of said objects
constituting a separate task or job assigned a respective one of said virtual threads;
and

monitoring actuation of keys on a computer keyboard, each of said keys

constituting a separate task or job assigned a respective one of said virtual threads.

10

15

20

25

WO 03/007105 PCT/US01/51441

42

20. The method defined in claim 1 wherein said time slots or processing slots
are measured by counting consecutively executed pseudocode instructions, further

comprising, for each of a plurality of said time slices or processing slots, terminating the

' respective time slot or processing slot upon counting a predetermined number of

consecutively executed pseudocode instructions.

21. A multi-tasking computer comprising:

a memory;

a display;

an input periphefal;

at least one processor operatively connected to said memory, said display, and
said input peripheral, said processor having:

a compiler for converting operator-entered source 6ode instn;uctions into
bytecode or pseudocode instructions, said compiler being operatively linked to said
memory for enabling the storage of said bytecode or pseudocode instructions therein;
and

an interpreter for executing said bytecode or pseudocode instructions,

said memory storing a first linked list of idle virtual threads, a second linked list
of active virtual threads, and a third linked list of queued or waiting virtual threads, each
of said threads including context or state data, a mutex and a pointer to a next thread in
the respective list, said intetpreter being operatively connected to said input peripheral
for recognizing an event generated by said input beripheral. said interpreter being
operatively connected to said memory (a) for shifting at least one of said idle virtual
threads from said first linked list to said third linked list, (b) for shifting queued or waiting
virtual threads from said third linked list to said second linked list, (c) for executing

instructions according to context and state data of different virtual threads in said

10

15

20

25

WO 03/007105 PCT/US01/51441
43

second linked list in successive time slices or processing slots pursuant to a
predetermined priority schedule, said interpreter being operatively connected to said
display in part for modifying an object on said display in response to instructions

specified by a respactive active virtual thread in said second linked list.

22. The computer defined in claim 21 wherein:

said memory additionally stores a fourth linked list of native threads;

said interpreter is one of a plurality of instances of a common interpreter, each of
said instances of said common interpreter corresponding to a respective one of said
native threads;

said second linked list is one of a plurality of linked active-thread lists, each of
said native threads being linked by a respective pointer to a respective one of said
linked active-thread lists; and

said third linked list is one of a plurality of linked queued-thread lists, each of
said native threads being linked by a respective pointer to a respective one of said

linked queued-threzd lists.

23. The computer defined in claim 22 wherein said active threads each includes
a mutex for enabling locking of the respective thread by one native thread to prevent

access to the respective thread by other native threads.

24. The method defined in claim 22 wherein said interpreter includes means
shifting a virtual thread from a first native thread having a heavier-than-average load to

a second native thread having a lighter-than-average load.

25. The computer defined in claim 21 wherein said list of idle virtual threads

includes a plurality of threads assigned to respective keys of a keyboard for processing

10

15

20

25

WO 03/007105 PCT/US01/51441

44

actuations of the resspective keys.

26. The compu_ter defined in claim 21 wherein said list of idle threads includes a

_plurality of threads assigned to respective objects in a display image for processing

changes in appearance of the respective objects.

27. The computer defined in claim 21 wherein said interpreter includes a context
switch module and a instruction counter, said context switch module being operatively
connected to said memory and said instruction counter for effectuating a context switch
from a currently exe:cuting active thread of said second linked list to a next active
thread in said second linked list upon execution of a predetermined number of

bytecode or pseudacode instructions pursuant to said currently executing active thread.

28. The computer defined in claim 21 wherein each of said virtual threads
includes a memory location of a next instruction to execute in the respective thread,
values of any local variables for the respective thread, and an execution priority for the

respective thread.

29. The computer defined in claim 21 wherein said memory stores a plurality of

message queues assigned to respective ones of said threads.

30. The computer defined in claim 21 wherein said memory stores at least one
proxy or interface thread having an execution context for carrying out a communication
with a remote computer via a communications link, said proxy or interface thread

containing a memory address leading to a network protocol routine.

31. In a computer having an interpreter for executing a series of bytecode

10

15

20

25

WO 03/007105 PCT/US01/51441
45

instructions each consisting of a multiplicity of machine code steps, a multitasking
method comprising:

for each task of a plurality of tasks to be performed by the computer, using the
interpreter to define a respective virtual thread;

during each time slice of a series of consecutive time slices, executing bytecode
instructions of a respective current thread selected from among the virtual threads; and

executing a context switch from one of said virtual threads to another of said

virtual threads only after execution of one of said bytecode instructions. |

32. The method defined in claim 31 wherein each of said virtual threads is part
of a respective linked list of virtual threads, each of the virtual threads further including
a pointer to a next virtual thread in the respective linked list, further comprising, for
every context switch between 'd.ifferent virtual threads, consulting the pointer of a
cdrrently executing virtual thread to determine an identity of a next virtual thread to be

efxecuted.

33. The methiod defined in claim 32 wherein said respective linked list is one of a
plurality of linked lists of said virtual threads, one of said linked lists being a list of idle
virtual threads, another of said linked lists being a list of active virtual threads, an
additional one of said linked lists being a list of queued virtual threads, further
comprising periodically moving at least one virtual thread from said list of queued virtual

threads to said list cf active virtual threads.

34. The method defined in claim 33 wherein the moving of a virtual thread from
said list of queued virtual threads to said list of active virtual threads Includes:
setting a mutex to lock said list of queued virtual threads;

subsequently modifying pointers in (i) the moved virtual thread, (ji) at least one .

10

15

20

25

WO 03/007105 PCT/US01/51441
46

virtual thread originally in said list of active virtual threads, and (iii) at least one virtual
thread remaining in said list of queued virtual threads; and

thereafter resetting or releasing the mutex to enable access to said list of

queued virtual threads.

35. The method defined in claim 31 wherein each of said virtual threads
additionally includes a mutex, further comprising:

setting the mutex of a selected one of said virtual threads;

subsequently modifying data in said seiected one of said virtual threads; and

thereafter resetting or releasing the mutex to enable access to said sélected one

of said virtual threads.

36. The method defined in claim 35 wherein the setting of said mutex of said
selected one of said virtual threads, the modifying of said data, and the resetting or
releasing of said mutex of said selected one of said virtual threads are performed in

response to a message from one other of said virtual threads.

37. The method defined in claim 31 wherein each of said virtual threads is
assigned a messag2 queue, further comprising entering a message in a message
queue of a selected one of said virtual threads during execution of a task or job

pursuant to another one of said virtual threads.

38. The methiod defined in claim 31 wherein said virtual threads include a first
proxy thread for communicating with a second proxy thread on another computer via a
communications link, further comprising processing bytecode instructions according to
said first pfoxy thread for sending a message to said second proxy thread over said

communications link.

10

15

20

25

WO 03/007105 PCT/US01/51441
47

39. The method defined in claim 31 wherein each of said virtual threads
additionally includes a thread priority, further comprising automatically consulting the
thread priorities in a plurality of said virtual threads to determine relative prioriﬁes and

varying a sequence of threads in accordance with the determined relative priorities.

40. The method defined in claim 31 wherein said time slots or processing slots
are measured by counting consecutively executed pseudocode instructions, further
comprising, for each of a plurality of said time slices or processing slots, terminating the
respective time slot or processing slot upon counting a predetermined number of

consecutively executed pseudocode instructions.

41. A multi-tasking computer comprising:

a memory storing state and context data of multiple threads or tasks;

an interpreter for executing a series of bytecode instructions each consisting of a
multiplicity of machine code steps, the interpreter being programmed:

to define a respective virtual thread for each task to be performed by the
computer;

to execute bytecode instructions of a respective current thread selected from
among the virtual threads 6uring each time slice of a series of consecutive time slices;
and

to execute a context switch from one of said virtual threads to another of said

virtual threads only after execution of one of said bytecode instructions.

42, The computer defined in claim 41 wherein each of said virtual threads is part
of a respective linked list of virtual threads, each of the virtual threads further including

a pointer to a next virtual thread in the respective linked list, said interpreter being

10

15

20

25

WO 03/007105 PCT/US01/51441
48

further programmed to consult, for every context switch between different virtual

threads, the pointer of a currently executing virtual thread to determine an identity of a

next virtual thread fo be executed.

43. The computer defined in claim 42 wherein said respective linked list is one of
a plurality of linked lists of said virtual threads, one of said linked lists being a list of idle
virtual threads, another of said linked lists being a list of active virtual threads, an
additional one of said linked lists being a list of queued virtual threads, said interpreter
being further programmed to periodically move at least one virtual thread from said list

of queued virtual threads to said list of active virtual threads.

44. A computer method comprising:

running a timer of a computer to generate a series of time slices or processing
slots;

compiling input user source code into byte- or pseudocode instructions each
corresponding to a multiplicity of machine code instructions;

operati'ng an interpreter of said computer to assign computing tasks to
respective virtual threads, the assigning of said computing tasks to said virtual threads
including identifying and storing state and context data for each of said computing
tasks;

in each of said time slices, additionally operating said interpreter to execute
selected ones of said byte- or pseudocode instructions pursuant to the state and
context data of a current one of said virtual threads;

after the execution of each successive one of the selected byte- or pseudocode
instructions and only after such execution, further operating said interpreter to check
whether a predetermined interval has elapsed since a commencement of execution of

instructions pursuant to said current one of said virtual threads; and

WO 03/007105 PCT/US01/51441
49

upon a determination of elapsing of said predetermined interval, operating said

interpreter to perform a context switch.

45. The method set forth in claim 44 wherein the tasks assigned to respective
ones of said virtual program threads include (a) controlling objects appearing in an
image on a display screen, (b) monitoring operator input, (c) executing routines of
applications programs, (d) running computer maintenance routihes, (e) carrying out
communications with remote computers via a computer network, and (f) calculating

local variables.

WO 03/007105 PCT/US01/51441

1/9

MEMORY [«—{ PROCESSOR |[«—* INTERNET |« ~§gmLETER
12 =
16/‘DISPLAY |:'| G 1
18—\ ——————— —/ 12
MEMORY[? | . | //
/‘\ ' .
14 ™ : COMPILER| 26 :/
KEYBOARD | ‘ |
16 ™ | ~ 24 |
DISPLAY |« —{INTERPRETER— | F'|(G .2
. _ °
S .
| |
| | INSTRUCTION | SKIP |
4 |_COUNTER COUNTER '
Y) u !
18 24 | 30 28 |
\ | INSTRUCTQI\: |
MEMORY |+ "EXECUTION |4+ o ooNier 1 |
| UNIT |
| * :) |
|3 116 < - |
RGN . < : |
i CONTEXT SKIP |
i SWITCH L. COUNTER |
i — MODULE |
| | |
Lo]

FIG.3

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

v'Oold

2/9

AYINI XN
Ol ¥3INIOd

X3LNN
[viva 31VIS|
Viva 9 AV3IHHIA

86 < ;

AYIN3 1X3N
Ol ¥3INIOd||

X3LNAN
Vivd 31viS

A

1

J

vivad S AV3IYHIA

mm/\«

A AYINT AYINT IX3N
IX3IN OL ¥3INIOd 0L ¥3INIOd
AMINT 1X3N av3YHIA @3N3ND X3LNN
OL 83INIOdI| <1 1S4 0L ¥3INIOd vivd 31v1S
X3ILNW [X3INN 3n3N0_]| | VAV £ OVIUHIA
viva 31VIS AQVIYHIA IAILOV
VIVQ ¥ QVINHIA | <t LS¥ld OL ¥IINIOd: O ITERTED
9 < (| viva | avauHiH Ol ¥3INIOd
AMINI LX3NI| 05 ,—99 X31NWN
Ol ¥3INIOd _r >Ezu_ viva 31VIS
X31NW IXIN OL NIINIOC|| [VLVA Z AVIHHIA
- y
P 1SYI14 01 ¥3INIOd AMINI LX3N
79— 09 \¥ X3LNW 3N3N0D] Ol ¥3INIOd
¢S AVIHHIA 3AILOV X3LNW
o [LiS¥ld Ol ¥3INIOd VIVa 3LVIS
Viva | GV3YHIH | |viva | Qv3IYHIA
e Tald 8¢ ——_

or—\

m_._m<._. av3iyHL 3d4vMAdvH O._. d31NIOd

m_._m<._. av3yHL 37dl Ol d31INIOd

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

86

96

\J3IN3N0 S.av3IdHL

JAILVN XOOTNN
+

06 AJ0INN

_
\.l_.m_n_ J1di

+

\

3IN3ND S.av3IYHL

JAILVN OL Gv3dHL)

TvNLdIA aav

av3yHL 1IN3IdI03d

1S 37al Wodd

JAONW3Y

~J3N3IND S.AvV3IIHL

3/9

)
Nmk

)

JAILYN X001
)

8815 37al

avo1l 1S31HOMN
HLIM av3dl
JAILVN AaNI4

ANV 1SIT aV3dHL

JAILYN 3S¥3AVHL

AN

8019 AMO0T

8

¢
31701 Av3dHL
IN3IdI03y Sl

(2)

A

AN3NO S,Av3dHL
JAILYN 3JHL MO0

S3JA

IN3AT NV

¢
N3N0

98—’
-
anand JOVSSIN IN3IAT ¥O4
S, Av3ay¥HL [+ av3dHL 1IN3IdIO3y
IN3IdIO3d MO0 ININY313d
y
NmK | S3A fow

ON //Noe

8L

(ONILIVM LNOHLIM)

SIN3JAT d04 AMO3HD

by

¥0 1SIT JAILOV

dod LIvM

//wh

ON

S.AV3YHL 3JAILVN 3HL NI~

SAVIYHL IVNLIMIA ANY
IYIHL 3V

¢L

SMSVL
JONVNILINIVN SO

//Oh

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

4/9

oLl

S3A

HLIM

ON

<
QV3INHL
TVALYIA INIHIND

IVNLIHIA M3N
dHL SI

p

1S
JAILOY S,AV3IYHL
JAILVN OL av3dHl
IVNLYIA dav

JHL NVHL dNO¥O ALIMOINd
Jd3IHOIH ¥V NI QV3dHL

i

S3

A

N,:\/

Av3yHL TvNLdIA.
INJHINO M3IN

SIN0D3IE avIuHL|

IVNLYIA M3N
*HOLIMS LX3INOD

ALIMOIMd JNVS FHL
SAV3YHL TVNLYIA

ON

&
av3yHL
IN3HHND
dHL SV dNodO

1SIT 3AILDV JHL NI
ANV 3¥3HL

aN3and
dHL MOO1INN

801

3N3ND WOd4
dv3idHL 3AONW3d

oo_,\ OOF¥

S3A

140}

Av3dHL TVNLAIA

ON - an

¢
3N3NO
JHL NI

V 3Jd3HL
Sl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

QG 0l

5/9

Av3yHL VNLAIA
IN3FHHNO MAN
S3IN0D38 aVIyHL
IvNLYIA @310313S
*HOLIMS LX3INOD

,
/wN_

9¢l
\,

O¥3Z Ol Av3adHL
d310313s 40
INNOD dIMS 13S

H

Qv3a¥HL Q310313S
40 (S) INNOD

dIMS 3ININYIL3IA
ANV ‘av3¥HL
g3aLo313s 40 (d) e
ALINOINd 3ININY3L3A
‘QVIYHL TVNLYIA

dNodd

ALIMOIYd IN3HH4NO A H 7
NI dv3dHL

IX3N 10313S

JAILOV ALINOINd
1S3HOIH 40 (H)
ALIMOINd ININY3L3A

N~ z2Z1

_’ YCl

S3A

ON .

Qv3ayHLl d319313S

]
/ON_‘

40 INNOD
diMS INIWIHONI
A N_ 0¢l

£

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

6/9

¢
d3Sv3yo3dd

4O (Q3SVIHONI
dNOYO ALIMOIEd
S.AV3yHL JHL

9l

991 ./ d3sv3yo3d
v

| dno¥9

ALIMOId 1SFHIIH'
NI SAV3dHL 30

INNOD INIW3¥03a

ALIYOIdd L1S3HOIH
NI 1437 SAVIyHL

: (o)
L OL dno¥9 |}
ALIMORId LSIHOIH
43SVIHONI —1 "\ " savauHL
40 INNOO 13S
| ¢m_\\

891

&
dNodd

\NNF

OLlL
N\

LI NI SAv3dHL
INNOD ANV dNO¥O
ALIMOIYdd LS3HOIH
M3N 3ININY3130 OL
SAV3IYHL JAILOV NVOS

Y

AV3dHL IN3H4NO
JHL S3IN0J38
Av3ydHL 3AILOV

ALIMOId 1S3HOIH 3HL

*HOLIMS LX3LINOO

NOILONYLSNI
31N03X3

¢n_\\\\

|

L

Av3yHL IN3ddNO
WO¥d4 NOILONYILSNI
IX3IN dv3d

va\\\ﬁAWJ

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

@J

167014

a31No3x3
. LSNP SYM ,
“1VHL NOILONYLSNI 3HL 40
1INS3Y ¥V SV ONILVNINYAL
Qv3IYHL IN3HHND
IHL Sl

<
Q3LNd3x3
1SNP SYM
1VHL NOILONYLSNI
IHL 40 1INS3IY V SV J1dI

7/9

ON

S3JA

I0MSANIL
3HL 40 1INSIY V SV
m.oﬁm_ﬂw WJuImmao Q3IONVHO dNO¥D ALINOId

¢
d3didX3

ONINOO38 (aV3yHL
IN3HHNO
JHL SI

8¢l

a31N03X3
1SNF SYM
1VHL NOILONYLSNI

S.AV3YHL IN3YdNI
. dHL SVH

091

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

Av3yHL INJ¥HNO
JHL Av3dHL
ALIMOIdd LS3HOIH
JHL 3NV
‘HOLIMS 1X3INOD

A

A

N

8/9

ALIHOIdd
1S3HOIH 1V 1S

JAILOV NI SAV3IdHL
40 ¥38ANN INNOD

_/

Ol

961
861

1SIT 3HL NI
Av3yHL ALIbOlHd

1S3HOIH 3JHL
40 ALIMOIYd 3JHL
ANINY313d OL1 1SI1
JAILOV JSH3AVAL

av3idHl
IN3YYNO 3JHL

ANV 3483HL
34V

/

SV dNOYO ALIMOI™d
dAVS 3JHL NI 1S
JHL NI 1437 SAV3dHL

7 3JAILOV

/l*mﬁ

¢Sl

4G7°0l3

1S
3701 %OOINN
A
!

1SI7 31dl

Ol av3dHL
31di

ATM3IN dav

I ~—ovl

1SIT
3141 X001

A

- GV3YHL A8
g3sn S30dN0S3d
3384 ANV
1SI7 3AILOV WOAA
av3yHL 3AONW3Y

[\
0S1

4

N

1SIT 3AILOV WOd4
av3ydHlL 3AONW3Y

/Ni‘

SUBSTITUTE SHEET (RULE 26)

PCT/US01/51441

WO 03/007105

9/9

97014

dv3adHL
AXOdd 3F10W3d

-

(di/doL SV HONS)

o

|

-

SIOVSSIN AVIYHL—YILNI

e

dv3idHL J10W3d

7000108d MYOMI3IN

~9/ v/l

281 81

dv3idHL
AXOdd VOOl

_/

H

S3OVSSIN AVIYHL—YTLNI

|

dv3idHL VOO0

=
|

XXX

(MHOMLIN ¥IHLO ¥O)
1INYILNI

=i
[]

X XXX

8l mm—\\ 081

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

